101
|
Flores-Téllez TNJ, Villa-Treviño S, Piña-Vázquez C. Road to stemness in hepatocellular carcinoma. World J Gastroenterol 2017; 23:6750-6776. [PMID: 29085221 PMCID: PMC5645611 DOI: 10.3748/wjg.v23.i37.6750] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Carcinogenic process has been proposed to relay on the capacity to induce local tissue damage and proliferative repair. Liver has a great regeneration capacity and currently, most studies point towards the dominant role of hepatocytes in regeneration at all levels of liver damage. The most frequent liver cancer is hepatocellular carcinoma (HCC). Historical findings originally led to the idea that the cell of origin of HCC might be a progenitor cell. However, current linage tracing studies put the progenitor hypothesis of HCC origin into question. In agreement with their dominant role in liver regeneration, mature hepatocytes are emerging as the cell of origin of HCC, although, the specific hepatocyte subpopulation of origin is yet to be determined. The relationship between the cancer cell of origin (CCO) and cancer-propagating cells, known as hepatic cancer stem cell (HCSC) is unknown. It has been challenging to identify the definitive phenotypic marker of HCSC, probably due to the existence of different cancer stem cells (CSC) subpopulations with different functions within HCC. There is a dynamic interconversion among different CSCs, and between CSC and non-CSCs. Because of that, CSC-state is currently defined as a description of a highly adaptable and dynamic intrinsic property of tumor cells, instead of a static subpopulation of a tumor. Altered conditions could trigger the gain of stemness, some of them include: EMT-MET, epigenetics, microenvironment and selective stimulus such as chemotherapy. This CSC heterogeneity and dynamism makes them out reach from therapeutic protocols directed to a single target. A further avenue of research in this line will be to uncover mechanisms that trigger this interconversion of cell populations within tumors and target it.
Collapse
Affiliation(s)
- Teresita NJ Flores-Téllez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| |
Collapse
|
102
|
Castelli G, Pelosi E, Testa U. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9090127. [PMID: 28930164 PMCID: PMC5615342 DOI: 10.3390/cancers9090127] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV) infection (frequent in Asia and Africa), hepatitis C virus (HCV), chronic alcohol abuse, or metabolic syndrome (frequent in Western countries). In cirrhosis, hepatocarcinogenesis is a multi-step process where pre-cancerous dysplastic macronodules transform progressively into HCC. The patterns of genomic alterations observed in these tumors were recently identified and were instrumental for the identification of potential targeted therapies that could improve patient care. Liver cancer stem cells are a small subset of undifferentiated liver tumor cells, responsible for cancer initiation, metastasis, relapse and chemoresistance, enriched and isolated according to immunophenotypic and functional properties: cell surface proteins (CD133, CD90, CD44, EpCAM, OV-6, CD13, CD24, DLK1, α2δ1, ICAM-1 and CD47); the functional markers corresponding to side population, high aldehyde dehydrogenase (ALDH) activity and autofluorescence. The identification and definition of liver cancer stem cells requires both immunophenotypic and functional properties.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| |
Collapse
|
103
|
Klingenberg M, Matsuda A, Diederichs S, Patel T. Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J Hepatol 2017; 67:603-618. [PMID: 28438689 DOI: 10.1016/j.jhep.2017.04.009] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
The majority of the human genome is not translated into proteins but can be transcribed into RNA. Even though the resulting non-coding RNAs (ncRNAs) do not encode for proteins, they contribute to diseases such as cancer. Here, we review examples of the functions of ncRNAs in liver cancer and their potential use for the detection and treatment of liver cancer.
Collapse
Affiliation(s)
- Marcel Klingenberg
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany
| | - Akiko Matsuda
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
104
|
Chen J, Chen L, Zern MA, Theise ND, Diehl AM, Liu P, Duan Y. The diversity and plasticity of adult hepatic progenitor cells and their niche. Liver Int 2017; 37:1260-1271. [PMID: 28135758 PMCID: PMC5534384 DOI: 10.1111/liv.13377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
The liver is a unique organ for homoeostasis with regenerative capacities. Hepatocytes possess a remarkable capacity to proliferate upon injury; however, in more severe scenarios liver regeneration is believed to arise from at least one, if not several facultative hepatic progenitor cell compartments. Newly identified pericentral stem/progenitor cells residing around the central vein is responsible for maintaining hepatocyte homoeostasis in the uninjured liver. In addition, hepatic progenitor cells have been reported to contribute to liver fibrosis and cancers. What drives liver homoeostasis, regeneration and diseases is determined by the physiological and pathological conditions, and especially the hepatic progenitor cell niches which influence the fate of hepatic progenitor cells. The hepatic progenitor cell niches are special microenvironments consisting of different cell types, releasing growth factors and cytokines and receiving signals, as well as the extracellular matrix (ECM) scaffold. The hepatic progenitor cell niches maintain and regulate stem cells to ensure organ homoeostasis and regeneration. In recent studies, more evidence has been shown that hepatic cells such as hepatocytes, cholangiocytes or myofibroblasts can be induced to be oval cell-like state through transitions under some circumstance, those transitional cell types as potential liver-resident progenitor cells play important roles in liver pathophysiology. In this review, we describe and update recent advances in the diversity and plasticity of hepatic progenitor cell and their niches and discuss evidence supporting their roles in liver homoeostasis, regeneration, fibrosis and cancers.
Collapse
Affiliation(s)
- Jiamei Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Long Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Neil D. Theise
- Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, New York, New York, USA
| | - Ann Mae Diehl
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ping Liu
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyou Duan
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
105
|
MXR7 facilitates liver cancer metastasis via epithelial-mesenchymal transition. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1203-1213. [PMID: 28812296 DOI: 10.1007/s11427-016-9042-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
Abstract
MXR7 is a cell-surface protein and highly expressed in hepatocellular carcinoma (HCC). The aim of this study is to determine the expression profile of MXR7 in HCC and investigate the influence of MXR7 on invasion and metastasis of HCC cells. For this purpose, immunohistochemical assay was used to identify the differential expression of MXR7 in 94 HCC specimens. Expression of MXR7 in 4 pairs of HCC and portal vein tumor thrombus (PVTT) was also tested. The motility of HCC cells were characterized by transwell migration and matrigel invasion assays. In vivo metastasis potential was determined via tail vein injection assay. Moreover, compared with noninvasive HCC tumors or human HCC cell lines with low metastatic potential, invasive HCC samples and HCC cell lines with high metastatic potential exhibited higher MXR7 expression. Furthermore, forced expression of MXR7 in SMMC-7721 promoted cell proliferation, migration and invasion in vitro and accelerated tumor growth and metastasis in vivo. Conversely, knockdown of MXR7 expression in HuH7 cells inhibited proliferation and motility of cells. Mechanically, overexpression of MXR7 promoted epithelial-mesenchymal transition (EMT) progress, and MXR7 depletion repressed the EMT phenotype. In conclusion, MXR7 is a mediator of EMT and metastasis in HCC and may serve as a novel therapeutic target.
Collapse
|
106
|
Xiao Y, Lin M, Jiang X, Ye J, Guo T, Shi Y, Bian X. The Recent Advances on Liver Cancer Stem Cells: Biomarkers, Separation, and Therapy. Anal Cell Pathol (Amst) 2017; 2017:5108653. [PMID: 28819584 PMCID: PMC5551471 DOI: 10.1155/2017/5108653] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022] Open
Abstract
As the third major reason of mortality related to cancer in the world, liver cancer is also the fifth most frequent cancer. Unluckily, a majority of patients succumb and relapse though many progresses have been made in detection and therapy of liver cancer. It has been put forward that in liver cancer, cancer stem cells (CSCs) hold main responsibility for the formation, invasion, metastasis, and recurrence of tumor. Strategies that are intended to target liver CSCs are playing a more and more significant role in supervising the development of liver cancer treatment and assessing new therapeutic methods. Herein, a brief review about molecule markers, signal pathways, separation, and treatment on liver cancer stem cells (LCSCs) is provided in this paper.
Collapse
Affiliation(s)
- Yanhong Xiao
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Mei Lin
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Xingmao Jiang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430000, China
| | - Jun Ye
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Ting Guo
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Yujuan Shi
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Xuefeng Bian
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| |
Collapse
|
107
|
Overexpression of zinc finger protein 687 enhances tumorigenic capability and promotes recurrence of hepatocellular carcinoma. Oncogenesis 2017; 6:e363. [PMID: 28737756 PMCID: PMC5541715 DOI: 10.1038/oncsis.2017.63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/22/2017] [Accepted: 05/27/2017] [Indexed: 02/07/2023] Open
Abstract
Zinc finger protein 687 (ZNF687), identified as a C2H2 zinc finger protein, has been found to be mutated and upregulated in giant cell tumor of bone and acute myeloid leukemia, suggesting an oncogenic role for ZNF687 in cancer. However, the clinical significance and precise role of ZNF687 in cancer progression are largely unknown. Herein, we report that ZNF687 was markedly upregulated in hepatocellular carcinoma (HCC) cell lines and HCC tissues, and was significantly correlated with relapse-free survival in HCC. ZNF687 overexpression greatly enhanced HCC cell capability for tumorsphere formation, invasion and chemoresistance in vitro, whereas inhibiting ZNF687 reduced these capabilities and inhibited HCC cell tumorigenic capability in vivo. Importantly, extreme limiting dilution analysis revealed that even 1 × 102 ZNF687-transduced cells could form tumors in vivo, indicating that ZNF687 contributes to HCC recurrence. Moreover, we demonstrate that ZNF687 transcriptionally upregulated the expression of the pluripotency-associated factors BMI1, OCT4 and NANOG by directly targeting their promoters. Therefore, our results suggest that ZNF687 has a promoter role in regulating HCC progression, which provides a potential therapeutic target for HCC in humans.
Collapse
|
108
|
Hu K, Huang P, Luo H, Yao Z, Wang Q, Xiong Z, Lin J, Huang H, Xu S, Zhang P, Liu B. Mammalian-enabled (MENA) protein enhances oncogenic potential and cancer stem cell-like phenotype in hepatocellular carcinoma cells. FEBS Open Bio 2017; 7:1144-1153. [PMID: 28781954 PMCID: PMC5537062 DOI: 10.1002/2211-5463.12254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 01/19/2023] Open
Abstract
Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.
Collapse
Affiliation(s)
- Kunpeng Hu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Pinzhu Huang
- Department of Gastrointestinal Surgery The Sixth Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Hui Luo
- Department of Operating Room The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhicheng Yao
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Qingliang Wang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhiyong Xiong
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Jizong Lin
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - He Huang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Shilei Xu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Peng Zhang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Bo Liu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| |
Collapse
|
109
|
Wang C, Fu S, Wang M, Yu W, Cui Q, Wang H, Huang H, Dong W, Zhang W, Li P, Lin C, Pan Z, Yang Y, Wu M, Zhou W. Zinc finger protein X-linked promotes expansion of EpCAM + cancer stem-like cells in hepatocellular carcinoma. Mol Oncol 2017; 11:455-469. [PMID: 28156061 PMCID: PMC5527465 DOI: 10.1002/1878-0261.12036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
Zinc finger protein X-linked (ZFX) is frequently upregulated in multiple human malignancies and also plays a critical role in the maintenance of self-renewal in embryonic stem cells. However, the role of ZFX in liver cancer stem cells (CSCs) remains obscure. We observed that the elevated expression of both ZFX and epithelial cell adhesion molecule (EpCAM) was associated with aggressive clinicopathological features and indicated poor prognosis in patients with hepatocellular carcinoma (HCC). ZFX was commonly enriched in liver EpCAM+ CSCs. Knockdown of ZFX decreased the proportion of EpCAM+ CSCs in HCC cells and suppressed their expression of stemness-related genes, self-renewal capacity, chemoresistance, metastatic potential, and tumorigenicity. Conversely, upregulation of ZFX in CSCs rescued these inhibitory effects and enhanced stem-like properties. Mechanistically, depletion of ZFX reduced nuclear translocation and transactivation of β-catenin, thereby inhibiting the self-renewal capacity of EpCAM+ CSCs. Moreover, knockdown of β-catenin attenuated the self-renewal of EpCAM+ HCC cells stably expressing ZFX, further indicating that β-catenin is required for ZFX-mediated expansion and maintenance of EpCAM+ CSCs. Taken together, our findings indicate that ZFX activates and maintains EpCAM+ liver CSCs by promoting nuclear translocation and transactivation of β-catenin. Furthermore, combination of ZFX and EpCAM may serve as a significant indicator for prognosis of patients with HCC.
Collapse
Affiliation(s)
- Chao Wang
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
- Department of UrologyChanghai HospitalSecond Military Medical UniversityShanghaiChina
| | - Si‐yuan Fu
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Ming‐da Wang
- The Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Wen‐bo Yu
- The Second Military Medical UniversityShanghaiChina
| | - Qin‐shu Cui
- The Second Military Medical UniversityShanghaiChina
| | - Hong‐ru Wang
- The Second Military Medical UniversityShanghaiChina
| | - Hai Huang
- Department of Urinary SurgeryChangzheng HospitalSecond Military Medical UniversityShanghaiChina
| | | | - Wei‐wei Zhang
- Department of Laboratory DiagnosticChanghai HospitalSecond Military Medical UniversityShanghaiChina
| | - Peng‐peng Li
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Chuan Lin
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Ze‐ya Pan
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Yuan Yang
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Meng‐chao Wu
- The Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Wei‐ping Zhou
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| |
Collapse
|
110
|
OV6 + cancer stem cells drive esophageal squamous cell carcinoma progression through ATG7-dependent β-catenin stabilization. Cancer Lett 2017; 391:100-113. [DOI: 10.1016/j.canlet.2017.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
|
111
|
Tran FH, Zheng JJ. Modulating the wnt signaling pathway with small molecules. Protein Sci 2017; 26:650-661. [PMID: 28120389 PMCID: PMC5368067 DOI: 10.1002/pro.3122] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/30/2022]
Abstract
Wnt signaling is a critical component during embryonic development and also plays an important role in regulating adult tissue homeostasis. Abnormal activation of Wnt signaling has been implicated in many cancers, while reduced activity of Wnt signaling leads to poor wound healing and structural formations. Thus, extensive efforts have been focused on developing small molecules that have potential to either inhibit or activate the pathway, hoping these molecules can offer leads for novel approaches in treating different human diseases. Many small-molecule inhibitors specifically target various elements, such as Frizzled, Disheveled, Porcupine, or Tankyrase, within the Wnt signaling pathways. These small molecules not only have the potential to be further developed as therapeutic reagents, but they may also be used as chemical probes to dissect the underlying mechanism of the Wnt signaling pathways. Therefore, their respective mechanisms and effective dosages are highly pertinent. Aiming to provide an overview of those molecules in a concise, easy-to-use manner, we summarize and organize the current research on them so that it may be helpful for utilization in different studies.
Collapse
Affiliation(s)
- Freddi Huan Tran
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at UCLALos AngelesCalifornia90095
| | - Jie J. Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at UCLALos AngelesCalifornia90095
- Molecular Biology Institute, University of California, Los AngelesLos AngelesCalifornia90095
| |
Collapse
|
112
|
Gasch C, Ffrench B, O'Leary JJ, Gallagher MF. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention. Mol Cancer 2017; 16:43. [PMID: 28228161 PMCID: PMC5322629 DOI: 10.1186/s12943-017-0601-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/20/2017] [Indexed: 12/25/2022] Open
Abstract
It is widely believed that targeting the tumour-initiating cancer stem cell (CSC) component of malignancy has great therapeutic potential, particularly in therapy-resistant disease. However, despite concerted efforts, CSC-targeting strategies have not been efficiently translated to the clinic. This is partly due to our incomplete understanding of the mechanisms underlying CSC therapy-resistance. In particular, the relationship between therapy-resistance and the organisation of CSCs as Stem-Progenitor-Differentiated cell hierarchies has not been widely studied. In this review we argue that modern clinical strategies should appreciate that the CSC hierarchy is a dynamic target that contains sensitive and resistant components and expresses a collection of therapy-resisting mechanisms. We propose that the CSC hierarchy at primary presentation changes in response to clinical intervention, resulting in a recurrent malignancy that should be targeted differently. As such, addressing the hierarchical organisation of CSCs into our bench-side theory should expedite translation of CSC-targeting to bed-side practice. In conclusion, we discuss strategies through which we can catch these moving clinical targets to specifically compromise therapy-resistant disease.
Collapse
Affiliation(s)
- Claudia Gasch
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - Brendan Ffrench
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - Michael F Gallagher
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland. .,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland.
| |
Collapse
|
113
|
Zhou H, Lin C, Zhang Y, Zhang X, Zhang C, Zhang P, Xie X, Ren Z. miR-506 enhances the sensitivity of human colorectal cancer cells to oxaliplatin by suppressing MDR1/P-gp expression. Cell Prolif 2017; 50. [PMID: 28217977 DOI: 10.1111/cpr.12341] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Chemoresistance development represents a major obstacle to the successful treatment of colorectal cancer (CRC). The aim of this study was to elucidate the mechanism by which miR-506 reverses oxaliplatin chemoresistance in CRC. METHODS In this study, miR-506 levels were measured in 74 patients with colon cancer via quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH). We subsequently analysed the relationship between miR-506 expression and CRC patient survival via the Kaplan-Meier method. MTT assay demonstrated the fractional survival rates and cell viability of HCT116-OxR, HCT116-OxR-miR-Ctrl and HCT116-OxR-miR-506 cells treated with oxaliplatin at different concentrations. Cell proliferation and apoptosis were assessed via flow cytometry (FCM) analysis and apoptosis assay. MDR1 mRNA expression and P-gp protein expression were assessed via qRT-PCR and Western blotting (WB) respectively. Immunofluorescence (IF) staining demonstrated P-gp expression in HCT116-OxR and HCT116-OxR-miR-506 cells. qRT-PCR and WB were used to detect Wnt/β-catenin pathway activity after miR-506 overexpression. RESULTS In the present study, in ISH and qRT-PCR results demonstrated that miR-506 is weakly expressed in chemoresistant CRC tissues. The low miR-506 expression group exhibited lower 5-year OS and lower 5-year RFS than the high miR-506 expression group. miR-506 overexpression inhibited cell growth and increased oxaliplatin-induced cell apoptosis in HCT116-OxR cells, as shown via FCM and apoptosis assay. We subsequently noted low MDR1/P-gp expression in HCT116-OxR-miR-506 cells via qRT-PCR, WB and IF. Lastly, we demonstrated low MDR1/P-gp expression in HCT116-OxR-miR-506 cells via inhibition of the Wnt/β-catenin by WB, MTT and FCM analysis. CONCLUSION Taken together, the findings of our study demonstrate that miR-506 overexpression in HCT116-OxR cells enhances oxaliplatin sensitivity by inhibiting MDR1/P-gp expression via down-regulation of the Wnt/β-catenin pathway and thus provide a rationale for the development of miRNA-based strategies to reverse oxaliplatin resistance in CRC cells.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of General Surgery, Wuhan Third Hospital, Wuhan, China
| | - Changwei Lin
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiuzhong Zhang
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chong Zhang
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Pengbo Zhang
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xingwang Xie
- Department of General Surgery, Wuhan Third Hospital, Wuhan, China
| | - Zeqiang Ren
- Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
114
|
Low SA, Galliford CV, Jones-Hall YL, Roy J, Yang J, Low PS, Kopeček J. Healing efficacy of fracture-targeted GSK3β inhibitor-loaded micelles for improved fracture repair. Nanomedicine (Lond) 2017; 12:185-193. [PMID: 28093944 DOI: 10.2217/nnm-2016-0340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To evaluate the fracture healing capabilities of a GSK3β inhibitor, 6-bromoindirubin-3′-oxime, coupled with an aspartic acid octapeptide in a micellar delivery system. Materials & methods: The efficacy of the intravenously administered micelles to accelerate healing of femoral fracture in mice was evaluated. Micro-computed tomography analysis was employed to obtain bone density, total volume, relative volume, trabecular thickness and trabecular spacing.Results: Both fracture bone mineral density and volume were significantly higher in the micelle treatment groups when compared with controls. The fracture-targeted micelle demonstrates fracture-specific bone anabolism and biocompatibility in off-target tissues. Conclusion: Accelerated fracture healing in mice was achieved by targeting the GSK3β inhibitor, 6-bromoindirubin-3′-oxime, to the fracture site.
Collapse
Affiliation(s)
- Stewart A Low
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Chris V Galliford
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yava L Jones-Hall
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Jyoti Roy
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jiyuan Yang
- Department of Pharmaceutics & Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jindřich Kopeček
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pharmaceutics & Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
115
|
Abstract
Liver cancer is an often fatal malignant tumor with a high recurrence rate and chemoresistance. The major malignant phenotypes of cancer, including recurrence, metastasis, and chemoresistance, are related to the presence of cancer stem cells (CSCs). In the past few decades, CSCs have been identified and characterized in many tumors including liver cancer. Accumulated evidence has revealed many aspects of the biological behavior of liver CSCs and the mechanism of their regulation. Based on these findings, a number of studies have investigated eradication of liver CSCs. This review focuses on the recent advances in our understanding of the biology of liver CSCs and the development of strategies for their treatment.
Collapse
|
116
|
Liu Y, Qi Y, Bai ZH, Ni CX, Ren QH, Xu WH, Xu J, Hu HG, Qiu L, Li JZ, He ZG, Zhang JP. A novel matrine derivate inhibits differentiated human hepatoma cells and hepatic cancer stem-like cells by suppressing PI3K/AKT signaling pathways. Acta Pharmacol Sin 2017; 38:120-132. [PMID: 27773936 PMCID: PMC5220537 DOI: 10.1038/aps.2016.104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022]
Abstract
Matrine is an alkaloid extracted from a Chinese herb Sophora flavescens Ait, which has shown chemopreventive potential against various cancers. In this study, we evaluated the anticancer efficacy of a novel derivative of matrine, (6aS, 10S, 11aR, 11bR, 11cS)-10- methylamino-dodecahydro- 3a,7a-diazabenzo (de) (MASM), against human hepatocellular carcinoma (HCC) cells and their corresponding sphere cells in vitro and in vivo. Human HCC cell lines (Hep3B and Huh7) were treated with MASM. Cell proliferation was assessed using CCK8 and colony assays; cell apoptosis and cell cycle distributions were examined with flow cytometry. The expression of cell markers and signaling molecules was detected using Western blot and qRT-PCR analyses. A sphere culture technique was used to enrich cancer stem cells (CSC) in Hep3B and Huh7 cells. The in vivo antitumor efficacy of MASM was evaluated in Huh7 cell xenograft model in BALB/c nude mice, which were administered MASM (10 mg·kg-1·d-1, ig) for 3 weeks. After the treatment was completed, tumor were excised and weighed. A portion of tumor tissue was enzymatically dissociated to obtain a single cell suspension for the spheroid formation assays. MASM (2, 10, 20 μmol/L) dose-dependently inhibited the proliferation of HCC cells, and induced apoptosis, which correlated with a reduction in Bcl-2 expression and an increase in PARP cleavage. MASM also induced cell cycle arrest in G0/G1 phase, which was accompanied by increased p27 and decreased Cyclin D1 expression. Interestingly, MASM (2, 10, and 20 μmol/L) drastically reduced the EpCAM+/CD133+ cell numbers, suppressed the sphere formation, inhibited the expression of stem cell marker genes and promoted the expression of mature hepatocyte markers in the Hep3B and Huh7 spheroids. Additionally, MASM dose-dependently suppressed the PI3K/AKT/mTOR and AKT/GSK3β/β-catenin signaling pathways in Hep3B and Huh7 cells. In Huh7 xenograft bearing nude mice, MASM administration significantly inhibited Huh7 xenograft tumor growth and markedly reduced the number of surviving cancer stem-like cells in the tumors. MASM administration also reduced the expression of stem cell markers while increasing the expression of mature hepatocyte markers in the tumor tissues. The novel derivative of matrine, MASM, markedly suppresses HCC tumor growth through multiple mechanisms, and it may be a promising candidate drug for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 310000, China
| | - Yang Qi
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhi-hui Bai
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chen-xu Ni
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qi-hui Ren
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei-heng Xu
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jing Xu
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 310000, China
| | - Hong-gang Hu
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Qiu
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jian-zhong Li
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhi-gao He
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 310000, China
| | - Jun-ping Zhang
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
117
|
Chai S, Ng KY, Tong M, Lau EY, Lee TK, Chan KW, Yuan YF, Cheung TT, Cheung ST, Wang XQ, Wong N, Lo CM, Man K, Guan XY, Ma S. Octamer 4/microRNA-1246 signaling axis drives Wnt/β-catenin activation in liver cancer stem cells. Hepatology 2016; 64:2062-2076. [PMID: 27639189 DOI: 10.1002/hep.28821] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Wnt/β-catenin signaling is activated in CD133 liver cancer stem cells (CSCs), a subset of cells known to be a root of tumor recurrence and therapy resistance in hepatocellular carcinoma (HCC). However, the regulatory mechanism of this pathway in CSCs remains unclear. Here, we show that human microRNA (miRNA), miR-1246, promotes cancer stemness, including self-renewal, drug resistance, tumorigencity, and metastasis, by activation of the Wnt/β-catenin pathway through suppressing the expression of AXIN2 and glycogen synthase kinase 3β (GSK3β), two key members of the β-catenin destruction complex. Clinically, high endogenous and circulating miR-1246 was identified in HCC clinical samples and correlated with a worse prognosis. Further functional analysis identified octamer 4 (Oct4) to be the direct upstream regulator of miR-1246, which cooperatively drive β-catenin activation in liver CSCs. CONCLUSION These findings uncover the noncanonical regulation of Wnt/β-catenin in liver CSCs by the Oct4/miR-1246 signaling axis, and also provide a novel diagnostic marker as well as therapeutic intervention for HCC. (Hepatology 2016;64:2062-2076).
Collapse
Affiliation(s)
- Stella Chai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kai-Yu Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Eunice Y Lau
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Terence K Lee
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Kwok Wah Chan
- Departments of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yun-Fei Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tan-To Cheung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Siu-Tim Cheung
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Xiao-Qi Wang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Nathalie Wong
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Chung-Mau Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kwan Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xin-Yuan Guan
- Department of Clincial Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
118
|
Zhang DH, Yang ZL, Zhou EX, Miao XY, Zou Q, Li JH, Liang LF, Zeng GX, Chen SL. Overexpression of Thy1 and ITGA6 is associated with invasion, metastasis and poor prognosis in human gallbladder carcinoma. Oncol Lett 2016; 12:5136-5144. [PMID: 28105220 PMCID: PMC5228576 DOI: 10.3892/ol.2016.5341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
Gallbladder cancer (GBC) is a rare but highly aggressive cancer for which no well-accepted prognostic biomarkers have been identified. Thymus cell antigen 1 (Thy1), also known as cluster of differentiation (CD)90, and integrin α6 (ITGA6), also known as CD49f, are important molecules in cancer and putative markers of various stem cell types. However, their role in GBC remains to be elucidated. In the present study, Thy1 and ITGA6 expression status in clinical GBC samples, which comprised squamous cell/adenosquamous carcinoma (SC/ASC) and adenocarcinoma (AC) subtypes, was investigated. The associations between Thy1 and ITGA6 expression and clinical parameters and survival rate were analyzed separately. The THY1 and ITGA6 messenger RNA levels were significantly higher in both SC/ASC and AC tissues than in adjacent non-tumor tissues (all P<0.001). These results were subsequently confirmed by immunohistochemical analyses. Overexpression of Thy1 and ITGA6 was correlated with poor differentiation, large tumor size, lymph node metastasis and great invasiveness in SC/ASC (Thy1, P=0.045, P=0.005, P=0.003 and P=0.009, respectively, and ITGA6, P=0.029, P=0.011, P=0.009 and P=0.004, respectively) and AC (Thy1, P=0.027, P<0.001, P=0.003 and P 0.004, respectively, and ITGA6, P=0.002, P=0.003, P=0.006 and P=0.006, respectively). Both Thy1 and ITGA6 were expressed at higher levels in AC with advanced tumor-node-metastasis stage (TNM) than in AC with low TNM stage (P=0.001 and P=0.018, respectively). In addition, patients with elevated Thy1 or ITGA6 expression had shorter overall survival than those with negative Thy1 or ITGA6 expression. Multivariate Cox regression analysis demonstrated that Thy1 (SC/ASC, P=0.001 and AC, P=0.005) and ITGA6 (both P=0.003) were independent predictors of poor prognosis in both SC/ASC and AC patients. In conclusion, Thy1 and ITGA6 could be clinical prognostic markers for GBC.
Collapse
Affiliation(s)
- Dan-Hua Zhang
- Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhu-Lin Yang
- Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - En-Xiang Zhou
- Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiong-Ying Miao
- Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Qiong Zou
- Department of Pathology, Changde Central Hospital, Changde, Hunan 415000, P.R. China
| | - Jing-He Li
- Department of Pathology, Basic Medical Science College, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lu-Feng Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410007, P.R. China
| | - Gui-Xiang Zeng
- Department of Pathology, Loudi Central Hospital, Loudi, Hunan 417011, P.R. China
| | - Sen-Lin Chen
- Department of Pathology, Hunan Provincial Tumor Hospital, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
119
|
Chen WC, Chang YS, Hsu HP, Yen MC, Huang HL, Cho CY, Wang CY, Weng TY, Lai PT, Chen CS, Lin YJ, Lai MD. Therapeutics targeting CD90-integrin-AMPK-CD133 signal axis in liver cancer. Oncotarget 2016; 6:42923-37. [PMID: 26556861 PMCID: PMC4767481 DOI: 10.18632/oncotarget.5976] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/12/2015] [Indexed: 12/28/2022] Open
Abstract
CD90 is used as a marker for cancer stem cell in liver cancer. We aimed to study the mechanism by which CD90 promoted liver cancer progression and identify the new therapeutic targets on CD90 signal pathway. Ectopic expression of CD90 in liver cancer cell lines enhanced anchorage-independent growth and tumor progression. Furthermore, CD90 promoted sphere formation in vitro and upregulated the expression of the cancer stem cell marker CD133. The CD133 expression was higher in CD45-CD90+ cells in liver cancer specimen. The natural carcinogenic molecules TGF-β-1, HGF, and hepatitis B surface antigen increased the expression of CD90 and CD133. Inhibition of CD90 by either shRNA or antibody attenuated the induction of CD133 and anchorage-independent growth. Lentiviral delivery of CD133 shRNA abolished the tumorigenicity induced by CD90. Ectopic expression of CD90 induced mTOR phosphorylation and AMPK dephosphorylation. Mutation of integrin binding-RLD domain in CD90 attenuated the induction of CD133 and anchorage-independent growth. Similar results were observed after silencing β3 integrin. Signaling analyses revealed that AMPK/mTOR and β3 integrin were required for the induction of CD133 and tumor formation by CD90. Importantly, the energy restriction mimetic agent OSU-CG5 reduced the CD90 population in fresh liver tumor sample and repressed the tumor growth. In contrast, sorafenib did not decrease the CD90+ population. In conclusion, the signal axis of CD90-integrin-mTOR/AMPK-CD133 is critical for promoting liver carcinogenesis. Molecules inhibiting the signal axis, including OSU-CG5 and other inhibitors, may serve as potential novel cancer therapeutic targets in liver cancer.
Collapse
Affiliation(s)
- Wei-Ching Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Sheng Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ping Hsu
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Chi Yen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hau-Lun Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Yu Cho
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ting Lai
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Ching-Shih Chen
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yih-Jyh Lin
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Infectious Diseases and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
120
|
Passman AM, Low J, London R, Tirnitz-Parker JEE, Miyajima A, Tanaka M, Strick-Marchand H, Darlington GJ, Finch-Edmondson M, Ochsner S, Zhu C, Whelan J, Callus BA, Yeoh GCT. A Transcriptomic Signature of Mouse Liver Progenitor Cells. Stem Cells Int 2016; 2016:5702873. [PMID: 27777588 PMCID: PMC5061959 DOI: 10.1155/2016/5702873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/04/2016] [Accepted: 08/14/2016] [Indexed: 01/07/2023] Open
Abstract
Liver progenitor cells (LPCs) can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC), indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL), and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.
Collapse
Affiliation(s)
- Adam M. Passman
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
- The Centre for Medical Research, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Jasmine Low
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Roslyn London
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Janina E. E. Tirnitz-Parker
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Fremantle, WA 6160, Australia
| | - Atsushi Miyajima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Minoru Tanaka
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-8654, Japan
| | | | | | - Megan Finch-Edmondson
- Department of Physiology, NUS Yong Loo Lin School of Medicine, Singapore 117411
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411
| | - Scott Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cornelia Zhu
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
- The Centre for Medical Research, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Bernard A. Callus
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
- The Centre for Medical Research, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
- School of Health Sciences, The University of Notre Dame Australia, Fremantle, WA 6959, Australia
| | - George C. T. Yeoh
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
- The Centre for Medical Research, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| |
Collapse
|
121
|
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multistep process involving the progressive accumulation of molecular alterations pinpointing different molecular and cellular events. The next-generation sequencing technology is facilitating the global and systematic evaluation of molecular landscapes in HCC. There is emerging evidence supporting the importance of cancer metabolism and tumor microenvironment in providing a favorable and supportive niche to expedite HCC development. Moreover, recent studies have identified distinct surface markers of cancer stem cell (CSC) in HCC, and they also put forward the profound involvement of altered signaling pathways and epigenetic modifications in CSCs, in addition to the concomitant drug resistance and metastasis. Taken together, multiple key genetic and non-genetic factors, as well as liver CSCs, result in the development and progression of HCC.
Collapse
Affiliation(s)
- Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, SAR, China
| | - Regina Cheuk-Lam Lo
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, SAR, China
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, SAR, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, SAR, China,*Irene O. L. Ng, MD, PhD, Department of Pathology and State Key Laboratory for Liver Research, The University of Hong Kong, Room 127B, University Pathology Building, Department of Pathology, The University of Hong Kong, Queen Mary, Hospital, Pokfulam, Hong Kong, SAR (China), Tel. +852 2255 3967, E-Mail
| |
Collapse
|
122
|
Gong L, Song J, Lin X, Wei F, Zhang C, Wang Z, Zhu J, Wu S, Chen Y, Liang J, Fu X, Lu J, Zhou C, Song L. Serine-arginine protein kinase 1 promotes a cancer stem cell-like phenotype through activation of Wnt/β-catenin signalling in NSCLC. J Pathol 2016; 240:184-96. [PMID: 27391422 DOI: 10.1002/path.4767] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/24/2016] [Accepted: 07/03/2016] [Indexed: 12/19/2022]
Abstract
Cancer stem cells (CSCs) are commonly associated with cancer recurrence and metastasis that occurs in up to 30-55% of non-small-cell lung carcinoma (NSCLC) patients. Herein, we showed that serine-arginine protein kinase 1 (SRPK1) was highly expressed at both the mRNA and the protein levels in human NCSLC. SRPK1 was associated with the clinical features of human NSCLC, including clinical stage (p < 0.001) and T (p = 0.001), N (p = 0.007), and M (p = 0.001) classifications. Ectopic overexpression of SRPK1 promoted the acquisition of a stem cell-like phenotype in human NSCLC cell lines cultured in vitro. Overexpression of SRPK1 increased sphere formation and the proportion of side-population cells that exclude Hoechst dye. Conversely, SRPK1 silencing reduced the number of spheres and the proportion of side-population cells. Mouse studies indicated that SRPK1 promoted NSCLC cell line tumour growth and SRPK1 overexpression reduced the number of tumour cells required to initiate tumourigenesis in vivo. Mechanistically, gene set enrichment analysis showed that Wnt/β-catenin signalling correlated with SRPK1 mRNA levels and this signalling pathway was hyperactivated by ectopic SRPK1 expression in NSCLC cell lines. Immunofluorescence demonstrated that SRPK1 enhanced β-catenin accumulation in the nuclei of NSCLC cell lines, and inhibition of β-catenin signalling abrogated the SRPK1-induced stem cell-like phenotype. Together, our findings suggest that SRPK1 promotes a stem cell-like phenotype in NSCLC via Wnt/β-catenin signalling. Moreover, SRPK1 may represent a novel target for human NSCLC diagnosis and therapy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liyun Gong
- Key Laboratory of Translational Medicine of Tumor, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Junwei Song
- Key Laboratory of Translational Medicine of Tumor, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Sun Yat-sen University, Guangzhou, China
| | - Xi Lin
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Fakai Wei
- Key Laboratory of Translational Medicine of Tumor, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Cuicui Zhang
- Key Laboratory of Translational Medicine of Tumor, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zimei Wang
- Key Laboratory of Translational Medicine of Tumor, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jinrong Zhu
- Department of Biochemistry, Sun Yat-sen University, Guangzhou, China
| | - Shu Wu
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yu Chen
- Key Laboratory of Translational Medicine of Tumor, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jin Liang
- Key Laboratory of Translational Medicine of Tumor, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, China
| | - XiaoYuan Fu
- The Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Junqiang Lu
- The Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chunhui Zhou
- Department of Pathology, College of Health Science, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
123
|
López-Gómez M, Casado E, Muñoz M, Alcalá S, Moreno-Rubio J, D'Errico G, Jiménez-Gordo AM, Salinas S, Sainz B. Current evidence for cancer stem cells in gastrointestinal tumors and future research perspectives. Crit Rev Oncol Hematol 2016; 107:54-71. [PMID: 27823652 DOI: 10.1016/j.critrevonc.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/22/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a very heterogeneous subpopulation of "stem-like" cancer cells that have been identified in many cancers, including leukemias and solid tumors. It is believed that CSCs drive tumor growth, malignant behavior and are responsible for the initiation of metastatic spread. In addition, CSCs have been implicated in chemotherapy and radiotherapy resistance. Current evidence supports the theory that CSCs share at least two main features of normal stem cells: self-renewal and differentiation, properties that contribute to tumor survival even in the presence of aggressive chemotherapy; however, the mechanism(s) governing the unique biology of CSCs remain unclear. In the field of gastrointestinal cancer, where we face very low survival rates across different tumor types, unraveling the role of CSCs in gastrointestinal tumors should improve our knowledge of cancer biology and chemoresistance, ultimately benefiting patient survival. Towards this end, much effort is being invested in the characterization of CSCs as a means of overcoming drug resistance and controlling metastatic spread. In this review we will cover the concept of CSCs, the current evidence for CSCs in gastrointestinal tumors and future research directions.
Collapse
Affiliation(s)
- Miriam López-Gómez
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain.
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Marta Muñoz
- Pathological Anatomy Department, Infanta Sofía University Hospital, S.S Reyes, Madrid, Spain
| | - Sonia Alcalá
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain; Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan Moreno-Rubio
- Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Gabriele D'Errico
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain
| | - Ana María Jiménez-Gordo
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Silvia Salinas
- Pathological Anatomy Department, Infanta Sofía University Hospital, S.S Reyes, Madrid, Spain
| | - Bruno Sainz
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain; Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
124
|
The Progress and Prospects of Putative Biomarkers for Liver Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cells Int 2016; 2016:7614971. [PMID: 27610139 PMCID: PMC5005617 DOI: 10.1155/2016/7614971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/06/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence suggests that hepatocellular carcinoma (HCC) is organized by liver cancer stem cells (LCSCs), which are a subset of cells with “stem-like” characteristics. Identification of the LCSCs is a fundamental and important problem in HCC research. LCSCs have been investigated by various stem cell biomarkers. There is still lack of consensus regarding the existence of a “global” marker for LCSCs in HCC. In this review article, we summarize the progress and prospects of putative biomarkers for LCSCs in the past decades, which is essential to develop future therapies targeting CSCs and to predict prognosis and curative effect of these therapies.
Collapse
|
125
|
Yang XJ. Liver cancer stem cells and new strategies for targeted therapy of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:3337-3346. [DOI: 10.11569/wcjd.v24.i22.3337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past ten years, increasing studies show that liver cancer stem cells (LCSCs) are responsible not only for hepatocellular carcinoma (HCC) initiation and development but also for the generation of distant metastasis and relapse after therapy. Therefore, further research for LCSCs is considered a new avenue to explore the cause of HCC invasion and metastasis in order to formulate prevention and control strategies. Current traditional cancer therapies including chemotherapy and radiotherapy which primarily target rapidly dividing and most likely well differentiated tumor cells, would fail to eliminate LCSCs. After surgical removal of HCC mass, the remaining LCSCs still have the ability to differentiate, proliferate and even migrate to other places to form metastatic tumors. Therefore, to explore various kinds of targeted therapies for LCSCs is the only way to break through the "bottleneck" of HCC treatment. Strategies for targeted therapy of HCC include inhibiting LCSCs proliferation, inducing apoptosis and differentiation, increasing chemotherapy sensitivity and disrupting the tumor niche essential for CSC homeostasis.
Collapse
|
126
|
Bastakoty D, Young PP. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration. FASEB J 2016; 30:3271-3284. [PMID: 27335371 DOI: 10.1096/fj.201600502r] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved set of signals with critical roles in embryonic and neonatal development across species. In mammals the pathway is quiescent in many organs. It is reactivated in response to injury and is reported to play complex and contrasting roles in promoting regeneration and fibrosis. We review the current understanding of the role of the Wnt/β-catenin pathway in injury of various mammalian organs and discuss the current advances and potential of Wnt inhibitory therapeutics toward promoting tissue regeneration and reducing fibrosis.-Bastakoty, D., Young, P. P. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration.
Collapse
Affiliation(s)
- Dikshya Bastakoty
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Pampee P Young
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
127
|
Lin S, Zhou S, Jiang S, Liu X, Wang Y, Zheng X, Zhou H, Li X, Cai X. NEK2 regulates stem-like properties and predicts poor prognosis in hepatocellular carcinoma. Oncol Rep 2016; 36:853-62. [PMID: 27349376 DOI: 10.3892/or.2016.4896] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/21/2016] [Indexed: 11/06/2022] Open
Abstract
NEK2 has been estimated to play an important role in cancer progression. However, its relevance in hepatocellular carcinoma (HCC) has not yet been explored. Immunohistochemistry revealed NEK2 expression was upregulated in HCC. NEK2-positive hepatocellular carcinoma patients were associated with poor prognosis after surgery compared with NEK2-negative patients based on Kaplan-Meier curves. Deletion of NEK2 reduced self-renewal properties and chemotherapeutic resistance, and decreased the stemness associated genes in cell lines. NEK2 was associated with unfavorable outcomes in HCC patients, and was revealed to regulate self-renewal property by means of Wnt/β-catenin signaling, and chemotherapeutic resistance by preferential regulation of the expression of ABCG2 and ALDH1A1 in HCC cells.
Collapse
Affiliation(s)
- Shuang Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Senjun Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xueyong Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Haimeng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, P.R. China
| | - Xuhui Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, P.R. China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
128
|
Wang X, Sun W, Shen W, Xia M, Chen C, Xiang D, Ning B, Cui X, Li H, Li X, Ding J, Wang H. Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. J Hepatol 2016; 64:1283-94. [PMID: 26812074 DOI: 10.1016/j.jhep.2016.01.019] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Emerging evidence has demonstrated the aberrant expression of long non-coding RNAs (lncRNAs) in various malignancies including HCC. However, the knowledge of cancer stem cell-related lncRNAs remains limited. METHODS lnc-DILC (lncRNA downregulated in liver cancer stem cells (LCSCs)) was identified by microarray and validated by real-time PCR. The role of lnc-DILC in LCSCs was assessed both in vitro and in vivo. Pull down assay and oligoribonucleotides or oligodeoxynucleotides treatment were conducted to evaluate the interaction between lnc-DILC and interleukin-6 (IL-6) promoter. RESULTS Depletion of lnc-DILC markedly enhanced LCSC expansion and facilitated HCC initiation and progression, whereas ectopic expression of lnc-DILC dramatically inhibited LCSC expansion. Mechanistically, lnc-DILC inhibited the autocrine IL-6/STAT3 signaling. The putative binding locus of lnc-DILC within IL-6 promoter was confirmed by pull down assay. Consistently, the oligoribonucleotide mimics and an oligodeoxynucleotide decoy of lnc-DILC abrogated the effects on IL-6 transcription, STAT3 activation and LCSC expansion triggered by lnc-DILC depletion and lnc-DILC overexpression. Moreover, our data suggested that lnc-DILC mediated the crosstalk between TNF-α/NF-κB signaling and IL-6/STAT3 cascade. Clinical investigation demonstrated the reduction of lnc-DILC in patient HCCs, and suggested the correlation between lnc-DILC levels and IL-6, EpCAM or CD24 expression. Decreased lnc-DILC expression in HCCs predicts early recurrence and short survival of patients, highlighting its prognostic value. CONCLUSIONS lnc-DILC mediates the crosstalk between TNF-α/NF-κB signaling and autocrine IL-6/STAT3 cascade and connects hepatic inflammation with LCSC expansion, suggesting that lnc-DILC could be not only a potential prognostic biomarker, but also a possible therapeutic target against LCSCs.
Collapse
Affiliation(s)
- Xue Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China
| | - Wen Sun
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China
| | - Weifeng Shen
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China
| | - Mingyang Xia
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China
| | - Cheng Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China
| | - Daimin Xiang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China
| | - Beifang Ning
- The Department of Gastroenterology, Changzheng Hospital, 200003 Shanghai, China
| | - Xiuliang Cui
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China
| | - Hengyu Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China
| | - Xiaofeng Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China
| | - Jin Ding
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China; National Center for Liver Cancer, 201805 Shanghai, China.
| | - Hongyang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China; National Center for Liver Cancer, 201805 Shanghai, China.
| |
Collapse
|
129
|
Environmental Ligands of the Aryl Hydrocarbon Receptor and Their Effects in Models of Adult Liver Progenitor Cells. Stem Cells Int 2016; 2016:4326194. [PMID: 27274734 PMCID: PMC4870370 DOI: 10.1155/2016/4326194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
The toxicity of environmental and dietary ligands of the aryl hydrocarbon receptor (AhR) in mature liver parenchymal cells is well appreciated, while considerably less attention has been paid to their impact on cell populations exhibiting phenotypic features of liver progenitor cells. Here, we discuss the results suggesting that the consequences of the AhR activation in the cellular models derived from bipotent liver progenitors could markedly differ from those in hepatocytes. In contact-inhibited liver progenitor cells, the AhR agonists induce a range of effects potentially linked with tumor promotion. They can stimulate cell cycle progression/proliferation and deregulate cell-to-cell communication, which is associated with downregulation of proteins forming gap junctions, adherens junctions, and desmosomes (such as connexin 43, E-cadherin, β-catenin, and plakoglobin), as well as with reduced cell adhesion and inhibition of intercellular communication. At the same time, toxic AhR ligands may affect the activity of the signaling pathways contributing to regulation of liver progenitor cell activation and/or differentiation, such as downregulation of Wnt/β-catenin and TGF-β signaling, or upregulation of transcriptional targets of YAP/TAZ, the effectors of Hippo signaling pathway. These data illustrate the need to better understand the potential role of liver progenitors in the AhR-mediated liver carcinogenesis and tumor promotion.
Collapse
|
130
|
The potential role of liver stem cells in initiation of primary liver cancer. Hepatol Int 2016; 10:893-901. [PMID: 27139191 DOI: 10.1007/s12072-016-9730-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/01/2016] [Indexed: 02/06/2023]
Abstract
Identification of the cellular origin of primary liver cancer remains challenging. Some data point toward liver stem cells (LSCs) or liver progenitor cells (LPCs) not only as propagators of liver regeneration, but also as initiators of liver cancer. LSCs exhibit a long lifespan and strong duplicative potential upon activation and are inclined to accumulate more mutations that can be passed down to the next generations. Recent evidence shows that dysregulation of signaling pathways associated with self-renewal of LSCs can drive their aberrant proliferation and even malignant transformation. If LSCs could be proved to be an initiator of liver carcinogenesis, they would be promising for ultra-early diagnosis and targeting therapy of liver cancer. This review mainly summarizes the potential role of LSCs in the carcinogenesis of primary liver cancer.
Collapse
|
131
|
Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature 2016; 529:307-15. [PMID: 26791721 DOI: 10.1038/nature17039] [Citation(s) in RCA: 543] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Inflammation underlies many chronic and degenerative diseases, but it also mitigates infections, clears damaged cells and initiates tissue repair. Many of the mechanisms that link inflammation to damage repair and regeneration in mammals are conserved in lower organisms, indicating that it is an evolutionarily important process. Recent insights have shed light on the cellular and molecular processes through which conventional inflammatory cytokines and Wnt factors control mammalian tissue repair and regeneration. This is particularly important for regeneration in the gastrointestinal system, especially for intestine and liver tissues in which aberrant and deregulated repair results in severe pathologies.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Moores Cancer Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0636, USA
| | - Hans Clevers
- Princess Máxima Center and Hubrecht Institute, Uppsalalaan 8, 3584 CR Utrecht, the Netherlands.,University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
132
|
Lau EYT, Lo J, Cheng BYL, Ma MKF, Lee JMF, Ng JKY, Chai S, Lin CH, Tsang SY, Ma S, Ng IOL, Lee TKW. Cancer-Associated Fibroblasts Regulate Tumor-Initiating Cell Plasticity in Hepatocellular Carcinoma through c-Met/FRA1/HEY1 Signaling. Cell Rep 2016; 15:1175-89. [PMID: 27134167 DOI: 10.1016/j.celrep.2016.04.019] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 01/06/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022] Open
Abstract
Like normal stem cells, tumor-initiating cells (T-ICs) are regulated extrinsically within the tumor microenvironment. Because HCC develops primarily in the context of cirrhosis, in which there is an enrichment of activated fibroblasts, we hypothesized that cancer-associated fibroblasts (CAFs) would regulate liver T-ICs. We found that the presence of α-SMA(+) CAFs correlates with poor clinical outcome. CAF-derived HGF regulates liver T-ICs via activation of FRA1 in an Erk1,2-dependent manner. Further functional analysis identifies HEY1 as a direct downstream effector of FRA1. Using the STAM NASH-HCC mouse model, we find that HGF-induced FRA1 activation is associated with the fibrosis-dependent development of HCC. Thus, targeting the CAF-derived, HGF-mediated c-Met/FRA1/HEY1 cascade may be a therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Eunice Yuen Ting Lau
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, PRC; Department of Pathology, The University of Hong Kong, Hong Kong, PRC
| | - Jessica Lo
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, PRC; Department of Pathology, The University of Hong Kong, Hong Kong, PRC
| | - Bowie Yik Ling Cheng
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, PRC; Department of Pathology, The University of Hong Kong, Hong Kong, PRC
| | - Mark Kin Fai Ma
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, PRC; Department of Pathology, The University of Hong Kong, Hong Kong, PRC
| | - Joyce Man Fong Lee
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, PRC; Department of Pathology, The University of Hong Kong, Hong Kong, PRC
| | - Johnson Kai Yu Ng
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, PRC; School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PRC
| | - Stella Chai
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, PRC; School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PRC
| | - Chi Ho Lin
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PRC
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Stephanie Ma
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, PRC; School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PRC
| | - Irene Oi Lin Ng
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, PRC; Department of Pathology, The University of Hong Kong, Hong Kong, PRC.
| | - Terence Kin Wah Lee
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, PRC; Department of Pathology, The University of Hong Kong, Hong Kong, PRC.
| |
Collapse
|
133
|
Sun JH, Luo Q, Liu LL, Song GB. Liver cancer stem cell markers: Progression and therapeutic implications. World J Gastroenterol 2016; 22:3547-3557. [PMID: 27053846 PMCID: PMC4814640 DOI: 10.3748/wjg.v22.i13.3547] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets.
Collapse
|
134
|
The Therapeutic Targets of miRNA in Hepatic Cancer Stem Cells. Stem Cells Int 2016; 2016:1065230. [PMID: 27118975 PMCID: PMC4826947 DOI: 10.1155/2016/1065230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide malignancy and the third leading cause of cancer death in patients. Several studies demonstrated that hepatic cancer stem cells (HCSCs), also called tumor-initiating cells, are involved in regulation of HCC initiation, tumor progression, metastasis development, and drug resistance. Despite the extensive research, the underlying mechanisms by which HCSCs are regulated remain still unclear. MicroRNAs (miRNAs) are able to regulate a lot of biological processes such as self-renewal and pluripotency of HCSCs, representing a new promising strategy for treatment of HCC chemotherapy-resistant tumors. In this review, we synthesize the latest findings on therapeutic regulation of HCSCs by miRNAs, in order to highlight the perspective of novel miRNA-based anticancer therapies for HCC treatment.
Collapse
|
135
|
Epithelial cell adhesion molecule in human hepatocellular carcinoma cell lines: a target of chemoresistence. BMC Cancer 2016; 16:228. [PMID: 26984381 PMCID: PMC4794840 DOI: 10.1186/s12885-016-2252-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/08/2016] [Indexed: 02/08/2023] Open
Abstract
Background The low survival rate of hepatocellular carcinoma (HCC) is partly attributable to its resistance to existing chemotherapeutic agents. Until now, there have been limited chemotherapeutic agents for liver cancer. Epithelial cell adhesion molecule (EpCAM) has been found to be over-expressed during stages of carcinogenesis and has been associated with poor overall survival in many cancers. The aim of this study was to evaluate EpCAM expression in HCC and evaluate the effects of EpCAM to established chemotherapy. Methods Three human hepatocellular carcinoma cell lines—HepG2, Hep3B and HuH-7—were pre- and post-treated with doxorubicin, 5-fluorouracil (5-FU) and cisplatin. Cell viability and EpCAM protein expression were measured by MTT assay and Western Blotting respectively. EpCAM positive cells were analyzed by flow cytometry. To evaluate the effects of doxorubicin efficacy on EpCAM positive cells, a small interfering RNA (siRNA) specific to EpCAM was transfected into the cells and treated with doxorubicin. Results: EpCAM was significantly down-regulated by doxorubicin treatment in all three HCC cell lines (P <0.05 or 0.01). EpCAM expression was down-regulated by the 5-FU and cisplatin in HepG2 cells, however the EpCAM expression was up-regulated by 5-FU and cisplatin in Hep3B cell line. EpCAM expression was down-regulated by 5-FU, and up-regulated by cisplatin in Huh-7 cell line. Flow cytometry assay showed doxorubicin exposure decreased EpCAM positive cell quantities in three HCC cell lines. EpCAM siRNA knock-down attenuated cell mortality after doxorubicin exposure. Conclusion All of these findings demonstrate that EpCAM is one of targets of chemoresistence.
Collapse
|
136
|
Zheng LY, Wu L, Lu J, Zou DJ, Huang Q. Expression of Phosphorylated AMP-Activated Protein Kinase Predicts Response to Transarterial Chemoembolization in Postoperative Cases of Hepatocellular Carcinoma. Medicine (Baltimore) 2016; 95:e2908. [PMID: 26986101 PMCID: PMC4839882 DOI: 10.1097/md.0000000000002908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies in the world. Transcatheter arterial chemoembolization (TACE) was commonly used for HCC patients postoperatively. However, the survival benefits of adjuvant TACE were controversial due to the extensive heterogeneity of HCC. Hence, there is a critical need to explore potential biomarkers that can predict the clinical response to TACE. The AMP-activated protein kinase (AMPK) is a highly conserved heterotrimeric serine/threonine kinase that plays a central role in linking metabolism and cancer development. In this study, we aimed at evaluating the association of pAMPKα (Thr172) status with clinical outcomes in HCC patients treated with or without postoperative adjuvant TACE.pAMPKα (Thr172) expression was assessed using immunohistochemical analysis in a cohort of 378 Chinese HCC patients who had undergone tumor resection. Kaplan-Meier analysis and multivariate Cox proportional hazards models were used to study the impact on clinical outcomes.High pAMPKα (Thr172) expression was associated with improved disease-free and overall survival and was an independent prognostic factor for overall survival by multivariate analysis. Furthermore, low pAMPKα (Thr172) expression level was correlated with high percentage of OV6 tumor-initiating cells (T-ICs) in HCC specimens.To our knowledge, it can be demonstrated for the first time that pAMPKα (Thr172) status is associated with response to postoperative adjuvant TACE. High pAMPKα (Thr172) level in HCC may serve as a positive predictor of survival in HCC patients undergoing TACE.
Collapse
Affiliation(s)
- Long-Yi Zheng
- From the Department of Endocrinology, Changhai Hospital (L-YZ, JL, D-JZ, QH), and The First Department of Interventional Radiology, Eastern Hepato-biliary Surgery Hospital, Second Military Medical University (LW), Shanghai, China
| | | | | | | | | |
Collapse
|
137
|
Chung LY, Tang SJ, Wu YC, Sun GH, Liu HY, Sun KH. Galectin-3 augments tumor initiating property and tumorigenicity of lung cancer through interaction with β-catenin. Oncotarget 2016; 6:4936-52. [PMID: 25669973 PMCID: PMC4467125 DOI: 10.18632/oncotarget.3210] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/25/2014] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs) are comprised of a rare sub-population of cells in tumors that have been proposed to be responsible for high recurrence rates and resistance to chemotherapy. Galectins are highly expressed in cancers that correlate with the aggressiveness of tumors. Galectins may also promote the resistance of cancer cells to chemotherapy. However, the role of galectins in CSCs remains unknown. In this study, sphere formation was used to enrich H1299 human lung CSCs that had self-renewal ability, advanced tumorigenic potential, and that highly expressed stem/progenitor cell markers such as Oct4, Sox2, Nanog, and CD133. A novel candidate molecule, galectin-3, for stemness was found in lung CSCs. The expression of galectin-3 robustly increased in lung cancer spheres over serial passages, but its suppression in the H1299 monolayer or spheres resulted in reduced expression of stemness-related genes, sphere-forming ability, tumorigenicity, chemoresistance, and tumor initiation in mice. Notably, the overexpression of galectin-3 in A549 lung cancer cells, which have low capability to grow as tumor spheres, promoted CSC formation. β-catenin activity was increased in H1299 spheres and counteracted by galectin-3 suppression. Thus, galectin-3 may act as a cofactor by interacting with β-catenin to augment the transcriptional activities of stemness-related genes. Furthermore, galectin-3 expression correlated with tumor progression and expressions of β-catenin and CSC marker CD133 in lung cancer tissues. Targeting galectin-3 signaling may provide a new strategy for lung cancer treatment by inhibiting stem-like properties.
Collapse
Affiliation(s)
- Ling-Yen Chung
- Department of Biotechnology and Laboratory Science in Medicine, and Immunity and Inflammation Research Center, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, ROC
| | - Shye-Jye Tang
- Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Yi-Ching Wu
- Department of Biotechnology and Laboratory Science in Medicine, and Immunity and Inflammation Research Center, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, ROC
| | - Guang-Huan Sun
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, ROC
| | - Huan-Yun Liu
- Division of Urology Surgery, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, ROC
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, and Immunity and Inflammation Research Center, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
138
|
Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3:11-40. [PMID: 27077077 PMCID: PMC4827448 DOI: 10.1016/j.gendis.2015.12.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.
Collapse
|
139
|
Chiba T, Iwama A, Yokosuka O. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology. Hepatol Res 2016; 46:50-7. [PMID: 26123821 DOI: 10.1111/hepr.12548] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/13/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology.
Collapse
Affiliation(s)
- Tetsuhiro Chiba
- Departments of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Osamu Yokosuka
- Departments of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
140
|
Pathogenesis of Type 2 Epithelial to Mesenchymal Transition (EMT) in Renal and Hepatic Fibrosis. J Clin Med 2015; 5:jcm5010004. [PMID: 26729181 PMCID: PMC4730129 DOI: 10.3390/jcm5010004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT), particularly, type 2 EMT, is important in progressive renal and hepatic fibrosis. In this process, incompletely regenerated renal epithelia lose their epithelial characteristics and gain migratory mesenchymal qualities as myofibroblasts. In hepatic fibrosis (importantly, cirrhosis), the process also occurs in injured hepatocytes and hepatic progenitor cells (HPCs), as well as ductular reaction-related bile epithelia. Interestingly, the ductular reaction contributes partly to hepatocarcinogenesis of HPCs, and further, regenerating cholangiocytes after injury may be derived from hepatic stellate cells via mesenchymal to epithelia transition, a reverse phenomenon of type 2 EMT. Possible pathogenesis of type 2 EMT and its differences between renal and hepatic fibrosis are reviewed based on our experimental data.
Collapse
|
141
|
Physiological and Pathological Properties of Interleukin-22 in Liver Diseases. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
142
|
Zhu X, Wang W, Zhang X, Bai J, Chen G, Li L, Li M. All-Trans Retinoic Acid-Induced Deficiency of the Wnt/β-Catenin Pathway Enhances Hepatic Carcinoma Stem Cell Differentiation. PLoS One 2015; 10:e0143255. [PMID: 26571119 PMCID: PMC4646487 DOI: 10.1371/journal.pone.0143255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/02/2015] [Indexed: 01/03/2023] Open
Abstract
Retinoic acid (RA) is an important biological signal that directly differentiates cells during embryonic development and tumorigenesis. However, the molecular mechanism of RA-mediated differentiation in hepatic cancer stem cells (hCSCs) is not well understood. In this study, we found that mRNA expressions of RA-biosynthesis-related dehydrogenases were highly expressed in hepatocellular carcinoma. All-trans retinoic acid (ATRA) differentiated hCSCs through inhibiting the function of β-catenin in vitro. ATRA also inhibited the function of PI3K-AKT and enhanced GSK-3β-dependent degradation of phosphorylated β-catenin. Furthermore, ATRA and β-catenin silencing both increased hCSC sensitivity to docetaxel treatment. Our results suggest that targeting β-catenin will provide extra benefits for ATRA-mediated treatment of hepatic cancer patients.
Collapse
Affiliation(s)
- Xinfeng Zhu
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Wenxue Wang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, 650091, P. R. China
| | - Xia Zhang
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Jianhua Bai
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Gang Chen
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Li Li
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Meizhang Li
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, 650091, P. R. China
| |
Collapse
|
143
|
Zhu CP, Wang AQ, Zhang HH, Wan XS, Yang XB, Chen SG, Zhao HT. Research progress and prospects of markers for liver cancer stem cells. World J Gastroenterol 2015; 21:12190-12196. [PMID: 26576103 PMCID: PMC4641136 DOI: 10.3748/wjg.v21.i42.12190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/10/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is a common malignancy and surgery is the main treatment strategy. However, the prognosis is still poor because of high frequencies of postoperative recurrence and metastasis. In recent years, cancer stem cell (CSC) theory has evolved with the concept of stem cells, and has been applied to oncological research. According to cancer stem cell theory, liver cancer can be radically cured only by eradication of liver cancer stem cells (LCSCs). This notion has lead to the isolation and identification of LCSCs, which has become a highly researched area. Analysis of LCSC markers is considered to be the primary method for identification of LCSCs. Here, we provide an overview of the current research progress and prospects of surface markers for LCSCs.
Collapse
|
144
|
New Tools for Molecular Therapy of Hepatocellular Carcinoma. Diseases 2015; 3:325-340. [PMID: 28943628 PMCID: PMC5548255 DOI: 10.3390/diseases3040325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer, arising from neoplastic transformation of hepatocytes or liver precursor/stem cells. HCC is often associated with pre-existing chronic liver pathologies of different origin (mainly subsequent to HBV and HCV infections), such as fibrosis or cirrhosis. Current therapies are essentially still ineffective, due both to the tumor heterogeneity and the frequent late diagnosis, making necessary the creation of new therapeutic strategies to inhibit tumor onset and progression and improve the survival of patients. A promising strategy for treatment of HCC is the targeted molecular therapy based on the restoration of tumor suppressor proteins lost during neoplastic transformation. In particular, the delivery of master genes of epithelial/hepatocyte differentiation, able to trigger an extensive reprogramming of gene expression, could allow the induction of an efficient antitumor response through the simultaneous adjustment of multiple genetic/epigenetic alterations contributing to tumor development. Here, we report recent literature data supporting the use of members of the liver enriched transcription factor (LETF) family, in particular HNF4α, as tools for gene therapy of HCC.
Collapse
|
145
|
Ji J, Zheng X, Forgues M, Yamashita T, Wauthier EL, Reid LM, Wen X, Song Y, Wei JS, Khan J, Thorgeirsson SS, Wang XW. Identification of microRNAs specific for epithelial cell adhesion molecule-positive tumor cells in hepatocellular carcinoma. Hepatology 2015; 62:829-40. [PMID: 25953724 PMCID: PMC4549211 DOI: 10.1002/hep.27886] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/04/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED Therapies that target cancer stem cells (CSCs) hold promise in eliminating cancer burden. However, normal stem cells are likely to be targeted owing to their similarities to CSCs. It is established that epithelial cell adhesion molecule (EpCAM) is a biomarker for normal hepatic stem cells (HpSCs), and EpCAM(+) AFP(+) hepatocellular carcinoma (HCC) cells have enriched hepatic CSCs. We sought to determine whether specific microRNAs (miRNAs) exist in hepatic CSCs that are not expressed in normal HpSCs. We performed a pair-wise comparison of the miRNA transcriptome of EpCAM(+) and corresponding EpCAM(-) cells isolated from two primary HCC specimens, as well as from two fetal livers and three healthy adult liver donors by small RNA deep sequencing. We found that miR-150, miR-155, and miR-223 were preferentially highly expressed in EpCAM(+) HCC cells, which was further validated. Their gene surrogates, identified using miRNA and messenger RNA profiling in a cohort of 292 HCC patients, were associated with patient prognosis. We further demonstrated that miR-155 was highly expressed in EpCAM(+) HCC cells, compared to corresponding EpCAM(-) HCC cells, fetal livers with enriched normal hepatic progenitors, and normal adult livers with enriched mature hepatocytes. Suppressing miR-155 resulted in a decreased EpCAM(+) fraction in HCC cells and reduced HCC cell colony formation, migration, and invasion in vitro. The reduced levels of identified miR-155 targets predicted the shortened overall survival and time to recurrence of HCC patients. CONCLUSION miR-155 is highly elevated in EpCAM(+) HCC cells and might serve as a molecular target to eradicate the EpCAM(+) CSC population in human HCCs.
Collapse
Affiliation(s)
- Junfang Ji
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China,University of Hawaii Cancer Center, Cancer Biology Program (Ji), Epidemiology Program (Zheng), Honolulu, HI, U.S.A.,Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, U.S.A.,Corresponding authors: Dr. Xin Wei Wang, National Cancer Institute, 37 Convent Drive, MSC 4258, Bethesda, MD 20892, Tel: +1 301-496-2099, Fax: +1 301-496-0497, ; Dr. Junfang Ji, University of Hawaii Cancer Center, 701 Ilalo Street, Rm 336, Honolulu, HI 96813, Tel: +1 808 441 3492, Fax: +1 808 587 0742, , or Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, China 310058,
| | - Xin Zheng
- University of Hawaii Cancer Center, Cancer Biology Program (Ji), Epidemiology Program (Zheng), Honolulu, HI, U.S.A
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, U.S.A
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Eliane L. Wauthier
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, U.S.A
| | - Lola M. Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, U.S.A
| | - Xinyu Wen
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, U.S.A
| | - Young Song
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, U.S.A
| | - Jun S. Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, U.S.A
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, U.S.A
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD, U.S.A
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, U.S.A.,Corresponding authors: Dr. Xin Wei Wang, National Cancer Institute, 37 Convent Drive, MSC 4258, Bethesda, MD 20892, Tel: +1 301-496-2099, Fax: +1 301-496-0497, ; Dr. Junfang Ji, University of Hawaii Cancer Center, 701 Ilalo Street, Rm 336, Honolulu, HI 96813, Tel: +1 808 441 3492, Fax: +1 808 587 0742, , or Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, China 310058,
| |
Collapse
|
146
|
Motawi TK, El-Boghdady NA, El-Sayed AM, Helmy HS. Comparative study of the effects of PEGylated interferon-α2a versus 5-fluorouracil on cancer stem cells in a rat model of hepatocellular carcinoma. Tumour Biol 2015; 37:1617-25. [PMID: 26304505 DOI: 10.1007/s13277-015-3920-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) possess tumor-initiating, metastatic, and drug resistance properties. This study was conducted to evaluate the effects of PEGylated interferon-α2a (PEG-IFN-α2a) and 5-fluorouracil (5-FU) on the expression of CSC markers and on specific pathways that contribute to the propagation of CSCs in HCC. HCC was initiated in rats using a single intraperitoneal dose of diethylnitrosamine (DENA) (200 mg/kg) and promoted by weekly subcutaneous injections of carbon tetrachloride (CCl4) for 6 weeks. After the appearance of dysplastic nodules, the animals received PEG-IFN-α2a or 5-FU for 8 weeks. CSC markers (OV6, CD90) and molecules related to transforming growth factor β (TGF-β) and other signaling pathways were assessed in hepatic tissues. The PEG-IFN-α2a treatment effectively suppressed the hepatic expression of OV6 and CD90, ameliorated the diminished hepatic expression of TGF-β receptor II (TGF-βRII) and β2-spectrin (β2SP), and significantly reduced the elevated hepatic expression of TGF-β1, interleukin6 (IL6), signal transducer and activator of transcription3 (STAT3), and vascular endothelial growth factor (VEGF). In contrast, the 5-FU treatment failed to reduce the overexpression of CSC markers and barely affected the disrupted TGF-β signaling. Furthermore, it had no effect on angiogenesis or nitrosative stress. PEG-IFN-α2a, but not 5-FU, could reduce the propagation of CSCs during the progression of HCC by upregulating the disrupted TGF-β signaling, suppressing the IL6/STAT3 pathway and reducing angiogenesis.
Collapse
Affiliation(s)
- Tarek Kamal Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | | | - Abeer Mostafa El-Sayed
- Department of Pathology, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Hebatullah Samy Helmy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
147
|
Cheng Z, Li X, Ding J. Characteristics of liver cancer stem cells and clinical correlations. Cancer Lett 2015; 379:230-8. [PMID: 26272183 DOI: 10.1016/j.canlet.2015.07.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 02/07/2023]
Abstract
Liver cancer is an aggressive malignant disease with a poor prognosis. Patients with liver cancer are usually diagnosed at an advanced stage and thus miss the opportunity for surgical resection. Chemotherapy and radiofrequency ablation, which target tumor bulk, have exhibited limited therapeutic efficacy to date. Liver cancer stem cells (CSCs) are a small subset of undifferentiated cells existed in liver cancer, which are considered to be responsible for liver cancer initiation, metastasis, relapse and chemoresistance. Elucidating liver CSC characteristics and disclosing their regulatory mechanism might not only deepen our understanding of the pathogenesis of liver cancer but also facilitate the development of diagnostic, prognostic and therapeutic approaches to improve the clinical management of liver cancer. In this review, we will summarize the recent advances in liver CSC research in terms of the origin, identification, regulation and clinical correlation.
Collapse
Affiliation(s)
- Zhuo Cheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center of Liver Cancer, Shanghai 200433, China
| | - Xiaofeng Li
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center of Liver Cancer, Shanghai 200433, China
| | - Jin Ding
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center of Liver Cancer, Shanghai 200433, China.
| |
Collapse
|
148
|
Wang YH, Scadden DT. Harnessing the apoptotic programs in cancer stem-like cells. EMBO Rep 2015; 16:1084-98. [PMID: 26253117 DOI: 10.15252/embr.201439675] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/19/2015] [Indexed: 12/12/2022] Open
Abstract
Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population.
Collapse
Affiliation(s)
- Ying-Hua Wang
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
149
|
Singh BN, Singh HB, Singh A, Naqvi AH, Singh BR. Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade: phytoblockers of metastasis cascade. Cancer Metastasis Rev 2015; 33:41-85. [PMID: 24390421 DOI: 10.1007/s10555-013-9457-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer metastasis is a multistep process in which a cancer cell spreads from the site of the primary lesion, passes through the circulatory system, and establishes a secondary tumor at a new nonadjacent organ or part. Inhibition of cancer progression by dietary phytochemicals (DPs) offers significant promise for reducing the incidence and mortality of cancer. Consumption of DPs in the diet has been linked to a decrease in the rate of metastatic cancer in a number of preclinical animal models and human epidemiological studies. DPs have been reported to modulate the numerous biological events including epigenetic events (noncoding micro-RNAs, histone modification, and DNA methylation) and multiple signaling transduction pathways (Wnt/β-catenin, Notch, Sonic hedgehog, COX-2, EGFR, MAPK-ERK, JAK-STAT, Akt/PI3K/mTOR, NF-κB, AP-1, etc.), which can play a key role in regulation of metastasis cascade. Extensive studies have also been performed to determine the molecular mechanisms underlying antimetastatic activity of DPs, with results indicating that these DPs have significant inhibitory activity at nearly every step of the metastatic cascade. DPs have anticancer effects by inducing apoptosis and by inhibiting cell growth, migration, invasion, and angiogenesis. Growing evidence has also shown that these natural agents potentiate the efficacy of chemotherapy and radiotherapy through the regulation of multiple signaling pathways. In this review, we discuss the variety of molecular mechanisms by which DPs regulate metastatic cascade and highlight the potentials of these DPs as promising therapeutic inhibitors of cancer.
Collapse
Affiliation(s)
- B N Singh
- Research and Development Division, Sowbhagya Biotech Private Limited, Cherlapally, Hyderabad, 500051, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
150
|
Lei ZJ, Wang J, Xiao HL, Guo Y, Wang T, Li Q, Liu L, Luo X, Fan LL, Lin L, Mao CY, Wang SN, Wei YL, Lan CH, Jiang J, Yang XJ, Liu PD, Chen DF, Wang B. Lysine-specific demethylase 1 promotes the stemness and chemoresistance of Lgr5(+) liver cancer initiating cells by suppressing negative regulators of β-catenin signaling. Oncogene 2015; 34:3188-98. [PMID: 25893304 DOI: 10.1038/onc.2015.129] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 01/19/2015] [Accepted: 03/20/2015] [Indexed: 02/07/2023]
Abstract
Cancer initiating cells (CICs) are responsible for the unrestrained cell growth and chemoresistance of malignant tumors. Histone demethylation has been shown to be crucial for self-renewal/differentiation of stem cells, but it remains elusive whether lysine-specific demethylase 1 (LSD1) regulates the stemness properties of CICs. Here we report that the abundant expression of leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is associated with the progression of hepatocellular carcinoma (HCC). Lgr5(+) HCC cells behave similarly to CICs and are highly tumorigenic and resistant to chemotherapeutic agents. Importantly, Lgr5(+) cells express higher levels of LSD1, which in turn regulates Lgr5 expression and promotes the self-renewal and drug resistance of Lgr5(+) CICs. Mechanistically, LSD1 promotes β-catenin activation by inhibiting the expression of several suppressors of β-catenin signaling, especially Prickle1 and APC in Lgr5(+) CICs, by directly regulating the levels of mono- and di-methylation of histone H3 lysine-4 at the promoters of these genes. Furthermore, LSD1-associated activation of the β-catenin signaling is essential for maintaining the activity of Lgr5(+) CICs. Together, our findings unravel the LSD1/Prickle1/APC/β-catenin signaling axis as a novel molecular circuit regulating the stemness and chemoresistance of hepatic Lgr5(+) CICs and provide potential targets to improve chemotherapeutic efficacies against HCC.
Collapse
Affiliation(s)
- Z-J Lei
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - J Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - H-L Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Y Guo
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - T Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Q Li
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - L Liu
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - X Luo
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - L-L Fan
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - L Lin
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - C-Y Mao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - S-N Wang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Y-L Wei
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - C-H Lan
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - J Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - X-J Yang
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - P-D Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D-F Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - B Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|