101
|
Durante M, Reppingen N, Held KD. Immunologically augmented cancer treatment using modern radiotherapy. Trends Mol Med 2013; 19:565-82. [DOI: 10.1016/j.molmed.2013.05.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
|
102
|
The impact of radiation therapy on the antitumor immunity: local effects and systemic consequences. Cancer Lett 2013; 356:114-25. [PMID: 23994343 DOI: 10.1016/j.canlet.2013.08.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 01/20/2023]
Abstract
The main antitumor efficacy of irradiation relies in its direct cytotoxic effect. Increasing evidence indicates a systemic effect of radiation though, mediated mainly by the immune system. In this review we wish to focus on the radiotherapy induced modifications of the soluble and cellular mediators of the antitumor immune response and summarize some of the mechanisms by which radiation driven local and systemic bystander effects can influence tumor immunogenicity. In different tumor types due to the intrinsic immunogenicity of the tumor cells and the immunological characteristics of the tumor microenvironment, different radiation induced immune modulatory mechanisms are predominant. Radiation most probably can only amplify or augment a pro-immunogenic phenotype and can hardly change by itself a net immune suppressing environment into an immune stimulating one. This immune modulatory potential of radiotherapy could be exploited in tumor treatment by developing combined radiotherapeutic and immunotherapeutic approaches. The last few years showed a dramatic increase in the knowledge of radiation induced out-of field and systemic effects, which foresees a rapid progress in the development and clinical application of these new, combined therapies for cancer cure.
Collapse
|
103
|
Waters JP, Pober JS, Bradley JR. Tumour necrosis factor and cancer. J Pathol 2013; 230:241-8. [PMID: 23460481 DOI: 10.1002/path.4188] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 02/15/2013] [Accepted: 02/23/2013] [Indexed: 02/06/2023]
Abstract
Tumour necrosis factor (TNF) was originally described as a circulating factor that can induce haemorrhagic necrosis of tumours. It is now clear that TNF has many different functions in cancer biology. In addition to causing the death of cancer cells, TNF can activate cancer cell survival and proliferation pathways, trigger inflammatory cell infiltration of tumours and promote angiogenesis and tumour cell migration and invasion. These effects can be explained by the diverse cellular responses TNF can initiate through distinct signal transduction pathways, opening the way for more selective targeting of TNF signalling in cancer therapy.
Collapse
Affiliation(s)
- John P Waters
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
104
|
Laine A, Iyengar P, Pandita TK. The role of inflammatory pathways in cancer-associated cachexia and radiation resistance. Mol Cancer Res 2013; 11:967-72. [PMID: 23788634 DOI: 10.1158/1541-7786.mcr-13-0189] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dysregulated inflammatory responses are key contributors to a multitude of chronic ailments, including cancer. Evidence indicates that disease progression in cancer is dependent on the complex interaction between the tumor and the host microenvironment. Most recently, the inflammatory response has been suggested to be critical, as both the tumor and microenvironment compartments produce cytokines that act on numerous target sites, where they foster a complex cascade of biologic outcomes. Patients with cancer-associated cachexia (CAC) suffer from a dramatic loss of skeletal muscle and adipose tissue, ultimately precluding them from many forms of therapeutic intervention, including radiotherapy. The cytokines that have been linked to the promotion of the cachectic response may also participate in radiation resistance. The major changes at the cytokine level are, in part, due to transcriptional regulatory alterations possibly due to epigenetic modifications. Herein we discuss the role of inflammatory pathways in CAC and examine the potential link between cachexia induction and radiation resistance.
Collapse
Affiliation(s)
- Aaron Laine
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, 5801 Forest Park Road, Dallas, TX 75235.
| | | | | |
Collapse
|
105
|
Na YR, Yoon YN, Son DI, Seok SH. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model. PLoS One 2013; 8:e63451. [PMID: 23667623 PMCID: PMC3646746 DOI: 10.1371/journal.pone.0063451] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/02/2013] [Indexed: 01/08/2023] Open
Abstract
Tumor cells are often associated with abundant macrophages that resemble the alternatively activated M2 subset. Tumor-associated macrophages (TAMs) inhibit anti-tumor immune responses and promote metastasis. Cyclooxygenase-2 (COX-2) inhibition is known to prevent breast cancer metastasis. This study hypothesized that COX-2 inhibition affects TAM characteristics potentially relevant to tumor cell metastasis. We found that the specific COX-2 inhibitor, etodolac, inhibited human M2 macrophage differentiation, as determined by decreased CD14 and CD163 expressions and increased TNFα production. Several key metastasis-related mediators, such as vascular endothelial growth factor-A, vascular endothelial growth factor-C, and matrix metalloproteinase-9, were inhibited in the presence of etodolac as compared to untreated M2 macrophages. Murine bone marrow derived M2 macrophages also showed enhanced surface MHCII IA/IE and CD80, CD86 expressions together with enhanced TNFα expressions with etodolac treatment during differentiation. Using a BALB/c breast cancer model, we found that etodolac significantly reduced lung metastasis, possibly due to macrophages expressing increased IA/IE and TNFα, but decreased M2 macrophage-related genes expressions (Ym1, TGFβ). In conclusion, COX-2 inhibition caused loss of the M2 macrophage characteristics of TAMs and may assist prevention of breast cancer metastasis.
Collapse
Affiliation(s)
- Yi-Rang Na
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Yi-Na Yoon
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Da-In Son
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Hyeok Seok
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
106
|
Tang X. Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett 2013; 332:3-10. [DOI: 10.1016/j.canlet.2013.01.024] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
|
107
|
Gerber SA, Sedlacek AL, Cron KR, Murphy SP, Frelinger JG, Lord EM. IFN-γ mediates the antitumor effects of radiation therapy in a murine colon tumor. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2345-54. [PMID: 23583648 DOI: 10.1016/j.ajpath.2013.02.041] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/19/2013] [Accepted: 02/12/2013] [Indexed: 01/14/2023]
Abstract
Cancer treatments using ionizing radiation (IR) therapy are thought to act primarily through the induction of tumor cell damage at a molecular level. However, a new concept has recently emerged, suggesting that the immune system is required for effective IR therapy. Our work here has identified interferon gamma (IFN-γ) as an essential cytokine for the efficacy of IR therapy. Local IR (15 Gy) to mice bearing Colon38, a colon adenocarcinoma, decreases tumor burden in wild-type animals. Interestingly, IR therapy had no effect on tumor burden in IFNγKO mice. We further determined that intratumoral levels of IFN-γ increased 2 days following IR, which directly correlated with a decrease in tumor burden that was not a result of direct cytotoxic effects of IFN-γ on tumor cells. T cells from IR-treated tumors exhibited a far greater capacity to lyse tumor cells in a (51)Cr release assay, a process that was dependent on IFN-γ. CD8(+) T cells were the predominant producers of IFN-γ, as demonstrated by IFN-γ intracellular staining and studies in IFN-γ reporter mice. Elimination of CD8(+) T cells by antibody treatment reduced the intratumoral levels of IFN-γ by over 90%. More importantly, elimination of CD8(+) T cells completely abrogated the effects of radiation therapy. Our data suggest that IFN-γ plays a pivotal role in mediating the antitumor effects of IR therapy.
Collapse
Affiliation(s)
- Scott A Gerber
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | | | | | |
Collapse
|
108
|
Tang X, Mo C, Wang Y, Wei D, Xiao H. Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology 2013; 138:93-104. [PMID: 23113570 DOI: 10.1111/imm.12023] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 02/05/2023] Open
Abstract
Tumour-associated macrophages (TAMs) represent a predominant population of inflammatory cells that present in solid tumours. TAMs are mostly characterized as alternatively activated M2-like macrophages and are known to orchestrate nearly all stages of tumour progression. Experimental investigations indicate that TAMs contribute to drug-resistance and radio-protective effects, and clinical evidence shows that an elevated number of TAMs and their M2 profile are correlated with therapy failure and poor prognosis in cancer patients. Recently, many studies on TAM-targeted strategies have made significant progress and some pilot works have achieved encouraging results. Among these, connections between some anti-tumour drugs and their influence on TAMs have been suggested. In this review, we will summarize recent advances in TAM-targeted strategies for tumour therapy. Based on the proposed mechanisms, those strategies are grouped into four categories: (i) inhibiting macrophage recruitment; (ii) suppressing TAM survival; (iii) enhancing M1-like tumoricidal activity of TAMs; (iv) blocking M2-like tumour-promoting activity of TAMs. It is desired that further attention be drawn to this research field and more effort be made to promote TAM-targeted tumour therapy.
Collapse
Affiliation(s)
- Xiaoqiang Tang
- Department of Geriatrics, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
109
|
De Rosa G, Misso G, Salzano G, Caraglia M. Bisphosphonates and cancer: what opportunities from nanotechnology? JOURNAL OF DRUG DELIVERY 2013; 2013:637976. [PMID: 23533771 PMCID: PMC3603225 DOI: 10.1155/2013/637976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/22/2013] [Indexed: 02/04/2023]
Abstract
Bisphosphonates (BPs) are synthetic analogues of naturally occurring pyrophosphate compounds. They are used in clinical practice to inhibit bone resorption in bone metastases, osteoporosis, and Paget's disease. BPs induce apoptosis because they can be metabolically incorporated into nonhydrolyzable analogues of adenosine triphosphate. In addition, the nitrogen-containing BPs (N-BPs), second-generation BPs, act by inhibiting farnesyl diphosphate (FPP) synthase, a key enzyme of the mevalonate pathway. These molecules are able to induce apoptosis of a number of cancer cells in vitro. Moreover, antiangiogenic effect of BPs has also been reported. However, despite these promising properties, BPs rapidly accumulate into the bone, thus hampering their use to treat extraskeletal tumors. Nanotechnologies can represent an opportunity to limit BP accumulation into the bone, thus increasing drug level in extraskeletal sites of the body. Thus, nanocarriers encapsulating BPs can be used to target macrophages, to reduce angiogenesis, and to directly kill cancer cell. Moreover, nanocarriers can be conjugated with BPs to specifically deliver anticancer agent to bone tumors. This paper describes, in the first part, the state-of-art on the BPs, and, in the following part, the main studies in which nanotechnologies have been proposed to investigate new indications for BPs in cancer therapy.
Collapse
Affiliation(s)
- Giuseppe De Rosa
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 8013 Naples, Italy
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, Seconda Università degli Studi di Napoli, Via Costantinopoli 16, 80138 Naples, Italy
| | - Giuseppina Salzano
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 8013 Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Seconda Università degli Studi di Napoli, Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
110
|
Biomedical applications of bisphosphonates. J Control Release 2013; 167:175-88. [PMID: 23395668 DOI: 10.1016/j.jconrel.2013.01.032] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/24/2012] [Accepted: 01/30/2013] [Indexed: 02/08/2023]
Abstract
Since their discovery over 100 years ago, bisphosphonates have been used industrially as corrosion inhibitors and complexing agents. With the discovery of their pharmacological activity in the late 1960s, implicating their high affinity for hydroxyapatite, bisphosphonates have been employed in the treatment of bone diseases and as targeting agents for colloids and drugs. They have notably been investigated for the treatment of Paget's disease, osteoporosis, bone metastases, malignancy-associated hypercalcemia, and pediatric bone diseases. Currently, they are first-line medications for several of these diseases and are taken by millions of patients worldwide, mostly postmenopausal women. A major problem associated with their use is their low oral bioavailability. Several delivery systems have been proposed to improve their absorption and to direct them to sites other than bone tissues. Beyond their important pharmacological role, the medical applications of bisphosphonates are numerous. In addition, their metal-chelating properties have been exploited to coat and stabilize implants, nanoparticulates, and contrast agents. In this contribution, we review the pharmacological and clinical uses of bisphosphonates and highlight their novel applications in the pharmaceutical and biomedical fields.
Collapse
|
111
|
Racioppi L. CaMKK2: a novel target for shaping the androgen-regulated tumor ecosystem. Trends Mol Med 2013; 19:83-8. [PMID: 23332598 PMCID: PMC3565098 DOI: 10.1016/j.molmed.2012.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/11/2012] [Accepted: 12/16/2012] [Indexed: 01/03/2023]
Abstract
The androgen receptor (AR) is pivotal in the biology of sex hormone-regulated malignancies, with prostate cancer (PC) the most affected tumor. AR signals control the growth, survival, and migration of cancer cells, and they regulate the activation of macrophages, a cell type pivotal to the tumor ecosystem. Intriguingly, CaMKK2 has recently been identified as both an important AR-regulated gene in the context of PC and as a critical regulator of macrophage activation. By contrast, CaMKK2 is barely detectable in normal prostate or immune cells that mediate the response against tumorigenesis. These novel findings suggest that CaMKK2 resides at a critical molecular node that shapes the cancer ecosystem, and identifies this kinase as a novel therapeutic target for sex hormone-regulated cancers.
Collapse
Affiliation(s)
- Luigi Racioppi
- Department of Medicine, Duke University, Durham, NC 27707, USA.
| |
Collapse
|
112
|
Affiliation(s)
- Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
113
|
Kaur P, Asea A. Radiation-induced effects and the immune system in cancer. Front Oncol 2012; 2:191. [PMID: 23251903 PMCID: PMC3523399 DOI: 10.3389/fonc.2012.00191] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/23/2012] [Indexed: 12/31/2022] Open
Abstract
Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT.
Collapse
Affiliation(s)
- Punit Kaur
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine Atlanta, GA, USA
| | | |
Collapse
|
114
|
Seiwert TY, Darga T, Haraf D, Blair EA, Stenson K, Cohen EEW, Salama JK, Villaflor V, Witt ME, Lingen MW, Weichselbaum RR, Vokes EE. A phase I dose escalation study of Ad GV.EGR.TNF.11D (TNFerade™ Biologic) with concurrent chemoradiotherapy in patients with recurrent head and neck cancer undergoing reirradiation. Ann Oncol 2012; 24:769-76. [PMID: 23104721 DOI: 10.1093/annonc/mds523] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AdGV.EGR.TNF.11D (TNFerade™ Biologic) is a replication-deficient adenoviral vector expressing human tumor necrosis factor alpha (TNF-α) under the control of the chemoradiation-inducible EGR-1 promoter. TNF-α has been shown to function as a radiation sensitizer. We conducted a phase I dose escalation study to determine the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) of TNFerade™ Biologic, when added to chemoradiotherapy in poor prognosis patients with recurrent, previously irradiated head and neck cancer (HNC). METHODS TNFerade™ Biologic was injected intratumorally on day 1 of each 14-day cycle and dose-escalated in log increments from 4 × 10(9) to 4 × 10(11) PU. Daily radiation, infusional 5-fluorouracil (5-FU), and hydroxyurea were given on days 1-5 for seven cycles (FHX). Tumor biopsies were obtained before, during, and after treatment. RESULTS Fourteen patients were treated. DLT was reached at a dose level of 3 (4 × 10(11) PU) with three thrombotic events. The response rate was 83.3%. The median survival was 9.6 months. One patient (7.1%) remained alive 3 years after treatment. Biopsies were obtained in 90% of patients. Nearly all tumors expressed adenovirus receptors, TNF-α, and TNF-α receptors. Adenoviral DNA was detected in three biopsies from one patient. CONCLUSIONS TNFerade™ Biologic can be safely integrated with FHX chemoradiotherapy at an MTD of 4 × 10(10) PU. Monitoring for thrombotic events is indicated.
Collapse
Affiliation(s)
- T Y Seiwert
- Departments of Medicine, The University of Chicago, Chicago, IL 60615, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Zaidi A, Jelveh S, Mahmood J, Hill RP. Effects of lipopolysaccharide on the response of C57BL/6J mice to whole thorax irradiation. Radiother Oncol 2012; 105:341-9. [PMID: 22985778 DOI: 10.1016/j.radonc.2012.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/28/2012] [Accepted: 08/11/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND PURPOSE Inflammatory and fibrogenic processes play a crucial role in the radiation-induced injury in the lung. The aim of the present study was to examine whether additive LPS exposure in the lung (to simulate respiratory infection) would affect pneumonitis or fibrosis associated with lung irradiation. MATERIAL AND METHODS Wildtype C57Bl/6J (WT-C57) and TNFα, TNFR1 and TNFR2 knockout ((-/-)) mice, in C57Bl/6J background, were given whole thorax irradiation (10 Gy) with or without post-irradiation intratracheal administration of LPS (50μg/mice). Functional deficit was examined by measuring breathing rate at various times after treatment. Real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and immunohistochemistry were used to analyze the protein expression and m-RNA of Interleukin-1 alpha (IL-1α), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumour Necrosis Factor alpha (TNFα) and Transforming Growth Factor beta (TGFβ) in the lung at various times after treatment. Inflammatory cells were detected by Mac-3 (macrophages) and Toluidine Blue (mast cells) staining. Collagen content was estimated by hydroxyproline (total collagen) and Sircol assay (soluble collagen). Levels of oxidative damage were assessed by 8-hydroxy-2-deoxyguanosine (8-OHdG) staining. RESULTS LPS exposure significantly attenuated the breathing rate increases following irradiation of WT-C57, TNFR1(-/-) and TNFR2(-/-)mice and to a lesser extent in TNFα(-/-) mice. Collagen content was significantly reduced after LPS treatment in WT-C57, TNFR1(-/-) and TNFα(-/-) mice and there was a trend in TNFR2(-/-) mice. Similarly there were lower levels of inflammatory cells and cytokines in the LPS treated mice. CONCLUSIONS This study reveals a mitigating effect of early exposure to LPS on injury caused by irradiation on lungs of C57Bl mice. The results suggest that immediate infection post irradiation may not impact lung response negatively in radiation-accident victims, however, further studies are required in different animal models, and with specific infectious agents, to confirm and extend our findings.
Collapse
Affiliation(s)
- Asif Zaidi
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
116
|
de la Cruz-Merino L, Lejeune M, Nogales Fernández E, Henao Carrasco F, Grueso López A, Illescas Vacas A, Pulla MP, Callau C, Álvaro T. Role of immune escape mechanisms in Hodgkin's lymphoma development and progression: a whole new world with therapeutic implications. Clin Dev Immunol 2012; 2012:756353. [PMID: 22927872 PMCID: PMC3426211 DOI: 10.1155/2012/756353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 06/05/2012] [Indexed: 12/31/2022]
Abstract
Hodgkin's lymphoma represents one of the most frequent lymphoproliferative syndromes, especially in young population. Although HL is considered one of the most curable tumors, a sizeable fraction of patients recur after successful upfront treatment or, less commonly, are primarily resistant. This work tries to summarize the data on clinical, histological, pathological, and biological factors in HL, with special emphasis on the improvement of prognosis and their impact on therapeutical strategies. The recent advances in our understanding of HL biology and immunology show that infiltrated immune cells and cytokines in the tumoral microenvironment may play different functions that seem tightly related with clinical outcomes. Strategies aimed at interfering with the crosstalk between tumoral Reed-Sternberg cells and their cellular partners have been taken into account in the development of new immunotherapies that target different cell components of HL microenvironment. This new knowledge will probably translate into a change in the antineoplastic treatments in HL in the next future and hopefully will increase the curability rates of this disease.
Collapse
Affiliation(s)
- Luis de la Cruz-Merino
- Clinical Oncology Department, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Kleibeuker EA, Griffioen AW, Verheul HM, Slotman BJ, Thijssen VL. Combining angiogenesis inhibition and radiotherapy: A double-edged sword. Drug Resist Updat 2012; 15:173-82. [DOI: 10.1016/j.drup.2012.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/20/2012] [Accepted: 04/11/2012] [Indexed: 01/01/2023]
|
118
|
Dalrymple SL, Becker RE, Zhou H, DeWeese TL, Isaacs JT. Tasquinimod prevents the angiogenic rebound induced by fractionated radiation resulting in an enhanced therapeutic response of prostate cancer xenografts. Prostate 2012; 72:638-48. [PMID: 21837778 PMCID: PMC4086682 DOI: 10.1002/pros.21467] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/05/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND Tasquinimod is a novel inhibitor of tumor angiogenesis which enhances therapeutic efficacy when combined with androgen ablation and/or taxane-based chemotherapies in pre-clinical prostate cancer models. It has entered registration Phase III evaluation for the treatment of castration resistant prostate cancer. Since tasquinimod suppresses the angiogenic switch induced by tumor hypoxia as prostate cancers outgrow their blood supply, this raises the issue of whether tasquinimod also suppresses the angiogenic rebound induced by fractionated radiation thereby enhancing therapeutic response to fractionated radiation. METHODS Human endothelial and prostate cancer cells in culture and human prostate cancer xenografts growing in castrated male nude mice were evaluated for their response to radiation alone and in combination with tasquinimod. RESULTS At clinically relevant drug levels, tasquinimod significantly (P < 0.05) enhances anti-cancer efficacy of fractionated radiation with optimal timing for initiating daily tasquinimod treatment being after completion of the fractionated radiation. CONCLUSIONS Based upon cell culture studies and tumor tissue oxygenation (i.e., pO(2)), tumor vascular volume, and tumor blood vessel density measurements, the mechanism for such enhancement and optimal timing involves tasquinimod's ability to prevent the angiogenic rebound induced by fractionated radiation.
Collapse
Affiliation(s)
- Susan L Dalrymple
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
119
|
Guth AM, Hafeman SD, Elmslie RE, Dow SW. Liposomal clodronate treatment for tumour macrophage depletion in dogs with soft-tissue sarcoma. Vet Comp Oncol 2012; 11:296-305. [PMID: 22540967 DOI: 10.1111/j.1476-5829.2012.00319.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Increased numbers of tumour-associated macrophages correlate with rapid tumour growth and metastasis in tumours. Thus, macrophage depletion has potential as a novel cancer therapy and positive responses have been reported in rodent tumour models. To investigate the effectiveness of this approach in dogs with cancer, we evaluated the effects of the macrophage-depleting agent liposomal clodronate (LC) in dogs with soft-tissue sarcoma (STS). To this end, we conducted a clinical trial of LC therapy in 13 dogs with STS. Repeated LC administration was well tolerated clinically. Preliminary examination of tumour biopsy sets from 5 of the 13 dogs demonstrated that the density of CD11b(+) macrophages was significantly decreased after LC treatment. Circulating concentrations of interleukin-8 were also significantly reduced. These preliminary studies are the first to suggest that LC can be used as a systemic macrophage-depleting agent in dogs to reduce numbers of tumour-associated macrophages.
Collapse
Affiliation(s)
- A M Guth
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | | | | | | |
Collapse
|
120
|
Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine. Mol Ther 2012; 20:1046-55. [PMID: 22334019 DOI: 10.1038/mt.2012.19] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Radiotherapy offers an effective treatment for advanced cancer but local and distant failures remain a significant challenge. Here, we treated melanoma and pancreatic carcinoma in syngeneic mice with ionizing radiation (IR) combined with the poly(ADP-ribose) polymerase inhibitor (PARPi) veliparib to inhibit DNA repair and promote accelerated senescence. Based on prior work implicating cytotoxic T lymphocytes (CTLs) as key mediators of radiation effects, we discovered that senescent tumor cells induced by radiation and veliparib express immunostimulatory cytokines to activate CTLs that mediate an effective antitumor response. When these senescent tumor cells were injected into tumor-bearing mice, an antitumor CTL response was induced which potentiated the effects of radiation, resulting in elimination of established tumors. Applied to human cancers, radiation-inducible immunotherapy may enhance radiotherapy responses to prevent local recurrence and distant metastasis.
Collapse
|
121
|
Shiao SL, Ganesan AP, Rugo HS, Coussens LM. Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 2012; 25:2559-72. [PMID: 22190457 DOI: 10.1101/gad.169029.111] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Leukocytes and their soluble mediators play important regulatory roles in all aspects of solid tumor development. While immunotherapeutic strategies have conceptually held clinical promise, with the exception of a small percentage of patients, they have failed to demonstrate effective, consistent, and durable anti-cancer responses. Several subtypes of leukocytes that commonly infiltrate solid tumors harbor immunosuppressive activity and undoubtedly restrict the effectiveness of these strategies. Several of these same immune cells also foster tumor development by expression of potent protumor mediators. Given recent evidence revealing that immune-based mechanisms regulate the response to conventional cytotoxic therapy, it seems reasonable to speculate that tumor progression could be effectively diminished by combining cytotoxic strategies with therapies that blunt protumor immune-based effectors and/or neutralize those that instead impede development of desired anti-tumor immunity, thus providing synergistic effects between traditional cytotoxic and immune-modulatory approaches.
Collapse
Affiliation(s)
- Stephen L Shiao
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
122
|
Balkwill FR, Mantovani A. Cancer-related inflammation: Common themes and therapeutic opportunities. Semin Cancer Biol 2012; 22:33-40. [DOI: 10.1016/j.semcancer.2011.12.005] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/15/2011] [Indexed: 02/07/2023]
|
123
|
Abstract
Tumor necrosis factor-alpha (TNF-α) binds to two distinct receptors, TNFR1/p55 and TNFR2/p75. TNF-α is implicated in the processes of tumor growth, survival, differentiation, invasion, metastases, secretion of cytokines and pro-angiogenic factors. We have shown that TNFR2/p75 signaling promotes ischemia-induced angiogenesis via modulation of several angiogenic growth factors. We hypothesized that TNFR2/p75 may promote tumor growth and angiogenesis. Growth of mouse Lewis lung carcinoma (LLC1) and/or mouse melanoma B16 cell was evaluated in wild type (WT), p75 knockout (KO) and double p55KO/p75KO mouse tumor xenograft models. Compared to WT and p55KO/p75KO mice, growth of tumors in p75KO mice was significantly decreased (two-fold) in both LLC and B16 tumors. Tumor growth inhibition was correlated with decreases in VEGF expression and capillary density, as well as bone marrow (BM)-derived endothelial progenitor cells (EPCs) incorporation into the functional capillary network, and an increase in apoptotic cells in LLC xenografts. Gene array analysis of tumor tissues showed a decrease in gene expression in pathways that promote tumor angiogenesis and cell survival. Blocking p75 by shRNA in cultured LLCs led to increases in TNF-mediated apoptosis, as well as decreases in the constitutive and TNF-mediated expression of angiogenic growth factors (VEGF, HGF, PLGF), and SDF-1α receptor CXCR4. In summary, p75 is essential for tumor angiogenesis and survival in highly vascularized murine lung tumor xenografts. Blocking p75 expression may lead to tumor regression. This may represent new and effective therapy against lung neoplasms and potentially tumors of other origin.
Collapse
|
124
|
Lo TCT, Hsu FM, Chang CA, Cheng JCH. Branched α-(1,4) glucans from Lentinula edodes (L10) in combination with radiation enhance cytotoxic effect on human lung adenocarcinoma through the Toll-like receptor 4 mediated induction of THP-1 differentiation/activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11997-12005. [PMID: 21978170 DOI: 10.1021/jf202457r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This work investigated the role of structure in the binding of polysaccharides from 10 regionally different strains of Lentinula edodes to Toll-like receptor 4 (TLR-4) on monocytes (THP-1) and the potential effect of this interaction on tumor cell viability. Principal component analysis and multiple linear regression identified arabinose, glucose 1 → 4 linkage, and molecular weights about 2700 and 534 kDa as the significant determinant factors associated with TLR-4 binding activity. The branched α-(1,4)-glucan (L10) had the strongest ability to bind to TLR-4 and induce THP-1 cell differentiation. L10 induction of the THP-1 cell differentiation, superoxide production, and cytokine production followed the TLR-4/MyD88/IKK/NFκB pathway. Coculture of irradiated human lung adenocarcinoma A549 cells with L10-activated THP-1 cells resulted in significantly decreased percentage of viable A549 cells from 66 to 37% (p = 0.018), increased levels of superoxide, interleukin-8, and RANTES, and decreased levels of angiogenin and vascular endothelial growth factor. The results indicate that L10-activated monocytes have the potential to boost the antitumor immune response and antitumor activity of radiotherapy.
Collapse
Affiliation(s)
- Tiffany Chien-Ting Lo
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | |
Collapse
|
125
|
Tumor cells and tumor-associated macrophages: secreted proteins as potential targets for therapy. Clin Dev Immunol 2011; 2011:565187. [PMID: 22162712 PMCID: PMC3227419 DOI: 10.1155/2011/565187] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/09/2011] [Accepted: 09/20/2011] [Indexed: 01/02/2023]
Abstract
Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention.
Collapse
|
126
|
Yeh FL, Zhu Y, Tepp WH, Johnson EA, Bertics PJ, Chapman ER. Retargeted clostridial neurotoxins as novel agents for treating chronic diseases. Biochemistry 2011; 50:10419-21. [PMID: 22047069 PMCID: PMC3226321 DOI: 10.1021/bi201490t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Botulinum neurotoxin (BoNT) A and B are used to treat
neuropathic
disorders; if retargeted, these agents could be used to treat medical
conditions that involve secretion from nonneuronal cells. Here, we
report novel strategies for successfully retargeting BoNTs, and also
tetanus neurotoxin (TeNT), to primary human blood monocyte-derived
macrophages where BoNT/B inhibited the release of tumor necrosis factor-α,
a cytokine that plays a key role in inflammation. Furthermore, mice
treated with retargeted BoNT/B exhibited a significant reduction in
macrophage (MΦ) recruitment, indicating that these toxins can
be used to treat chronic inflammation.
Collapse
Affiliation(s)
- Felix L Yeh
- Department of Neuroscience, Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin 53706-1510, United States
| | | | | | | | | | | |
Collapse
|
127
|
Zaynagetdinov R, Sherrill TP, Polosukhin VV, Han W, Ausborn JA, McLoed AG, McMahon FB, Gleaves LA, Degryse AL, Stathopoulos GT, Yull FE, Blackwell TS. A critical role for macrophages in promotion of urethane-induced lung carcinogenesis. THE JOURNAL OF IMMUNOLOGY 2011; 187:5703-11. [PMID: 22048774 DOI: 10.4049/jimmunol.1100558] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages have established roles in tumor growth and metastasis, but information about their role in lung tumor promotion is limited. To assess the role of macrophages in lung tumorigenesis, we developed a method of minimally invasive, long-term macrophage depletion by repetitive intratracheal instillation of liposomal clodronate. Compared with controls treated with repetitive doses of PBS-containing liposomes, long-term macrophage depletion resulted in a marked reduction in tumor number and size at 4 mo after a single i.p. injection of the carcinogen urethane. After urethane treatment, lung macrophages developed increased M1 macrophage marker expression during the first 2-3 wk, followed by increased M2 marker expression by week 6. Using a strategy to reduce alveolar macrophages during tumor initiation and early promotion stages (weeks 1-2) or during late promotion and progression stages (weeks 4-16), we found significantly fewer and smaller lung tumors in both groups compared with controls. Late-stage macrophage depletion reduced VEGF expression and impaired vascular growth in tumors. In contrast, early-stage depletion of alveolar macrophages impaired urethane-induced NF-κB activation in the lungs and reduced the development of premalignant atypical adenomatous hyperplasia lesions at 6 wk after urethane injection. Together, these studies elucidate an important role for macrophages in lung tumor promotion and indicate that these cells have distinct roles during different stages of lung carcinogenesis.
Collapse
Affiliation(s)
- Rinat Zaynagetdinov
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Pham T, Bachelez H, Berthelot JM, Blacher J, Bouhnik Y, Claudepierre P, Constantin A, Fautrel B, Gaudin P, Goëb V, Gossec L, Goupille P, Guillaume-Czitrom S, Hachulla E, Huet I, Jullien D, Launay O, Lemann M, Maillefert JF, Marolleau JP, Martinez V, Masson C, Morel J, Mouthon L, Pol S, Puéchal X, Richette P, Saraux A, Schaeverbeke T, Soubrier M, Sudre A, Tran TA, Viguier M, Vittecoq O, Wendling D, Mariette X, Sibilia J. TNF alpha antagonist therapy and safety monitoring. Joint Bone Spine 2011; 78 Suppl 1:15-185. [PMID: 21703545 DOI: 10.1016/s1297-319x(11)70001-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To develop and/or update fact sheets about TNFα antagonists treatments, in order to assist physicians in the management of patients with inflammatory joint disease. METHODS 1. selection by a committee of rheumatology experts of the main topics of interest for which fact sheets were desirable; 2. identification and review of publications relevant to each topic; 3. development and/or update of fact sheets based on three levels of evidence: evidence-based medicine, official recommendations, and expert opinion. The experts were rheumatologists and invited specialists in other fields, and they had extensive experience with the management of chronic inflammatory diseases, such as rheumatoid. They were members of the CRI (Club Rhumatismes et Inflammation), a section of the Société Francaise de Rhumatologie. Each fact sheet was revised by several experts and the overall process was coordinated by three experts. RESULTS Several topics of major interest were selected: contraindications of TNFα antagonists treatments, the management of adverse effects and concomitant diseases that may develop during these therapies, and the management of everyday situations such as pregnancy, surgery, and immunizations. After a review of the literature and discussions among experts, a consensus was developed about the content of the fact sheets presented here. These fact sheets focus on several points: 1. in RA and SpA, initiation and monitoring of TNFα antagonists treatments, management of patients with specific past histories, and specific clinical situations such as pregnancy; 2. diseases other than RA, such as juvenile idiopathic arthritis; 3. models of letters for informing the rheumatologist and general practitioner; 4. and patient information. CONCLUSION These TNFα antagonists treatments fact sheets built on evidence-based medicine and expert opinion will serve as a practical tool for assisting physicians who manage patients on these therapies. They will be available continuously at www.cri-net.com and updated at appropriate intervals.
Collapse
Affiliation(s)
- Thao Pham
- Rheumatology Department, CHU Sainte-Marguerite, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Guiet R, Van Goethem E, Cougoule C, Balor S, Valette A, Al Saati T, Lowell CA, Le Cabec V, Maridonneau-Parini I. The process of macrophage migration promotes matrix metalloproteinase-independent invasion by tumor cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:3806-14. [PMID: 21880978 DOI: 10.4049/jimmunol.1101245] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor-associated macrophages are known to amplify the malignant potential of tumors by secreting a variety of cytokines and proteases involved in tumor cell invasion and metastasis, but how these macrophages infiltrate tumors and whether the macrophage migration process facilitates tumor cell invasion remain poorly documented. To address these questions, we used cell spheroids of breast carcinoma SUM159PT cells as an in vitro model of solid tumors. We found that macrophages used both the mesenchymal mode requiring matrix metalloproteinases (MMPs) and the amoeboid migration mode to infiltrate tumor cell spheroids. Whereas individual SUM159PT cells invaded Matrigel using an MMP-dependent mesenchymal mode, when they were grown as spheroids, tumor cells were unable to invade the Matrigel surrounding spheroids. When spheroids were infiltrated or in contact with macrophages, tumor cell invasiveness was restored. It was dependent on the capacity of macrophages to remodel the matrix and migrate in an MMP-independent mesenchymal mode. This effect of macrophages was much reduced when spheroids were infiltrated by Matrigel migration-defective Hck(-/-) macrophages. In the presence of macrophages, SUM159PT migrated into Matrigel in the proximity of macrophages and switched from an MMP-dependent mesenchymal migration to an amoeboid mode resistant to protease inhibitors.Thus, in addition to the well-described paracrine loop between macrophages and tumor cells, macrophages can also contribute to the invasiveness of tumor cells by remodeling the extracellular matrix and by opening the way to exit the tumor and colonize the surrounding tissues in an MMP-dispensable manner.
Collapse
Affiliation(s)
- Romain Guiet
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, 31077 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Ho TC, Chen SL, Shih SC, Chang SJ, Yang SL, Hsieh JW, Cheng HC, Chen LJ, Tsao YP. Pigment epithelium-derived factor (PEDF) promotes tumor cell death by inducing macrophage membrane tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Biol Chem 2011; 286:35943-35954. [PMID: 21846721 DOI: 10.1074/jbc.m111.266064] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is an intrinsic anti-angiogenic factor and a potential anti-tumor agent. The tumoricidal mechanism of PEDF, however, has not been fully elucidated. Here we report that PEDF induces the apoptosis of TC-1 and SK-Hep-1 tumor cells when they are cocultured with bone marrow-derived macrophages (BMDMs). This macrophage-mediated tumor killing is prevented by blockage of TNF-related apoptosis-inducing ligand (TRAIL) following treatment with the soluble TRAIL receptor. PEDF also increases the amount of membrane-bound TRAIL on cultured mouse BMDMs and on macrophages surrounding subcutaneous tumors. PEDF-induced tumor killing and TRAIL induction are abrogated by peroxisome proliferator-activated receptor γ (PPARγ) antagonists or small interfering RNAs targeting PPARγ. PEDF also induces PPARγ in BMDMs. Furthermore, the activity of the TRAIL promoter in human macrophages is increased by PEDF stimulation. Chromatin immunoprecipitation and DNA pull-down assays confirmed that endogenous PPARγ binds to a functional PPAR-response element (PPRE) in the TRAIL promoter, and mutation of this PPRE abolishes the binding of the PPARγ-RXRα heterodimer. Also, PPARγ-dependent transactivation and PPARγ-RXRα binding to this PPRE are prevented by PPARγ antagonists. Our results provide a novel mechanism for the tumoricidal activity of PEDF, which involves tumor cell killing via PPARγ-mediated TRAIL induction in macrophages.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Show-Li Chen
- Department of Microbiology, School of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shou-Chuan Shih
- Department of Gastroenterology, Mackay Memorial Hospital, Taipei 104, Taiwan; Mackay Medicine, Nursing, and Management College, Taipei 112, Taiwan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan; Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Su-Lin Yang
- Centers for Disease Control, Taipei 115, Taiwan; Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Jui-Wen Hsieh
- Mackay Medicine, Nursing, and Management College, Taipei 112, Taiwan; Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Huey-Chuan Cheng
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Lee-Jen Chen
- Mackay Medicine, Nursing, and Management College, Taipei 112, Taiwan; Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, Taipei 104, Taiwan; Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan; Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| |
Collapse
|
131
|
Wang B, Li Q, Qin L, Zhao S, Wang J, Chen X. Transition of tumor-associated macrophages from MHC class II(hi) to MHC class II(low) mediates tumor progression in mice. BMC Immunol 2011; 12:43. [PMID: 21813021 PMCID: PMC3162940 DOI: 10.1186/1471-2172-12-43] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/04/2011] [Indexed: 12/22/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) are the most abundant immune cells within the tumor stroma and play a crucial role in tumor development. Although clinical investigations indicate that high levels of macrophage (MΦ) infiltration into tumors are associated with a poor prognosis, the exact role played by TAMs during tumor development remains unclear. The present study aimed to investigate dynamic changes in TAM major histocompatibility complex (MHC) class II expression levels and to assess the effects of these changes on tumor progression. Results Significant inhibition of tumor growth in the murine hepatocellular carcinoma Hepa1-6 model was closely associated with partial TAM depletion. Strikingly, two distinct TAM subsets were found to coexist within the tumor microenvironment during Hepa1-6 tumor development. An MHC class IIhi TAM population appeared during the early phase of tumor development and was associated with tumor suppression; however, an MHC class IIlow TAM population became increasingly predominant as the tumor progressed. Conclusions Tumor progression was positively correlated with increasing infiltration of the tumor tissues by MHC class IIlow TAMs. Thus, targeting the transition of MΦ may be a novel strategy for drug development and immunotherapy.
Collapse
Affiliation(s)
- Benfan Wang
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | | | | | | | | |
Collapse
|
132
|
Hill RP, Zaidi A, Mahmood J, Jelveh S. Investigations into the role of inflammation in normal tissue response to irradiation. Radiother Oncol 2011; 101:73-9. [PMID: 21726914 DOI: 10.1016/j.radonc.2011.06.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 12/20/2022]
Abstract
PURPOSE Radiation-induced inflammation and production of reactive oxygen species (ROS) play a critical role in normal tissue response. In this study we have examined some aspects of these effects in lung and skin. METHODS The superoxide dismutase (SOD) catalase mimetic, EUK-207, and genistein, an isoflavone with anti-inflammatory properties, were given post-irradiation and micronuclei (MN) formation was determined in cells derived from irradiated lung and skin. Changes in breathing rate were measured using a plethysmograph following irradiation of C57Bl6 mice knocked out for tumor necrosis factor (TNF)-alpha or its receptors, TNFR1/2, or treated with endotoxin (lipopolysaccharide - LPS). RESULTS Both EUK-207 and genistein given after irradiation caused a large reduction in MN levels observed in lung cells during 14 weeks post-irradiation but ceasing treatment resulted in a rebound in MN levels at 28 weeks post-irradiation. In contrast, treatment with EUK-207 was largely ineffective in reducing MN observed in skin cells post-irradiation. Knock-out of TNF-alpha resulted in a reduced increase in breathing rate (peak at 12 weeks post-irradiation) relative to wild-type and TNFR1/2 knock-out. Treatment with LPS 1 h post-irradiation also reduced the increase in breathing rate. CONCLUSIONS The increase in MN in lung cells after treatment with EUK-207 or genistein was stopped suggests that continuing ROS production contributes to DNA damage in lung cells over prolonged periods. That this effect was not seen in skin suggests this mechanism is less prominent in this tissue. The reduced level of radiation pneumonitis (as monitored by breathing rate changes) in animals knocked out for TNF-alpha suggests that this cytokine plays a significant role in inducing inflammation in lung following irradiation. The similar effect observed following LPS given post-irradiation suggests the possibility that such treatment modifies the long-term cyclic inflammatory response following irradiation in lungs.
Collapse
|
133
|
Mukaida N, Sasakki SI, Popivanova BK. Tumor Necrosis Factor (TNF) and Chemokines in Colitis-Associated Cancer. Cancers (Basel) 2011; 3:2811-2826. [PMID: 24212934 PMCID: PMC3759172 DOI: 10.3390/cancers3032811] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 12/13/2022] Open
Abstract
The connection between inflammation and tumorigenesis has been well established, based on a great deal of supporting evidence obtained from epidemiological, pharmacological, and genetic studies. One representative example is inflammatory bowel disease, because it is an important risk factor for the development of colon cancer. Moreover, intratumoral infiltration of inflammatory cells suggests the involvement of inflammatory responses also in other forms of sporadic as well as heritable colon cancer. Inflammatory responses and tumorigenesis activate similar sets of transcription factors such as NF-kB, Stat3, and hypoxia inducible factor and eventually enhances the expression of inflammatory cytokines including tumor necrosis factor (TNF) and chemokines. The expression of TNF and chemokines is aberrantly expressed in a mouse model of colitis-associated carcinogenesis as well as in inflammatory bowel disease and colon cancer in humans. Here, after summarizing the presumed actions of TNF and chemokines in tumor biology, we will discuss the potential roles of TNF and chemokines in chronic inflammation-associated colon cancer in mice.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; E-Mail: (S.S.)
| | - So-ichiro Sasakki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; E-Mail: (S.S.)
| | - Boryana K. Popivanova
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; E-Mail: (S.S.)
- Present Address, Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; E-Mail:
| |
Collapse
|
134
|
Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem Biophys Res Commun 2011; 411:102-6. [PMID: 21712027 DOI: 10.1016/j.bbrc.2011.06.101] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 12/29/2022]
Abstract
Mature adipocytes are excellent candidates to influence tumor behavior through heterotypic signaling processes since these cells produce hormones, growth factors, cytokines and other molecules, a heterogeneous group of molecules named adipokines. Using a 2D coculture system, we demonstrate that breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance and an earlier and higher increase in the effector kinase Chk1, a phenotype that was associated with decreased cell death as compared to tumor cells grown alone. Interestingly, the adipocytes-induced tumor changes taking place during the coculture time preceding the exposure to IR were sufficient to confer the radioresistant effect. Notorious among the changes brought by adipocytes was the significant increase of IL-6 expression in tumor cells, whose activity may well account for the observed tumor cell protection from IR toxicity. Indeed, our data confirmed the protective role of this cytokine as tumor cells incubated after irradiation with recombinant IL-6 exhibit an increased in Chk1 phosphorylation and a radioresistant phenotype, thus far recapitulating the effects observed in the presence of adipocytes. Our current study sheds light on a new role of tumor-surrounding adipocytes in fostering a radioresistant phenotype in breast tumors, a finding that might have important clinical implications in obese patients that frequently exhibit aggressive diseases.
Collapse
|
135
|
Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z, Zhu B. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun 2011; 407:348-54. [PMID: 21396350 DOI: 10.1016/j.bbrc.2011.03.021] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 12/12/2022]
Abstract
IL-17, which exerts strong pro-inflammatory effects, has emerged as an important mediator in inflammation-associated cancer. However, the characteristics of IL-17-producing cells, the relevance of IL-17 to clinical parameters and its function in the development and progression of colorectal carcinoma still remain to be explored. In the present study, we first found the levels of IL-17 producing cells were significantly increased in the tumor regions of samples from colorectal carcinoma patients compared with non-tumor regions. Confocal microscopic analysis showed co-staining of IL-17 with CD4 and CD68, indicating IL-17 in colorectal carcinoma was expressed by macrophage and Th17. High expression of IL-17 was associated with high microvessel density. Univariate and multivariate analysis revealed that IL-17 was an independent prognostic factor for overall survival. To explore the underlying mechanisms of IL-17 in angiogenesis, we used PCR-array to find pro-angiogenic factor in cancer cells specifically induced by IL-17, then validated VEGF as one of factors in IL-17-mediated angiogenesis with the use of quantitative RT-PCR, ELISA and VEGF immunohistochemistry. Our results propose IL-17 as a novel indicator of prognosis in the patients with colorectal carcinoma and could serve as a novel therapeutic target for colorectal carcinoma, furthermore our results indicate that IL-17 producing cells may facilitate development of colorectal carcinoma by fostering angiogenesis via promote VEGF production from cancer cells.
Collapse
Affiliation(s)
- Jiankun Liu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Jedinak A, Dudhgaonkar S, Kelley MR, Sliva D. Apurinic/Apyrimidinic endonuclease 1 regulates inflammatory response in macrophages. Anticancer Res 2011; 31:379-385. [PMID: 21378315 PMCID: PMC3256557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The multi-functional apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) DNA repair and redox signaling protein has been shown to have a role in cancer growth and survival, however, little has been investigated concerning its role in inflammation. In this study, an APE1 redox-specific inhibitor (E3330) was used in lypopolysaccharide (LPS)-stimulated macrophages (RAW264.7). E3330 clearly suppressed secretion of inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL-6) and IL-12 and inflammatory mediators nitric oxide (NO) as well as prostaglandin E(2) (PGE(2)) from the LPS-stimulated RAW264.7 cells. These data were supported by the down-regulation of the LPS-dependent expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) genes in the RAW264.7 cells. The effects of E3330 were mediated by the inhibition of transcription factors nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) in the LPS-stimulated macrophages, both known targets of APE1. In conclusion, pharmacological inhibition of APE1 by E3330 suppresses inflammatory response in activated macrophages and can be considered as a novel therapeutic strategy for the inhibition of tumor-associated macrophages.
Collapse
Affiliation(s)
- Andrej Jedinak
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, 1800 N Capitol Ave, E504, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
137
|
Zhai H, Heppner FL, Tsirka SE. Microglia/macrophages promote glioma progression. Glia 2010; 59:472-85. [PMID: 21264953 DOI: 10.1002/glia.21117] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 11/09/2010] [Indexed: 12/11/2022]
Abstract
Gliomas are highly aggressive and accompanied by numerous microglia/macrophages (MG/MP) in and about the tumor. Little is known about what MG/MP do in this setting, or whether modulating MG/MP activation might affect glioma progression. Here, we used a glioma-microglia in culture system to establish the effects the tumor and microglia have on each other. We assessed glioma progression in vivo after MG/MP ablation or in the setting of exaggerated MG/MP activation. We show that glioma cells activate microglia but inhibit their phagocytic activities. Local ablation of MG/MP in vivo decreased tumor size and improved survival curves. Conversely, pharmacological activation of MG/MP increased glioma size through stimulating tumor proliferation and inhibiting apoptosis. In agreement with recent reports, expression of the chemokine CCL21 is enhanced after MG/MP activation and correlates with tumor growth. Taken together, our findings demonstrate that inhibition of MG/MP activation may constitute a new and effective contribution towards suppressing glioma proliferation.
Collapse
Affiliation(s)
- Haiyan Zhai
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
138
|
Shiao SL, Coussens LM. The tumor-immune microenvironment and response to radiation therapy. J Mammary Gland Biol Neoplasia 2010; 15:411-21. [PMID: 21161342 PMCID: PMC3011087 DOI: 10.1007/s10911-010-9194-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/03/2010] [Indexed: 01/01/2023] Open
Abstract
Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancer, including breast cancer. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells infiltrating tumors. This review focuses on tumor-associated immune cell responses following RT and discusses how immune responses may be modified to enhance durability and efficacy of RT.
Collapse
Affiliation(s)
- Stephen L. Shiao
- Department of Radiation Oncology, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
| | - Lisa M. Coussens
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
| |
Collapse
|
139
|
Jung M, Dimtchev A, Velena A, Dritschilo A. Combining radiation therapy with interstitial radiation-inducible TNF-α expression for locoregional cancer treatment. Cancer Gene Ther 2010; 18:189-95. [PMID: 21052099 DOI: 10.1038/cgt.2010.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brachytherapy (BRT) is used in the treatment of human cancers, including the cervix, breast, prostate and head and neck cancers. The primary advantage of BRT lies in the spatial conformation of the radiation deposition. Previously, we have shown that similar techniques (using hollow metallic cylinders) may be used to deliver gene-therapy vectors capable of expressing the radiation-sensitizing cytokine, tumor necrosis factor (TNF)-α, within a restricted volume of tissue. Herein, we report radiation sensitization of cancer cells using a TNF-α expressing vector driven by the radiation-inducible immediate-early gene-1 (IEX-1) promoter (pIEX-TNF-α). TNF-α, determined by ELISA assays using culture medium, increased between 5 and 10 fold, 48 h following exposure to radiation, and radiation sensitization was comparable with that observed in cells in which TNF-α was constitutively expressed under cytomegalo viral (CMV) promoter using the plasmid vector (pCMV-TNF-α). This efficiency of induced TNF-α radiation sensitization was also observed in cervix (SW756) and prostate tumor (PC-3) xenograft models. IEX-1-driven TNF-α expression following external radiation exposure resulted in enhanced regression of tumor xenografts as compared with radiation alone. A feasibility of using radioactive Pd-103 seeds with GeneSeeds was further examined using PC-3 xenograft models. The data showed substantial tumor growth suppression following co-implantation with a metal seed containing Pd-103. Taken together, these results show the enhanced effect on tumor regression by treatment with radiation-inducible TNF-α expression in combination with radiation and support for the IEX-1 promoter as a useful regulator for temporal activation of radiation-sensitizing gene expression.
Collapse
Affiliation(s)
- M Jung
- Division of Radiation Research, Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057-1482, USA.
| | | | | | | |
Collapse
|
140
|
Kuijpers SA, Coimbra MJ, Storm G, Schiffelers RM. Liposomes targeting tumour stromal cells. Mol Membr Biol 2010; 27:328-40. [PMID: 20939769 DOI: 10.3109/09687688.2010.522204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Liposomes have found clinical application in cancer therapy in the delivery of cytostatic agents. As a result of the targeted delivery of these toxic molecules to the tumour cells coupled to avoidance of toxicity-sensitive tissues, the therapeutic window is widened. Over the past years the focus of cancer therapy has shifted towards the stromal cells that are present in the tumour. It appears that clinically relevant tumours have acquired the ability to modulate the microenvironment in such a way that a chronic pro-inflammatory and pro-angiogenic state is achieved that contributes to invasion and metastasis and continued proliferation. Over the past years, liposomal formulations have been designed that target key stromal cell types that contribute to tumour growth. At the same time, many promising cell types have not been targeted yet and most of the studies employ drugs that aim at depleting stromal cells rather than modulating their activity towards an anti-tumour phenotype. In this review these target cell types will be addressed. Complementing these targeted formulations with the appropriate drugs to optimally suppress tumour-promoting signals while preserving anti-tumour action will be the challenge for the future.
Collapse
Affiliation(s)
- Sylvia A Kuijpers
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
141
|
Qualls JE, Murray PJ. A double agent in cancer: Stopping macrophages wounds tumors. Nat Med 2010; 16:863-4. [DOI: 10.1038/nm0810-863] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|