101
|
Roudsari LC, West JL. Studying the influence of angiogenesis in in vitro cancer model systems. Adv Drug Deliv Rev 2016; 97:250-9. [PMID: 26571106 DOI: 10.1016/j.addr.2015.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022]
Abstract
Tumor angiogenesis is a hallmark of cancer that has been identified as a critical component of cancer progression, facilitating rapid tumor growth and metastasis. Anti-angiogenic therapies have exhibited only modest clinical success, highlighting a need for better models that can be used to gain a more thorough understanding of tumor angiogenesis and screen potential therapeutics more accurately. This review explores how recent progress in in vitro cancer and vascular models individually can be applied to the development of in vitro tumor angiogenesis models. Current in vitro tumor angiogenesis models are also discussed, with a focus on aspects of the process that have been successfully recapitulated and opportunities for applying new technologies to expand model complexity to better represent the tumor microenvironment. Continued advances in vascularized tumor models will provide tools to identify novel therapeutic targets and validate their therapeutic benefit.
Collapse
Affiliation(s)
- Laila C Roudsari
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708, USA.
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708, USA.
| |
Collapse
|
102
|
Marcucci F, Stassi G, De Maria R. Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov 2016; 15:311-25. [PMID: 26822829 DOI: 10.1038/nrd.2015.13] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conversion of cells with an epithelial phenotype into cells with a mesenchymal phenotype, referred to as epithelial-mesenchymal transition, is a critical process for embryonic development that also occurs in adult life, particularly during tumour progression. Tumour cells undergoing epithelial-mesenchymal transition acquire the capacity to disarm the body's antitumour defences, resist apoptosis and anticancer drugs, disseminate throughout the organism, and act as a reservoir that replenishes and expands the tumour cell population. Epithelial-mesenchymal transition is therefore becoming a target of prime interest for anticancer therapy. Here, we discuss the screening and classification of compounds that affect epithelial-mesenchymal transition, highlight some compounds of particular interest, and address issues related to their clinical application.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Scientific Directorate, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy. Present address: Department of Pharmacological and Biomolecular Sciences, University of Milan, via Trentacoste 2, 20133 Milan, Italy
| | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Via del Vespro 131, 90127 Palermo, Italy
| | - Ruggero De Maria
- Scientific Directorate, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
103
|
Whom to blame for metastasis, the epithelial-mesenchymal transition or the tumor microenvironment? Cancer Lett 2016; 380:359-68. [PMID: 26791236 DOI: 10.1016/j.canlet.2015.12.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/22/2015] [Accepted: 12/25/2015] [Indexed: 02/06/2023]
Abstract
Changes in the tumor microenvironment (TME) can trigger the activation of otherwise non-malignant cells to become highly aggressive and motile. This is evident during initial tumor growth when the poor vascularization in tumors generates hypoxic regions that trigger the latent embryonic program, epithelial-to-mesenchymal transition (EMT), in epithelial carcinoma cells (e-cars) leading to highly motile mesenchymal-like carcinoma cells (m-cars), which also acquire cancer stem cell properties. After that, specific bidirectional interactions take place between m-cars and the cellular components of TME at different stages of metastasis. These interactions include several vicious positive feedback loops in which m-cars trigger a phenotypic switch, causing normal stromal cells to become pro-tumorigenic, which then further promote the survival, motility, and proliferation of m-cars. Accordingly, there is not a single culprit accounting for metastasis. Instead both m-cars and the TME dynamically interact, evolve and promote metastasis. In this review, we discuss the current status of the known interactions between m-cars and the TME during different stages of metastasis and how these interactions promote the metastatic activity of highly malignant m-cars by promoting their invasive mesenchymal phenotype and CSC properties.
Collapse
|
104
|
The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL. Sci Rep 2016; 6:18652. [PMID: 26728244 PMCID: PMC4700473 DOI: 10.1038/srep18652] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Tumor cell metastasis is a complex process that has been mechanistically linked to the epithelial-mesenchymal transition (EMT). The double-negative feedback loop between the microRNA-200 family and the Zeb1 transcriptional repressor is a master EMT regulator, but there is incomplete understanding of how miR-200 suppresses invasion. Our recent efforts have focused on the tumor cell-matrix interactions essential to tumor cell activation. Herein we utilized both our Kras/p53 mutant mouse model and human lung cancer cell lines to demonstrate that upon miR-200 loss integrin β1-collagen I interactions drive 3D in vitro migration/invasion and in vivo metastases. Zeb1-dependent EMT enhances tumor cell responsiveness to the ECM composition and activates FAK/Src pathway signaling by de-repression of the direct miR-200 target, CRKL. We demonstrate that CRKL serves as an adaptor molecule to facilitate focal adhesion formation, mediates outside-in signaling through Itgβ1 to drive cell invasion, and inside-out signaling that maintains tumor cell-matrix contacts required for cell invasion. Importantly, CRKL levels in pan-cancer TCGA analyses were predictive of survival and CRKL knockdown suppressed experimental metastases in vivo without affecting primary tumor growth. Our findings highlight the critical ECM-tumor cell interactions regulated by miR-200/Zeb1-dependent EMT that activate intracellular signaling pathways responsible for tumor cell invasion and metastasis.
Collapse
|
105
|
Nasrollahi S, Pathak A. Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices. Sci Rep 2016; 6:18831. [PMID: 26728047 PMCID: PMC4700414 DOI: 10.1038/srep18831] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/27/2015] [Indexed: 11/09/2022] Open
Abstract
Epithelial cells disengage from their clusters and become motile by undergoing epithelial-to-mesenchymal transition (EMT), an essential process for both embryonic development and tumor metastasis. Growing evidence suggests that high extracellular matrix (ECM) stiffness induces EMT. In reality, epithelial clusters reside in a heterogeneous microenvironment whose mechanical properties vary not only in terms of stiffness, but also topography, dimensionality, and confinement. Yet, very little is known about how various geometrical parameters of the ECM might influence EMT. Here, we adapt a hydrogel-microchannels based matrix platform to culture mammary epithelial cell clusters in ECMs of tunable stiffness and confinement. We report a previously unidentified role of ECM confinement in EMT induction. Surprisingly, confinement induces EMT even in the cell clusters surrounded by a soft matrix, which otherwise protects against EMT in unconfined environments. Further, we demonstrate that stiffness-induced and confinement-induced EMT work through cell-matrix adhesions and cytoskeletal polarization, respectively. These findings highlight that both the structure and the stiffness of the ECM can independently regulate EMT, which brings a fresh perspective to the existing paradigm of matrix stiffness-dependent dissemination and invasion of tumor cells.
Collapse
Affiliation(s)
- Samila Nasrollahi
- Department of Mechanical Engineering and Materials Science, Washington University, Saint Louis, MO 63130, USA
| | - Amit Pathak
- Department of Mechanical Engineering and Materials Science, Washington University, Saint Louis, MO 63130, USA
| |
Collapse
|
106
|
Peter M, Tayalia P. An alternative technique for patterning cells on poly(ethylene glycol) diacrylate hydrogels. RSC Adv 2016. [DOI: 10.1039/c6ra08852j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this work, a poly(ethylene glycol) diacrylate (PEGDA) hydrogel is patterned with a cell adhesive ligand, that was functionalized with an acrylate group using Michael type addition reaction, thus, circumventing the need for proprietary reagents.
Collapse
Affiliation(s)
- Mathew Peter
- Department of Biosciences & Bioengineering
- Indian Institute of Technology Bombay
- Mumbai
- India
| | - Prakriti Tayalia
- Department of Biosciences & Bioengineering
- Indian Institute of Technology Bombay
- Mumbai
- India
| |
Collapse
|
107
|
Albritton JL, Roybal JD, Paulsen SJ, Calafat N, Flores-Zaher JA, Farach-Carson MC, Gibbons DL, Miller JS. Ultrahigh-throughput Generation and Characterization of Cellular Aggregates in Laser-ablated Microwells of Poly(dimethylsiloxane). RSC Adv 2016; 6:8980-8991. [PMID: 26998251 PMCID: PMC4792302 DOI: 10.1039/c5ra26022a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aggregates of cells, also known as multicellular aggregates (MCAs), have been used as microscale tissues in the fields of cancer biology, regenerative medicine, and developmental biology for many decades. However, small MCAs (fewer than 100 cells per aggregate) have remained challenging to manufacture in large quantities at high uniformity. Forced aggregation into microwells offers a promising solution for forming consistent aggregates, but commercial sources of microwells are expensive, complicated to manufacture, or lack the surface packing densities that would significantly improve MCA production. To address these concerns, we custom-modified a commercial laser cutter to provide complete control over laser ablation and directly generate microwells in a poly(dimethylsiloxane) (PDMS) substrate. We achieved ultra rapid microwell production speeds (>50,000 microwells/hr) at high areal packing densities (1,800 microwells/cm2) and over large surface areas for cell culture (60 cm2). Variation of the PDMS substrate distance from the laser focal plane during ablation allowed for the generation of microwells with a variety of sizes, contours, and aspect ratios. Casting of high-fidelity microneedle masters in polyurethane allowed for non-ablative microwell reproduction through replica molding. MCAs of human bone marrow derived mesenchymal stem cells (hMSCs), murine 344SQ metastatic adenocarcinoma cells, and human C4-2 prostate cancer cells were generated in our system with high uniformity within 24 hours, and computer vision software aided in the ultra-high-throughput analysis of harvested aggregates. Moreover, MCAs maintained invasive capabilities in 3D migration assays. In particular, 344SQ MCAs demonstrated epithelial lumen formation on Matrigel, and underwent EMT and invasion in the presence of TGF-β. We expect this technique to find broad utility in the generation and cultivation of cancer cell aggregates, primary cell aggregates, and embryoid bodies.
Collapse
Affiliation(s)
| | - Jonathon D. Roybal
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Nick Calafat
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | - Mary C. Farach-Carson
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordan S. Miller
- Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
108
|
Abstract
The microenvironment is increasingly recognized to have key roles in cancer, and biomaterials provide a means to engineer microenvironments both in vitro and in vivo to study and manipulate cancer. In vitro cancer models using 3D matrices recapitulate key elements of the tumour microenvironment and have revealed new aspects of cancer biology. Cancer vaccines based on some of the same biomaterials have, in parallel, allowed for the engineering of durable prophylactic and therapeutic anticancer activity in preclinical studies, and some of these vaccines have moved to clinical trials. The impact of biomaterials engineering on cancer treatment is expected to further increase in importance in the years to come.
Collapse
Affiliation(s)
- Luo Gu
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - David J Mooney
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
109
|
Shih H, Lin CC. Tuning stiffness of cell-laden hydrogel via host–guest interactions. J Mater Chem B 2016; 4:4969-4974. [PMID: 32264023 DOI: 10.1039/c6tb00890a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report a dynamic hydrogel system with on-demand tunable matrix stiffness.
Collapse
Affiliation(s)
- Han Shih
- Weldon School of Biomedical Engineering
- Purdue University
- West Lafayette
- USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering
- Purdue University
- West Lafayette
- USA
- Department of Biomedical Engineering
| |
Collapse
|
110
|
Enemchukwu NO, Cruz-Acuña R, Bongiorno T, Johnson CT, García JR, Sulchek T, García AJ. Synthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis. J Cell Biol 2015; 212:113-24. [PMID: 26711502 PMCID: PMC4700478 DOI: 10.1083/jcb.201506055] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022] Open
Abstract
Epithelial cells cultured within collagen and laminin gels proliferate to form hollow and polarized spherical structures, recapitulating the formation of a rudimentary epithelial organ. However, the contributions of extracellular matrix (ECM) biochemical and biophysical properties to morphogenesis are poorly understood because of uncontrolled presentation of multiple adhesive ligands, limited control over mechanical properties, and lot-to-lot compositional variability in these natural ECMs. We engineered synthetic ECM-mimetic hydrogels with independent control over adhesive ligand density, mechanical properties, and proteolytic degradation to study the impact of ECM properties on epithelial morphogenesis. Normal cyst growth, polarization, and lumen formation were restricted to a narrow range of ECM elasticity, whereas abnormal morphogenesis was observed at lower and higher elastic moduli. Adhesive ligand density dramatically regulated apicobasal polarity and lumenogenesis independently of cell proliferation. Finally, a threshold level of ECM protease degradability was required for apicobasal polarity and lumen formation. This synthetic ECM technology provides new insights into how cells transduce ECM properties into complex morphogenetic behaviors.
Collapse
Affiliation(s)
- Nduka O Enemchukwu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Ricardo Cruz-Acuña
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332 Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Tom Bongiorno
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Christopher T Johnson
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332 Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - José R García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Todd Sulchek
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
111
|
Park KM, Gerecht S. Polymeric hydrogels as artificial extracellular microenvironments for cancer research. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
112
|
Peters EB, Christoforou N, Leong KW, Truskey GA, West JL. Poly(ethylene glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells. Cell Mol Bioeng 2015; 9:38-54. [PMID: 27042236 DOI: 10.1007/s12195-015-0423-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of stable, functional microvessels remains an important obstacle to overcome for tissue engineered organs and treatment of ischemia. Endothelial progenitor cells (EPCs) are a promising cell source for vascular tissue engineering as they are readily obtainable and carry the potential to differentiate towards all endothelial phenotypes. The aim of this study was to investigate the ability of human umbilical cord blood-derived EPCs to form vessel-like structures within a tissue engineering scaffold material, a cell-adhesive and proteolytically degradable poly(ethylene glycol) (PEG) hydrogel. EPCs in co-culture with angiogenic mural cells were encapsulated in hydrogel scaffolds by mixing with polymeric precursors and using a mild photocrosslinking process to form hydrogels with homogeneously dispersed cells. EPCs formed 3D microvessels networks that were stable for at least 30 days in culture, without the need for supplemental angiogenic growth factors. These 3D EPC microvessels displayed aspects of physiological microvasculature with lumen formation, expression of endothelial cell proteins (connexin 32, VE-cadherin, eNOS), basement membrane formation with collagen IV and laminin, perivascular investment of PDGFR-β and α-SMA positive cells, and EPC quiescence (<1% proliferating cells) by 2 weeks of co-culture. Our findings demonstrate the development of a novel, reductionist system that is well-defined and reproducible for studying progenitor cell-driven microvessel formation.
Collapse
Affiliation(s)
- Erica B Peters
- Fitzpatrick CIEMAS Building, Room 1427, Box 90281, Duke University, Department of Biomedical Engineering, Durham, NC 27708
| | - Nicolas Christoforou
- P.O. Box 127788, Khalifa University, Department of Biomedical Engineering, Abu Dhabi, UAE
| | - Kam W Leong
- 1210 Amsterdam Avenue, Mail Code 8904, Columbia University, Department of Biomedical Engineering, New York, NY 10027
| | - George A Truskey
- Fitzpatrick CIEMAS Building, Room 1427, Box 90281, Duke University, Department of Biomedical Engineering, Durham, NC 27708
| | - Jennifer L West
- Fitzpatrick CIEMAS Building, Room 1427, Box 90281, Duke University, Department of Biomedical Engineering, Durham, NC 27708
| |
Collapse
|
113
|
Choi B, Park KS, Kim JH, Ko KW, Kim JS, Han DK, Lee SH. Stiffness of Hydrogels Regulates Cellular Reprogramming Efficiency Through Mesenchymal-to-Epithelial Transition and Stemness Markers. Macromol Biosci 2015; 16:199-206. [DOI: 10.1002/mabi.201500273] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/26/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Bogyu Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| | - Kwang-Sook Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
- Center for Biomaterials, Korea Institute of Science and Technology, P.O. Box 131; Cheongryang; Seoul 130-650 Republic of Korea
| | - Ji-Ho Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| | - Kyoung-Won Ko
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| | - Jin-Su Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, P.O. Box 131; Cheongryang; Seoul 130-650 Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| |
Collapse
|
114
|
Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering. J Biotechnol 2015; 212:71-89. [DOI: 10.1016/j.jbiotec.2015.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 01/13/2023]
|
115
|
Chen YX, Yang S, Yan J, Hsieh MH, Weng L, Ouderkirk JL, Krendel M, Soman P. A Novel Suspended Hydrogel Membrane Platform for Cell Culture. J Nanotechnol Eng Med 2015. [DOI: 10.1115/1.4031467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current cell-culture is largely performed on synthetic two-dimensional (2D) petri dishes or permeable supports such as Boyden chambers, mostly because of their ease of use and established protocols. It is generally accepted that modern cell biology research requires new physiologically relevant three-dimensional (3D) cell culture platform to mimic in vivo cell responses. To that end, we report the design and development of a suspended hydrogel membrane (ShyM) platform using gelatin methacrylate (GelMA) hydrogel. ShyM thickness (0.25–1 mm) and mechanical properties (10–70 kPa) can be varied by controlling the size of the supporting grid and concentration of GelMA prepolymer, respectively. GelMA ShyMs, with dual media exposure, were found to be compatible with both the cell-seeding and the cell-encapsulation approach as tested using murine 10T1/2 cells and demonstrated higher cellular spreading and proliferation as compared to flat GelMA unsuspended control. The utility of ShyM was also demonstrated using a case-study of invasion of cancer cells. ShyMs, similar to Boyden chambers, are compatible with standard well-plates designs and can be printed using commonly available 3D printers. In the future, ShyM can be potentially extended to variety of photosensitive hydrogels and cell types, to develop new in vitro assays to investigate complex cell–cell and cell–extracellular matrix (ECM) interactions.
Collapse
Affiliation(s)
- Yong X. Chen
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| | - Shihao Yang
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| | - Jiahan Yan
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| | - Ming-Han Hsieh
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| | - Lingyan Weng
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| | - Jessica L. Ouderkirk
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| | - Mira Krendel
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 e-mail:
| | - Pranav Soman
- Department of Biomedical and Chemical Engineering, Syracuse University, 900 S. Crouse Avenue, Syracuse, NY 13210 e-mail:
| |
Collapse
|
116
|
Munoz-Pinto DJ, Samavedi S, Grigoryan B, Hahn MS. In depth examination of impact of secondary reactive species on the apparent decoupling of poly(ethylene glycol) diacrylate hydrogel average mesh size and modulus. POLYMER 2015; 77:227-238. [PMID: 29332957 DOI: 10.1016/j.polymer.2015.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Poly(ethylene glycol) diacrylate (PEGDA) hydrogels are widely used in biotechnology due to their in situ crosslinking capacity and tunable physical properties. However, as with all single component hydrogels, the modulus of PEGDA networks cannot be tailored independently of mesh size. This interdependence places significant limitations on their use for defined, 3D cell-microenvironment studies and for certain controlled release applications. The incorporation of secondary reactive species (SRS) into PEGDA hydrogels has previously been shown to allow the identification of up to 6 PEGDA hydrogel formulations for which distinct moduli can be obtained at consistent average mesh size (or vice versa). However, the modulus and mesh size ranges which can be probed by these formulations are quite restricted. This work presents an in-depth study of SRS incorporation into PEGDA hydrogels, with the goal of expanding the space for which "decoupled" examination of modulus and mesh size effects is achievable. Towards this end, over 100 PEGDA hydrogels containing either N-vinyl pyrrolidone or star PEG-tetraacrylate as SRS were characterized. To our knowledge, this is the first study to demonstrate that SRS incorporation allows for the identification of a number of modulus ranges that can be probed at consistent average mesh size (or vice versa).
Collapse
Affiliation(s)
- Dany J Munoz-Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Satyavrata Samavedi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | | | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| |
Collapse
|
117
|
Fitzgerald KA, Guo J, Tierney EG, Curtin CM, Malhotra M, Darcy R, O'Brien FJ, O'Driscoll CM. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials 2015. [PMID: 26196533 DOI: 10.1016/j.biomaterials.2015.07.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostate cancer bone metastases are a leading cause of cancer-related death in men with current treatments offering only marginally improved rates of survival. Advances in the understanding of the genetic basis of prostate cancer provide the opportunity to develop gene-based medicines capable of treating metastatic disease. The aim of this work was to establish a 3D cell culture model of prostate cancer bone metastasis using collagen-based scaffolds, to characterise this model, and to assess the potential of the model to evaluate delivery of gene therapeutics designed to target bone metastases. Two prostate cancer cell lines (PC3 and LNCaP) were cultured in 2D standard culture and compared to 3D cell growth on three different collagen-based scaffolds (collagen and composites of collagen containing either glycosaminoglycan or nanohydroxyapatite). The 3D model was characterised for cell proliferation, viability and for matrix metalloproteinase (MMP) enzyme and Prostate Specific Antigen (PSA) secretion. Chemosensitivity to docetaxel treatment was assessed in 2D in comparison to 3D. Nanoparticles (NPs) containing siRNA formulated using a modified cyclodextrin were delivered to the cells on the scaffolds and gene silencing was quantified. Both prostate cancer cell lines actively infiltrated and proliferated on the scaffolds. Cell culture in 3D resulted in reduced levels of MMP1 and MMP9 secretion in PC3 cells. In contrast, LNCaP cells grown in 3D secreted elevated levels of PSA, particularly on the scaffold composed of collagen and glycosaminoglycans. Both cell lines grown in 3D displayed increased resistance to docetaxel treatment. The cyclodextrin.siRNA nanoparticles achieved cellular uptake and knocked down the endogenous GAPDH gene in the 3D model. In conclusion, development of a novel 3D cell culture model of prostate cancer bone metastasis has been initiated resulting, for the first time, in the successful delivery of gene therapeutics in a 3D in vitro model. Further enhancement of this model will help elucidate the pathogenesis of prostate cancer and also accelerate the design of effective therapies which can penetrate into the bone microenvironment for prostate cancer therapy.
Collapse
Affiliation(s)
| | - Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Erica G Tierney
- Tissue Engineering Research Group, Anatomy Department, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Anatomy Department, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Raphael Darcy
- Centre for Synthesis and Chemical Biology, University College Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Anatomy Department, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | | |
Collapse
|
118
|
Lewis KJR, Tibbitt MW, Zhao Y, Branchfield K, Sun X, Balasubramaniam V, Anseth KS. In vitro model alveoli from photodegradable microsphere templates. Biomater Sci 2015; 3:821-32. [PMID: 26221842 PMCID: PMC4871129 DOI: 10.1039/c5bm00034c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recreating the 3D cyst-like architecture of the alveolar epithelium in vitro has been challenging to achieve in a controlled fashion with primary lung epithelial cells. Here, we demonstrate model alveoli formed within a tunable synthetic biomaterial platform using photodegradable microspheres as templates to create physiologically relevant, cyst structures. Poly(ethylene glycol) (PEG)-based hydrogels were polymerized in suspension to form microspheres on the order of 120 μm in diameter. The gel chemistry was designed to allow erosion of the microspheres with cytocompatible light doses (≤15 min exposure to 10 mW cm(-2) of 365 nm light) via cleavage of a photolabile nitrobenzyl ether crosslinker. Epithelial cells were incubated with intact microspheres, modified with adhesive peptide sequences to facilitate cellular attachment to and proliferation on the surface. A tumor-derived alveolar epithelial cell line, A549, completely covered the microspheres after only 24 hours, whereas primary mouse alveolar epithelial type II (ATII) cells took ∼3 days. The cell-laden microsphere structures were embedded within a second hydrogel formulation at user defined densities; the microsphere templates were subsequently removed with light to render hollow epithelial cysts that were cultured for an additional 6 days. The resulting primary cysts stained positive for cell-cell junction proteins (β-catenin and ZO-1), indicating the formation of a functional epithelial layer. Typically, primary ATII cells differentiated in culture to the alveolar epithelial type I (ATI) phenotype; however, each cyst contained ∼1-5 cells that stained positive for an ATII marker (surfactant protein C), which is consistent with ATII cell numbers in native mouse alveoli. This biomaterial-templated alveoli culture system should be useful for future experiments to study lung development and disease progression, and is ideally suited for co-culture experiments where pulmonary fibroblasts or endothelial cells could be presented in the hydrogel surrounding the epithelial cysts.
Collapse
Affiliation(s)
- Katherine J R Lewis
- Department of Chemical and Biological Engineering, the BioFrontiers Institute, and the Howard Hughes Medical Institute, University of Colorado at Boulder, 3415 Colorado Ave, 596 UCB, Boulder, CO 80303, USA.
| | | | | | | | | | | | | |
Collapse
|
119
|
Schweller RM, West JL. Encoding Hydrogel Mechanics via Network Cross-Linking Structure. ACS Biomater Sci Eng 2015; 1:335-344. [PMID: 26082943 PMCID: PMC4462992 DOI: 10.1021/acsbiomaterials.5b00064] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
![]()
The
effects of mechanical cues on cell behaviors in 3D remain difficult
to characterize as the ability to tune hydrogel mechanics often requires
changes in the polymer density, potentially altering the material’s
biochemical and physical characteristics. Additionally, with most
PEG diacrylate (PEGDA) hydrogels, forming materials with compressive
moduli less than ∼10 kPa has been virtually impossible. Here,
we present a new method of controlling the mechanical properties of
PEGDA hydrogels independent of polymer chain density through the incorporation
of additional vinyl group moieties that interfere with the cross-linking
of the network. This modification can tune hydrogel mechanics in a
concentration dependent manner from <1 to 17 kPa, a more physiologically
relevant range than previously possible with PEG-based hydrogels,
without altering the hydrogel’s degradation and permeability.
Across this range of mechanical properties, endothelial cells (ECs)
encapsulated within MMP-2/MMP-9 degradable hydrogels with RGDS adhesive
peptides revealed increased cell spreading as hydrogel stiffness decreased
in contrast to behavior typically observed for cells on 2D surfaces.
EC-pericyte cocultures exhibited vessel-like networks within 3 days
in highly compliant hydrogels as compared to a week in stiffer hydrogels.
These vessel networks persisted for at least 4 weeks and deposited
laminin and collagen IV perivascularly. These results indicate that
EC morphogenesis can be regulated using mechanical cues in 3D. Furthermore,
controlling hydrogel compliance independent of density allows for
the attainment of highly compliant mechanical regimes in materials
that can act as customizable cell microenvironments.
Collapse
Affiliation(s)
- Ryan M Schweller
- Department of Biomedical Engineering, Duke University , Room 136 Hudson Hall, Durham, North Carolina 27708, United States
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University , Room 136 Hudson Hall, Durham, North Carolina 27708, United States
| |
Collapse
|
120
|
Song HHG, Park KM, Gerecht S. Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv Drug Deliv Rev 2014; 79-80:19-29. [PMID: 24969477 PMCID: PMC4258430 DOI: 10.1016/j.addr.2014.06.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/14/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022]
Abstract
A growing number of failing clinical trials for cancer therapy are substantiating the need to upgrade the current practice in culturing tumor cells and modeling tumor angiogenesis in vitro. Many attempts have been made to engineer vasculature in vitro by utilizing hydrogels, but the application of these tools in simulating in vivo tumor angiogenesis is still very new. In this review, we explore current use of hydrogels and their design parameters to engineer vasculogenesis and angiogenesis and to evaluate the angiogenic capability of cancerous cells and tissues. By coupling these hydrogels with other technologies such as lithography and three-dimensional printing, one can create an advanced microvessel model as microfluidic channels to more accurately capture the native angiogenesis process.
Collapse
Affiliation(s)
- Hyun-Ho Greco Song
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences - Oncology Center and Institute for NanoBioTechnology, 3400 North Charles street, Baltimore, MD 21218, USA
| | - Kyung Min Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences - Oncology Center and Institute for NanoBioTechnology, 3400 North Charles street, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences - Oncology Center and Institute for NanoBioTechnology, 3400 North Charles street, Baltimore, MD 21218, USA.
| |
Collapse
|
121
|
Alemany-Ribes M, Semino CE. Bioengineering 3D environments for cancer models. Adv Drug Deliv Rev 2014; 79-80:40-9. [PMID: 24996134 DOI: 10.1016/j.addr.2014.06.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 11/26/2022]
Abstract
Tumor development is a dynamic process where cancer cells differentiate, proliferate and migrate interacting among each other and with the surrounding matrix in a three-dimensional (3D) context. Interestingly, the process follows patterns similar to those involved in early tissue formation by accessing specific genetic programs to grow and disseminate. Thus, the complex biological mechanisms driving tumor progression cannot easily be recreated in the laboratory. Yet, essential tumor stages, including epithelial-mesenchymal transition (EMT), tumor-induced angiogenesis and metastasis, urgently need more realistic models in order to unravel the underlying molecular and cellular mechanisms that govern them. The latest implementation of successful 3D models is having a positive impact on the fight against cancer by obtaining more predictive systems for pre-clinical research, therapeutic drug screening, and early cancer diagnosis. In this review we explore the latest advances and challenges in tumor tissue engineering, by accessing knowledge and tools from cancer biology, material science and bioengineering.
Collapse
|
122
|
Fonseca KB, Granja PL, Barrias CC. Engineering proteolytically-degradable artificial extracellular matrices. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
123
|
A 3D matrix platform for the rapid generation of therapeutic anti-human carcinoma monoclonal antibodies. Proc Natl Acad Sci U S A 2014; 111:14882-7. [PMID: 25267635 DOI: 10.1073/pnas.1410996111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Efforts to develop unbiased screens for identifying novel function-blocking monoclonal antibodies (mAbs) in human carcinomatous states have been hampered by the limited ability to design in vitro models that recapitulate tumor cell behavior in vivo. Given that only invasive carcinoma cells gain permanent access to type I collagen-rich interstitial tissues, an experimental platform was established in which human breast cancer cells were embedded in 3D aldimine cross-linked collagen matrices and used as an immunogen to generate mAb libraries. In turn, cancer-cell-reactive antibodies were screened for their ability to block carcinoma cell proliferation within collagen hydrogels that mimic the in vivo environment. As a proof of principle, a single function-blocking mAb out of 15 identified was selected for further analysis and found to be capable of halting carcinoma cell proliferation, inducing apoptosis, and exerting global changes in gene expression in vitro. The ability of this mAb to block carcinoma cell proliferation and metastatic activity was confirmed in vivo, and the target antigen was identified by mass spectroscopy as the α2 subunit of the α2β1 integrin, one of the major type I collagen-binding receptors in mammalian cells. Validating the ability of the in vitro model to predict patterns of antigen expression in the disease setting, immunohistochemical analyses of tissues from patients with breast cancer verified markedly increased expression of the α2 subunit in vivo. These results not only highlight the utility of this discovery platform for rapidly selecting and characterizing function-blocking, anticancer mAbs in an unbiased fashion, but also identify α2β1 as a potential target in human carcinomatous states.
Collapse
|
124
|
Carrier interactions with the biological barriers of the lung: advanced in vitro models and challenges for pulmonary drug delivery. Adv Drug Deliv Rev 2014; 75:129-40. [PMID: 24880145 DOI: 10.1016/j.addr.2014.05.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 11/22/2022]
Abstract
In recent years significant progress has been made to improve particle deposition in the lung. However, the development of strategies to overcome the air-blood lung barrier is still needed. The combination of complex in vitro models and sophisticated particulate carriers is promising as a strategy by which that goal could be achieved. In this review we discuss currently available in vitro lung models, including some recent tissue-engineering approaches, as well as the challenges associated to implement such complex in vitro systems. Furthermore, we discuss available carrier technologies, often based on nanotechnology, to target specific regions of the lungs and to overcome the respective biological barriers, ideally resulting in safe and effective delivery to the desired pulmonary destination.
Collapse
|
125
|
Lü WD, Zhang L, Wu CL, Liu ZG, Lei GY, Liu J, Gao W, Hu YR. Development of an acellular tumor extracellular matrix as a three-dimensional scaffold for tumor engineering. PLoS One 2014; 9:e103672. [PMID: 25072252 PMCID: PMC4114977 DOI: 10.1371/journal.pone.0103672] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 07/01/2014] [Indexed: 11/29/2022] Open
Abstract
Tumor engineering is defined as the construction of three-dimensional (3D) tumors in vitro with tissue engineering approaches. The present 3D scaffolds for tumor engineering have several limitations in terms of structure and function. To get an ideal 3D scaffold for tumor culture, A549 human pulmonary adenocarcinoma cells were implanted into immunodeficient mice to establish xenotransplatation models. Tumors were retrieved at 30-day implantation and sliced into sheets. They were subsequently decellularized by four procedures. Two decellularization methods, Tris-Trypsin-Triton multi-step treatment and sodium dodecyl sulfate (SDS) treatment, achieved complete cellular removal and thus were chosen for evaluation of histological and biochemical properties. Native tumor tissues were used as controls. Human breast cancer MCF-7 cells were cultured onto the two 3D scaffolds for further cell growth and growth factor secretion investigations, with the two-dimensional (2D) culture and cells cultured onto the Matrigel scaffolds used as controls. Results showed that Tris-Trypsin-Triton multi-step treated tumor sheets had well-preserved extracellular matrix structures and components. Their porosity was increased but elastic modulus was decreased compared with the native tumor samples. They supported MCF-7 cell repopulation and proliferation, as well as expression of growth factors. When cultured within the Tris-Trypsin-Triton treated scaffold, A549 cells and human colorectal adenocarcinoma cells (SW-480) had similar behaviors to MCF-7 cells, but human esophageal squamous cell carcinoma cells (KYSE-510) had a relatively slow cell repopulation rate. This study provides evidence that Tris-Trypsin-Triton treated acellular tumor extracellular matrices are promising 3D scaffolds with ideal spatial arrangement, biomechanical properties and biocompatibility for improved modeling of 3D tumor microenvironments.
Collapse
Affiliation(s)
- Wei-Dong Lü
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Lei Zhang
- Department of Thoracic Surgery, Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Chun-Lin Wu
- Department of Thoracic and Cardiovascular Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, PR China
| | - Zhi-Gang Liu
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Guang-Yan Lei
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Jia Liu
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Wei Gao
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Ye-Rong Hu
- Department of Thoracic and Cardiovascular Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, PR China
| |
Collapse
|
126
|
Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 2014; 16:247-76. [PMID: 24905875 PMCID: PMC4131759 DOI: 10.1146/annurev-bioeng-071813-105155] [Citation(s) in RCA: 391] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past several decades, there has been an ever-increasing demand for organ transplants. However, there is a severe shortage of donor organs, and as a result of the increasing demand, the gap between supply and demand continues to widen. A potential solution to this problem is to grow or fabricate organs using biomaterial scaffolds and a person's own cells. Although the realization of this solution has been limited, the development of new biofabrication approaches has made it more realistic. This review provides an overview of natural and synthetic biomaterials that have been used for organ/tissue development. It then discusses past and current biofabrication techniques, with a brief explanation of the state of the art. Finally, the review highlights the need for combining vascularization strategies with current biofabrication techniques. Given the multitude of applications of biofabrication technologies, from organ/tissue development to drug discovery/screening to development of complex in vitro models of human diseases, these manufacturing technologies can have a significant impact on the future of medicine and health care.
Collapse
Affiliation(s)
- Piyush Bajaj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Defense System and Analysis Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Ryan M. Schweller
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
127
|
Gjorevski N, Ranga A, Lutolf MP. Bioengineering approaches to guide stem cell-based organogenesis. Development 2014; 141:1794-804. [PMID: 24757002 DOI: 10.1242/dev.101048] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During organogenesis, various molecular and physical signals are orchestrated in space and time to sculpt multiple cell types into functional tissues and organs. The complex and dynamic nature of the process has hindered studies aimed at delineating morphogenetic mechanisms in vivo, particularly in mammals. Recent demonstrations of stem cell-driven tissue assembly in culture offer a powerful new tool for modeling and dissecting organogenesis. However, despite the highly organotypic nature of stem cell-derived tissues, substantial differences set them apart from their in vivo counterparts, probably owing to the altered microenvironment in which they reside and the lack of mesenchymal influences. Advances in the biomaterials and microtechnology fields have, for example, afforded a high degree of spatiotemporal control over the cellular microenvironment, making it possible to interrogate the effects of individual microenvironmental components in a modular fashion and rapidly identify organ-specific synthetic culture models. Hence, bioengineering approaches promise to bridge the gap between stem cell-driven tissue formation in culture and morphogenesis in vivo, offering mechanistic insight into organogenesis and unveiling powerful new models for drug discovery, as well as strategies for tissue regeneration in the clinic. We draw on several examples of stem cell-derived organoids to illustrate how bioengineering can contribute to tissue formation ex vivo. We also discuss the challenges that lie ahead and potential ways to overcome them.
Collapse
Affiliation(s)
- Nikolche Gjorevski
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | | | | |
Collapse
|
128
|
Wang C, Tong X, Yang F. Bioengineered 3D Brain Tumor Model To Elucidate the Effects of Matrix Stiffness on Glioblastoma Cell Behavior Using PEG-Based Hydrogels. Mol Pharm 2014; 11:2115-25. [DOI: 10.1021/mp5000828] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christine Wang
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Xinming Tong
- Department
of Orthopaedic Surgery, Stanford University, Stanford, California 94305, United States
| | - Fan Yang
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Orthopaedic Surgery, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
129
|
Seo BR, DelNero P, Fischbach C. In vitro models of tumor vessels and matrix: engineering approaches to investigate transport limitations and drug delivery in cancer. Adv Drug Deliv Rev 2014; 69-70:205-216. [PMID: 24309015 DOI: 10.1016/j.addr.2013.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/14/2013] [Accepted: 11/24/2013] [Indexed: 12/12/2022]
Abstract
Tumor-stroma interactions have emerged as critical determinants of drug efficacy. However, the underlying biological and physicochemical mechanisms by which the microenvironment regulates therapeutic response remain unclear, due in part to a lack of physiologically relevant in vitro platforms to accurately interrogate tissue-level phenomena. Tissue-engineered tumor models are beginning to address this shortcoming. By allowing selective incorporation of microenvironmental complexity, these platforms afford unique access to tumor-associated signaling and transport dynamics. This review will focus on engineering approaches to study drug delivery as a function of tumor-associated changes of the vasculature and extracellular matrix (ECM). First, we review current biological understanding of these components and discuss their impact on transport processes. Then, we evaluate existing microfluidic, tissue engineering, and materials science strategies to recapitulate vascular and ECM characteristics of tumors, and finish by outlining challenges and future directions of the field that may ultimately improve anti-cancer therapies.
Collapse
|
130
|
Guo F, Parker Kerrigan BC, Yang D, Hu L, Shmulevich I, Sood AK, Xue F, Zhang W. Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. J Hematol Oncol 2014; 7:19. [PMID: 24598126 PMCID: PMC3973872 DOI: 10.1186/1756-8722-7-19] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), play important roles in embryogenesis, stem cell biology, and cancer progression. EMT can be regulated by many signaling pathways and regulatory transcriptional networks. Furthermore, post-transcriptional regulatory networks regulate EMT; these networks include the long non-coding RNA (lncRNA) and microRNA (miRNA) families. Specifically, the miR-200 family, miR-101, miR-506, and several lncRNAs have been found to regulate EMT. Recent studies have illustrated that several lncRNAs are overexpressed in various cancers and that they can promote tumor metastasis by inducing EMT. MiRNA controls EMT by regulating EMT transcription factors or other EMT regulators, suggesting that lncRNAs and miRNA are novel therapeutic targets for the treatment of cancer. Further efforts have shown that non-coding-mediated EMT regulation is closely associated with epigenetic regulation through promoter methylation (e.g., miR-200 or miR-506) and protein regulation (e.g., SET8 via miR-502). The formation of gene fusions has also been found to promote EMT in prostate cancer. In this review, we discuss the post-transcriptional regulatory network that is involved in EMT and MET and how targeting EMT and MET may provide effective therapeutics for human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Xue
- Department of Pathology, Unit 85, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | | |
Collapse
|
131
|
Fisher SA, Tam RY, Shoichet MS. Tissue mimetics: engineered hydrogel matrices provide biomimetic environments for cell growth. Tissue Eng Part A 2014; 20:895-8. [PMID: 24417669 DOI: 10.1089/ten.tea.2013.0765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Stephanie A Fisher
- 1 Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | | | | |
Collapse
|
132
|
Evans ND, Gentleman E. The role of material structure and mechanical properties in cell-matrix interactions. J Mater Chem B 2014; 2:2345-2356. [PMID: 32261407 DOI: 10.1039/c3tb21604g] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cellular interactions with the extracellular matrix (ECM) are of fundamental importance in many normal and pathological biological processes, including development, cancer, and tissue homeostasis, healing and regeneration. Over the past few years, the mechanisms by which cells respond to the mechanical characteristics of the ECM have come under increased scrutiny from many research groups. Such research often involves placing cells on materials with tuneable stiffnesses, including synthetic polymers and natural proteins, or culturing cells on bendable micropost arrays. These techniques are often aimed at defining empirically the stiffnesses that cells experience in their interactions with the ECM, and measuring phenotypically how cells and tissues respond. In this review, we will summarise the evolution of materials for investigating cell and tissue mechanobiology. We then will discuss how material properties such as elastic modulus may be interpreted, particularly with regard to analytic measurements as an approximation of how cells themselves sense elastic modulus. Finally we will discuss how factors such as interfacial chemistry, ligand spacing, substrate thickness, elasticity and viscoelasticity affect mechanosensing in cells.
Collapse
Affiliation(s)
- Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, Bioengineering Sciences Group, University of Southampton, Southampton SO16 6YD, UK.
| | | |
Collapse
|
133
|
Shen YI, Abaci HE, Krupsi Y, Weng LC, Burdick JA, Gerecht S. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting. Biomater Sci 2014; 2:655-665. [PMID: 24748963 DOI: 10.1039/c3bm60274e] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three-dimensional (3D) tissue culture models may recapitulate aspects of the tumorigenic microenvironment in vivo, enabling the study of cancer progression in vitro. Both hypoxia and matrix stiffness are known to regulate tumor growth. Using a modular culture system employing an acrylated hyaluronic acid (AHA) hydrogel, three hydrogel matrices with distinctive degrees of viscoelasticity - soft (78±16 Pa), medium (309± 57 Pa), and stiff (596± 73 Pa) - were generated using the same concentration of adhesion ligands. Oxygen levels within the hydrogel in atmospheric (21 %), hypoxic (5 %), and severely hypoxic (1 %) conditions were assessed with a mathematical model. HT1080 fibrosarcoma cells, encapsulated within the AHA hydrogels in high densities, generated nonuniform oxygen distributions, while lower cell densities resulted in more uniform oxygen distributions in the atmospheric and hypoxic environments. When we examined how varying viscoelasticity in atmospheric and hypoxic environments affects cell cycles and the expression of BNIP3 and BNIP3L (autophagy and apoptosis genes), and GLUT-1 (a glucose transport gene), we observed that HT1080 cells in 3D hydrogel adapted better to hypoxic conditions than those in a Petri dish, with no obvious correlation to matrix viscoelasticity, by recovering rapidly from possible autophagy/apoptotic events and alternating metabolism mechanisms. Further, we examined how HT1080 cells cultured in varying viscoelasticity and oxygen tension conditions affected endothelial sprouting and invasion. We observed that increased matrix stiffness reduced endothelial sprouting and invasion in atmospheric conditions; however, we observed increased endothelial sprouting and invasion under hypoxia at all levels of matrix stiffness with the upregulation of vascular endothelial growth factor (VEGF) and angiopoeitin-1 (ANG-1). Overall, HT1080 cells encapsulated in the AHA hydrogels under hypoxic stress recovered better from apoptosis and demonstrated greater angiogenic induction. Thus, we propose that oxygen tension more profoundly influences cell fate and the angiogenic potential of 3D cultured HT1080 fibrosarcoma cells than does matrix stiffness.
Collapse
Affiliation(s)
- Yu-I Shen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Hasan E Abaci
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Yoni Krupsi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Lien-Chun Weng
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
134
|
Stratmann AT, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, Dandekar T, Dandekar G, Nietzer SL. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol 2013; 8:351-65. [PMID: 24388494 PMCID: PMC5528544 DOI: 10.1016/j.molonc.2013.11.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
For the development of new treatment strategies against cancer, understanding signaling networks and their changes upon drug response is a promising approach to identify new drug targets and biomarker profiles. Pre‐requisites are tumor models with multiple read‐out options that accurately reflect the clinical situation. Tissue engineering technologies offer the integration of components of the tumor microenvironment which are known to impair drug response of cancer cells. We established three‐dimensional (3D) lung carcinoma models on a decellularized tissue matrix, providing a complex microenvironment for cell growth. For model generation, we used two cell lines with (HCC827) or without (A549) an activating mutation of the epidermal growth factor receptor (EGFR), exhibiting different sensitivities to the EGFR inhibitor gefitinib. EGFR activation in HCC827 was inhibited by gefitinib, resulting in a significant reduction of proliferation (Ki‐67 proliferation index) and in the induction of apoptosis (TUNEL staining, M30‐ELISA). No significant effect was observed in conventional cell culture. Results from the 3D model correlated with the results of an in silico model that integrates the EGFR signaling network according to clinical data. The application of TGFβ1 induced tumor cell invasion, accompanied by epithelial–mesenchymal transition (EMT) both in vitro and in silico. This was confirmed in the 3D model by acquisition of mesenchymal cell morphology and modified expression of fibronectin, E‐cadherin, β‐catenin and mucin‐1. Quantitative read‐outs for proliferation, apoptosis and invasion were established in the complex 3D tumor model. The combined in vitro and in silico model represents a powerful tool for systems analysis. Combination of a human 3D lung tumor tissue model with a Boolean in silico Model. Establishment of in silico signaling network topology for personalized medicine. Significant decrease of tumor proliferation and induction of apoptosis upon in vitro treatment with tyrosine kinase inhibitors. Decreased proliferation of tumor cells in the 3D model compared to 2D conditions. Induction of invasion with EMT by TGFβ stimulation.
Collapse
Affiliation(s)
- Anna T Stratmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital of Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany
| | - David Fecher
- Department of Tissue Engineering and Regenerative Medicine, University Hospital of Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany
| | - Gaby Wangorsch
- Department of Bioinformatics, University Wuerzburg, Am Hubland/Biozentrum, 97074 Wuerzburg, Germany
| | - Claudia Göttlich
- Department of Tissue Engineering and Regenerative Medicine, University Hospital of Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany
| | - Thorsten Walles
- Department of Cardiothoracic Surgery, University Hospital of Wuerzburg, Oberduerrbacher Str. 6, 97080 Wuerzburg, Germany
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine, University Hospital of Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University Wuerzburg, Am Hubland/Biozentrum, 97074 Wuerzburg, Germany.
| | - Gudrun Dandekar
- Department of Tissue Engineering and Regenerative Medicine, University Hospital of Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany.
| | - Sarah L Nietzer
- Department of Tissue Engineering and Regenerative Medicine, University Hospital of Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany
| |
Collapse
|
135
|
Gill BJ, West JL. Modeling the tumor extracellular matrix: Tissue engineering tools repurposed towards new frontiers in cancer biology. J Biomech 2013; 47:1969-78. [PMID: 24300038 DOI: 10.1016/j.jbiomech.2013.09.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
Abstract
Cancer progression is mediated by complex epigenetic, protein and structural influences. Critical among them are the biochemical, mechanical and architectural properties of the extracellular matrix (ECM). In recognition of the ECM's important role, cancer biologists have repurposed matrix mimetic culture systems first widely used by tissue engineers as new tools for in vitro study of tumor models. In this review we discuss the pathological changes in tumor ECM, the limitations of 2D culture on both traditional and polyacrylamide hydrogel surfaces in modeling these characteristics and advances in both naturally derived and synthetic scaffolds to facilitate more complex and controllable 3D cancer cell culture. Studies using naturally derived matrix materials like Matrigel and collagen have produced significant findings related to tumor morphogenesis and matrix invasion in a 3D environment and the mechanotransductive signaling that mediates key tumor-matrix interaction. However, lack of precise experimental control over important matrix factors in these matrices have increasingly led investigators to synthetic and semi-synthetic scaffolds that offer the engineering of specific ECM cues and the potential for more advanced experimental manipulations. Synthetic scaffolds composed of poly(ethylene glycol) (PEG), for example, facilitate highly biocompatible 3D culture, modular bioactive features like cell-mediated matrix degradation and complete independent control over matrix bioactivity and mechanics. Future work in PEG or similar reductionist synthetic matrix systems should enable the study of increasingly complex and dynamic tumor-ECM relationships in the hopes that accurate modeling of these relationships may reveal new cancer therapeutics targeting tumor progression and metastasis.
Collapse
Affiliation(s)
- Bartley J Gill
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham, USA.
| |
Collapse
|
136
|
DelNero P, Song YH, Fischbach C. Microengineered tumor models: insights & opportunities from a physical sciences-oncology perspective. Biomed Microdevices 2013; 15:583-593. [PMID: 23559404 PMCID: PMC3714360 DOI: 10.1007/s10544-013-9763-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prevailing evidence has established the fundamental role of microenvironmental conditions in tumorigenesis. However, the ability to identify, interrupt, and translate the underlying cellular and molecular mechanisms into meaningful therapies remains limited, due in part to a lack of organotypic culture systems that accurately recapitulate tumor physiology. Integration of tissue engineering with microfabrication technologies has the potential to address this challenge and mimic tumor heterogeneity with pathological fidelity. Specifically, this approach allows recapitulating global changes of tissue-level phenomena, while also controlling microscale variability of various conditions including spatiotemporal presentation of soluble signals, biochemical and physical characteristics of the extracellular matrix, and cellular composition. Such platforms have continued to elucidate the role of the microenvironment in cancer pathogenesis and significantly improve drug discovery and screening, particularly for therapies that target tumor-enabling stromal components. This review discusses some of the landmark efforts in the field of micro-tumor engineering with a particular emphasis on deregulated tissue organization and mass transport phenomena in the tumor microenvironment.
Collapse
Affiliation(s)
- Peter DelNero
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Young Hye Song
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA.
- , 157 Weill Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
137
|
Creighton CJ, Gibbons DL, Kurie JM. The role of epithelial-mesenchymal transition programming in invasion and metastasis: a clinical perspective. Cancer Manag Res 2013; 5:187-95. [PMID: 23986650 PMCID: PMC3754282 DOI: 10.2147/cmar.s35171] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is involved in normal developmental cellular
processes, but it may also be co-opted by a subset of cancer cells, to enable them to invade and
form metastases at distant sites. Several gene transcription factors regulate EMT, including Snail1,
Snail2, Zeb1, Zeb2, and Twist; ongoing studies continue to identify and elucidate other drivers.
Specific micro ribonucleic acids (RNAs) have also been found to regulate EMT, including the
microRNA-200 (miR-200) family, which targets Zeb1/Zeb2. Cancer “stem cells”
– with the ability to self-renew and to regenerate all the cell types within the tumor
– have been found to express EMT markers, further implicating both cancer stem cells and EMT
with metastasis. Microenvironmental cues, including transforming growth factor-β, can direct
EMT tumor metastasis, such as by regulating miR-200 expression. In human tumors, EMT markers and
regulators may be expressed in a subset of tumor cells, such as in cells at the invasive front or
tumor–microenvironment interface, though certain subtypes of cancer can show widespread
mesenchymal-like features. In terms of therapeutic targeting of EMT in patients, potential areas of
exploration could include targeting the cancer stem cell subpopulation, as well as microRNA-based
therapeutics that reintroduce miR-200. This review will examine evidence for a role of EMT in
invasion and metastasis, with the focus being on studies in lung and breast cancers. We also carry
out analyses of publicly-available gene expression profiling datasets in order to show how
EMT-associated genes appear coordinately expressed across human tumor specimens.
Collapse
Affiliation(s)
- Chad J Creighton
- The Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA ; Department of Medicine, Baylor College of Medicine, Houston, TX, USA ; Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
138
|
Abstract
Heterogeneous microenvironmental conditions play critical roles in cancer pathogenesis and therapy resistance and arise from changes in tissue dimensionality, cell-extracellular matrix (ECM) interactions, soluble factor signaling, oxygen as well as metabolic gradients, and exogeneous biomechanical cues. Traditional cell culture approaches are restricted in their ability to mimic this complexity with physiological relevance, offering only partial explanation as to why novel therapeutic compounds are frequently efficacious in vitro but disappoint in preclinical and clinical studies. In an effort to overcome these limitations, physical sciences-based strategies have been employed to model specific aspects of the cancer microenvironment. Although these strategies offer promise to reveal the contributions of microenvironmental parameters on tumor initiation, progression, and therapy resistance, they, too, frequently suffer from limitations. This review highlights physicochemical and biological key features of the tumor microenvironment, critically discusses advantages and limitations of current engineering strategies, and provides a perspective on future opportunities for engineered tumor models.
Collapse
Affiliation(s)
- David W Infanger
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
139
|
Zhang T, Chen J, Zhang Q, Dou J, Gu N. Poly(ethylene glycol)-cross linked poly(methyl vinyl ether-co-maleic acid)hydrogels for three-dimensional human ovarian cancer cell culture. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
140
|
Xu Q, Sun Q, Zhang J, Yu J, Chen W, Zhang Z. Downregulation of miR-153 contributes to epithelial-mesenchymal transition and tumor metastasis in human epithelial cancer. Carcinogenesis 2012. [DOI: 10.1093/carcin/bgs374] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|