101
|
Ueda T, Shiina S, Iriguchi S, Terakura S, Kawai Y, Kabai R, Sakamoto S, Watanabe A, Ohara K, Wang B, Xu H, Minagawa A, Hotta A, Woltjen K, Uemura Y, Kodama Y, Seno H, Nakatsura T, Tamada K, Kaneko S. Optimization of the proliferation and persistency of CAR T cells derived from human induced pluripotent stem cells. Nat Biomed Eng 2023; 7:24-37. [PMID: 36509913 PMCID: PMC9870784 DOI: 10.1038/s41551-022-00969-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/21/2022] [Indexed: 12/14/2022]
Abstract
The effectiveness of chimaeric antigen receptor (CAR) T-cell immunotherapies against solid tumours relies on the accumulation, proliferation and persistency of T cells at the tumour site. Here we show that the proliferation of CD8αβ cytotoxic CAR T cells in solid tumours can be enhanced by deriving and expanding them from a single human induced-pluripotent-stem-cell clone bearing a CAR selected for efficient differentiation. We also show that the proliferation and persistency of the effector cells in the tumours can be further enhanced by genetically knocking out diacylglycerol kinase, which inhibits antigen-receptor signalling, and by transducing the cells with genes encoding for membrane-bound interleukin-15 (IL-15) and its receptor subunit IL-15Rα. In multiple tumour-bearing animal models, the engineered hiPSC-derived CAR T cells led to therapeutic outcomes similar to those of primary CD8 T cells bearing the same CAR. The optimization of effector CAR T cells derived from pluripotent stem cells may aid the development of long-lasting antigen-specific T-cell immunotherapies for the treatment of solid tumours.
Collapse
Affiliation(s)
- Tatsuki Ueda
- grid.258799.80000 0004 0372 2033Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sara Shiina
- grid.258799.80000 0004 0372 2033Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan ,Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
| | - Shoichi Iriguchi
- grid.258799.80000 0004 0372 2033Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan ,Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
| | - Seitaro Terakura
- grid.27476.300000 0001 0943 978XDepartment of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Kawai
- grid.258799.80000 0004 0372 2033Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ryotaro Kabai
- grid.258799.80000 0004 0372 2033Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoko Sakamoto
- grid.258799.80000 0004 0372 2033Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Watanabe
- grid.258799.80000 0004 0372 2033Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kohei Ohara
- grid.258799.80000 0004 0372 2033Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Bo Wang
- grid.258799.80000 0004 0372 2033Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan ,Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
| | - Huaigeng Xu
- grid.258799.80000 0004 0372 2033Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Atsutaka Minagawa
- grid.258799.80000 0004 0372 2033Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akitsu Hotta
- grid.258799.80000 0004 0372 2033Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Knut Woltjen
- grid.258799.80000 0004 0372 2033Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yasushi Uemura
- grid.272242.30000 0001 2168 5385Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yuzo Kodama
- grid.31432.370000 0001 1092 3077Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Seno
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Nakatsura
- grid.272242.30000 0001 2168 5385Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Koji Tamada
- grid.268397.10000 0001 0660 7960Department of Immunology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Shin Kaneko
- grid.258799.80000 0004 0372 2033Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan ,Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
| |
Collapse
|
102
|
de Lima SCG, Fantacini DMC, Furtado IP, Rossetti R, Silveira RM, Covas DT, de Souza LEB. Genome Editing for Engineering the Next Generation of Advanced Immune Cell Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:85-110. [PMID: 37486518 DOI: 10.1007/978-3-031-33325-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.
Collapse
Affiliation(s)
- Sarah Caroline Gomes de Lima
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Izadora Peter Furtado
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Rossetti
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roberta Maraninchi Silveira
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Eduardo Botelho de Souza
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
103
|
Daei Sorkhabi A, Mohamed Khosroshahi L, Sarkesh A, Mardi A, Aghebati-Maleki A, Aghebati-Maleki L, Baradaran B. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Front Immunol 2023; 14:1113882. [PMID: 37020537 PMCID: PMC10067596 DOI: 10.3389/fimmu.2023.1113882] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The successful outcomes of chimeric antigen receptor (CAR) T-cell therapy in treating hematologic cancers have increased the previously unprecedented excitement to use this innovative approach in treating various forms of human cancers. Although researchers have put a lot of work into maximizing the effectiveness of these cells in the context of solid tumors, few studies have discussed challenges and potential strategies to overcome them. Restricted trafficking and infiltration into the tumor site, hypoxic and immunosuppressive tumor microenvironment (TME), antigen escape and heterogeneity, CAR T-cell exhaustion, and severe life-threatening toxicities are a few of the major obstacles facing CAR T-cells. CAR designs will need to go beyond the traditional architectures in order to get over these limitations and broaden their applicability to a larger range of malignancies. To enhance the safety, effectiveness, and applicability of this treatment modality, researchers are addressing the present challenges with a wide variety of engineering strategies as well as integrating several therapeutic tactics. In this study, we reviewed the antigens that CAR T-cells have been clinically trained to recognize, as well as counterstrategies to overcome the limitations of CAR T-cell therapy, such as recent advances in CAR T-cell engineering and the use of several therapies in combination to optimize their clinical efficacy in solid tumors.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Leili Aghebati-Maleki, ; Behzad Baradaran,
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Leili Aghebati-Maleki, ; Behzad Baradaran,
| |
Collapse
|
104
|
Adoptive Cell Therapy for T-Cell Malignancies. Cancers (Basel) 2022; 15:cancers15010094. [PMID: 36612092 PMCID: PMC9817702 DOI: 10.3390/cancers15010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
T-cell malignancies are often aggressive and associated with poor prognoses. Adoptive cell therapy has recently shown promise as a new line of therapy for patients with hematological malignancies. However, there are currently challenges in applying adoptive cell therapy to T-cell malignancies. Various approaches have been examined in preclinical and clinical studies to overcome these obstacles. This review aims to provide an overview of the recent progress on adoptive cell therapy for T-cell malignancies. The benefits and drawbacks of different types of adoptive cell therapy are discussed. The potential advantages and current applications of innate immune cell-based adoptive cell therapy for T cell malignancies are emphasized.
Collapse
|
105
|
SSTR2 as an anatomical imaging marker and a safety switch to monitor and manage CAR T cell toxicity. Sci Rep 2022; 12:20932. [PMID: 36463361 PMCID: PMC9719480 DOI: 10.1038/s41598-022-25224-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
The ability to image adoptively transferred T cells in the body and to eliminate them to avoid toxicity will be vital for chimeric antigen receptor (CAR) T cell therapy, particularly against solid tumors with higher risk of off-tumor toxicity. Previously, we have demonstrated the utility of somatostatin receptor 2 (SSTR2) for CAR T cell imaging, illustrating the expansion and contraction of CAR T cells in tumor as well as off-tumor expansion. Using intercellular adhesion molecule 1 (ICAM-1)-specific CAR T cells that secrete interleukin (IL)-12 as a model, herein we examined the potential of SSTR2 as a safety switch when combined with the SSTR2-specific maytansine-octreotate conjugate PEN-221. Constitutive secretion of IL-12 led to continuous expansion of CAR T cells after rapid elimination of tumors, causing systemic toxicity in mice with intact MHC expression. Treatment with PEN-221 rapidly reduced the abundance of CAR T cells, decreasing the severity of xenogeneic graft-versus-host disease (GvHD), and prolonged survival. Our study supports the development of SSTR2 as a single genetic marker for CAR T cells that is readily applicable to humans both for anatomical detection of T cell distribution and an image-guided safety switch for rapid elimination of CAR T cells.
Collapse
|
106
|
Li W, Zhu X, Xu Y, Chen J, Zhang H, Yang Z, Qi Y, Hong J, Li Y, Wang G, Shen J, Qian C. Simultaneous editing of TCR, HLA-I/II and HLA-E resulted in enhanced universal CAR-T resistance to allo-rejection. Front Immunol 2022; 13:1052717. [PMID: 36532006 PMCID: PMC9757162 DOI: 10.3389/fimmu.2022.1052717] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction The major challenge for universal chimeric antigen receptor T cell (UCAR-T) therapy is the inability to persist for a long time in patients leading to inferior efficacy clinically. The objective of this study was to design a novel UCAR-T cell that could avoid the occurrence of allo-rejection and provide effective resistance to allogeneic Natural Killer (NK) cell rejection, together with the validation of its safety and efficacy ex vivo and in vivo. Methods We prepared T-cell receptor (TCR), Human leukocyte antigen (HLA)-I/II triple-edited (TUCAR-T) cells and evaluated the anti-tumor efficacy ex vivo and in vivo. We measured the resistance of exogenous HLA-E expressing TUCAR-T (ETUCAR-T) to NK rejection by using an enhanced NK. Furthermore, we established the safety and efficacy of this regimen by treating Nalm6 tumor-bearing mice with a repeated high-dose infusion of ETUCAR-T. Moreover, we analyzed the effects of individual gene deficiency CAR-T on treated mice and the changes in the transcriptional profiles of different gene-edited T cells via RNA-Seq. Results Data showed that HLA-II editing didn't impair the anti-tumor efficacy of TUCAR-T ex vivo and in vivo and we found for the first time that HLA-II deficiency could facilitate the persistence of CAR-T. Contrastively, as the most commonly eliminated target in UCAR-T, TCR deficiency was found to be a key disadvantageous factor for the shorter-term anti-tumor efficacy in vivo. Our study demonstrated ETUCAR-T could effectively resist allogeneic NK rejection ex vivo and in vivo. Discussion Our research provided a potential and effective strategy for promoting the persistence of UCAR-T cells in clinical application. And it reveals the potential key factors of the poor persistence of UCAR-T along with new insights for future development.
Collapse
Affiliation(s)
- Wuling Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiuxiu Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yanmin Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Jun Chen
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Hongtao Zhang
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Zhi Yang
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Yanan Qi
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Juan Hong
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Yunyan Li
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Junjie Shen
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Cheng Qian
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
107
|
Dransart B, Dehghani H, Moore A. Product-safety considerations in allogeneic chimeric antigen-receptor T-cell process flows. Curr Opin Biotechnol 2022; 78:102797. [PMID: 36179407 DOI: 10.1016/j.copbio.2022.102797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/07/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022]
Abstract
Allogeneic chimeric antigen-receptor T-cell process flows comprise large-scale primary cultures incorporating traditional biologics processing steps such as cell expansion, with novel processing steps such as electroporation. In addition, these process flows begin with donor-derived peripheral blood mononuclear cells and generate single batches of product, which may be used to treat hundreds of patients. The corresponding unit operation-process safety considerations are individually diverse, and in combination are currently unique and rapidly evolving. The use of available regulations and the principles of quality by design are useful in designing appropriate control strategies into the process during development to ensure process safety.
Collapse
Affiliation(s)
- Bryan Dransart
- Allogene Therapeutics, 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Houman Dehghani
- Allogene Therapeutics, 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Alison Moore
- Allogene Therapeutics, 210 E. Grand Avenue, South San Francisco, CA 94080, USA.
| |
Collapse
|
108
|
Nahmad A, Reuveni E, Goldschmidt E, Tenne T, Liberman M, Horovitz-Fried M, Khosravi R, Kobo H, Reinstein E, Madi A, Ben-David U, Barzel A. Frequent aneuploidy in primary human T cells after CRISPR-Cas9 cleavage. Nat Biotechnol 2022; 40:1807-1813. [PMID: 35773341 PMCID: PMC7613940 DOI: 10.1038/s41587-022-01377-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/31/2022] [Indexed: 01/14/2023]
Abstract
Multiple clinical trials of allogeneic T cell therapy use site-specific nucleases to disrupt T cell receptor (TCR) and other genes1-6. In this study, using single-cell RNA sequencing, we investigated genome editing outcomes in primary human T cells transfected with CRISPR-Cas9 and guide RNAs targeting genes for TCR chains and programmed cell death protein 1. Four days after transfection, we found a loss of chromosome 14, harboring the TCRα locus, in up to 9% of the cells and a chromosome 14 gain in up to 1.4% of the cells. Chromosome 7, harboring the TCRβ locus, was truncated in 9.9% of the cells. Aberrations were validated using fluorescence in situ hybridization and digital droplet PCR. Aneuploidy was associated with reduced proliferation, induced p53 activation and cell death. However, at 11 days after transfection, 0.9% of T cells still had a chromosome 14 loss. Aneuploidy and chromosomal truncations are, thus, frequent outcomes of CRISPR-Cas9 cleavage that should be monitored and minimized in clinical protocols.
Collapse
Affiliation(s)
- A.D. Nahmad
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel,The Varda and Boaz Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center and Tel Aviv University, Tel Aviv
| | - E. Reuveni
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E. Goldschmidt
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Israel
| | - T. Tenne
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba, Israel
| | - M. Liberman
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba, Israel
| | - M. Horovitz-Fried
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel,The Varda and Boaz Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center and Tel Aviv University, Tel Aviv
| | - R. Khosravi
- Single-Cell Genomics Core, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H. Kobo
- Genomics Research Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - E. Reinstein
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba, Israel,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A. Madi
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Israel
| | - U. Ben-David
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A. Barzel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel,The Varda and Boaz Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center and Tel Aviv University, Tel Aviv
| |
Collapse
|
109
|
Motta CM, Keller MD, Bollard CM. Applications of Virus specific T cell Therapies Post BMT. Semin Hematol 2022; 60:10-19. [PMID: 37080705 DOI: 10.1053/j.seminhematol.2022.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) has been used as a curative standard of care for moderate to severe primary immunodeficiency disorders as well as relapsed hematologic malignancies for over 50 years [1,2]. However, chronic and refractory viral infections remain a leading cause of morbidity and mortality in the immune deficient period following HSCT, where use of available antiviral pharmacotherapies is limited by toxicity and emerging resistance [3]. Adoptive immunotherapy using virus-specific T cells (VSTs) has been explored for over 2 decades [4,5] in patients post-HSCT and has been shown prior phase I-II studies to be safe and effective for treatment or preventions of viral infections including cytomegalovirus, Epstein-Barr virus, BK virus, and adenovirus with minimal toxicity and low risk of graft vs host disease [6-9]. This review summarizes methodologies to generate VSTs the clinical results utilizing VST therapeutics and the challenges and future directions for the field.
Collapse
|
110
|
Biederstädt A, Manzar GS, Daher M. Multiplexed engineering and precision gene editing in cellular immunotherapy. Front Immunol 2022; 13:1063303. [PMID: 36483551 PMCID: PMC9723254 DOI: 10.3389/fimmu.2022.1063303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of cellular immunotherapy in the clinic has entirely redrawn the treatment landscape for a growing number of human cancers. Genetically reprogrammed immune cells, including chimeric antigen receptor (CAR)-modified immune effector cells as well as T cell receptor (TCR) therapy, have demonstrated remarkable responses across different hard-to-treat patient populations. While these novel treatment options have had tremendous success in providing long-term remissions for a considerable fraction of treated patients, a number of challenges remain. Limited in vivo persistence and functional exhaustion of infused immune cells as well as tumor immune escape and on-target off-tumor toxicities are just some examples of the challenges which restrain the potency of today's genetically engineered cell products. Multiple engineering strategies are being explored to tackle these challenges.The advent of multiplexed precision genome editing has in recent years provided a flexible and highly modular toolkit to specifically address some of these challenges by targeted genetic interventions. This class of next-generation cellular therapeutics aims to endow engineered immune cells with enhanced functionality and shield them from immunosuppressive cues arising from intrinsic immune checkpoints as well as the hostile tumor microenvironment (TME). Previous efforts to introduce additional genetic modifications into immune cells have in large parts focused on nuclease-based tools like the CRISPR/Cas9 system or TALEN. However, nuclease-inactive platforms including base and prime editors have recently emerged and promise a potentially safer route to rewriting genetic sequences and introducing large segments of transgenic DNA without inducing double-strand breaks (DSBs). In this review, we discuss how these two exciting and emerging fields-cellular immunotherapy and precision genome editing-have co-evolved to enable a dramatic expansion in the possibilities to engineer personalized anti-cancer treatments. We will lay out how various engineering strategies in addition to nuclease-dependent and nuclease-inactive precision genome editing toolkits are increasingly being applied to overcome today's limitations to build more potent cellular therapeutics. We will reflect on how novel information-rich unbiased discovery approaches are continuously deepening our understanding of fundamental mechanisms governing tumor biology. We will conclude with a perspective of how multiplexed-engineered and gene edited cell products may upend today's treatment paradigms as they evolve into the next generation of more potent cellular immunotherapies.
Collapse
Affiliation(s)
- Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medicine III, Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gohar Shahwar Manzar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
111
|
Çerçi B, Uzay IA, Kara MK, Dinçer P. Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sci 2022; 312:121204. [PMID: 36403643 DOI: 10.1016/j.lfs.2022.121204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Treatment of genetic disorders by genomic manipulation has been the unreachable goal of researchers for many decades. Although our understanding of the genetic basis of genetic diseases has advanced tremendously in the last few decades, the tools developed for genomic editing were not efficient and practical for their use in the clinical setting until now. The recent advancements in the research of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) systems offered an easy and efficient way to edit the genome and accelerated the research on their potential use in the treatment of genetic disorders. In this review, we summarize the clinical trials that evaluate the CRISPR/Cas systems for treating different genetic diseases and highlight promising preclinical research on CRISPR/Cas mediated treatment of a great diversity of genetic disorders. Ultimately, we discuss the future of CRISPR/Cas mediated genome editing in genetic diseases.
Collapse
Affiliation(s)
- Barış Çerçi
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey.
| | - Ihsan Alp Uzay
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Pervin Dinçer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
112
|
Boyne A, Yang M, Pulicani S, Feola M, Tkach D, Hong R, Duclert A, Duchateau P, Juillerat A. Efficient multitool/multiplex gene engineering with TALE-BE. Front Bioeng Biotechnol 2022; 10:1033669. [PMID: 36440442 PMCID: PMC9684181 DOI: 10.3389/fbioe.2022.1033669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
TALE base editors are a recent addition to the genome editing toolbox. These molecular tools are fusions of a transcription activator-like effector domain (TALE), split-DddA deaminase halves, and an uracil glycosylase inhibitor (UGI) that have the distinct ability to directly edit double strand DNA, converting a cytosine (C) to a thymine (T). To dissect the editing rules of TALE-BE, we combined the screening of dozens of TALE-BE targeting nuclear genomic loci with a medium/high throughput strategy based on precise knock-in of TALE-BE target site collections into the cell genome. This latter approach allowed us to gain in depth insight of the editing rules in cellulo, while excluding confounding factors such as epigenetic and microenvironmental differences among different genomic loci. Using the knowledge gained, we designed TALE-BE targeting CD52 and achieved very high frequency of gene knock-out (up to 80% of phenotypic CD52 knock out). We further demonstrated that TALE-BE generate only insignificant levels of Indels and byproducts. Finally, we combined two molecular tools, a TALE-BE and a TALEN, for multiplex genome engineering, generating high levels of double gene knock-out (∼75%) without creation of translocations between the two targeted sites.
Collapse
Affiliation(s)
- Alex Boyne
- Cellectis Inc., New York, NY, United States
| | - Ming Yang
- Cellectis Inc., New York, NY, United States
| | | | | | | | | | | | | | - Alexandre Juillerat
- Cellectis Inc., New York, NY, United States
- *Correspondence: Alexandre Juillerat,
| |
Collapse
|
113
|
van der Stegen SJC, Lindenbergh PL, Petrovic RM, Xie H, Diop MP, Alexeeva V, Shi Y, Mansilla-Soto J, Hamieh M, Eyquem J, Cabriolu A, Wang X, Abujarour R, Lee T, Clarke R, Valamehr B, Themeli M, Riviere I, Sadelain M. Generation of T-cell-receptor-negative CD8αβ-positive CAR T cells from T-cell-derived induced pluripotent stem cells. Nat Biomed Eng 2022; 6:1284-1297. [PMID: 35941192 PMCID: PMC9669107 DOI: 10.1038/s41551-022-00915-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/28/2022] [Indexed: 12/23/2022]
Abstract
The production of autologous T cells expressing a chimaeric antigen receptor (CAR) is time-consuming, costly and occasionally unsuccessful. T-cell-derived induced pluripotent stem cells (TiPS) are a promising source for the generation of 'off-the-shelf' CAR T cells, but the in vitro differentiation of TiPS often yields T cells with suboptimal features. Here we show that the premature expression of the T-cell receptor (TCR) or a constitutively expressed CAR in TiPS promotes the acquisition of an innate phenotype, which can be averted by disabling the TCR and relying on the CAR to drive differentiation. Delaying CAR expression and calibrating its signalling strength in TiPS enabled the generation of human TCR- CD8αβ+ CAR T cells that perform similarly to CD8αβ+ CAR T cells from peripheral blood, achieving effective tumour control on systemic administration in a mouse model of leukaemia and without causing graft-versus-host disease. Driving T-cell maturation in TiPS in the absence of a TCR by taking advantage of a CAR may facilitate the large-scale development of potent allogeneic CD8αβ+ T cells for a broad range of immunotherapies.
Collapse
Affiliation(s)
- Sjoukje J C van der Stegen
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pieter L Lindenbergh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands
| | - Roseanna M Petrovic
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hongyao Xie
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mame P Diop
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vera Alexeeva
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuzhe Shi
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohamad Hamieh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Eyquem
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gladstone-UCSF Institute of Genomic Immunology, Gladstone Institutes, San Francisco, CA, USA
| | - Annalisa Cabriolu
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Tom Lee
- Fate Therapeutics Inc, San Diego, CA, USA
| | | | | | - Maria Themeli
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands
| | - Isabelle Riviere
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
114
|
Martino M, Naso V, Loteta B, Canale FA, Pugliese M, Alati C, Musuraca G, Nappi D, Gaimari A, Nicolini F, Mazza M, Bravaccini S, Derudas D, Martinelli G, Cerchione C. Chimeric Antigen Receptor T-Cell Therapy: What We Expect Soon. Int J Mol Sci 2022; 23:13332. [PMID: 36362130 PMCID: PMC9657035 DOI: 10.3390/ijms232113332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The treatment landscape for hematologic malignancies has changed since the recent approval of highly effective chimeric antigen receptor T-cell therapies (CAR-T). Moreover, more than 600 active trials are currently ongoing. However, early enthusiasm should be tempered since several issues are still unsolved and represent the challenges for the coming years. The lack of initial responses and early relapse are some hurdles to be tackled. Moreover, new strategies are needed to increase the safety profile or shorten the manufacturing process during CAR-T cells therapy production. Nowadays, most clinically evaluated CAR-T cells products are derived from autologous immune cells. The use of allogeneic CAR-T cells products generated using cells from healthy donors has the potential to change the scenario and overcome many of these limitations. In addition, CAR-T cells carry a high price tag, and there is an urgent need to understand how to pay for these therapies as many of today's current payment systems do not feature the functionality to address the reimbursement gap. Finally, the clinical experience with CAR-T cells for solid tumors has been less encouraging, and development in this setting is desirable.
Collapse
Affiliation(s)
- Massimo Martino
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89133 Reggio Calabria, Italy
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89133 Reggio Calabria, Italy
| | - Virginia Naso
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89133 Reggio Calabria, Italy
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89133 Reggio Calabria, Italy
| | - Barbara Loteta
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89133 Reggio Calabria, Italy
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89133 Reggio Calabria, Italy
| | - Filippo Antonio Canale
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89133 Reggio Calabria, Italy
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89133 Reggio Calabria, Italy
| | - Marta Pugliese
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89133 Reggio Calabria, Italy
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89133 Reggio Calabria, Italy
| | - Caterina Alati
- Hematology Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89133 Reggio Calabria, Italy
| | - Gerardo Musuraca
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Davide Nappi
- Department of Hematology and Cell Bone Marrow Transplantation (CBMT), Ospedale di Bolzano, 39100 Bolzano, Italy
| | - Anna Gaimari
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Fabio Nicolini
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Massimiliano Mazza
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Sara Bravaccini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Daniele Derudas
- S.C. di Ematologia e C.T.M.O., Ospedale Oncologico di Riferimento Regionale “A. Businco”, 09121 Cagliari, Italy
| | - Giovanni Martinelli
- Scientific Directorate IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
115
|
Benjamin R, Jain N, Maus MV, Boissel N, Graham C, Jozwik A, Yallop D, Konopleva M, Frigault MJ, Teshima T, Kato K, Boucaud F, Balandraud S, Gianella-Borradori A, Binlich F, Marchiq I, Dupouy S, Almena-Carrasco M, Pannaux M, Fouliard S, Brissot E, Mohty M. UCART19, a first-in-class allogeneic anti-CD19 chimeric antigen receptor T-cell therapy for adults with relapsed or refractory B-cell acute lymphoblastic leukaemia (CALM): a phase 1, dose-escalation trial. Lancet Haematol 2022; 9:e833-e843. [PMID: 36228643 PMCID: PMC11575699 DOI: 10.1016/s2352-3026(22)00245-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND The prognosis for adults with relapsed or refractory B-cell acute lymphoblastic leukaemia remains poor. UCART19, an allogeneic genome-edited anti-CD19 chimeric antigen receptor (CAR) T-cell product derived from healthy donors and available for immediate clinical use, offers a potential therapeutic option for such patients. The CALM trial is a first-in-human study evaluating the safety and antileukaemic activity of UCART19 in adult patients with relapsed or refractory B-cell acute lymphoblastic leukaemia. METHODS This phase 1, open-label study was conducted at eight centres across France, the UK, the USA, and Japan. Adult patients aged 16-70 years with CD19-positive relapsed or refractory B-cell acute lymphoblastic leukaemia who had morphological relapse or a minimal residual disease level of at least 1 × 10-3 and had exhausted standard treatment options were enrolled in the study, which comprised a dose-escalation phase of up to three UCART19 doses followed by a safety expansion phase. Patients underwent lymphodepletion with fludarabine (30 mg/m2 per day intravenously for 3 days) and cyclophosphamide (500 mg/m2 per day intravenously for 3 days) with or without alemtuzumab (1 mg/kg or 40 mg or 60 mg over 5 days) and received UCART19 doses of 6 × 106, 6-8 × 107, or 1·8-2·4 × 108 total CAR T cells intravenously, followed by safety evaluation and disease response assessments. The primary endpoint was incidence and severity of adverse events. Secondary endpoints were the overall response rate, duration of response, relapse-free survival, progression-free survival, and overall survival. This trial is registered with ClinicalTrials.gov (NCT02746952) and is complete. FINDINGS Between Aug 1, 2016, and June 30, 2020, 25 patients were enrolled in the study and treated with UCART19. Median duration of follow-up was 12·8 months (IQR 2·8-24·8). Median age was 37 years (IQR 28-45). 14 (56%) patients were male and 11 (44%) female. 17 (68%) patients were White, two (8%) Black, two (8%) Asian, and four (16%) from other racial or ethnic groups. Three patients developed dose-limiting toxicities (one at each dose level); one had grade 4 cytokine release syndrome and two had grade 4 prolonged cytopenias. Grade 3 or higher cytokine release syndrome was reported in six (24%) patients and grade 3 or higher neurological toxicity in one (4%) patient. Grade 3 or higher infections occurred in seven (28%) patients, and grade 4 prolonged cytopenia in four (16%) patients. Two (8%) patients developed grade 1 acute cutaneous graft-versus-host disease. 14 patients died, nine from progressive disease and five from infections or other complications, of which four were considered to be related to UCART19 or lymphodepletion, or both. After a median of follow-up of 12·8 months (IQR 2·8-24·8), overall response rate was 48% (95% CI 28-69; 12 of 25 patients), duration of response and median relapse-free survival were 7·4 months (95% CI 1·8 to not calculable), progression-free survival was 2·1 months (95% CI 1·2-2·8), and overall survival was 13·4 months (95% CI 4·8-23·0). INTERPRETATION UCART19 had a manageable safety profile, and showed evidence of antileukaemic activity in heavily pretreated adult patients with relapsed or refractory B-cell acute lymphoblastic leukaemia. This study shows that allogeneic off-the-shelf CAR T cells can be used safely to treat patients with relapsed B-cell acute lymphoblastic leukaemia. FUNDING Servier.
Collapse
Affiliation(s)
- Reuben Benjamin
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK; Rayne Institute, School of Cancer and Pharmaceutical Sciences, Kings College London, London, UK.
| | - Nitin Jain
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
| | - Nicolas Boissel
- Department of Haematology, Saint-Louis Hospital, Paris, France
| | - Charlotte Graham
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Agnieszka Jozwik
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Deborah Yallop
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
| | - Takanori Teshima
- Department of Haematology, Hokkaido University Hospital, Sapporo, Japan
| | - Koji Kato
- Department of Haematology, Kyushu University Hospital, Fukuoka, Japan
| | - Floriane Boucaud
- Institut de Recherches Internationales Servier, Suresnes, France
| | | | | | - Florence Binlich
- Institut de Recherches Internationales Servier, Suresnes, France
| | | | - Sandra Dupouy
- Institut de Recherches Internationales Servier, Suresnes, France
| | | | - Matthieu Pannaux
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Sylvain Fouliard
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Eolia Brissot
- Department of Haematology, Saint-Antoine Hospital, Paris, France
| | - Mohamad Mohty
- Department of Haematology, Saint-Antoine Hospital, Paris, France
| |
Collapse
|
116
|
Tipanee J, Samara-Kuko E, Gevaert T, Chuah MK, VandenDriessche T. Universal allogeneic CAR T cells engineered with Sleeping Beauty transposons and CRISPR-CAS9 for cancer immunotherapy. Mol Ther 2022; 30:3155-3175. [PMID: 35711141 PMCID: PMC9552804 DOI: 10.1016/j.ymthe.2022.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022] Open
Abstract
Allogeneic CD19-specific chimeric antigen receptor (CAR) T cells with inactivated donor T cell receptor (TCR) expression can be used as an "off-the-shelf" therapeutic modality for lymphoid malignancies, thus offering an attractive alternative to autologous, patient-derived T cells. Current approaches for T cell engineering mainly rely on the use of viral vectors. Here, we optimized and validated a non-viral genetic modification platform based on Sleeping Beauty (SB) transposons delivered with minicircles to express CD19-28z.CAR and CRISPR-Cas9 ribonucleoparticles to inactivate allogeneic TCRs. Efficient TCR gene disruption was achieved with minimal cytotoxicity and with attainment of robust and stable CD19-28z.CAR expression. The CAR T cells were responsive to CD19+ tumor cells with antitumor activities that induced complete tumor remission in NALM6 tumor-bearing mice while significantly reducing TCR alloreactivity and GvHD development. Single CAR signaling induced the similar T cell signaling signatures in TCR-disrupted CAR T cells and control CAR T cells. In contrast, TCR disruption inhibited T cell signaling/protein phosphorylation compared with the control CAR T cells during dual CAR/TCR signaling. This non-viral SB transposon-CRISPR-Cas9 combination strategy serves as an alternative for generating next-generation CD19-specific CAR T while reducing GvHD risk and easing potential manufacturing constraints intrinsic to viral vectors.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
117
|
Cas-CLOVER is a novel high-fidelity nuclease for safe and robust generation of TSCM-enriched allogeneic CAR-T cells. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:979-995. [PMID: 36189080 PMCID: PMC9481872 DOI: 10.1016/j.omtn.2022.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/08/2022] [Indexed: 12/26/2022]
Abstract
The use of T cells from healthy donors for allogeneic chimeric antigen receptor T (CAR-T) cell cancer therapy is attractive because healthy donor T cells can produce versatile off-the-shelf CAR-T treatments. To maximize safety and durability of allogeneic products, the endogenous T cell receptor and major histocompatibility complex class I molecules are often removed via knockout of T cell receptor beta constant (TRBC) (or T cell receptor alpha constant [TRAC]) and B2M, respectively. However, gene editing tools (e.g., CRISPR-Cas9) can display poor fidelity, which may result in dangerous off-target mutations. Additionally, many gene editing technologies require T cell activation, resulting in a low percentage of desirable stem cell memory T cells (TSCM). We characterize an RNA-guided endonuclease, called Cas-CLOVER, consisting of the Clo051 nuclease domain fused with catalytically dead Cas9. In primary T cells from multiple donors, we find that Cas-CLOVER is a high-fidelity site-specific nuclease, with low off-target activity. Notably, Cas-CLOVER yields efficient multiplexed gene editing in resting T cells. In conjunction with the piggyBac transposon for delivery of a CAR transgene against the B cell maturation antigen (BCMA), we produce allogeneic CAR-T cells composed of high percentages of TSCM cells and possessing potent in vivo anti-tumor cytotoxicity.
Collapse
|
118
|
Ottaviano G, Qasim W. Genome-Edited T Cell Therapies. Hematol Oncol Clin North Am 2022; 36:729-744. [PMID: 35773047 DOI: 10.1016/j.hoc.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Chimeric antigen receptor (CAR) T-cells are widely being investigated against malignancies, and allogeneic 'universal donor' CAR-T cells offer the possibility of widened access to pre-manufactured, off-the-shelf therapies. Different genome-editing platforms have been used to address human leukocyte antigen (HLA) barriers to generate universal CAR-T cell therapy and early applications have been reported in children and adults against B cell malignancies. Recently developed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based systems and related technologies offer the prospect of enhanced cellular immunotherapies for a wider range of hematological malignancies.
Collapse
Affiliation(s)
- Giorgio Ottaviano
- Infection, Immunity & Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Waseem Qasim
- Infection, Immunity & Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
119
|
Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing. Nat Commun 2022; 13:3453. [PMID: 35773273 PMCID: PMC9247096 DOI: 10.1038/s41467-022-30896-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/24/2022] [Indexed: 12/29/2022] Open
Abstract
Universal CAR T-cell therapies are poised to revolutionize cancer treatment and to improve patient outcomes. However, realizing these advantages in an allogeneic setting requires universal CAR T-cells that can kill target tumor cells, avoid depletion by the host immune system, and proliferate without attacking host tissues. Here, we describe the development of a novel immune-evasive universal CAR T-cells scaffold using precise TALEN-mediated gene editing and DNA matrices vectorized by recombinant adeno-associated virus 6. We simultaneously disrupt and repurpose the endogenous TRAC and B2M loci to generate TCRαβ- and HLA-ABC-deficient T-cells expressing the CAR construct and the NK-inhibitor named HLA-E. This highly efficient gene editing process enables the engineered T-cells to evade NK cell and alloresponsive T-cell attacks and extend their persistence and antitumor activity in the presence of cytotoxic levels of NK cell in vivo and in vitro, respectively. This scaffold could enable the broad use of universal CAR T-cells in allogeneic settings and holds great promise for clinical applications.
Collapse
|
120
|
Alnefaie A, Albogami S, Asiri Y, Ahmad T, Alotaibi SS, Al-Sanea MM, Althobaiti H. Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Front Bioeng Biotechnol 2022; 10:797440. [PMID: 35814023 PMCID: PMC9256991 DOI: 10.3389/fbioe.2022.797440] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the body from pathogenic invaders and can be used as tools to enhance the body's defense mechanisms against cancer by genetically engineering these immune cells. Several strategies have been identified for cancer treatment and evaluated for their efficacy against other diseases such as autoimmune and infectious diseases. One of the most advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering therapy in the oncology field. Successful clinical trials have resulted in the approval of six CAR-T cell products by the Food and Drug Administration for the treatment of hematological malignancies. However, there have been various obstacles that limit the use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical trial settings and have demonstrated much potential for development. Such trials testing the suitability of CARs against solid tumors and HIV are showing promising results. In addition, new solutions have been proposed to overcome the limitations of this therapy. This review provides an overview of the current knowledge regarding this novel technology, including CAR T-cell structure, different applications, limitations, and proposed solutions.
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Medical Services, King Faisal Medical Complex, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Yousif Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hisham Althobaiti
- Chief of Medical Department, King Faisal Medical Complex (KFMC), Taif, Saudi Arabia
| |
Collapse
|
121
|
Systematic Review of Available CAR-T Cell Trials around the World. Cancers (Basel) 2022; 14:cancers14112667. [PMID: 35681646 PMCID: PMC9179563 DOI: 10.3390/cancers14112667] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary CAR-T cells are genetically modified T cells that are reprogrammed to specifically eliminate cancer cells. Due to its clinical success to treat certain hematological malignancies, novel approaches to improve CAR-T cell-based therapies are being explored. This systematic review gives a worldwide overview of clinical trials evaluating new CAR-T cell therapies against different types of cancers, detailing the latest trends in CAR-T cell development. Abstract In this systematic review, we foresee what could be the approved scenario in the next few years for CAR-T cell therapies directed against hematological and solid tumor malignancies. China and the USA are the leading regions in numbers of clinical studies involving CAR-T. Hematological antigens CD19 and BCMA are the most targeted, followed by mesothelin, GPC3, CEA, MUC1, HER2, and EGFR for solid tumors. Most CAR constructs are second-generation, although third and fourth generations are being largely explored. Moreover, the benefit of combining CAR-T treatment with immune checkpoint inhibitors and other drugs is also being assessed. Data regarding product formulation and administration, such as cell phenotype, transfection technique, and cell dosage, are scarce and could not be retrieved. Better tracking of trials’ status and results on the ClinicalTrials.gov database should aid in a more concise and general view of the ongoing clinical trials involving CAR-T cell therapy.
Collapse
|
122
|
Abstract
The rapid development of CRISPR-Cas genome editing tools has greatly changed the way to conduct research and holds tremendous promise for clinical applications. During genome editing, CRISPR-Cas enzymes induce DNA breaks at the target sites and subsequently the DNA repair pathways are recruited to generate diverse editing outcomes. Besides off-target cleavage, unwanted editing outcomes including chromosomal structural variations and exogenous DNA integrations have recently raised concerns for clinical safety. To eliminate these unwanted editing byproducts, we need to explore the underlying mechanisms for the formation of diverse editing outcomes from the perspective of DNA repair. Here, we describe the involved DNA repair pathways in sealing Cas enzyme-induced DNA double-stranded breaks and discuss the origins and effects of unwanted editing byproducts on genome stability. Furthermore, we propose the potential risk of inhibiting DNA repair pathways to enhance gene editing. The recent combined studies of DNA repair and CRISPR-Cas editing provide a framework for further optimizing genome editing to enhance editing safety.
Collapse
|
123
|
Khan AN, Chowdhury A, Karulkar A, Jaiswal AK, Banik A, Asija S, Purwar R. Immunogenicity of CAR-T Cell Therapeutics: Evidence, Mechanism and Mitigation. Front Immunol 2022; 13:886546. [PMID: 35677038 PMCID: PMC9169153 DOI: 10.3389/fimmu.2022.886546] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy demonstrated remarkable success in long-term remission of cancers and other autoimmune diseases. Currently, six products (Kymriah, Yescarta, Tecartus, Breyanzi, Abecma, and Carvykti) are approved by the US-FDA for treatment of a few hematological malignancies. All the six products are autologous CAR-T cell therapies, where delivery of CAR, which comprises of scFv (single-chain variable fragment) derived from monoclonal antibodies for tumor target antigen recognition is through a lentiviral vector. Although available CAR-T therapies yielded impressive response rates in a large number of patients in comparison to conventional treatment strategies, there are potential challenges in the field which limit their efficacy. One of the major challenges is the induction of humoral and/or cellular immune response in patients elicited due to scFv domain of CAR construct, which is of non-human origin in majority of the commercially available products. Generation of anti-CAR antibodies may lead to the clearance of the therapeutic CAR-T cells, increasing the likelihood of tumor relapse and lower the CAR-T cells efficacy upon reinfusion. These immune responses influence CAR-T cell expansion and persistence, that might affect the overall clinical response. In this review, we will discuss the impact of immunogenicity of the CAR transgene on treatment outcomes. Finally, this review will highlight the mitigation strategies to limit the immunogenic potential of CARs and improve the therapeutic outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rahul Purwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
124
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 310] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
125
|
Todorovic Z, Todorovic D, Markovic V, Ladjevac N, Zdravkovic N, Djurdjevic P, Arsenijevic N, Milovanovic M, Arsenijevic A, Milovanovic J. CAR T Cell Therapy for Chronic Lymphocytic Leukemia: Successes and Shortcomings. Curr Oncol 2022; 29:3647-3657. [PMID: 35621683 PMCID: PMC9139644 DOI: 10.3390/curroncol29050293] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor T (CAR T) cell therapy achieved remarkable success in B-cell leukemia and lymphoma which led to its incorporation in treatment protocols for these diseases. CAR T cell therapy for chronic lymphocytic leukemia (CLL) patients showed less success compared to other malignant tumors. In this review, we discuss the published results regarding CAR T cell therapy of CLL, possible mechanisms of failures and expected developments.
Collapse
Affiliation(s)
- Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (Z.T.); (N.Z.); (P.D.)
| | - Dusan Todorovic
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Vladimir Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.L.); (N.A.); (M.M.)
| | - Nevena Ladjevac
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.L.); (N.A.); (M.M.)
| | - Natasa Zdravkovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (Z.T.); (N.Z.); (P.D.)
| | - Predrag Djurdjevic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (Z.T.); (N.Z.); (P.D.)
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.L.); (N.A.); (M.M.)
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.L.); (N.A.); (M.M.)
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.L.); (N.A.); (M.M.)
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.L.); (N.A.); (M.M.)
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
126
|
Guedan S, Luu M, Ammar D, Barbao P, Bonini C, Bousso P, Buchholz CJ, Casucci M, De Angelis B, Donnadieu E, Espie D, Greco B, Groen R, Huppa JB, Kantari-Mimoun C, Laugel B, Mantock M, Markman JL, Morris E, Quintarelli C, Rade M, Reiche K, Rodriguez-Garcia A, Rodriguez-Madoz JR, Ruggiero E, Themeli M, Hudecek M, Marchiq I. Time 2EVOLVE: predicting efficacy of engineered T-cells - how far is the bench from the bedside? J Immunother Cancer 2022; 10:jitc-2021-003487. [PMID: 35577501 PMCID: PMC9115015 DOI: 10.1136/jitc-2021-003487] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy with gene engineered CAR and TCR transgenic T-cells is a transformative treatment in cancer medicine. There is a rich pipeline with target antigens and sophisticated technologies that will enable establishing this novel treatment not only in rare hematological malignancies, but also in common solid tumors. The T2EVOLVE consortium is a public private partnership directed at accelerating the preclinical development of and increasing access to engineered T-cell immunotherapies for cancer patients. A key ambition in T2EVOLVE is to assess the currently available preclinical models for evaluating safety and efficacy of engineered T cell therapy and developing new models and test parameters with higher predictive value for clinical safety and efficacy in order to improve and accelerate the selection of lead T-cell products for clinical translation. Here, we review existing and emerging preclinical models that permit assessing CAR and TCR signaling and antigen binding, the access and function of engineered T-cells to primary and metastatic tumor ligands, as well as the impact of endogenous factors such as the host immune system and microbiome. Collectively, this review article presents a perspective on an accelerated translational development path that is based on innovative standardized preclinical test systems for CAR and TCR transgenic T-cell products.
Collapse
Affiliation(s)
- Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Maik Luu
- 19 Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Wurzburg, Germany
| | | | - Paula Barbao
- Department of Hematology and Oncology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Philippe Bousso
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Paris, France
| | | | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Biagio De Angelis
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Emmanuel Donnadieu
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France
| | - David Espie
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France.,CAR-T Cells Department, Invectys, Paris, France
| | - Beatrice Greco
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Richard Groen
- Amsterdam University Medical Centers at Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunolgy, Vienna, Austria
| | | | - Bruno Laugel
- Institut de Recherches internationales Servier (IRIS), Suresnes, France
| | | | - Janet L Markman
- Takeda Development Centers Americas, Inc. Lexington, Massachusetts, USA
| | - Emma Morris
- Institute of Immunity & Transplantation, University College London Medical School - Royal Free Campus, London, UK
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Michael Rade
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | | | | | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Themeli
- Amsterdam University Medical Centers at Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Michael Hudecek
- 19 Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Wurzburg, Germany
| | - Ibtissam Marchiq
- Institut de Recherches internationales Servier (IRIS), Suresnes, France
| |
Collapse
|
127
|
Zhang X, Jin X, Sun R, Zhang M, Lu W, Zhao M. Gene knockout in cellular immunotherapy: Application and limitations. Cancer Lett 2022; 540:215736. [DOI: 10.1016/j.canlet.2022.215736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
|
128
|
Donnadieu E, Luu M, Alb M, Anliker B, Arcangeli S, Bonini C, De Angelis B, Choudhary R, Espie D, Galy A, Holland C, Ivics Z, Kantari-Mimoun C, Kersten MJ, Köhl U, Kuhn C, Laugel B, Locatelli F, Marchiq I, Markman J, Moresco MA, Morris E, Negre H, Quintarelli C, Rade M, Reiche K, Renner M, Ruggiero E, Sanges C, Stauss H, Themeli M, Van den Brulle J, Hudecek M, Casucci M. Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. J Immunother Cancer 2022; 10:jitc-2021-003486. [PMID: 35577500 PMCID: PMC9115021 DOI: 10.1136/jitc-2021-003486] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Despite promising clinical results in a small subset of malignancies, therapies based on engineered chimeric antigen receptor and T-cell receptor T cells are associated with serious adverse events, including cytokine release syndrome and neurotoxicity. These toxicities are sometimes so severe that they significantly hinder the implementation of this therapeutic strategy. For a long time, existing preclinical models failed to predict severe toxicities seen in human clinical trials after engineered T-cell infusion. However, in recent years, there has been a concerted effort to develop models, including humanized mouse models, which can better recapitulate toxicities observed in patients. The Accelerating Development and Improving Access to CAR and TCR-engineered T cell therapy (T2EVOLVE) consortium is a public–private partnership directed at accelerating the preclinical development and increasing access to engineered T-cell therapy for patients with cancer. A key ambition in T2EVOLVE is to design new models and tools with higher predictive value for clinical safety and efficacy, in order to improve and accelerate the selection of lead T-cell products for clinical translation. Herein, we review existing preclinical models that are used to test the safety of engineered T cells. We will also highlight limitations of these models and propose potential measures to improve them.
Collapse
Affiliation(s)
| | - Maik Luu
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Miriam Alb
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Brigitte Anliker
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Silvia Arcangeli
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy.,Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Biagio De Angelis
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - Rashmi Choudhary
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - David Espie
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France.,CAR-T Cells Department, Invectys, Paris, France
| | - Anne Galy
- Accelerator of Technological Research in Genomic Therapy, INSERM US35, Corbeil-Essonnes, France
| | - Cam Holland
- Janssen Research and Development LLC, Spring House, PA, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Marie Jose Kersten
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Chantal Kuhn
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - Bruno Laugel
- Institut de Recherches Servier, Croissy sur seine, France
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Janet Markman
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Emma Morris
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Helene Negre
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - Michael Rade
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Kristin Reiche
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Matthias Renner
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmen Sanges
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hans Stauss
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Maria Themeli
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
129
|
Allogeneic TCRαβ deficient CAR T-cells targeting CD123 in acute myeloid leukemia. Nat Commun 2022; 13:2227. [PMID: 35484102 PMCID: PMC9050731 DOI: 10.1038/s41467-022-29668-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/08/2022] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia (AML) is a disease with high incidence of relapse that is originated and maintained from leukemia stem cells (LSCs). Hematopoietic stem cells can be distinguished from LSCs by an array of cell surface antigens such as CD123, thus a candidate to eliminate LSCs using a variety of approaches, including CAR T cells. Here, we evaluate the potential of allogeneic gene-edited CAR T cells targeting CD123 to eliminate LSCs (UCART123). UCART123 cells are TCRαβneg T cells generated from healthy donors using TALEN® gene-editing technology, decreasing the likelihood of graft vs host disease. As safety feature, cells express RQR8 to allow elimination with Rituximab. UCART123 effectively eliminates AML cells in vitro and in vivo with significant benefits in overall survival of AML-patient derived xenograft mice. Furthermore, UCART123 preferentially target AML over normal cells with modest toxicity to normal hematopoietic stem/progenitor cells. Together these results suggest that UCART123 represents an off-the shelf therapeutic approach for AML. CD123, the interleukin-3 receptor alpha chain, is aberrantly expressed in acute myeloid leukemia blasts and leukemia stem cells. Here the authors report the design and characterize the anti-tumor activity of allogeneic CD123-targeted CAR-T cells as a therapeutic approach for acute myeloid leukemia.
Collapse
|
130
|
Cai T, Gouble A, Black KL, Skwarska A, Naqvi AS, Taylor D, Zhao M, Yuan Q, Sugita M, Zhang Q, Galetto R, Filipe S, Cavazos A, Han L, Kuruvilla V, Ma H, Weng C, Liu CG, Liu X, Konoplev S, Gu J, Tang G, Su X, Al-Atrash G, Ciurea S, Neelapu SS, Lane AA, Kantarjian H, Guzman ML, Pemmaraju N, Smith J, Thomas-Tikhonenko A, Konopleva M. Targeting CD123 in blastic plasmacytoid dendritic cell neoplasm using allogeneic anti-CD123 CAR T cells. Nat Commun 2022; 13:2228. [PMID: 35484100 PMCID: PMC9051102 DOI: 10.1038/s41467-022-29669-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/21/2022] [Indexed: 01/06/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with poor outcomes with conventional therapy. Nearly 100% of BPDCNs overexpress interleukin 3 receptor subunit alpha (CD123). Given that CD123 is differentially expressed on the surface of BPDCN cells, it has emerged as an attractive therapeutic target. UCART123 is an investigational product consisting of allogeneic T cells expressing an anti-CD123 chimeric antigen receptor (CAR), edited with TALEN® nucleases. In this study, we examine the antitumor activity of UCART123 in preclinical models of BPDCN. We report that UCART123 have selective antitumor activity against CD123-positive primary BPDCN samples (while sparing normal hematopoietic progenitor cells) in the in vitro cytotoxicity and T cell degranulation assays; supported by the increased secretion of IFNγ by UCART123 cells when cultured in the presence of BPDCN cells. UCART123 eradicate BPDCN and result in long-term disease-free survival in a subset of primary patient-derived BPDCN xenograft mouse models. One potential challenge of CD123 targeting therapies is the loss of CD123 antigen through diverse genetic mechanisms, an event observed in one of three BPDCN PDX studied. In summary, these results provide a preclinical proof-of-principle that allogeneic UCART123 cells have potent anti-BPDCN activity. Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive hematologic malignancy derived from the precursors of plasmacytoid dendritic cells. Here the authors characterize the anti-tumor activity of allogeneic anti-CD123 CAR-T cells in preclinical models of BPDCN.
Collapse
Affiliation(s)
- Tianyu Cai
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - Kathryn L Black
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Skwarska
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Ammar S Naqvi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Deanne Taylor
- Department of Biomedical & Health Informatics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ming Zhao
- School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Yuan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayumi Sugita
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Qi Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | | | - Antonio Cavazos
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Lina Han
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Vinitha Kuruvilla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Helen Ma
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Connie Weng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuping Liu
- Department of Experimental Therapeutics, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Sergej Konoplev
- Department of Hematopathology, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Gu
- School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Stefan Ciurea
- Department of Stem Cell Transplantation and Cellular Therapy, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of MD Anderson Cancer Center, Houston, TX, USA
| | | | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Monica L Guzman
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - Andrei Thomas-Tikhonenko
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
131
|
Boettcher M, Joechner A, Li Z, Yang SF, Schlegel P. Development of CAR T Cell Therapy in Children-A Comprehensive Overview. J Clin Med 2022; 11:2158. [PMID: 35456250 PMCID: PMC9024694 DOI: 10.3390/jcm11082158] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
CAR T cell therapy has revolutionized immunotherapy in the last decade with the successful establishment of chimeric antigen receptor (CAR)-expressing cellular therapies as an alternative treatment in relapsed and refractory CD19-positive leukemias and lymphomas. There are fundamental reasons why CAR T cell therapy has been approved by the Food and Drug administration and the European Medicines Agency for pediatric and young adult patients first. Commonly, novel therapies are developed for adult patients and then adapted for pediatric use, due to regulatory and commercial reasons. Both strategic and biological factors have supported the success of CAR T cell therapy in children. Since there is an urgent need for more potent and specific therapies in childhood malignancies, efforts should also include the development of CAR therapeutics and expand applicability by introducing new technologies. Basic aspects, the evolution and the drawbacks of childhood CAR T cell therapy are discussed as along with the latest clinically relevant information.
Collapse
Affiliation(s)
- Michael Boettcher
- Department of Pediatric Surgery, University Medical Centre Mannheim, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Alexander Joechner
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Ziduo Li
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Sile Fiona Yang
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Patrick Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
- Department of Pediatric Hematology and Oncology, Westmead Children’s Hospital, Sydney 2145, Australia
| |
Collapse
|
132
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
133
|
Gatto L, Di Nunno V, Franceschi E, Tosoni A, Bartolini S, Brandes AA. Pharmacotherapeutic Treatment of Glioblastoma: Where Are We to Date? Drugs 2022; 82:491-510. [PMID: 35397073 DOI: 10.1007/s40265-022-01702-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/30/2022]
Abstract
The clinical management of glioblastoma (GBM) is still bereft of treatments able to significantly improve the poor prognosis of the disease. Despite the extreme clinical need for novel therapeutic drugs, only a small percentage of patients with GBM benefit from inclusion in a clinical trial. Moreover, often clinical studies do not lead to final interpretable conclusions. From the mistakes and negative results obtained in the last years, we are now able to plan a novel generation of clinical studies for patients with GBM, allowing the testing of multiple anticancer agents at the same time. This assumes critical importance, considering that, thanks to improved knowledge of altered molecular mechanisms related to the disease, we are now able to propose several potential effective compounds in patients with both newly diagnosed and recurrent GBM. Among the novel compounds assessed, the initially great enthusiasm toward trials employing immune checkpoint inhibitors (ICIs) was disappointing due to the negative results that emerged in three randomized phase III trials. However, novel biological insights into the disease suggest that immunotherapy can be a convincing and effective treatment in GBM even if ICIs failed to prolong the survival of these patients. In this regard, the most promising approach consists of engineered immune cells such as chimeric antigen receptor (CAR) T, CAR M, and CAR NK alone or in combination with other treatments. In this review, we discuss several issues related to systemic treatments in GBM patients. First, we assess critical issues toward the planning of clinical trials and the strategies employed to overcome these obstacles. We then move on to the most relevant interventional studies carried out on patients with previously untreated (newly diagnosed) GBM and those with recurrent and pretreated disease. Finally, we investigate novel immunotherapeutic approaches with special emphasis on preclinical and clinical data related to the administration of engineered immune cells in GBM.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | | | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy.
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| |
Collapse
|
134
|
Marofi F, Achmad H, Bokov D, Abdelbasset WK, Alsadoon Z, Chupradit S, Suksatan W, Shariatzadeh S, Hasanpoor Z, Yazdanifar M, Shomali N, Khiavi FM. Hurdles to breakthrough in CAR T cell therapy of solid tumors. Stem Cell Res Ther 2022; 13:140. [PMID: 35365241 PMCID: PMC8974159 DOI: 10.1186/s13287-022-02819-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Autologous T cells genetically engineered to express chimeric antigen receptor (CAR) have shown promising outcomes and emerged as a new curative option for hematological malignancy, especially malignant neoplasm of B cells. Notably, when T cells are transduced with CAR constructs, composed of the antigen recognition domain of monoclonal antibodies, they retain their cytotoxic properties in a major histocompatibility complex (MHC)-independent manner. Despite its beneficial effect, the current CAR T cell therapy approach faces myriad challenges in solid tumors, including immunosuppressive tumor microenvironment (TME), tumor antigen heterogeneity, stromal impediment, and tumor accessibility, as well as tribulations such as on-target/off-tumor toxicity and cytokine release syndrome (CRS). Herein, we highlight the complications that hamper the effectiveness of CAR T cells in solid tumors and the strategies that have been recommended to overcome these hurdles and improve infused T cell performance.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Zeid Alsadoon
- Dentistry Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hasanpoor
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
135
|
He X, Zeng XX. Immunotherapy and CRISPR Cas Systems: Potential Cure of COVID-19? Drug Des Devel Ther 2022; 16:951-972. [PMID: 35386853 PMCID: PMC8979261 DOI: 10.2147/dddt.s347297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 has plunged the world into a pandemic that affected millions. The continually emerging new variants of concern raise the question as to whether the existing vaccines will continue to provide sufficient protection for individuals from SARS-CoV-2 during natural infection. This narrative review aims to briefly outline various immunotherapeutic options and discuss the potential of clustered regularly interspaced short palindromic repeat (CRISPR Cas system technology against COVID-19 treatment as specific cure. As the development of vaccine, convalescent plasma, neutralizing antibodies are based on the understanding of human immune responses against SARS-CoV-2, boosting human body immune responses in case of SARS-CoV-2 infection, immunotherapeutics seem feasible as specific cure against COVID-19 if the present challenges are overcome. In cell based therapeutics, apart from the high costs, risks and side effects, there are technical problems such as the production of sufficient potent immune cells and antibodies under limited time to treat the COVID-19 patients in mild conditions prior to progression into a more severe case. The CRISPR Cas technology could be utilized to refine the specificity and safety of CAR-T cells, CAR-NK cells and neutralizing antibodies against SARS-CoV-2 during various stages of the COVID-19 disease progression in infected individuals. Moreover, CRISPR Cas technology are proposed in hypotheses to degrade the viral RNA in order to terminate the infection caused by SARS-CoV-2. Thus personalized cocktails of immunotherapeutics and CRISPR Cas systems against COVID-19 as a strategy might prevent further disease progression and circumvent immunity escape.
Collapse
Affiliation(s)
- Xuesong He
- Department of Cardiology, Changzhou Jintan First People’s Hospital, Changzhou City, Jiangsu Province, 213200, People’s Republic of China
| | - Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan City, Guangdong Province, 528000, People’s Republic of China
| |
Collapse
|
136
|
Heyman BM, Tzachanis D, Kipps TJ. Recent Advances in CAR T-Cell Therapy for Patients with Chronic Lymphocytic Leukemia. Cancers (Basel) 2022; 14:1715. [PMID: 35406490 PMCID: PMC8996890 DOI: 10.3390/cancers14071715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Chimeric antigen receptor T cells (CAR T cells) have resulted in dramatic treatment responses for patients with hematologic malignancies, resulting in improved survival for patients with intractable disease. The first patient treated with CD19 directed CAR T cell therapy had chronic lymphocytic leukemia (CLL) and achieved a complete remission. Subsequent clinical trials have focused largely on patients with other B-cell hematologic malignancies, owing to the fact that CAR T cell therapy for patients with CLL has met with challenges. More recent clinical trials have demonstrated CAR T cell therapy can be well tolerated and effective for patients with CLL, making it a potential treatment option for patients with this disease. In this article we review the background on CAR T cells for the treatment of patients with CLL, focusing on the unique obstacles that patients with CLL present for the development of adoptive T cell therapy, and the novel approaches currently under development to overcome these hurdles.
Collapse
Affiliation(s)
- Benjamin M. Heyman
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Dimitrios Tzachanis
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Thomas J. Kipps
- Center for Novel Therapeutics, Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA;
| |
Collapse
|
137
|
Nguyen A, Johanning G, Shi Y. Emerging Novel Combined CAR-T Cell Therapies. Cancers (Basel) 2022; 14:cancers14061403. [PMID: 35326556 PMCID: PMC8945996 DOI: 10.3390/cancers14061403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/08/2022] Open
Abstract
Simple Summary As a result of FDA approval of CAR-T cell treatments in the last few years, this immunotherapy has provided further direction to precision medicine through its combination with other therapeutic approaches. In the past year, several review articles have been published focusing on advances in this fast-developing field, especially with respect to efforts to overcome hurdles associated with applying CAR-T cells in solid tumors. This review paper focuses on combining CAR-T cell therapy with small molecule drugs, up-to-date progress in CAR-T cell therapy research, and advances in combined CAR-T immunotherapy with other treatments targeting solid tumors. Abstract Chimeric antigen receptors (CAR) T cells are T cells engineered to express membrane receptors with high specificity to recognize specific target antigens presented by cancer cells and are co-stimulated with intracellular signals to increase the T cell response. CAR-T cell therapy is emerging as a novel therapeutic approach to improve T cell specificity that will lead to advances in precision medicine. CAR-T cells have had impressive outcomes in hematological malignancies. However, there continue to be significant limitations of these therapeutic responses in targeting solid malignancies such as heterogeneous antigens in solid tumors, tumor immunosuppressive microenvironment, risk of on-target/off-tumor, infiltrating CAR-T cells, immunosuppressive checkpoint molecules, and cytokines. This review paper summarizes recent approaches and innovations through combination therapies of CAR-T cells and other immunotherapy or small molecule drugs to counter the above disadvantages to potentiate the activity of CAR-T cells.
Collapse
Affiliation(s)
- Anh Nguyen
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA;
| | | | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
- Correspondence:
| |
Collapse
|
138
|
Wu Y, Huang Z, Harrison R, Liu L, Zhu L, Situ Y, Wang Y. Engineering CAR T cells for enhanced efficacy and safety. APL Bioeng 2022; 6:011502. [PMID: 35071966 PMCID: PMC8769768 DOI: 10.1063/5.0073746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023] Open
Abstract
Despite its success in treating hematologic malignancies, chimeric antigen receptor (CAR) T cell therapy faces two major challenges which hinder its broader applications: the limited effectiveness against solid tumors and the nonspecific toxicities. To address these concerns, researchers have used synthetic biology approaches to develop optimization strategies. In this review, we discuss recent improvements on the CAR and other non-CAR molecules aimed to enhance CAR T cell efficacy and safety. We also highlight the development of different types of inducible CAR T cells that can be controlled by environmental cues and/or external stimuli. These advancements are bringing CAR T therapy one step closer to safer and wider applications, especially for solid tumors.
Collapse
Affiliation(s)
- Yiqian Wu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Ziliang Huang
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Reed Harrison
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Longwei Liu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Linshan Zhu
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Yinglin Situ
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Yingxiao Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
139
|
Wang Z, McWilliams-Koeppen HP, Reza H, Ostberg JR, Chen W, Wang X, Huynh C, Vyas V, Chang WC, Starr R, Wagner JR, Aguilar B, Yang X, Wu X, Wang J, Chen W, Koelker-Wolfe E, Seet CS, Montel-Hagen A, Crooks GM, Forman SJ, Brown CE. 3D-organoid culture supports differentiation of human CAR+ iPSCs into highly functional CAR T cells. Cell Stem Cell 2022; 29:515-527.e8. [PMID: 35278370 PMCID: PMC9119152 DOI: 10.1016/j.stem.2022.02.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Unlimited generation of chimeric antigen receptor (CAR) T cells from human-induced pluripotent stem cells (iPSCs) is an attractive approach for "off-the-shelf" CAR T cell immunotherapy. Approaches to efficiently differentiate iPSCs into canonical αβ T cell lineages, while maintaining CAR expression and functionality, however, have been challenging. We report that iPSCs reprogramed from CD62L+ naive and memory T cells followed by CD19-CAR engineering and 3D-organoid system differentiation confers products with conventional CD8αβ-positive CAR T cell characteristics. Expanded iPSC CD19-CAR T cells showed comparable antigen-specific activation, degranulation, cytotoxicity, and cytokine secretion compared with conventional CD19-CAR T cells and maintained homogeneous expression of the TCR derived from the initial clone. iPSC CD19-CAR T cells also mediated potent antitumor activity in vivo, prolonging survival of mice with CD19+ human tumor xenografts. Our study establishes feasible methodologies to generate highly functional CAR T cells from iPSCs to support the development of "off-the-shelf" manufacturing strategies.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA.
| | - Helen P McWilliams-Koeppen
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Hernan Reza
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Julie R Ostberg
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Wuyang Chen
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Xiuli Wang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Christian Huynh
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Vibhuti Vyas
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Wen-Chung Chang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Renate Starr
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Jamie R Wagner
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Brenda Aguilar
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Xin Yang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Wei Chen
- Integrative Genomics Core, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Ellery Koelker-Wolfe
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Christopher S Seet
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Broad Stem Cell Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Amélie Montel-Hagen
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gay M Crooks
- Broad Stem Cell Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
140
|
Li G, Reid KM, Spitler K, Beatty N, Boucher J, Davila ML. CD3 engagement as a new strategy for allogeneic “off-the-shelf” T cell therapy. Mol Ther Oncolytics 2022; 24:887-896. [PMID: 35317526 PMCID: PMC8919219 DOI: 10.1016/j.omto.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Allogeneic “off-the-shelf” (OTS) chimeric antigen receptor T cells (CAR-T cells) hold promise for more accessible CAR-T therapy. Here, we report a novel and simple way to make allogeneic OTS T cells targeting cancer. By engineering T cells with a bispecific T cell engager (BiTE), both TCRαβ and CD3ε expression on the T cell surface are dramatically reduced. BiTE-engineered T (BiTE-T) cells show reduced reaction to TCR stimulation in vitro and have low risk of graft-versus-host disease (GvHD) in vivo. BiTE-T cells down-regulated CD3ε/TCRαβ on bystander T cells by releasing BiTEs. BiTE-T cells produce much fewer cytokines and are comparable to CAR-T cells on anti-cancer efficacy in xenograft mouse models with pre-existing HLA-mismatched T cells. Co-expressing co-stimulatory factors or T cell-promoting cytokines enhanced BiTE-T cells. Our study suggests CD3ε engagement could be a new strategy for allogeneic T cell therapy worthy of further evaluation.
Collapse
Affiliation(s)
- Gongbo Li
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Corresponding author Gongbo Li, Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Kayla M. Reid
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kristen Spitler
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Nolan Beatty
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Justin Boucher
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Marco L. Davila
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Corresponding author Marco L. Davila, Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
141
|
Abstract
The therapeutic armamentarium has significantly expanded since the approval of various CD19-targeting chimeric antigen receptor T cell (CAR-T) therapies in non-Hodgkin lymphoma (NHL). These CAR-Ts are patient-specific and require a complex, resource, and time-consuming process. While this appears promising, autologous CAR-Ts are limited due to the lack of accessibility, manufacturing delays, and variable product quality. To overcome these, allogeneic (allo) CARs from healthy donors appear appealing. These can be immediately available as “off the shelf” ready-to-use products of standardized and superior quality exempt from the effects of an immunosuppressive tumor microenvironment and prior treatments, and potentially with lower healthcare utilization using industrialized scale production. Allogeneic CARs, however, are not devoid of complications and require genomic editing, especially with αβ T cells to avoid graft versus host disease (GvHD) and allo-rejection by the recipient’s immune system. Tools for genomic editing such as TALEN and CRISPR provide promise to develop truly “off the shelf” universal CARs and further advance the field of cellular immunotherapy. Several allogeneic CARs are currently in early phase clinical trials, and preliminary data is encouraging. Longer follow-up is required to truly assess the feasibility and safety of these techniques in the patients. This review focuses on the strategies for developing allogeneic CARs along with cell sources and clinical experience thus far in lymphoma.
Collapse
|
142
|
Xu C, Ju D, Zhang X. Chimeric antigen receptor T cell therapy: challenges and opportunities in lung cancer. Antib Ther 2022; 5:73-83. [PMID: 35372786 PMCID: PMC8972219 DOI: 10.1093/abt/tbac006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the paradigm in hematological malignancies treatment, driving an ever-expanding number of basic research and clinical trials of genetically engineering T cells to treat solid tumors. CAR T-cell therapies based on the antibodies targeting Mesothelin, CEA, EGFR, EGFR, MUC1, DLL3, and emerging novel targets provide promising efficacy for lung cancer patients. However, clinical application of CAR T-cell therapy against lung cancer remains limited on account of physical and immune barriers, antigen escape and heterogeneity, on-target off-tumor toxicity, and many other reasons. Understanding the evolution of CAR structure and the generalizable requirements for manufacturing CAR T cells as well as the interplay between lung tumor immunology and CAR T cells will improve clinical translation of this therapeutic modality in lung cancer. In this review, we systematically summarize the latest advances in CAR T-cell therapy in lung cancer, focusing on the CAR structure, target antigens, challenges, and corresponding new strategies.
Collapse
Affiliation(s)
- Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
143
|
Can I, Cox MJ, Siegler EL, Sakemura R, Kenderian SS. Challenges of CAR T-cell Therapy in CLL: Lessons Learned. Exp Hematol 2022; 108:1-7. [PMID: 35150777 DOI: 10.1016/j.exphem.2022.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
Development of chimeric antigen receptor T (CART) cell therapy has led to unprecedented success against B cell leukemia and lymphoma and resulted in FDA-approved treatment protocols. Despite the initial clinical response in B cell-related malignancies, high relapse rates suggest that much work is needed to uncover mechanisms of resistance. In chronic lymphocytic leukemia (CLL), the durable activity of CAR T-cells is limited, and CART cell success is lower than in other malignancies. T cells from these patients are vulnerable to a state of dysfunction due to stresses including chronic infection, rapid cell cycle upon antigen recognition, immunosuppressive tumor microenvironment, and cancer-related treatments. T cells are also introduced to additional stresses when cultured ex vivo during the CART manufacturing process. All these factors contribute to the limited regenerative capacity of T cells, which can lead to CART treatment failure. In this short report, we will review the challenges of CAR T-cell therapy in patients with CLL and discuss potential strategies to overcome these challenges.
Collapse
Affiliation(s)
- Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
| | - Michelle J Cox
- T Cell Engineering, Mayo Clinic, Rochester, MN; Division of Hematology, Mayo Clinic, Rochester, MN; Bioinformatics and Computational Biology, University of Minnesota Graduate School, Minneapolis, MN
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN; Division of Hematology, Mayo Clinic, Rochester, MN
| | - Reona Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN; Division of Hematology, Mayo Clinic, Rochester, MN
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN; Division of Hematology, Mayo Clinic, Rochester, MN; Department of Immunology, Mayo Clinic, Rochester, MN; Department of Molecular Medicine, Rochester, MN.
| |
Collapse
|
144
|
Smirnov S, Petukhov A, Levchuk K, Kulemzin S, Staliarova A, Lepik K, Shuvalov O, Zaritskey A, Daks A, Fedorova O. Strategies to Circumvent the Side-Effects of Immunotherapy Using Allogeneic CAR-T Cells and Boost Its Efficacy: Results of Recent Clinical Trials. Front Immunol 2022; 12:780145. [PMID: 34975869 PMCID: PMC8714645 DOI: 10.3389/fimmu.2021.780145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Despite the outstanding results of treatment using autologous chimeric antigen receptor T cells (CAR-T cells) in hematological malignancies, this approach is endowed with several constraints. In particular, profound lymphopenia in some patients and the inability to manufacture products with predefined properties or set of cryopreserved batches of cells directed to different antigens in advance. Allogeneic CAR-T cells have the potential to address these issues but they can cause life-threatening graft-versus-host disease or have shorter persistence due to elimination by the host immune system. Novel strategies to create an “off the shelf” allogeneic product that would circumvent these limitations are an extensive area of research. Here we review CAR-T cell products pioneering an allogeneic approach in clinical trials.
Collapse
Affiliation(s)
- Sergei Smirnov
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia
| | - Alexey Petukhov
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia.,Institute of Cytology, Laboratory of Gene Expression Regulation, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Ksenia Levchuk
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia
| | - Sergey Kulemzin
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia.,Institute of Molecular and Cellular Biology SB Russian Academy of Science (RAS), Department of Molecular Immunology, Laboratory of Immunogenetics, Novosibirsk, Russia
| | - Alena Staliarova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Oncological Department 3, Borovliani, Minsk Region, Belarus
| | - Kirill Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Chemotherapy and Bone Marrow Transplantation Department, Saint Petersburg, Russia.,Pavlov University, Department of Hematology, Transfusiology and Transplantology, Saint Petersburg, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Laboratory of Gene Expression Regulation, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Andrey Zaritskey
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia
| | - Alexandra Daks
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia.,Institute of Cytology, Laboratory of Gene Expression Regulation, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Olga Fedorova
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia.,Institute of Cytology, Laboratory of Gene Expression Regulation, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
145
|
Wang L, Chen Y, Liu X, Li Z, Dai X. The Application of CRISPR/Cas9 Technology for Cancer Immunotherapy: Current Status and Problems. Front Oncol 2022; 11:704999. [PMID: 35111663 PMCID: PMC8801488 DOI: 10.3389/fonc.2021.704999] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the main causes of disease-related deaths in the world. Although cancer treatment strategies have been improved in recent years, the survival time of cancer patients is still far from satisfied. Cancer immunotherapy, such as Oncolytic virotherapy, Immune checkpoints inhibition, Chimeric antigen receptor T (CAR-T) cell therapy, Chimeric antigen receptor natural killer (CAR-NK) cell therapy and macrophages genomic modification, has emerged as an effective therapeutic strategy for different kinds of cancer. However, many patients do not respond to the cancer immunotherapy which warrants further investigation to optimize this strategy. The clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9), as a versatile genome engineering tool, has become popular in the biology research field and it was also applied to optimize tumor immunotherapy. Moreover, CRISPR-based high-throughput screening can be used in the study of immunomodulatory drug resistance mechanism. In this review, we summarized the development as well as the application of CRISPR/Cas9 technology in the cancer immunotherapy and discussed the potential problems that may be caused by this combination.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xinrui Liu
- Neurosurgery Department, First Hospital, Jilin University, Changchun, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai,
| |
Collapse
|
146
|
Mirzaee Godarzee M, Mahmud Hussen B, Razmara E, Hakak‐Zargar B, Mohajerani F, Dabiri H, Fatih Rasul M, Ghazimoradi MH, Babashah S, Sadeghizadeh M. Strategies to overcome the side effects of chimeric antigen receptor T cell therapy. Ann N Y Acad Sci 2022; 1510:18-35. [DOI: 10.1111/nyas.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022]
Affiliation(s)
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy Hawler Medical University Erbil Iraq
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute Monash University, Clayton, Victoria, Australia, 3800
| | | | - Fatemeh Mohajerani
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Hamed Dabiri
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Sciences Tishk International University Erbil Iraq
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
147
|
Mohammed T, Mailankody S. “Off-the-shelf” immunotherapies for multiple myeloma. Semin Oncol 2022; 49:60-68. [DOI: 10.1053/j.seminoncol.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/01/2022] [Indexed: 12/13/2022]
|
148
|
Iqbal M, Savani BN, Hamadani M. New Indications and platforms for CAR-T therapy in lymphomas beyond DLBCL. EJHAEM 2022; 3:11-23. [PMID: 34988550 PMCID: PMC8725814 DOI: 10.1002/jha2.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 01/13/2023]
Abstract
CD19 directed chimeric antigen receptor T-cell therapy (CAR-T) represents a significant advancement for patients with relapsed/refractory large B-cell lymphoma (LBCL). Long term follow-up confirms durable remissions in nearly half of the patients, a population which was previously estimated to have a median survival of around 6 months with standard salvage therapy. This initial success of CAR-T has led to significant expansion across other lymphoma histologies resulting in the recent regulatory approval of CAR-T in mantle cell lymphoma and follicular lymphoma. Additionally, multiple novel platforms of CAR-T therapy are under development to improve efficacy and limit toxicity such dual antigen targeting, allogeneic and natural killer CAR's. In this review, we focus on the new indications of CAR-T in lymphomas beyond LBCL as well as emerging platforms of CAR-T therapy.
Collapse
Affiliation(s)
- Madiha Iqbal
- Division of Hematology and OncologyMayo ClinicJacksonvilleFlorida
| | - Bipin N Savani
- Division of Hematology and OncologyVanderbilt UniversityNashvilleTennessee
| | - Mehdi Hamadani
- Blood & Marrow Transplantation and Cellular Therapy ProgramDivision of Hematology and OncologyMedical College of WisconsinMilwaukeeWisconsin
| |
Collapse
|
149
|
Jhita N, Raikar SS. Allogeneic gamma delta T cells as adoptive cellular therapy for hematologic malignancies. EXPLORATION OF IMMUNOLOGY 2022; 2:334-350. [PMID: 35783107 PMCID: PMC9249101 DOI: 10.37349/ei.2022.00054] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
Cancer immunotherapy, especially T-cell driven targeting, has significantly evolved and improved over the past decade, paving the way to treat previously refractory cancers. Hematologic malignancies, given their direct tumor accessibility and less immunosuppressive microenvironment compared to solid tumors, are better suited to be targeted by cellular immunotherapies. Gamma delta (γδ) T cells, with their unique attributes spanning the entirety of the immune system, make a tantalizing therapeutic platform for cancer immunotherapy. Their inherent anti-tumor properties, ability to act like antigen-presenting cells, and the advantage of having no major histocompatibility complex (MHC) restrictions, allow for greater flexibility in their utility to target tumors, compared to their αβ T cell counterpart. Their MHC-independent anti-tumor activity, coupled with their ability to be easily expanded from peripheral blood, enhance their potential to be used as an allogeneic product. In this review, the potential of utilizing γδ T cells to target hematologic malignancies is described, with a specific focus on their applicability as an allogeneic adoptive cellular therapy product.
Collapse
Affiliation(s)
| | - Sunil S. Raikar
- Correspondence: Sunil S. Raikar, Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA.
| |
Collapse
|
150
|
Niknam MR, Attari F. The Potential Applications of Stem Cells for Cancer Treatment. Curr Stem Cell Res Ther 2022; 17:26-42. [PMID: 35048802 DOI: 10.2174/1574888x16666210810100858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023]
Abstract
:
Scientists encounter many obstacles in traditional cancer therapies, including the side effects
on the healthy cells, drug resistance, tumor relapse, the short half-life of employed drugs in
the blood circulation, and the improper delivery of drugs toward the tumor site. The unique traits of
stem cells (SCs) such as self-renewal, differentiation, tumor tropism, the release of bioactive
molecules, and immunosuppression have opened a new window for utilizing SCs as a novel tool in
cancer treatment. In this regard, engineered SCs can secrete anti-cancer proteins or express enzymes
used in suicide gene therapy which locally induce apoptosis in neoplastic cells via the bystander
effect. These cells also stand as proper candidates to serve as careers for drug-loaded nanoparticles
or to play suitable hosts for oncolytic viruses. Moreover, they harbor great potential to be
employed in immunotherapy and combination therapy. However, tactful strategies should be devised
to allow easier transplantation and protection of SCs from in vivo immune responses. In spite
of the great hope concerning SCs application in cancer therapy, there are shortcomings and challenges
to be addressed. This review tends to elaborate on recent advances on the various applications
of SCs in cancer therapy and existing challenges in this regard.
Collapse
Affiliation(s)
- Malikeh Rad Niknam
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|