101
|
Aminzadeh-Gohari S, Weber DD, Catalano L, Feichtinger RG, Kofler B, Lang R. Targeting Mitochondria in Melanoma. Biomolecules 2020; 10:biom10101395. [PMID: 33007949 PMCID: PMC7599575 DOI: 10.3390/biom10101395] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Drastically elevated glycolytic activity is a prominent metabolic feature of cancer cells. Until recently it was thought that tumor cells shift their entire energy production from oxidative phosphorylation (OXPHOS) to glycolysis. However, new evidence indicates that many cancer cells still have functional OXPHOS, despite their increased reliance on glycolysis. Growing pre-clinical and clinical evidence suggests that targeting mitochondrial metabolism has anti-cancer effects. Here, we analyzed mitochondrial respiration and the amount and activity of OXPHOS complexes in four melanoma cell lines and normal human dermal fibroblasts (HDFs) by Seahorse real-time cell metabolic analysis, immunoblotting, and spectrophotometry. We also tested three clinically approved antibiotics, one anti-parasitic drug (pyrvinium pamoate), and a novel anti-cancer agent (ONC212) for effects on mitochondrial respiration and proliferation of melanoma cells and HDFs. We found that three of the four melanoma cell lines have elevated glycolysis as well as OXPHOS, but contain dysfunctional mitochondria. The antibiotics produced different effects on the melanoma cells and HDFs. The anti-parasitic drug strongly inhibited respiration and proliferation of both the melanoma cells and HDFs. ONC212 reduced respiration in melanoma cells and HDFs, and inhibited the proliferation of melanoma cells. Our findings highlight ONC212 as a promising drug for targeting mitochondrial respiration in cancer.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
- Correspondence: (B.K.); (R.L.); Tel.: +43-57255-26274 (B.K.); +43-57255-58200 (R.L.)
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Correspondence: (B.K.); (R.L.); Tel.: +43-57255-26274 (B.K.); +43-57255-58200 (R.L.)
| |
Collapse
|
102
|
Natural Agents Targeting Mitochondria in Cancer. Int J Mol Sci 2020; 21:ijms21196992. [PMID: 32977472 PMCID: PMC7582837 DOI: 10.3390/ijms21196992] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the key energy provider to highly proliferating cancer cells, and are subsequently considered one of the critical targets in cancer therapeutics. Several compounds have been studied for their mitochondria-targeting ability in cancer cells. These studies’ outcomes have led to the invention of “mitocans”, a category of drug known to precisely target the cancer cells’ mitochondria. Based upon their mode of action, mitocans have been divided into eight classes. To date, different synthetic compounds have been suggested to be potential mitocans, but unfortunately, they are observed to exert adverse effects. Many studies have been published justifying the medicinal significance of large numbers of natural agents for their mitochondria-targeting ability and anticancer activities with minimal or no side effects. However, these natural agents have never been critically analyzed for their mitochondria-targeting activity. This review aims to evaluate the various natural agents affecting mitochondria and categorize them in different classes. Henceforth, our study may further support the potential mitocan behavior of various natural agents and highlight their significance in formulating novel potential anticancer therapeutics.
Collapse
|
103
|
Zeng A, Wei Z, Rabinovsky R, Jun HJ, El Fatimy R, Deforzh E, Arora R, Yao Y, Yao S, Yan W, Uhlmann EJ, Charest A, You Y, Krichevsky AM. Glioblastoma-Derived Extracellular Vesicles Facilitate Transformation of Astrocytes via Reprogramming Oncogenic Metabolism. iScience 2020; 23:101420. [PMID: 32795915 PMCID: PMC7424213 DOI: 10.1016/j.isci.2020.101420] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/24/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) may arise from astrocytes through a multistep process involving a progressive accumulation of mutations. We explored whether GBM-derived extracellular vesicles (EVs) may facilitate neoplastic transformation and malignant growth of astrocytes. We utilized conditioned media (CM) of cultured glioma cells, its sequential filtration, diverse cell-based assays, RNA sequencing, and metabolic assays to compare the effects of EV-containing and EV-depleted CM. GBM EVs facilitated the neoplastic growth of pre-transformed astrocytes but not normal human or mouse astrocytes. They induced proliferation, self-renewal, and colony formation of pre-transformed astrocytes and enhanced astrocytoma growth in a mouse allograft model. GBM EVs appear to reprogram astrocyte metabolism by inducing a shift in gene expression that may be partly associated with EV-mediated transfer of full-length mRNAs encoding ribosomal proteins, oxidative phosphorylation, and glycolytic factors. Our study suggests an EV/extracellular RNA (exRNA)-mediated mechanism that contributes to astrocyte transformation via metabolic reprograming and implicates horizontal mRNA transfer. Extracellular vesicles (EVs) shed by glioma cells are taken up by astrocytes Glioma EVs facilitate astrocyte transformation and tumor growth EVs reprogram glycolysis and oxidative phosphorylation of transformed astrocytes mRNAs coding ribosomal proteins and other factors are dispersed via EVs
Collapse
Affiliation(s)
- Ailiang Zeng
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China.
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hyun Jung Jun
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ramil Arora
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shun Yao
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510062, China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alain Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
104
|
Logotheti S, Marquardt S, Gupta SK, Richter C, Edelhäuser BA, Engelmann D, Brenmoehl J, Söhnchen C, Murr N, Alpers M, Singh KP, Wolkenhauer O, Heckl D, Spitschak A, Pützer BM. LncRNA-SLC16A1-AS1 induces metabolic reprogramming during Bladder Cancer progression as target and co-activator of E2F1. Am J Cancer Res 2020; 10:9620-9643. [PMID: 32863950 PMCID: PMC7449907 DOI: 10.7150/thno.44176] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral components of E2F1-regulated gene regulatory networks (GRNs), but their implication in advanced or treatment-refractory malignancy is unknown. Methods: We combined high-throughput transcriptomic approaches with bioinformatics and structure modeling to search for lncRNAs that participate in E2F1-activated prometastatic GRNs and their phenotypic targets in the highly-relevant case of E2F1-driven aggressive bladder cancer (BC). RNA immunoprecipitation was performed to verify RNA-protein interactions. Functional analyses including qRT-PCR, immunoblotting, luciferase assays and measurement of extracellular fluxes were conducted to validate expression and target gene regulation. Results: We identified E2F1-responsive lncRNA-SLC16A1-AS1 and its associated neighboring protein-coding gene, SLC16A1/MCT1, which both promote cancer invasiveness. Mechanistically, upon E2F1-mediated co-transactivation of the gene pair, SLC16A1-AS1 associates with E2F1 in a structure-dependent manner and forms an RNA-protein complex that enhances SLC16A1/MCT1 expression through binding to a composite SLC16A1-AS1:E2F1-responsive promoter element. Moreover, SLC16A1-AS1 increases aerobic glycolysis and mitochondrial respiration and fuels ATP production by fatty acid β-oxidation. These metabolic changes are accompanied by alterations in the expression of the SLC16A1-AS1:E2F1-responsive gene PPARA, a key mediator of fatty acid β-oxidation. Conclusions: Our results unveil a new gene regulatory program by which E2F1-induced lncRNA-SLC16A1-AS1 forms a complex with its transcription factor that promotes cancer metabolic reprogramming towards the acquisition of a hybrid oxidative phosphorylation/glycolysis cell phenotype favoring BC invasiveness.
Collapse
|
105
|
Wei J, Huang K, Chen Z, Hu M, Bai Y, Lin S, Du H. Characterization of Glycolysis-Associated Molecules in the Tumor Microenvironment Revealed by Pan-Cancer Tissues and Lung Cancer Single Cell Data. Cancers (Basel) 2020; 12:1788. [PMID: 32635458 PMCID: PMC7408567 DOI: 10.3390/cancers12071788] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
Altered metabolism is a hallmark of cancer and glycolysis is one of the important factors promoting tumor development. There is however still a lack of molecular characterization glycolysis and comprehensive studies related to tumor glycolysis in the pan-cancer landscape. Here, we applied a gene expression signature to quantify glycolysis in 9229 tumors across 25 cancer types and 7875 human lung cancer single cells and verified the robustness of signature using defined glycolysis samples from previous studies. We classified tumors and cells into glycolysis score-high and -low groups, demonstrated their prognostic associations, and identified genome and transcriptome molecular features associated with glycolysis activity. We observed that glycolysis score-high tumors were associated with worse prognosis across cancer types. High glycolysis tumors exhibited specific driver genes altered by copy number aberrations (CNAs) in most cancer types. Tricarboxylic acid (TCA) cycle, DNA replication, tumor proliferation and other cancer hallmarks were more active in glycolysis-high tumors. Glycolysis signature was strongly correlated with hypoxia signature in all 25 cancer tissues (r > 0.7) and cancer single cells (r > 0.8). In addition, HSPA8 and P4HA1 were screened out as the potential modulating factors to glycolysis as their expression were highly correlated with glycolysis score and glycolysis genes, which enables future efforts for therapeutic options to block the glycolysis and control tumor progression. Our study provides a comprehensive molecular-level understanding of glycolysis with a large sample data and demonstrates the hypoxia pressure, growth signals, oncogene mutation and other potential signals could activate glycolysis, thereby to regulate cell cycle, energy material synthesis, cell proliferation and cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.W.); (K.H.); (Z.C.); (M.H.); (Y.B.); (S.L.)
| |
Collapse
|
106
|
Duan J, Li Y, Gao H, Yang D, He X, Fang Y, Zhou G. Phenolic compound ellagic acid inhibits mitochondrial respiration and tumor growth in lung cancer. Food Funct 2020; 11:6332-6339. [PMID: 32608435 DOI: 10.1039/d0fo01177k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ellagic acid (EA), a natural polyphenol compound that exists in a variety of fruits and vegetables, has been reported to inhibit tumor growth by reducing cell growth, inducing apoptosis, and damaging mitochondria. Recent reports demonstrate that mitochondria regulate cancer cell death through energy metabolism and that different types of cell death coexist in vivo. We showed that EA inhibited lung cancer cell proliferation, markedly decreased ATP levels, decreased the potential of the inner mitochondrial membrane and decreased oxygen consumption in vitro. In addition, EA activated AMP-activated protein kinase (AMPK) and reduced HIF-1α in lung cancer cells. Moreover, the treatment of tumor-bearing mice with EA dramatically inhibited tumor growth, increased p-AMPK and suppressed HIF-1α levels. These findings suggest that EA could be a promising chemotherapeutic agent that targets mitochondrial metabolism in lung cancer.
Collapse
Affiliation(s)
- Jing Duan
- College of Enology, Northwest A&F University, Yangling, 712100, China.
| | | | | | | | | | | | | |
Collapse
|
107
|
Maghsoudnia N, Baradaran Eftekhari R, Naderi Sohi A, Norouzi P, Akbari H, Ghahremani MH, Soleimani M, Amini M, Samadi H, Dorkoosh FA. Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles. J Drug Target 2020; 28:818-830. [PMID: 32452217 DOI: 10.1080/1061186x.2020.1774594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biological mechanisms including cellular metabolism and cell death are regulated by mitochondria known as powerhouse of the cell. Recently, let-7b, a tumour-suppressor microRNA has been detected in mitochondria of human cells targeting several mitochondrial-encoded respiratory chain genes. Triphenylphosphonium cation (TPP) is one of the major classes of mitochondriotropics that possess the ability of specifically targeting the mitochondria. PAMAM dendrimers are one of the most available agents in gene delivery due to their well-defined and beneficial features such as large density of surface functional groups. Hyaluronic acid (HA), a natural polysaccharide has been demonstrated to have the abilities such as good biocompatibility and targeting CD44 overexpressed receptors on non-small cell lung cancer (NSCLC) cells. In this research, let-7b-PAMAM (G5)-TPP and let-7b-PAMAM (G5)-TPP-HA nano-carriers were designed to deliver let-7b miRNA mimic to NSCLC cells' mitochondria as a novel way of cancer cells inhibition. Nano-carriers were capable of being successfully taken up by A549 cells and localised in mitochondria environment. Let-7b loaded nanoparticles reduced cell viability and induced apoptosis significantly. Expression of genes involved in mitochondrial oxidative function was decreased resulting in nanoparticles effect on mitochondria. Application of mitochondria targeted-miRNA delivery systems could regulate cellular functions to inhibit lung cancer.
Collapse
Affiliation(s)
- Niloufar Maghsoudnia
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Naderi Sohi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parisa Norouzi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Samadi
- Science and Research Center, Faculty of Sciences, Islamic Azad University, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
108
|
Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev 2020; 41:5807952. [PMID: 32179913 PMCID: PMC7255501 DOI: 10.1210/endrev/bnaa005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial damage is implicated as a major contributing factor for a number of noncommunicable chronic diseases such as cardiovascular diseases, cancer, obesity, and insulin resistance/type 2 diabetes. Here, we discuss the role of mitochondria in maintaining cellular and whole-organism homeostasis, the mechanisms that promote mitochondrial dysfunction, and the role of this phenomenon in noncommunicable chronic diseases. We also review the state of the art regarding the preclinical evidence associated with the regulation of mitochondrial function and the development of current mitochondria-targeted therapeutics to treat noncommunicable chronic diseases. Finally, we give an integrated vision of how mitochondrial damage is implicated in these metabolic diseases.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo Sanchez-Aguilera
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías Monsalves-Alvarez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
109
|
Ruvinov I, Nguyen C, Scaria B, Vegh C, Zaitoon O, Baskaran K, Mehaidli A, Nunes M, Pandey S. Lemongrass Extract Possesses Potent Anticancer Activity Against Human Colon Cancers, Inhibits Tumorigenesis, Enhances Efficacy of FOLFOX, and Reduces Its Adverse Effects. Integr Cancer Ther 2020; 18:1534735419889150. [PMID: 31845598 PMCID: PMC6918039 DOI: 10.1177/1534735419889150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current chemotherapeutics for metastatic colorectal cancers have limited success
and are extremely toxic due to nonselective targeting. Some natural extracts
have been traditionally taken and have shown anticancer activity. These extracts
have multiple phytochemicals that can target different pathways selectively in
cancer cells. We have shown previously that lemongrass (Cymbopogon
citratus) extract is effective at inducing cell death in human
lymphomas. However, the efficacy of lemongrass extract on human colorectal
cancer has not been investigated. Furthermore, its interactions with current
chemotherapies for colon cancer is unknown. In this article, we report the
anticancer effects of ethanolic lemongrass extract in colorectal cancer models,
and importantly, its interactions with FOLFOX and Taxol. Lemongrass extract
induced apoptosis in colon cancer cells in a time and dose-dependent manner
without harming healthy cells in vitro. Oral administration of lemongrass
extract was well tolerated and effective at inhibiting colon cancer xenograft
growth in mice. It enhanced the anticancer efficacy of FOLFOX and,
interestingly, inhibited FOLFOX-related weight loss in animals given the
combination treatment. Furthermore, feeding lemongrass extract to
APCmin/+ transgenic mice led to the reduction of intestinal
tumors, indicating its preventative potential. Therefore, this natural extract
has potential to be developed as a supplemental treatment for colorectal
cancer.
Collapse
Affiliation(s)
| | | | | | - Caleb Vegh
- University of Windsor, Windsor, Ontario, Canada
| | - Ola Zaitoon
- University of Windsor, Windsor, Ontario, Canada
| | | | | | | | | |
Collapse
|
110
|
Emamalipour M, Seidi K, Zununi Vahed S, Jahanban-Esfahlan A, Jaymand M, Majdi H, Amoozgar Z, Chitkushev LT, Javaheri T, Jahanban-Esfahlan R, Zare P. Horizontal Gene Transfer: From Evolutionary Flexibility to Disease Progression. Front Cell Dev Biol 2020; 8:229. [PMID: 32509768 PMCID: PMC7248198 DOI: 10.3389/fcell.2020.00229] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
Flexibility in the exchange of genetic material takes place between different organisms of the same or different species. This phenomenon is known to play a key role in the genetic, physiological, and ecological performance of the host. Exchange of genetic materials can cause both beneficial and/or adverse biological consequences. Horizontal gene transfer (HGT) or lateral gene transfer (LGT) as a general mechanism leads to biodiversity and biological innovations in nature. HGT mediators are one of the genetic engineering tools used for selective introduction of desired changes in the genome for gene/cell therapy purposes. HGT, however, is crucial in development, emergence, and recurrence of various human-related diseases, such as cancer, genetic-, metabolic-, and neurodegenerative disorders and can negatively affect the therapeutic outcome by promoting resistant forms or disrupting the performance of genome editing toolkits. Because of the importance of HGT and its vital physio- and pathological roles, here the variety of HGT mechanisms are reviewed, ranging from extracellular vesicles (EVs) and nanotubes in prokaryotes to cell-free DNA and apoptotic bodies in eukaryotes. Next, we argue that HGT plays a role both in the development of useful features and in pathological states associated with emerging and recurrent forms of the disease. A better understanding of the different HGT mediators and their genome-altering effects/potentials may pave the way for the development of more effective therapeutic and diagnostic regimes.
Collapse
Affiliation(s)
- Melissa Emamalipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hasan Majdi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - L T Chitkushev
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, United States.,Health Informatics Lab, Metropolitan College, Boston University, Boston, MA, United States
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA, United States
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland.,Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
111
|
Abstract
The rediscovery and reinterpretation of the Warburg effect in the year 2000 occulted for almost a decade the key functions exerted by mitochondria in cancer cells. Until recent times, the scientific community indeed focused on constitutive glycolysis as a hallmark of cancer cells, which it is not, largely ignoring the contribution of mitochondria to the malignancy of oxidative and glycolytic cancer cells, being Warburgian or merely adapted to hypoxia. In this review, we highlight that mitochondria are not only powerhouses in some cancer cells, but also dynamic regulators of life, death, proliferation, motion and stemness in other types of cancer cells. Similar to the cells that host them, mitochondria are capable to adapt to tumoral conditions, and probably to evolve to ‘oncogenic mitochondria' capable of transferring malignant capacities to recipient cells. In the wider quest of metabolic modulators of cancer, treatments have already been identified targeting mitochondria in cancer cells, but the field is still in infancy.
Collapse
Affiliation(s)
- Debora Grasso
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Luca X Zampieri
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Tânia Capelôa
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Justine A Van de Velde
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
112
|
Ghosh P, Vidal C, Dey S, Zhang L. Mitochondria Targeting as an Effective Strategy for Cancer Therapy. Int J Mol Sci 2020; 21:E3363. [PMID: 32397535 PMCID: PMC7247703 DOI: 10.3390/ijms21093363] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are well known for their role in ATP production and biosynthesis of macromolecules. Importantly, increasing experimental evidence points to the roles of mitochondrial bioenergetics, dynamics, and signaling in tumorigenesis. Recent studies have shown that many types of cancer cells, including metastatic tumor cells, therapy-resistant tumor cells, and cancer stem cells, are reliant on mitochondrial respiration, and upregulate oxidative phosphorylation (OXPHOS) activity to fuel tumorigenesis. Mitochondrial metabolism is crucial for tumor proliferation, tumor survival, and metastasis. Mitochondrial OXPHOS dependency of cancer has been shown to underlie the development of resistance to chemotherapy and radiotherapy. Furthermore, recent studies have demonstrated that elevated heme synthesis and uptake leads to intensified mitochondrial respiration and ATP generation, thereby promoting tumorigenic functions in non-small cell lung cancer (NSCLC) cells. Also, lowering heme uptake/synthesis inhibits mitochondrial OXPHOS and effectively reduces oxygen consumption, thereby inhibiting cancer cell proliferation, migration, and tumor growth in NSCLC. Besides metabolic changes, mitochondrial dynamics such as fission and fusion are also altered in cancer cells. These alterations render mitochondria a vulnerable target for cancer therapy. This review summarizes recent advances in the understanding of mitochondrial alterations in cancer cells that contribute to tumorigenesis and the development of drug resistance. It highlights novel approaches involving mitochondria targeting in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.G.); (C.V.); (S.D.)
| |
Collapse
|
113
|
Li W, Wang J. Uncovering the Underlying Mechanisms of Cancer Metabolism through the Landscapes and Probability Flux Quantifications. iScience 2020; 23:101002. [PMID: 32276228 PMCID: PMC7150521 DOI: 10.1016/j.isci.2020.101002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/03/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer metabolism is critical for understanding the mechanism of tumorigenesis, yet the understanding is still challenging. We studied gene-metabolism regulatory interactions and quantified the global driving forces for cancer-metabolism dynamics as the underlying landscape and probability flux. We uncovered four steady-state attractors: a normal state attractor, a cancer OXPHOS state attractor, a cancer glycolysis state attractor, and an intermediate cancer state attractor. We identified the key regulatory interactions through global sensitivity analysis based on the landscape topography. Different landscape topographies of glycolysis switch between normal cells and cancer cells were identified. We uncovered that the normal state to cancer state transformation is associated with the peaks of the probability flux and the thermodynamic dissipation, giving dynamical and thermodynamic origin of cancer formation. We found that cancer metabolism oscillations consume more energy to support cancer malignancy. This study provides a quantitative understanding of cancer metabolism and suggests a metabolic therapeutic strategy.
Collapse
Affiliation(s)
- Wenbo Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
114
|
Moldogazieva NT, Mokhosoev IM, Terentiev AA. Metabolic Heterogeneity of Cancer Cells: An Interplay between HIF-1, GLUTs, and AMPK. Cancers (Basel) 2020; 12:E862. [PMID: 32252351 PMCID: PMC7226606 DOI: 10.3390/cancers12040862] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
It has been long recognized that cancer cells reprogram their metabolism under hypoxia conditions due to a shift from oxidative phosphorylation (OXPHOS) to glycolysis in order to meet elevated requirements in energy and nutrients for proliferation, migration, and survival. However, data accumulated over recent years has increasingly provided evidence that cancer cells can revert from glycolysis to OXPHOS and maintain both reprogrammed and oxidative metabolism, even in the same tumor. This phenomenon, denoted as cancer cell metabolic plasticity or hybrid metabolism, depends on a tumor micro-environment that is highly heterogeneous and influenced by an intensity of vasculature and blood flow, oxygen concentration, and nutrient and energy supply, and requires regulatory interplay between multiple oncogenes, transcription factors, growth factors, and reactive oxygen species (ROS), among others. Hypoxia-inducible factor-1 (HIF-1) and AMP-activated protein kinase (AMPK) represent key modulators of a switch between reprogrammed and oxidative metabolism. The present review focuses on cross-talks between HIF-1, glucose transporters (GLUTs), and AMPK with other regulatory proteins including oncogenes such as c-Myc, p53, and KRAS; growth factor-initiated protein kinase B (PKB)/Akt, phosphatydyl-3-kinase (PI3K), and mTOR signaling pathways; and tumor suppressors such as liver kinase B1 (LKB1) and TSC1 in controlling cancer cell metabolism. The multiple switches between metabolic pathways can underlie chemo-resistance to conventional anti-cancer therapy and should be taken into account in choosing molecular targets to discover novel anti-cancer drugs.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Innokenty M. Mokhosoev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| | - Alexander A. Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| |
Collapse
|
115
|
Pathological Mechanistic Studies of Osimertinib Resistance in Non-Small-Cell Lung Cancer Cells Using an Integrative Metabolomics-Proteomics Analysis. JOURNAL OF ONCOLOGY 2020; 2020:6249829. [PMID: 32256584 PMCID: PMC7103047 DOI: 10.1155/2020/6249829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
Background Osimertinib is the first-line therapeutic option for the T790M-mutant non-small-cell lung cancer and the acquired resistance obstructs its application. It is an urgent challenge to identify the potential mechanisms of osimertinib resistance for uncovering some novel therapeutic approaches. Methods In the current study, the cell metabolomics based on ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry and the qualitative and tandem mass tags quantitative proteomics were performed. Results 54 differential metabolites and 195 differentially expressed proteins were, respectively, identified. The amino acids metabolisms were significantly altered. HIF-1 signaling pathway modulating P-glycoproteins expression, PI3K-Akt pathway regulating survivin expression, and oxidative phosphorylation were upregulated, while arginine and proline metabolism regulating NO production and glycolysis/gluconeogenesis were downregulated during osimertinib resistance. Conclusion The regulation of HIF-1 and PI3K-Akt signaling pathway, energy supply process, and amino acids metabolism are the promising therapeutic tactics for osimertinib resistance.
Collapse
|
116
|
Wan S, Liu M, Cheng Q, Cheng H, Zhang X. A Mitochondria‐Driven Metabolic Sensing Nanosystem for Oxygen Availability and Energy Blockade of Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shuang‐Shuang Wan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Miao‐Deng Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Qian Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Han Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan University Wuhan 430072 P. R. China
| |
Collapse
|
117
|
Li M, Shao Y, Kim JH, Pu Z, Zhao X, Huang H, Xiong T, Kang Y, Li G, Shao K, Fan J, Foley JW, Kim JS, Peng X. Unimolecular Photodynamic O 2-Economizer To Overcome Hypoxia Resistance in Phototherapeutics. J Am Chem Soc 2020; 142:5380-5388. [PMID: 32105455 DOI: 10.1021/jacs.0c00734] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor hypoxia has proven to be the major bottleneck of photodynamic therapy (PDT) to clinical transformation. Different from traditional O2 delivery approaches, here we describe an innovative binary photodynamic O2-economizer (PDOE) tactic to reverse hypoxia-driven resistance by designing a superoxide radical (O2•-) generator targeting mitochondria respiration, termed SORgenTAM. This PDOE system is able to block intracellular O2 consumption and down-regulate HIF-1α expression, which successfully rescues cancer cells from becoming hypoxic and relieves the intrinsic hypoxia burden of tumors in vivo, thereby sparing sufficient endogenous O2 for the PDT process. Photosensitization mechanism studies demonstrate that SORgenTAM has an ideal intersystem crossing rate and triplet excited state lifetime for generating O2•- through type-I photochemistry, and the generated O2•- can further trigger a biocascade to reduce the PDT's demand for O2 in an O2-recycble manner. Furthermore, SORgenTAM also serves to activate the AMPK metabolism signaling pathway to inhibit cell repair and promote cell death. Consequently, using this two-step O2-economical strategy, under relatively low light dose irradiation, excellent therapeutic responses toward hypoxic tumors are achieved. This study offers a conceptual while practical paradigm for overcoming the pitfalls of phototherapeutics.
Collapse
Affiliation(s)
- Mingle Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujie Shao
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Zhongji Pu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xueze Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Haiqiao Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Tao Xiong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yao Kang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Guangzhe Li
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, China
| | - James W Foley
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, China
| |
Collapse
|
118
|
Impact of the Monocarboxylate Transporter-1 (MCT1)-Mediated Cellular Import of Lactate on Stemness Properties of Human Pancreatic Adenocarcinoma Cells †. Cancers (Basel) 2020; 12:cancers12030581. [PMID: 32138176 PMCID: PMC7139999 DOI: 10.3390/cancers12030581] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolite exchange between stromal and tumor cells or among tumor cells themselves accompanies metabolic reprogramming in cancer including pancreatic adenocarcinoma (PDAC). Some tumor cells import and utilize lactate for oxidative energy production (reverse Warburg-metabolism) and the presence of these “reverse Warburg“ cells associates with a more aggressive phenotype and worse prognosis, though the underlying mechanisms are poorly understood. We now show that PDAC cells (BxPc3, A818-6, T3M4) expressing the lactate-importer monocarboxylate transporter-1 (MCT1) are protected by lactate against gemcitabine-induced apoptosis in a MCT1-dependent fashion, contrary to MCT1-negative PDAC cells (Panc1, Capan2). Moreover, lactate administration under glucose starvation, resembling reverse Warburg co a phenotype of BxPc3 and T3M4 cells that confers greater potential of clonal growth upon re-exposure to glucose, along with drug resistance and elevated expression of the stemness marker Nestin and reprogramming factors (Oct4, KLF4, Nanog). These lactate dependent effects on stemness properties are abrogated by the MCT1/lactate-uptake inhibitor 7ACC2 or MCT1 knock-down. Furthermore, the clinical relevance of these observations was supported by detecting co-expression of MCT1 and reprogramming factors in human PDAC tissues. In conclusion, the MCT1-dependent import of lactate supplies “reverse Warburg “PDAC cells with an efficient driver of metabostemness. This condition may essentially contribute to malignant traits including therapy resistance.
Collapse
|
119
|
Nunes SC. Exploiting Cancer Cells Metabolic Adaptability to Enhance Therapy Response in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:297-310. [PMID: 32130705 DOI: 10.1007/978-3-030-34025-4_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite all the progresses developed in prevention and new treatment approaches, cancer is the second leading cause of death worldwide, being chemoresistance a pivotal barrier in cancer management. Cancer cells present several mechanisms of drug resistance/tolerance and recently, growing evidence have been supporting a role of metabolism reprograming per se as a driver of chemoresistance. In fact, cancer cells display several adaptive mechanisms that allow the emergency of chemoresistance, revealing cancer as a disease that adapts and evolve along with the treatment. Therefore, clinical protocols that take into account the adaptive potential of cancer cells should be more effective than the current traditional standard protocols on the fighting against cancer.In here, some of the recent findings on the role of metabolism reprograming in cancer chemoresistance emergence will be discussed, as the potential evolutionary strategies that could unable these adaptations, hence allowing to prevent the emergency of treatment resistance, changing cancer outcome.
Collapse
Affiliation(s)
- Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
120
|
Serpa J. Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:1-34. [PMID: 32130691 DOI: 10.1007/978-3-030-34025-4_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment depends and generates dependence on all the cells and structures that share the same niche, the biotope. The contemporaneous view of the tumor microenvironment (TME) agrees with this idea. The cells that make up the tumor, whether malignant or not, behave similarly to classes of elements within a living community. These elements inhabit, modify and benefit from all the facilities the microenvironment has to offer and that will contribute to the survival and growth of the tumor and the progression of the disease.The metabolic adaptation to microenvironment is a crucial process conducting to an established tumor able to grow locally, invade and metastasized. The metastatic cancer cells are reasonable more plastic than non-metastatic cancer cells, because the previous ones must survive in the microenvironment where the primary tumor develops and in addition, they must prosper in the microenvironment in the metastasized organ.The metabolic remodeling requires not only the adjustment of metabolic pathways per se but also the readjustment of signaling pathways that will receive and obey to the extracellular instructions, commanding the metabolic adaptation. Many diverse players are pivotal in cancer metabolic fitness from the initial signaling stimuli, going through the activation or repression of genes, until the phenotype display. The new phenotype will permit the import and consumption of organic compounds, useful for energy and biomass production, and the export of metabolic products that are useless or must be secreted for a further recycling or controlled uptake. In the metabolic network, three subsets of players are pivotal: (1) the organic compounds; (2) the transmembrane transporters, and (3) the enzymes.This chapter will present the "Pharaonic" intent of diagraming the interplay between these three elements in an attempt of simplifying and, at the same time, of showing the complex sight of cancer metabolism, addressing the orchestrating role of microenvironment and highlighting the influence of non-cancerous cells.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
121
|
Carreira-Barbosa F, Nunes SC. Wnt Signaling: Paths for Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:189-202. [PMID: 32130700 DOI: 10.1007/978-3-030-34025-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Wnt signaling pathways are well known for having several pivotal roles during embryonic development. However, the same developmental signaling pathways also present key roles in cancer initiation and progression. In this chapter, several issues regarding the roles of both canonical and non-canonical Wnt signaling pathways in cancer will be explored, mainly concerning their role in the maintenance of cancer stemness, in the metabolism reprograming of cancer cells and in the modulation of the tumor microenvironment. The role of Wnt signaling cascades in the response of cancer cells to anti-cancer treatments will be also discussed, as well as its potential therapeutic targeting during cancer treatment. Collectively, increasing evidence has been supporting pivotal roles of Wnt signaling in several features of cancer biology, however; a lot is still to be elucidated.
Collapse
Affiliation(s)
| | - Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
122
|
Jin T, Wang C, Tian Y, Dai C, Zhu Y, Xu F. Mitochondrial metabolic reprogramming: An important player in liver cancer progression. Cancer Lett 2019; 470:197-203. [PMID: 31783085 DOI: 10.1016/j.canlet.2019.11.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
Mitochondria are known as essential biosynthetic, bioenergetic and signaling organelles, and play a critical role in cell differentiation, proliferation, and death. Nowadays, cancer is emergingly considered as a mitochondrial metabolic disease. Mitochondria also play an essential role in liver carcinogenesis. Liver cells are highly regenerative and require high energy. For that reason, a large number of mitochondria are present and functional in liver cells. Abnormalities in mitochondrial metabolism in human liver are known to be one of the carcinogenic factors. Interestingly, immune checkpoints regulate mitochondrial metabolic energetics of the tumor, the tumor microenvironment, as well as the tumor-specific immune response. This regulation forms a positive loop between the metabolic reprogramming of both cancer cells and immune cells. In this review, we discuss the evidence and mechanisms that mitochondria interplay with immune checkpoints to influence different steps of oncogenesis, as well as the potential of mitochondria as therapeutic targets for liver cancer therapy.
Collapse
Affiliation(s)
- Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chao Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Surgery, Northeast International Hospital, Shenyang, 110623, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
123
|
Rapanone, a naturally occurring benzoquinone, inhibits mitochondrial respiration and induces HepG2 cell death. Toxicol In Vitro 2019; 63:104737. [PMID: 31756542 DOI: 10.1016/j.tiv.2019.104737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/26/2023]
Abstract
Rapanone is a natural occurring benzoquinone with several biological effects including unclear cytotoxic mechanisms. Here we addressed if mitochondria are involved in the cytotoxicity of rapanone towards cancer cells by employing hepatic carcinoma (HepG2) cells and isolated rat liver mitochondria. In the HepG2, rapanone (20-40 μM) induced a concentration-dependent mitochondrial membrane potential dissipation, ATP depletion, hydrogen peroxide generation and, phosphatidyl serine externalization; the latter being indicative of apoptosis induction. Rapanone toxicity towards primary rats hepatocytes (IC50 = 35.58 ± 1.50 μM) was lower than that found for HepG2 cells (IC50 = 27.89 ± 0.75 μM). Loading of isolated mitochondria with rapanone (5-20 μM) caused a concentration-dependent inhibition of phosphorylating and uncoupled respirations supported by complex I (glutamate and malate) or the complex II (succinate) substrates, being the latter eliminated by complex IV substrate (TMPD/ascorbate). Rapanone also dissipated mitochondrial membrane potential, depleted ATP content, released Ca2+ from Ca2+-loaded mitochondria, increased ROS generation, cytochrome c release and membrane fluidity. Further analysis demonstrated that rapanone prevented the cytochrome c reduction in the presence of decylbenzilquinol, identifying complex III as the site of its inhibitory action. Computational docking results of rapanone to cytochrome bc1 (Cyt bc1) complex from the human sources found spontaneous thermodynamic processes for the quinone-Qo and Qi binding interactions, supporting the experimental in vitro assays. Collectively, these observations suggest that rapanone impairs mitochondrial respiration by inhibiting electron transport chain at Complex III and promotes mitochondrial dysfunction. This property is potentially involved in rapanone toxicity on cancer cells.
Collapse
|
124
|
Mitochondrial Damage Mediated by miR-1 Overexpression in Cancer Stem Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:938-953. [PMID: 31765945 PMCID: PMC6883328 DOI: 10.1016/j.omtn.2019.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cells rely on mitochondrial respiration for survival. However, the effect of microRNAs (miRNAs) on mitochondria of cells has not been extensively explored. Our results indicated that the overexpression of a miRNA (miR-1) could destroy mitochondria of cancer stem cells. miR-1 was downregulated in melanoma stem cells (MSCs) and breast cancer stem cells (BCSCs) compared with cancer non-stem cells. However, the upregulation of miR-1 in cancer non-stem cells did not induce mitochondrial damage. miR-1 overexpression caused mitochondrial damage of cancer stem cells by directly targeting the 3′ UTRs of MINOS1 (mitochondrial inner membrane organizing system 1) and GPD2 (glycerol-3-phosphate dehydrogenase 2) genes and interacting with LRPPRC (leucine-rich pentatricopeptide-repeat containing) protein, a protein localized in mitochondria. MINOS1, GPD2, and LRPPRC in mitochondria were required for mitochondrial inner membrane. The results of in vitro and in vivo assays demonstrated that miR-1 overexpression induced mitophagy of cancer stem cells. Therefore, our study contributed novel insights into the mechanism of miRNA-mediated regulation of mitochondria morphology of cancer stem cells.
Collapse
|
125
|
Loponte S, Lovisa S, Deem AK, Carugo A, Viale A. The Many Facets of Tumor Heterogeneity: Is Metabolism Lagging Behind? Cancers (Basel) 2019; 11:E1574. [PMID: 31623133 PMCID: PMC6826850 DOI: 10.3390/cancers11101574] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor functional heterogeneity has been recognized for decades, and technological advancements are fueling renewed interest in uncovering the cell-intrinsic and extrinsic factors that influence tumor development and therapeutic response. Intratumoral heterogeneity is now arguably one of the most-studied topics in tumor biology, leading to the discovery of new paradigms and reinterpretation of old ones, as we aim to understand the profound implications that genomic, epigenomic, and functional heterogeneity hold with regard to clinical outcomes. In spite of our improved understanding of the biological complexity of cancer, characterization of tumor metabolic heterogeneity has lagged behind, lost in a century-old controversy debating whether glycolysis or mitochondrial respiration is more influential. But is tumor metabolism really so simple? Here, we review historical and current views of intratumoral heterogeneity, with an emphasis on summarizing the emerging data that begin to illuminate just how vast the spectrum of metabolic strategies a tumor can employ may be, and what this means for how we might interpret other tumor characteristics, such as mutational landscape, contribution of microenvironmental influences, and treatment resistance.
Collapse
Affiliation(s)
- Sara Loponte
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Sara Lovisa
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Angela K Deem
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Alessandro Carugo
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
126
|
Lebelo MT, Joubert AM, Visagie MH. Warburg effect and its role in tumourigenesis. Arch Pharm Res 2019; 42:833-847. [PMID: 31473944 DOI: 10.1007/s12272-019-01185-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022]
Abstract
Glucose is a crucial molecule in energy production and produces different end products in non-tumourigenic- and tumourigenic tissue metabolism. Tumourigenic cells oxidise glucose by fermentation and generate lactate and adenosine triphosphate even in the presence of oxygen (Warburg effect). The Na+/H+-antiporter is upregulated in tumourigenic cells resulting in release of lactate- and H+ ions into the extracellular space. Accumulation of lactate- and proton ions in the extracellular space results in an acidic environment that promotes invasion and metastasis. Otto Warburg reported that tumourigenic cells have defective mitochondria that produce less energy. However, decades later it became evident that these mitochondria have adapted with alterations in mitochondrial content, structure, function and activity. Mitochondrial biogenesis and mitophagy regulate the formation of new mitochondria and degradation of defective mitochondria in order to combat accumulation of mutagenic mitochondrial deoxyribonucleic acid. Tumourigenic cells also produce increase reactive oxygen species (ROS) resulting from upregulated glycolysis leading to pathogenesis including cancer. Moderate ROS levels exert proliferative- and prosurvival signaling, while high ROS quantities induce cell death. Understanding the crosstalk between aberrant metabolism, redox regulation, mitochondrial adaptions and pH regulation provides scientific- and medical communities with new opportunities to explore cancer therapies.
Collapse
Affiliation(s)
- Maphuti T Lebelo
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Anna M Joubert
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Michelle H Visagie
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.
| |
Collapse
|
127
|
Li W, Yong J, Xu Y, Wang Y, Zhang Y, Ren H, Li X. Glutathione depletion and dual-model oxygen balance disruption for photodynamic therapy enhancement. Colloids Surf B Biointerfaces 2019; 183:110453. [PMID: 31465940 DOI: 10.1016/j.colsurfb.2019.110453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
Photodynamic therapy (PDT) is a prospective approach to cure tumor diseases. However, tumor micro-environment is notably characterized with severe hypoxia and high expression of glutathione (GSH), which seriously limit its clinical application. Here, based on the characteristics of perfluorocarbon (PFC) to dissolve substantial oxygen (O2) and the sensitivity of reductive GSH to S-NO group, we designed GSH depletion and dual-model O2 supply strategies to promote PDT enhancement. The PFC nanoliposomes (FI@Lip) and biocompatible NO donor S-nitrosated human serum albumin (HSA-SNO) were combined to synergistically combat the obstacle of tumor micro-environment, reducing GSH concentration and increasing singlet oxygen (1O2) generation. In vitro, after irradiation with NIR laser, the PFC in FI@Lip dissolved more O2 to increase 1O2 generation. In addition, with co-delivery of HSA-SNO, it can effectively promote GSH depletion to recover 1O2 level and release NO concurrently to inhibit mitochondrial respiration. This combination strategy of FI@Lip and HSA-SNO obviously relieved intracellular hypoxia and decreased GSH to increase more toxic 1O2 generation for PDT enhancement. The present work will play as an enlightening role in PDT design and clinical application in the near future.
Collapse
Affiliation(s)
- Weilan Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Jiahui Yong
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Yan Xu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Yonglu Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
128
|
Datta KK, Patil S, Patel K, Babu N, Raja R, Nanjappa V, Mangalaparthi KK, Dhaka B, Rajagopalan P, Deolankar SC, Kannan R, Kumar P, Prasad TSK, Mathur PP, Kumari A, Manoharan M, Coral K, Murugan S, Sidransky D, Gupta R, Gupta R, Khanna-Gupta A, Chatterjee A, Gowda H. Chronic Exposure to Chewing Tobacco Induces Metabolic Reprogramming and Cancer Stem Cell-Like Properties in Esophageal Epithelial Cells. Cells 2019; 8:cells8090949. [PMID: 31438645 PMCID: PMC6770059 DOI: 10.3390/cells8090949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/10/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022] Open
Abstract
Tobacco in its smoke and smokeless form are major risk factors for esophageal squamous cell carcinoma (ESCC). However, molecular alterations associated with smokeless tobacco exposure are poorly understood. In the Indian subcontinent, tobacco is predominantly consumed in chewing form. An understanding of molecular alterations associated with chewing tobacco exposure is vital for identifying molecular markers and potential targets. We developed an in vitro cellular model by exposing non-transformed esophageal epithelial cells to chewing tobacco over an eight-month period. Chronic exposure to chewing tobacco led to increase in cell proliferation, invasive ability and anchorage independent growth, indicating cell transformation. Molecular alterations associated with chewing tobacco exposure were characterized by carrying out exome sequencing and quantitative proteomic profiling of parental cells and chewing tobacco exposed cells. Quantitative proteomic analysis revealed increased expression of cancer stem cell markers in tobacco treated cells. In addition, tobacco exposed cells showed the Oxidative Phosphorylation (OXPHOS) phenotype with decreased expression of enzymes associated with glycolytic pathway and increased expression of a large number of mitochondrial proteins involved in electron transport chain as well as enzymes of the tricarboxylic acid (TCA) cycle. Electron micrographs revealed increase in number and size of mitochondria. Based on these observations, we propose that chronic exposure of esophageal epithelial cells to tobacco leads to cancer stem cell-like phenotype. These cells show the characteristic OXPHOS phenotype, which can be potentially targeted as a therapeutic strategy.
Collapse
Affiliation(s)
- Keshava K Datta
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
- Department of Medical Biotechnologies, School of Dental Medicine, University of Siena, 53100 Siena, Italy
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Niraj Babu
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
- Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal 576104, India
| | - Remya Raja
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | | | - Kiran Kumar Mangalaparthi
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Bharti Dhaka
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | | | - Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bangalore 560029, India
| | - Ramakrishnan Kannan
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bangalore 560029, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Premendu P Mathur
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar 751024, India
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry 605014, India
| | | | | | | | | | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ravi Gupta
- Medgenome Labs Pvt. Ltd., Bangalore 560099, India
| | - Rohit Gupta
- Medgenome Labs Pvt. Ltd., Bangalore 560099, India
| | | | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.
- Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal 576104, India.
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.
- Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal 576104, India.
| |
Collapse
|
129
|
Walsh HR, Cruickshank BM, Brown JM, Marcato P. The Flick of a Switch: Conferring Survival Advantage to Breast Cancer Stem Cells Through Metabolic Plasticity. Front Oncol 2019; 9:753. [PMID: 31552162 PMCID: PMC6736574 DOI: 10.3389/fonc.2019.00753] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Within heterogeneous tumors, cancer stem cell (CSC) populations exhibit the greatest tumor initiation potential, promote metastasis, and contribute to therapy resistance. For breast cancer specifically, CSCs are identified by CD44highCD24low cell surface marker expression and increased aldehyde dehydrogenase activity. In general, bulk breast tumor cells possess altered energetics characterized by aerobic glycolysis. In contrast, breast CSCs appear to have adaptive metabolic plasticity that allows these tumor-initiating cells to switch between glycolysis and oxidative phosphorylation, depending on factors present in the tumor microenvironment (e.g., hypoxia, reactive oxygen species, availability of glucose). In this article, we review the regulatory molecules that may facilitate the metabolic plasticity of breast CSCs. These regulatory factors include epigenetic chromatin modifiers, non-coding RNAs, transcriptional repressors, transcription factors, energy and stress sensors, and metabolic enzymes. Furthermore, breast cancer cells acquire CSC-like characteristics and altered energetics by undergoing epithelial-mesenchymal transition (EMT). This energy costly process is paired with reprogrammed glucose metabolism by epigenetic modifiers that regulate expression of both EMT and other metabolism-regulating genes. The survival advantage imparted to breast CSCs by metabolic plasticity suggests that targeting the factors that mediate the energetic switch should hinder tumorigenesis and lead to improved patient outcomes.
Collapse
Affiliation(s)
- Hayley R Walsh
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Justin M Brown
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
130
|
Murata MM, Kong X, Moncada E, Chen Y, Imamura H, Wang P, Berns MW, Yokomori K, Digman MA. NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell 2019; 30:2584-2597. [PMID: 31390283 PMCID: PMC6740200 DOI: 10.1091/mbc.e18-10-0650] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA damage signaling is critical for the maintenance of genome integrity and cell fate decision. Poly(ADP-ribose) polymerase 1 (PARP1) is a DNA damage sensor rapidly activated in a damage dose- and complexity-dependent manner playing a critical role in the initial chromatin organization and DNA repair pathway choice at damage sites. However, our understanding of a cell-wide consequence of its activation in damaged cells is still limited. Using the phasor approach to fluorescence lifetime imaging microscopy and fluorescence-based biosensors in combination with laser microirradiation, we found a rapid cell-wide increase of the bound NADH fraction in response to nuclear DNA damage, which is triggered by PARP-dependent NAD+ depletion. This change is linked to the metabolic balance shift to oxidative phosphorylation (oxphos) over glycolysis. Inhibition of oxphos, but not glycolysis, resulted in parthanatos due to rapid PARP-dependent ATP deprivation, indicating that oxphos becomes critical for damaged cell survival. The results reveal the novel prosurvival response to PARP activation through a change in cellular metabolism and demonstrate how unique applications of advanced fluorescence imaging and laser microirradiation-induced DNA damage can be a powerful tool to interrogate damage-induced metabolic changes at high spatiotemporal resolution in a live cell.
Collapse
Affiliation(s)
- Michael M Murata
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA 92697
| | - Xiangduo Kong
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Emmanuel Moncada
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA 92697
| | - Yumay Chen
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697.,UC Irvine Diabetes Center, University of California, Irvine, Irvine, CA 92697
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ping Wang
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697.,UC Irvine Diabetes Center, University of California, Irvine, Irvine, CA 92697
| | - Michael W Berns
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA 92697.,Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA 92697
| | - Kyoko Yokomori
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Michelle A Digman
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
131
|
Purohit V, Simeone DM, Lyssiotis CA. Metabolic Regulation of Redox Balance in Cancer. Cancers (Basel) 2019; 11:cancers11070955. [PMID: 31288436 PMCID: PMC6678865 DOI: 10.3390/cancers11070955] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are chemically active free radicals produced by partial reduction of oxygen that can activate discrete signaling pathways or disrupt redox homeostasis depending on their concentration. ROS interacts with biomolecules, including DNA, and can cause mutations that can transform normal cells into cancer cells. Furthermore, certain cancer-causing mutations trigger alterations in cellular metabolism that can increase ROS production, resulting in genomic instability, additional DNA mutations, and tumor evolution. To prevent excess ROS-mediated toxicity, cancer-causing mutations concurrently activate pathways that manage this oxidative burden. Hence, an understanding of the metabolic pathways that regulate ROS levels is imperative for devising therapies that target tumor cells. In this review, we summarize the dual role of metabolism as a generator and inhibitor of ROS in cancer and discuss current strategies to target the ROS axis.
Collapse
Affiliation(s)
- Vinee Purohit
- Perlmutter Cancer Center, New York University, New York, NY 10016, USA
| | - Diane M Simeone
- Perlmutter Cancer Center, New York University, New York, NY 10016, USA
- Department of Surgery, New York University, New York, NY 10016, USA
- Department of Pathology, New York University, New York, NY 10016, USA
| | - Costas A Lyssiotis
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
- Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
132
|
Wang D, Zhou M, Huang H, Ruan L, Lu H, Zhang J, Chen J, Gao J, Chai Z, Hu Y. Gold Nanoparticle-Based Probe for Analyzing Mitochondrial Temperature in Living Cells. ACS APPLIED BIO MATERIALS 2019; 2:3178-3182. [DOI: 10.1021/acsabm.9b00463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dongqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Mengxue Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiru Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
133
|
Nguyen C, Pandey S. Exploiting Mitochondrial Vulnerabilities to Trigger Apoptosis Selectively in Cancer Cells. Cancers (Basel) 2019; 11:E916. [PMID: 31261935 PMCID: PMC6678564 DOI: 10.3390/cancers11070916] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022] Open
Abstract
The transformation of normal cells to the cancerous stage involves multiple genetic changes or mutations leading to hyperproliferation, resistance to apoptosis, and evasion of the host immune system. However, to accomplish hyperproliferation, cancer cells undergo profound metabolic reprogramming including oxidative glycolysis and acidification of the cytoplasm, leading to hyperpolarization of the mitochondrial membrane. The majority of drug development research in the past has focused on targeting DNA replication, repair, and tubulin polymerization to induce apoptosis in cancer cells. Unfortunately, these are not cancer-selective targets. Recently, researchers have started focusing on metabolic, mitochondrial, and oxidative stress vulnerabilities of cancer cells that can be exploited as selective targets for inducing cancer cell death. Indeed, the hyperpolarization of mitochondrial membranes in cancer cells can lead to selective importing of mitocans that can induce apoptotic effects. Herein, we will discuss recent mitochondrial-selective anticancer compounds (mitocans) that have shown selective toxicity against cancer cells. Increased oxidative stress has also been shown to be very effective in selectively inducing cell death in cancer cells. This oxidative stress could lead to mitochondrial dysfunction, which in turn will produce more reactive oxygen species (ROS). This creates a vicious cycle of mitochondrial dysfunction and ROS production, irreversibly leading to cell suicide. We will also explore the possibility of combining these compounds to sensitize cancer cells to the conventional anticancer agents. Mitocans in combination with selective oxidative-stress producing agents could be very effective anticancer treatments with minimal effect on healthy cells.
Collapse
Affiliation(s)
- Christopher Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9E 3P4, Canada
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9E 3P4, Canada.
| |
Collapse
|
134
|
Mo Y, Wang Y, Zhang L, Yang L, Zhou M, Li X, Li Y, Li G, Zeng Z, Xiong W, Xiong F, Guo C. The role of Wnt signaling pathway in tumor metabolic reprogramming. J Cancer 2019; 10:3789-3797. [PMID: 31333796 PMCID: PMC6636296 DOI: 10.7150/jca.31166] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
The occurrence and development of tumors is a complex process involving long-term multi-factor participation. In this process, tumor cells from a set of abnormal metabolic patterns that are different from normal cells. This abnormal metabolic change is called metabolic reprogramming of tumors. Wnt signaling pathway is one of the critical signaling pathways regulating cell proliferation and differentiation. In recent years, it has been found that Wnt signaling participates in the occurrence and development of malignant tumors by affecting metabolic reprogramming. This paper reviews the role of Wnt signaling in tumor metabolic reprogramming to provide crucial theoretical guidance for targeted therapy and drug response of tumors.
Collapse
Affiliation(s)
- Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Lishen Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Liting Yang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
135
|
Sun H, Chen L, Cao S, Liang Y, Xu Y. Warburg Effects in Cancer and Normal Proliferating Cells: Two Tales of the Same Name. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:273-286. [PMID: 31071451 PMCID: PMC6818181 DOI: 10.1016/j.gpb.2018.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 01/07/2023]
Abstract
It has been observed that both cancer tissue cells and normal proliferating cells (NPCs) have the Warburg effect. Our goal here is to demonstrate that they do this for different reasons. To accomplish this, we have analyzed the transcriptomic data of over 7000 cancer and control tissues of 14 cancer types in TCGA and data of five NPC types in GEO. Our analyses reveal that NPCs accumulate large quantities of ATPs produced by the respiration process before starting the Warburg effect, to raise the intracellular pH from ∼6.8 to ∼7.2 and to prepare for cell division energetically. Once cell cycle starts, the cells start to rely on glycolysis for ATP generation followed by ATP hydrolysis and lactic acid release, to maintain the elevated intracellular pH as needed by cell division since together the three processes are pH neutral. The cells go back to the normal respiration-based ATP production once the cell division phase ends. In comparison, cancer cells have reached their intracellular pH at ∼7.4 from top down as multiple acid-loading transporters are up-regulated and most acid-extruding ones except for lactic acid exporters are repressed. Cancer cells use continuous glycolysis for ATP production as way to acidify the intracellular space since the lactic acid secretion is decoupled from glycolysis-based ATP generation and is pH balanced by increased expressions of acid-loading transporters. Co-expression analyses suggest that lactic acid secretion is regulated by external, non-pH related signals. Overall, our data strongly suggest that the two cell types have the Warburg effect for very different reasons.
Collapse
Affiliation(s)
- Huiyan Sun
- The China-Japan Union Hospital, Jilin University, Changchun 130033, China; MOE Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Jilin University, Changchun 130012, China; Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Liang Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Sha Cao
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; Department of Biostatistics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Yanchun Liang
- MOE Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Jilin University, Changchun 130012, China; Zhuhai Laboratory of MOE Key Laboratory of Symbolic Computation and Knowledge Engineering, Zhuhai College of Jilin University, Zhuhai 519041, China
| | - Ying Xu
- The China-Japan Union Hospital, Jilin University, Changchun 130033, China; MOE Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Jilin University, Changchun 130012, China; Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
136
|
Spurlock B, Gupta P, Basu MK, Mukherjee A, Hjelmeland AB, Darley-Usmar V, Parker D, Foxall ME, Mitra K. New quantitative approach reveals heterogeneity in mitochondrial structure-function relations in tumor-initiating cells. J Cell Sci 2019; 132:jcs.230755. [PMID: 30910831 DOI: 10.1242/jcs.230755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Steady-state mitochondrial structure or morphology is primarily maintained by a balance of opposing fission and fusion events between individual mitochondria, which is collectively referred to as mitochondrial dynamics. The details of the bidirectional relationship between the status of mitochondrial dynamics (structure) and energetics (function) require methods to integrate these mitochondrial aspects. To study the quantitative relationship between the status of mitochondrial dynamics (fission, fusion, matrix continuity and diameter) and energetics (ATP and redox), we have developed an analytical approach called mito-SinCe2 After validating and providing proof of principle, we applied mito-SinCe2 on ovarian tumor-initiating cells (ovTICs). Mito-SinCe2 analyses led to the hypothesis that mitochondria-dependent ovTICs interconvert between three states, that have distinct relationships between mitochondrial energetics and dynamics. Interestingly, fusion and ATP increase linearly with each other only once a certain level of fusion is attained. Moreover, mitochondrial dynamics status changes linearly with ATP or with redox, but not simultaneously with both. Furthermore, mito-SinCe2 analyses can potentially predict new quantitative features of the opposing fission versus fusion relationship and classify cells into functional classes based on their mito-SinCe2 states.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Brian Spurlock
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Priyanka Gupta
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Malay Kumar Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Avik Mukherjee
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anita B Hjelmeland
- Department of Cell Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Danitra Parker
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - McKenzie E Foxall
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
137
|
Wang D, Huang H, Zhou M, Lu H, Chen J, Chang YT, Gao J, Chai Z, Hu Y. A thermoresponsive nanocarrier for mitochondria-targeted drug delivery. Chem Commun (Camb) 2019; 55:4051-4054. [PMID: 30870553 DOI: 10.1039/c9cc00603f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria emerge as an important target for cancer therapy. Herein, by taking advantage of the recently reported high temperature of mitochondria, a well-tuned thermoresponsive nanocarrier was developed for specifically delivering the anticancer drug, paclitaxel (PTX), to mitochondria in cancer cells. The temperature-dependent delivery of drugs to mitochondria represents a novel anticancer strategy.
Collapse
Affiliation(s)
- Dongqing Wang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Mikó E, Kovács T, Sebő É, Tóth J, Csonka T, Ujlaki G, Sipos A, Szabó J, Méhes G, Bai P. Microbiome-Microbial Metabolome-Cancer Cell Interactions in Breast Cancer-Familiar, but Unexplored. Cells 2019; 8:E293. [PMID: 30934972 PMCID: PMC6523810 DOI: 10.3390/cells8040293] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a leading cause of death among women worldwide. Dysbiosis, an aberrant composition of the microbiome, characterizes breast cancer. In this review we discuss the changes to the metabolism of breast cancer cells, as well as the composition of the breast and gut microbiome in breast cancer. The role of the breast microbiome in breast cancer is unresolved, nevertheless it seems that the gut microbiome does have a role in the pathology of the disease. The gut microbiome secretes bioactive metabolites (reactivated estrogens, short chain fatty acids, amino acid metabolites, or secondary bile acids) that modulate breast cancer. We highlight the bacterial species or taxonomical units that generate these metabolites, we show their mode of action, and discuss how the metabolites affect mitochondrial metabolism and other molecular events in breast cancer. These metabolites resemble human hormones, as they are produced in a "gland" (in this case, the microbiome) and they are subsequently transferred to distant sites of action through the circulation. These metabolites appear to be important constituents of the tumor microenvironment. Finally, we discuss how bacterial dysbiosis interferes with breast cancer treatment through interfering with chemotherapeutic drug metabolism and availability.
Collapse
Affiliation(s)
- Edit Mikó
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
- Department of Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Éva Sebő
- Kenézy Breast Center, Kenézy Gyula County Hospital, 4032 Debrecen, Hungary.
| | - Judit Tóth
- Kenézy Breast Center, Kenézy Gyula County Hospital, 4032 Debrecen, Hungary.
| | - Tamás Csonka
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gyula Ujlaki
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Judit Szabó
- Department of Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
139
|
Aggarwal S, Gabrovsek L, Langeberg LK, Golkowski M, Ong SE, Smith FD, Scott JD. Depletion of dAKAP1-protein kinase A signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. J Biol Chem 2019; 294:3152-3168. [PMID: 30598507 PMCID: PMC6398132 DOI: 10.1074/jbc.ra118.006741] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Indexed: 01/23/2023] Open
Abstract
Breast cancer screening and new precision therapies have led to improved patient outcomes. Yet, a positive prognosis is less certain when primary tumors metastasize. Metastasis requires a coordinated program of cellular changes that promote increased survival, migration, and energy consumption. These pathways converge on mitochondrial function, where distinct signaling networks of kinases, phosphatases, and metabolic enzymes regulate these processes. The protein kinase A-anchoring protein dAKAP1 compartmentalizes protein kinase A (PKA) and other signaling enzymes at the outer mitochondrial membrane and thereby controls mitochondrial function and dynamics. Modulation of these processes occurs in part through regulation of dynamin-related protein 1 (Drp1). Here, we report an inverse relationship between the expression of dAKAP1 and mesenchymal markers in breast cancer. Molecular, cellular, and in silico analyses of breast cancer cell lines confirmed that dAKAP1 depletion is associated with impaired mitochondrial function and dynamics, as well as with increased glycolytic potential and invasiveness. Furthermore, disruption of dAKAP1-PKA complexes affected cell motility and mitochondrial movement toward the leading edge in invasive breast cancer cells. We therefore propose that depletion of dAKAP1-PKA "signaling islands" from the outer mitochondrial membrane augments progression toward metastatic breast cancer.
Collapse
Affiliation(s)
- Stacey Aggarwal
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Laura Gabrovsek
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Lorene K Langeberg
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Martin Golkowski
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Shao-En Ong
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - F Donelson Smith
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - John D Scott
- From the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
140
|
Yu W, Liu T, Zhang M, Wang Z, Ye J, Li CX, Liu W, Li R, Feng J, Zhang XZ. O 2 Economizer for Inhibiting Cell Respiration To Combat the Hypoxia Obstacle in Tumor Treatments. ACS NANO 2019; 13:1784-1794. [PMID: 30698953 DOI: 10.1021/acsnano.8b07852] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hypoxia, a ubiquitously aberrant phenomenon implicated in tumor growth, causes severe tumor resistance to therapeutic interventions. Instead of the currently prevalent solution through intratumoral oxygen supply, we put forward an "O2-economizer" concept by inhibiting the O2 consumption of cell respiration to spare endogenous O2 and overcome the hypoxia barrier. A nitric oxide (NO) donor responsible for respiration inhibition and a photosensitizer for photodynamic therapy (PDT) are co-loaded into poly(d,l-lactide- co-glycolide) nanovesicles to provide a PDT-specific O2 economizer. Once accumulating in tumors and subsequently responding to the locally reductive environment, the carried NO donor undergoes breakdown to produce NO for inhibiting cellular respiration, allowing more O2 in tumor cells to support the profound enhancement of PDT. Depending on the biochemical reallocation of cellular oxygen resource, this O2-economizer concept offers a way to address the important issue of hypoxia-induced tumor resistance to therapeutic interventions, including but not limited to PDT.
Collapse
Affiliation(s)
- Wuyang Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Tao Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Mingkang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Zixu Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Jingjie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Wenlong Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Runqing Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| |
Collapse
|
141
|
Park HK, Hong JH, Oh YT, Kim SS, Yin J, Lee AJ, Chae YC, Kim JH, Park SH, Park CK, Park MJ, Park JB, Kang BH. Interplay between TRAP1 and Sirtuin-3 Modulates Mitochondrial Respiration and Oxidative Stress to Maintain Stemness of Glioma Stem Cells. Cancer Res 2019; 79:1369-1382. [PMID: 30683653 DOI: 10.1158/0008-5472.can-18-2558] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/15/2018] [Accepted: 01/22/2019] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) cancer stem cells (CSC) are primarily responsible for metastatic dissemination, resistance to therapy, and relapse of GBM, the most common and aggressive brain tumor. Development and maintenance of CSCs require orchestrated metabolic rewiring and metabolic adaptation to a changing microenvironment. Here, we show that cooperative interplay between the mitochondrial chaperone TRAP1 and the major mitochondria deacetylase sirtuin-3 (SIRT3) in glioma stem cells (GSC) increases mitochondrial respiratory capacity and reduces production of reactive oxygen species. This metabolic regulation endowed GSCs with metabolic plasticity, facilitated adaptation to stress (particularly reduced nutrient supply), and maintained "stemness." Inactivation of TRAP1 or SIRT3 compromised their interdependent regulatory mechanisms, leading to metabolic alterations, loss of stemness, and suppression of tumor formation by GSC in vivo. Thus, targeting the metabolic mechanisms regulating interplay between TRAP1 and SIRT3 may provide a novel therapeutic option for intractable patients with GBM. SIGNIFICANCE: Discovery and functional analysis of a TRAP1-SIRT3 complex in glioma stem cells identify potential target proteins for glioblastoma treatment.
Collapse
Affiliation(s)
- Hye-Kyung Park
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jun-Hee Hong
- Division of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Young Taek Oh
- Division of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sung Soo Kim
- Division of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Jinlong Yin
- Division of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - An-Jung Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myung-Jin Park
- Division of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jong Bae Park
- Division of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea. .,Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
142
|
Ruan L, Zhou M, Chen J, Huang H, Zhang J, Sun H, Chai Z, Hu Y. Thermoresponsive drug delivery to mitochondria in vivo. Chem Commun (Camb) 2019; 55:14645-14648. [DOI: 10.1039/c9cc07538k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thermoresponsive drug delivery to mitochondria in a mouse model of cancer.
Collapse
Affiliation(s)
- Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Mengxue Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Hui Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films)
- City University of Hong Kong
- Kowloon
- China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| |
Collapse
|
143
|
Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1027453. [PMID: 30671168 PMCID: PMC6323533 DOI: 10.1155/2018/1027453] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is a major obstacle to the efficient and successful treatment of cancer. Initiation of metastasis requires epithelial-mesenchymal transition (EMT) that is regulated by several transcription factors, including Snail and ZEB1/2. EMT is closely linked to the acquisition of cancer stem cell (CSC) properties and chemoresistance, which contribute to tumor malignancy. Tumor suppressor p53 inhibits EMT and metastasis by negatively regulating several EMT-inducing transcription factors and regulatory molecules; thus, its inhibition is crucial in EMT, invasion, metastasis, and stemness. Metabolic alterations are another hallmark of cancer. Most cancer cells are more dependent on glycolysis than on mitochondrial oxidative phosphorylation for their energy production, even in the presence of oxygen. Cancer cells enhance other oncogenic metabolic pathways, such as glutamine metabolism, pentose phosphate pathway, and the synthesis of fatty acids and cholesterol. Metabolic reprogramming in cancer is regulated by the activation of oncogenes or loss of tumor suppressors that contribute to tumor progression. Oncogenic metabolism has been recently linked closely with the induction of EMT or CSC phenotypes by the induction of several metabolic enzyme genes. In addition, several transcription factors and molecules involved in EMT or CSCs, including Snail, Dlx-2, HIF-1α, STAT3, TGF-β, Wnt, and Akt, regulate oncogenic metabolism. Moreover, p53 induces metabolic change by directly regulating several metabolic enzymes. The collective data indicate the importance of oncogenic metabolism in the regulation of EMT, cell invasion and metastasis, and adoption of the CSC phenotype, which all contribute to malignant transformation and tumor development. In this review, we highlight the oncogenic metabolism as a key regulator of EMT and CSC, which is related with tumor progression involving metastasis and chemoresistance. Targeting oncometabolism might be a promising strategy for the development of effective anticancer therapy.
Collapse
|
144
|
Maimouni S, Issa N, Cheng S, Ouaari C, Cheema A, Kumar D, Byers S. Tumor suppressor RARRES1- A novel regulator of fatty acid metabolism in epithelial cells. PLoS One 2018; 13:e0208756. [PMID: 30557378 PMCID: PMC6296515 DOI: 10.1371/journal.pone.0208756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Retinoic acid receptor responder 1 (RARRES1) is silenced in many cancers and is differentially expressed in metabolism associated diseases, such as hepatic steatosis, hyperinsulinemia and obesity. Here we report a novel function of RARRES1 in metabolic reprogramming of epithelial cells. Using non-targeted LC-MS, we discovered that RARRES1 depletion in epithelial cells caused a global increase in lipid synthesis. RARRES1-depleted cells rewire glucose metabolism by switching from aerobic glycolysis to glucose-dependent de novo lipogenesis (DNL). Treatment with fatty acid synthase (FASN) inhibitor, C75, reversed the effects of RARRES1 depletion. The increased DNL in RARRES1-depleted normal breast and prostate epithelial cells proved advantageous to the cells during starvation, as the increase in fatty acid availability lead to more oxidized fatty acids (FAO), which were used for mitochondrial respiration. Expression of RARRES1 in several common solid tumors is also contextually correlated with expression of fatty acid metabolism genes and fatty acid-regulated transcription factors. Pathway enrichment analysis led us to determine that RARRES1 is regulated by peroxisome proliferating activated receptor (PPAR) signaling. These findings open up a new avenue for metabolic reprogramming and identify RARRES1 as a potential target for cancers and other diseases with impaired fatty acid metabolism.
Collapse
Affiliation(s)
- Sara Maimouni
- Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States of America
| | - Naiem Issa
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Selina Cheng
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Chokri Ouaari
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
- University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Amrita Cheema
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, United States of America
| | - Stephen Byers
- Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States of America
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| |
Collapse
|
145
|
Figarola JL, Singhal J, Singhal S, Kusari J, Riggs A. Bioenergetic modulation with the mitochondria uncouplers SR4 and niclosamide prevents proliferation and growth of treatment-naïve and vemurafenib-resistant melanomas. Oncotarget 2018; 9:36945-36965. [PMID: 30651927 PMCID: PMC6319337 DOI: 10.18632/oncotarget.26421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
BRAF mutations are detected in >50% of all melanomas. These mutations impair the LKB1-AMPK signaling, an important metabolic pathway associated with cell growth, proliferation and survival. Melanoma patients with BRAF mutations are usually treated with BRAF inhibitors such as vemurafenib, but responses are short-lived as drug resistant tumors metabolically switch to mitochondrial oxidative phosphorylation (OXPHOS) to escape metabolic stress-induced BRAF inhibition. Additionally, a large subset of melanoma utilizes OXPHOS in their metabolism, which can confer de novo resistance to BRAF inhibitors. Therefore, uncoupling of OXPHOS to perturb energy homeostasis and to indirectly stimulate AMPK could be a novel treatment for melanoma and to overcome intrinsic and acquired resistance to BRAF inhibitors. Here, we investigated the effects of SR4 and niclosamide, two small molecule mitochondria uncouplers, on the growth and proliferation of treatment-naïve and vemurafenib-resistant melanomas in vitro and in vivo. SR4 and niclosamide inhibited melanoma proliferation irrespective of BRAF/NRAS status. Melanomas with greater OXPHOS phenotype (higher OCR/ECAR), with LKB1 mutation, or with acquired resistance to vemurafenib displayed greater sensitivity to both uncouplers. More importantly, SR4 and niclosamide inhibited tumor growth in both treatment-naïve and vemurafenib-resistant xenograft mice models. Mechanistic studies indicate both uncouplers induced energetic stress, modulated the AMPK-mTOR pathway, and promoted apoptosis without affecting MEK-ERK MAPK signaling. These results suggest that uncouplers such as SR4 and niclosamide may be useful as first line treatment against melanoma regardless of BRAF/NRAS status, and as an adjuvant therapy for patients failing MAPK inhibitors.
Collapse
Affiliation(s)
- James L. Figarola
- Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sharad Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jyotirmoy Kusari
- Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arthur Riggs
- Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
146
|
Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L. Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. Cell Biosci 2018; 8:56. [PMID: 30410721 PMCID: PMC6215344 DOI: 10.1186/s13578-018-0257-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023] Open
Abstract
Contrary to Warburg’s hypothesis, mitochondrial oxidative phosphorylation (OXPHOS) contributes significantly to fueling cancer cells. Several recent studies have demonstrated that radiotherapy-resistant and chemotherapy-resistant cancer cells depend on OXPHOS for survival and progression. Several cancers exhibit an increased risk in association with heme intake. Mitochondria are widely known to carry out oxidative phosphorylation. In addition, mitochondria are also involved in heme synthesis. Heme serves as a prosthetic group for several proteins that constitute the complexes of mitochondrial electron transport chain. Therefore, heme plays a pivotal role in OXPHOS and oxygen consumption. Further, lung cancer cells exhibit heme accumulation and require heme for proliferation and invasion in vitro. Abnormalities in mitochondrial biogenesis and mutations are implicated in cancer. This review delves into mitochondrial OXPHOS and lesser explored area of heme metabolism in lung cancer.
Collapse
Affiliation(s)
| | - Keely E FitzGerald
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX USA
| | | | - Chantal Vidal
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX USA
| |
Collapse
|
147
|
Sharma A, Lee MG, Shi H, Won M, Arambula JF, Sessler JL, Lee JY, Chi SG, Kim JS. Overcoming Drug Resistance by Targeting Cancer Bioenergetics with an Activatable Prodrug. Chem 2018; 4:2370-2383. [PMID: 39830500 PMCID: PMC11741667 DOI: 10.1016/j.chempr.2018.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nearly without exception, all known cancer chemotherapeutics elicit a resistance response over time. The resulting resistance is correlated with poor clinical outcomes. Here, we report an approach to overcoming resistance through reprogramming oncogene-directed alterations in mitochondrial metabolism before drug activation while simultaneously circumventing drug efflux pumps. Conjugate C1 increases cancer cell apoptosis and inhibits regrowth of drug-resistant tumors, as inferred from efficacy studies carried out in human cancer cells and in Dox-resistant xenograft tumor models. It also displays minimal whole-animal toxicity. These benefits are ascribed to an ability to evade chemoresistance by switching cancer cell metabolism back to normal mitochondrial oxidative phosphorylation while helping target the active Dox to first the mitochondrion and then the nucleus.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul 02841 Korea
- These authors contributed equally
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Korea
- These authors contributed equally
| | - Hu Shi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
- These authors contributed equally
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841 Korea
| | - Jonathan F. Arambula
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Jonathan L. Sessler
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712-1224, USA
- Lead Contact
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841 Korea
| |
Collapse
|
148
|
Ju R, Fei K, Li S, Chen C, Zhu L, Li J, Zhang D, Guo L, Ye C. Metabolic Mechanisms and a Rational Combinational Application of Carboxyamidotriazole in Fighting Pancreatic Cancer Progression after Chemotherapy. J Pharmacol Exp Ther 2018; 367:20-27. [PMID: 30002095 DOI: 10.1124/jpet.118.249326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022] Open
Abstract
The anticancer and anti-inflammatory effects of carboxyamidotriazole (CAI) have been demonstrated in several studies, but the underlying mechanisms remain to be elucidated. This study showed that CAI caused metabolic reprogramming of pancreatic cancer cells. The inhibition of mitochondrial oxidative metabolism by CAI led to increased glutamine-dependent reductive carboxylation and enhanced glycolytic metabolism. The presence of environmental substances that affect cellular metabolism, such as glutamine and pyruvate, attenuated the anticancer efficacy of CAI. Based on the action of CAI: 1) when glutamine was removed, the NAD+/NADH ratio was decreased, the synthesis of cellular aspartate was reduced, and autophagy flux was blocked; and 2) when glycolysis was pharmacologically inhibited, the ATP level was significantly decreased, the cell viability was greatly inhibited, and the compensatory rescue effect of glutamine was eliminated. When combined with chemotherapy, cotreatment with CAI and the glycolysis inhibitor 2-deoxyglucose (2-DG) inhibited the pancreatic cancer progression after chemotherapy. As the inhibition of mitochondrial oxidative metabolism can explain several anticancer activities of CAI reported previously, including inhibition of calcium entry and induction of reactive oxygen species, we demonstrate that inhibition of mitochondrial oxidative phosphorylation may be the fundamental mechanism of CAI. The combination of CAI and 2-DG causes energy depletion in cancer cells, eliminating the rescue effect of the metabolic environment. Inhibiting pancreatic cancer progression after chemotherapy is a rational application of this metabolism-disturbing combination strategy.
Collapse
Affiliation(s)
- Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kailun Fei
- Department of Pharmacology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Siang Li
- Department of Pharmacology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Chen Chen
- Department of Pharmacology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Dechang Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Caiying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
149
|
Le Bourgeois T, Strauss L, Aksoylar HI, Daneshmandi S, Seth P, Patsoukis N, Boussiotis VA. Targeting T Cell Metabolism for Improvement of Cancer Immunotherapy. Front Oncol 2018; 8:237. [PMID: 30123774 PMCID: PMC6085483 DOI: 10.3389/fonc.2018.00237] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
There has been significant progress in utilizing our immune system against cancer, mainly by checkpoint blockade and T cell-mediated therapies. The field of cancer immunotherapy is growing rapidly but durable clinical benefits occur only in a small subset of responding patients. It is currently recognized that cancer creates a suppressive metabolic microenvironment, which contributes to ineffective immune function. Metabolism is a common cellular feature, and although there has been significant progress in understanding the detrimental role of metabolic changes of the tumor microenvironment (TEM) in immune cells, there is still much to be learned regarding unique targetable pathways. Elucidation of cancer and immune cell metabolic profiles is critical for identifying mechanisms that regulate metabolic reprogramming within the TEM. Metabolic targets that mediate immunosuppression and are fundamental in sustaining tumor growth can be exploited therapeutically for the development of approaches to increase the efficacy of immunotherapies. Here, we will highlight the importance of metabolism on the function of tumor-associated immune cells and will address the role of key metabolic determinants that might be targets of therapeutic intervention for improvement of tumor immunotherapies.
Collapse
Affiliation(s)
- Thibault Le Bourgeois
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Laura Strauss
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Halil-Ibrahim Aksoylar
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Saeed Daneshmandi
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Pankaj Seth
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
150
|
de Bari L, Atlante A. Including the mitochondrial metabolism of L-lactate in cancer metabolic reprogramming. Cell Mol Life Sci 2018; 75:2763-2776. [PMID: 29728715 PMCID: PMC11105303 DOI: 10.1007/s00018-018-2831-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
Glucose avidity, high glycolysis and L-lactate production, regardless of oxygen availability, are the main traits of cancer metabolic reprogramming. The idea that mitochondria are dysfunctional in cancer, thus causing a glycolysis increase for ATP production and L-lactate accumulation as a dead-end product of glucose catabolism, has oriented cancer research for many years. However, it was shown that mitochondrial metabolism is essential for cancer cell proliferation and tumorigenesis and that L-lactate is a fundamental energy substrate with tumor growth-promoting and signaling capabilities. Nevertheless, the known ability of mitochondria to take up and oxidize L-lactate has remained ignored by cancer research. Beginning with a brief overview of the metabolic changes occurring in cancer, we review the present knowledge of L-lactate formation, transport, and intracellular oxidation and underline the possible role of L-lactate metabolism as energetic, signaling and anabolic support for cancer cell proliferation. These unexplored aspects of cancer biochemistry might be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Lidia de Bari
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM)-CNR, Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Anna Atlante
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM)-CNR, Via G. Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|