101
|
Vasconcelos-Nóbrega C, Pinto-Leite R, Arantes-Rodrigues R, Ferreira R, Brochado P, Cardoso ML, Palmeira C, Salvador A, Guedes-Teixeira CI, Colaço A, Palomino LF, Lopes C, Santos L, Oliveira PA. In vivo and in vitro effects of RAD001 on bladder cancer. Urol Oncol 2011; 31:1212-21. [PMID: 22169072 DOI: 10.1016/j.urolonc.2011.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/24/2011] [Accepted: 11/02/2011] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the influence of Everolimus (RAD001) on chemically induced urothelial lesions in mice and its influence on in vitro human bladder cancer cell lines. METHODS ICR male mice were given N-butyl-N-(4-hydroxybutyl) nitrosamine in drinking water for a period of 12 weeks. Subsequently, RAD001 was administered via oral gavage, for 6 weeks. At the end of the experiment, all the animals were sacrificed and tumor development was determined by means of histopathologic evaluation; mammalian target of rapamycin (mTOR) expressivity was evaluated by immunohistochemistry. Three human bladder cancer cell lines (T24, HT1376, and 5637) were treated using a range of RAD001 concentrations. MTT assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and flow cytometry were used to assess cell proliferation, apoptosis index, and cell cycle analysis, respectively. Immunoblotting analysis of 3 cell line extracts using mTOR and Akt antibodies was performed in order to study the expression of Akt and mTOR proteins and their phosphorylated forms. RESULTS The incidence of urothelial lesions in animals treated with RAD001 was similar to those animals not treated. RAD001 did not block T24 and HT1376 cell proliferation or induce apoptosis. A reduction in cell proliferation rate and therefore G0/G1 phase arrest, as well as a statistically significant induction of apoptosis (P = 0.001), was only observed in the 5637 cell line. CONCLUSION RAD001 seems not to have a significant effect on chemically induced murine bladder tumors. The effect of RAD001 on tumor proliferation and apoptosis was achieved only in superficial derived bladder cancer cell line, no effect was observed in invasive cell lines.
Collapse
|
102
|
|
103
|
Iwase Y, Maitani Y. Dual functional octreotide-modified liposomal irinotecan leads to high therapeutic efficacy for medullary thyroid carcinoma xenografts. Cancer Sci 2011; 103:310-6. [DOI: 10.1111/j.1349-7006.2011.02128.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
104
|
Wojtalla A, Arcaro A. Targeting phosphoinositide 3-kinase signalling in lung cancer. Crit Rev Oncol Hematol 2011; 80:278-90. [DOI: 10.1016/j.critrevonc.2011.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/22/2010] [Accepted: 01/18/2011] [Indexed: 12/18/2022] Open
|
105
|
Bestermann WH. The ADMA-Metformin Hypothesis: Linking the Cardiovascular Consequences of the Metabolic Syndrome and Type 2 Diabetes. Cardiorenal Med 2011; 1:211-219. [PMID: 22135630 DOI: 10.1159/000332382] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/04/2011] [Indexed: 12/16/2022] Open
Abstract
Metformin and asymmetric dimethylarginine (ADMA) are structural analogs. They have opposite effects at multiple points on complex signaling pathways that coordinate energy, molecular synthesis, growth, and metabolism with nutrient intake. Excess saturated fats and glucose may initiate the methylation of arginine residues in proteins involved in the transcription of genes mediating inflammation, cell proliferation, apoptosis, and oncogenesis. Free ADMA may appear in the circulation after proteolysis of these proteins when the work of transcription is complete and ADMA subsequently functions as a signaling molecule. In children, ADMA levels are not significantly related to the usual metabolic syndrome risk factors but instead there is a significant association between ADMA and alkaline phosphatase - a marker of normal growth. There is only one direct study that shows that ADMA negates the metabolic effects of metformin. There are no investigations that demonstrate that metformin blocks the effect of ADMA and so this review must be considered hypothesis generating. The potential implications of the metformin-ADMA relationship merit further investigation.
Collapse
|
106
|
Dragowska WH, Weppler SA, Qadir MA, Wong LY, Franssen Y, Baker JHE, Kapanen AI, Kierkels GJJ, Masin D, Minchinton AI, Gelmon KA, Bally MB. The combination of gefitinib and RAD001 inhibits growth of HER2 overexpressing breast cancer cells and tumors irrespective of trastuzumab sensitivity. BMC Cancer 2011; 11:420. [PMID: 21961653 PMCID: PMC3207940 DOI: 10.1186/1471-2407-11-420] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/01/2011] [Indexed: 11/13/2022] Open
Abstract
Background HER2-positive breast cancers exhibit high rates of innate and acquired resistance to trastuzumab (TZ), a HER2-directed antibody used as a first line treatment for this disease. TZ resistance may in part be mediated by frequent co-expression of EGFR and by sustained activation of the mammalian target of rapamycin (mTOR) pathway. Here, we assessed feasibility of combining the EGFR inhibitor gefitinib and the mTOR inhibitor everolimus (RAD001) for treating HER2 overexpressing breast cancers with different sensitivity to TZ. Methods The gefitinib and RAD001 combination was broadly evaluated in TZ sensitive (SKBR3 and MCF7-HER2) and TZ resistant (JIMT-1) breast cancer models. The effects on cell growth were measured in cell based assays using the fixed molar ratio design and the median effect principle. In vivo studies were performed in Rag2M mice bearing established tumors. Analysis of cell cycle, changes in targeted signaling pathways and tumor characteristics were conducted to assess gefitinib and RAD001 interactions. Results The gefitinib and RAD001 combination inhibited cell growth in vitro in a synergistic fashion as defined by the Chou and Talalay median effect principle and increased tumor xenograft growth delay. The improvement in therapeutic efficacy by the combination was associated in vitro with cell line dependent increases in cytotoxicity and cytostasis while treatment in vivo promoted cytostasis. The most striking and consistent therapeutic effect of the combination was increased inhibition of the mTOR pathway (in vitro and in vivo) and EGFR signaling in vivo relative to the single drugs. Conclusions The gefitinib and RAD001 combination provides effective control over growth of HER2 overexpressing cells and tumors irrespective of the TZ sensitivity status.
Collapse
Affiliation(s)
- Wieslawa H Dragowska
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Ave, Vancouver, BC V5Z 1L3, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
|
108
|
Goldstein R, Meyer T. Role of everolimus in pancreatic neuroendocrine tumors. Expert Rev Anticancer Ther 2011; 11:1653-65. [PMID: 21932937 DOI: 10.1586/era.11.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Survival from pancreatic neuroendocrine tumors has not improved over the past two decades and, until recently, streptozocin was the last therapeutic agent approved for this malignancy. Everolimus blocks mTOR, which plays an integral role in cell growth, mitosis and angiogenesis. Abnormal PI3K-Akt/PKB-mTOR pathway signaling has been implicated in the pathogenesis of pancreatic neuroendocrine tumors. In a Phase III study, patients with low- and intermediate-grade advanced pancreatic neuroendocrine tumors were randomized to receive everolimus 10 mg/day or placebo. Median progression-free survival was significantly greater in patients treated with everolimus than placebo - 11 versus 4.6 months - and drug-related adverse events were consistent with the known side-effect profile of everolimus. Everolimus represents a significant treatment development for pancreatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Robert Goldstein
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | | |
Collapse
|
109
|
The management of neuroendocrine tumours: current and future medical therapy options. Clin Oncol (R Coll Radiol) 2011; 24:282-93. [PMID: 21907552 DOI: 10.1016/j.clon.2011.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 12/22/2022]
Abstract
Neuroendocrine tumours (NETs) are a genetically diverse group of malignancies that sometimes produce peptides causing characteristic hormonal syndromes. NETs can be clinically symptomatic (functioning) or silent (non-functioning); both types frequently synthesise more than one peptide, although often these are not associated with specific syndromes. Based on data from various sources, the incidence and prevalence of NETs is increasing. The primary treatment goal for patients with NETs is curative, with symptom control and the limitation of tumour progression as secondary goals. Surgery is the only possible curative approach and so represents the traditional first-line therapy. However, as most patients with NETs are diagnosed once metastases have occurred, curative surgery is generally not possible. Patients therefore require chronic postoperative medical management with the aim of relieving symptoms and, in recent years, suppressing tumour growth and spread. Somatostatin analogues, such as octreotide long-acting repeatable (LAR), can improve the symptoms of carcinoid syndrome and stabilise tumour growth in many patients. Results from the PROMID study show that octreotide LAR 30mg is an effective antiproliferative treatment in patients with newly diagnosed, functionally active or inactive, well-differentiated metastatic midgut NETs. An antiproliferative effect can also be achieved with everolimus, and combination therapy with octreotide LAR has shown synergistic antiproliferative activity. In the future, pasireotide, the multi-receptor targeted somatostatin analogue, has the potential to be an effective therapy for de novo or octreotide-refractory carcinoid syndrome and for inhibiting tumour cell proliferation. Peptide receptor radiotherapy with [90]yttrium-DOTATOC or [177]lutetium-DOTATE is also a new interesting treatment option for NETs.
Collapse
|
110
|
Molina AM, Feldman DR, Voss MH, Ginsberg MS, Baum MS, Brocks DR, Fischer PM, Trinos MJ, Patil S, Motzer RJ. Phase 1 trial of everolimus plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 2011; 118:1868-76. [PMID: 21898375 DOI: 10.1002/cncr.26429] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Simultaneous inhibition of the vascular epithelial growth factor (VEGF) and the mammalian target of rapamycin (mTOR) pathway may improve treatment response in advanced renal cell carcinoma (RCC). Everolimus, an oral mTOR inhibitor, and sunitinib, an oral tyrosine kinase inhibitor targeting VEGF, are standard agents in the management of metastatic RCC. METHODS Sequential cohorts of 3 to 6 patients with advanced RCC received dose-escalated combinations of sunitinib (37.5 or 50 mg daily, 4 weeks on/2 weeks off) with everolimus (2.5-5 mg daily or 20-30 mg weekly). Dose-limiting toxicities (DLTs) were assessed in the first 6-week cycle to determine maximum tolerated dose (MTD). Pharmacokinetic profiles were obtained. RESULTS Twenty patients (13 clear cell and 7 nonclear cell RCC) were enrolled in 5 cohorts. Daily everolimus was not tolerated when combined with sunitinib; the first 2 patients on the second cohort suffered DLTs. With weekly everolimus, the MTD was 30 mg everolimus on days 7, 14, 21, and 28, plus 37.5 mg sunitinib on days 1 to 28 of a 42-day cycle; however, chronic treatment was associated with grade 3 and 4 toxicities. A schedule of 20 mg everolimus weekly/37.5 mg sunitinib was tolerated as chronic therapy. Five patients (25%) had confirmed partial responses, and 3 had nonclear cell RCC. No unexpected accumulation of everolimus, sunitinib, or N-desethyl sunitinib was observed. CONCLUSIONS The combination of everolimus and sunitinib is associated with significant acute and chronic toxicities and is only tolerated at attenuated doses. Responses were observed in nonclear cell and clear cell RCC.
Collapse
Affiliation(s)
- Ana M Molina
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Deenen MJ, Klümpen HJ, Richel DJ, Sparidans RW, Weterman MJ, Beijnen JH, Schellens JHM, Wilmink JW. Phase I and pharmacokinetic study of capecitabine and the oral mTOR inhibitor everolimus in patients with advanced solid malignancies. Invest New Drugs 2011; 30:1557-65. [PMID: 21809026 PMCID: PMC3388253 DOI: 10.1007/s10637-011-9723-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/18/2011] [Indexed: 11/28/2022]
Abstract
Background Everolimus is an oral mTOR-inhibitor. Preclinical data show synergistic effects of mTOR inhibition in combination with 5-fluorouracil-based anticancer therapy. The combination of everolimus with capecitabine seems therefore an attractive new, orally available, treatment regimen. Patients and methods Safety, preliminary efficacy and pharmacokinetics of everolimus in combination with capecitabine were investigated in patients with advanced solid malignancies. Patients were treated with fixed dose everolimus 10 mg/day continuously, plus capecitabine bid for 14 days in three-weekly cycles. Dose escalation of capecitabine proceeded according to the standard 3 × 3 phase I design in four predefined dose levels (500–1,000 mg/m2 bid). Results In total, 18 patients were enrolled. Median (range) treatment duration with everolimus was 70 days (21–414). Capecitabine 1,000 mg/m2 bid combined with 10 mg/day everolimus was declared the maximum tolerated dose, at which level one patient developed dose-limiting toxicity (stomatitis grade 3). Drug-related adverse events were mostly grade ≤2 and included mainly fatigue (56%), stomatitis (50%), and hand-foot syndrome (33%). Partial response was documented in three patients, and four had stable disease. There was no pharmacokinetic interaction between everolimus and capecitabine. Conclusion Everolimus 10 mg/day continuously combined with capecitabine 1,000 mg/m2 bid for 14 days every 3 weeks is a patient-convenient, safe and tolerable oral treatment regimen. This is the first study to demonstrate feasibility of this combination at doses with proven single agent efficacy in a number of tumors. Prolonged clinical benefit was observed in an encouraging 39% of patients with advanced solid malignancies.
Collapse
Affiliation(s)
- Maarten J Deenen
- Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Zhou H, Huang S. Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr Protein Pept Sci 2011; 12:30-42. [PMID: 21190521 DOI: 10.2174/138920311795659407] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 01/30/2023]
Abstract
Tumor cell migration and invasion play fundamental roles in cancer metastasis. The mammalian target of rapamycin (mTOR), a highly conserved and ubiquitously expressed serine/threonine (Ser/Thr) kinase, is a central regulator of cell growth, proliferation, differentiation and survival. Recent studies have shown that mTOR also plays a critical role in the regulation of tumor cell motility, invasion and cancer metastasis. Current knowledge indicates that mTOR functions as two distinct complexes, mTORC1 and mTORC2. mTORC1 phosphorylates p70 S6 kinase (S6K1) and eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1), and regulates cell growth, proliferation, survival and motility. mTORC2 phosphorylates Akt, protein kinase C α (PKCα) and the focal adhesion proteins, and controls the activities of the small GTPases (RhoA, Cdc42 and Rac1), and regulates cell survival and the actin cytoskeleton. Here we briefly review recent knowledge of mTOR complexes and the role of mTOR signaling in tumor cell migration and invasion. We also discuss recent efforts about the mechanism by which rapamycin, a specific inhibitor of mTOR, inhibits cell migration, invasion and cancer metastasis.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | |
Collapse
|
113
|
Pignataro G, Capone D, Polichetti G, Vinciguerra A, Gentile A, Di Renzo G, Annunziato L. Neuroprotective, immunosuppressant and antineoplastic properties of mTOR inhibitors: current and emerging therapeutic options. Curr Opin Pharmacol 2011; 11:378-394. [PMID: 21646048 DOI: 10.1016/j.coph.2011.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 02/05/2023]
Abstract
The acronym mTOR defines a family of serine-threonine protein kinase called mammalian target of rapamycin. The major role of these kinases in the cell is to merge extracellular instructions with information about cellular metabolic resources and to control the rate of anabolic and catabolic processes accordingly. In mammalian cells mTOR is present in two distinct heteromeric protein complexes commonly referred to as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), involved in the control of a wide variety of cellular processes. It has been recently reported that compounds acting modulating mTOR activity, beside mediating the well recognized processes exploited in the anticancer and immunosuppressant effects, are provided with neuroprotective properties. In fact, mTOR is involved in the mechanism of PI3K/Akt-induced upregulation of glutamate transporter 1, GLT1, that is linked to several neuronal disorders such as stroke, Alzheimer's disease, and amyotrophic lateral sclerosis. Furthermore, in adult brain mTOR is crucial for numerous physiological processes such as synaptic plasticity, learning, memory, and brain control of food uptake. Moreover, the activation of mTOR pathway is involved in neuronal development, dendrite development and spine morphogenesis.
Collapse
Affiliation(s)
- Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
114
|
Klümpen HJ, Samer CF, Mathijssen RH, Schellens JH, Gurney H. Moving towards dose individualization of tyrosine kinase inhibitors. Cancer Treat Rev 2011; 37:251-60. [DOI: 10.1016/j.ctrv.2010.08.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 12/11/2022]
|
115
|
Targeting the Mammalian Target of Rapamycin (mTOR) in Cancer Therapy: Lessons from Past and Future Perspectives. Cancers (Basel) 2011; 3:2478-500. [PMID: 24212820 PMCID: PMC3757428 DOI: 10.3390/cancers3022478] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 12/13/2022] Open
Abstract
Over the last decade, extensive studies have been made to understand the role played by the mammalian target of rapamycin (mTOR) in cancer. Knowledge in this field has been gained from discoveries in basic research as well as from observations made in patients treated with allosteric mTOR inhibitors such as rapamycin. Despite promising preclinical studies, targeting mTOR in cancer therapy has shown limited clinical benefits so far. However, recent findings have revealed the complexity of the functions of mTOR in cancer and have helped develop new strategies to improve the anticancer efficacy of mTOR inhibitors. In particular, a complex network between mTOR and other signaling pathways has been identified that influences the anticancer efficacy of mTOR inhibitors. In addition, an emerging role of mTOR in the tumor microenvironment has been suggested. In this review, we confront the major findings that have been made in the past, both in experimental settings as well as in clinical trials. We further review the strategies that have been designed to further improve the efficacy of therapies targeting mTOR.
Collapse
|
116
|
Epailly E, Albanell J, Andreassen A, Bara C, Campistol JM, Delgado JF, Eisen H, Fiane AE, Mohacsi P, Schubert S, Sebbag L, Turazza FM, Valantine H, Zuckermann A, Potena L. Proliferation signal inhibitors and post-transplant malignancies in heart transplantation: practical clinical management questions. Clin Transplant 2011; 25:E475-86. [PMID: 21592231 DOI: 10.1111/j.1399-0012.2011.01476.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although malignancy is a major threat to long-term survival of heart transplant (HT) recipients, clear strategies to manage immunosuppression in these patients are lacking. Several lines of evidences support the hypothesis of an anticancer effect of proliferation signal inhibitors (PSIs: mammalian target of rapamycin [mTOR] inhibitors) in HT recipients. This property may arise from PSI's ability to replace immunosuppressive therapies that promote cancer progression, such as calcineurin inhibitors or azathioprine, and/or through their direct biological actions in preventing tumor development and progression. Given the lack of randomized studies specifically exploring these issues in the transplant setting, a collaborative group reviewed current literature and personal clinical experience to reach a consensus aimed to provide practical guidance for the clinical conduct in HT recipients with malignancy, or at high risk of malignancy, with a special focus on advice relevant to potential role of PSIs.
Collapse
Affiliation(s)
- E Epailly
- Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Antiangiogenic treatments and mechanisms of action in renal cell carcinoma. Invest New Drugs 2011; 30:1791-801. [PMID: 21573959 DOI: 10.1007/s10637-011-9677-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/26/2011] [Indexed: 12/16/2022]
Abstract
Several angiogenic mechanisms are involved in the pathology of renal cell carcinoma (RCC). Increasing knowledge of angiogenesis and the associated signalling pathways has led to the development of targeted antiangiogenic agents for the treatment of metastatic RCC and the introduction of these agents has significantly improved outcomes for these patients. This article provides an overview of the angiogenic mechanisms implicated in RCC, focusing on the main vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and mammalian target of rapamycin (mTOR) signalling pathways. Targeted antiangiogenic agents for the treatment of mRCC include receptor tyrosine kinase inhibitors (such as sunitinib, sorafenib, pazopanib, axitinib, cediranib and tivozanib), monoclonal antibodies (such as bevacizumab) and mTOR inhibitors (such as temsirolimus and everolimus). In this article, we consider the modes of action of these targeted agents and their differing target receptor profiles and we also evaluate how these correlate with their clinical efficacy and tolerability profiles.
Collapse
|
118
|
Harzstark AL, Small EJ, Weinberg VK, Sun J, Ryan CJ, Lin AM, Fong L, Brocks DR, Rosenberg JE. A phase 1 study of everolimus and sorafenib for metastatic clear cell renal cell carcinoma. Cancer 2011; 117:4194-200. [PMID: 21387258 DOI: 10.1002/cncr.25931] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/11/2010] [Accepted: 12/14/2010] [Indexed: 01/26/2023]
Abstract
BACKGROUND The current study was conducted to assess the maximum tolerated dose (MTD), safety, pharmacokinetics, and preliminary antitumor effect of everolimus, a mammalian target of rapamycin inhibitor, in combination with sorafenib, a tyrosine kinase inhibitor, in patients with metastatic clear cell renal cell carcinoma. METHODS Sequential cohorts of patients received escalating doses of everolimus and sorafenib in 28-day cycles in the absence of a dose-limiting toxicity (DLT) or disease progression were examined. RESULTS Twenty patients with a median age of 65 years received therapy in 3 cohorts. Dose level 1 was comprised of everolimus at a dose of 2.5 mg daily and sorafenib at a dose of 400 mg twice daily (6 patients), dose level 2 was comprised of everolimus at a dose of 5 mg daily and sorafenib at a dose of 400 mg twice daily (8 patients), and dose level 3 was comprised of everolimus at a dose of 10 mg daily and sorafenib at a dose of 200 mg twice daily (6 patients). DLTs included grade 4 (according to National Cancer Institute Common Terminology Criteria for Adverse Events [version 3.0]) hyperuricemia with grade 2 gout and grade 3 lipase associated with grade 2 pancreatitis at dose level 2, and grade 3 rash in 2 patients at dose level 3. Dose level 2 (everolimus at a dose of 5 mg daily and sorafenib at a dose of 400 mg twice daily) was established as the maximum tolerated dose. Treatment-related adverse events occurring in >20% of patients included diarrhea, hand-foot syndrome, hypertension, hypophosphatemia, hypothyroidism, and rash. Five of 20 patients achieved Response Evaluation Criteria In Solid Tumors (RECIST)-defined partial responses, all of which occurred in patients without a history of prior systemic therapy. Seven of 8 patients treated at dose level 2 experienced a partial response or stable disease. Pharmacokinetic analysis revealed no interaction between everolimus and sorafenib. CONCLUSIONS The combination of everolimus and sorafenib was associated with acceptable toxicity and evidence of antitumor activity in previously untreated patients with metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Andrea L Harzstark
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143-1711, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Lebwohl D, Thomas G, Lane HA, O'Reilly T, Escudier B, Yao JC, Pavel M, Franz D, Berg W, Baladi JF, Stewart J, Motzer RJ. Research and innovation in the development of everolimus for oncology. Expert Opin Drug Discov 2011; 6:323-38. [PMID: 22647206 DOI: 10.1517/17460441.2011.558079] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The critical role of increased activity of mammalian target of rapamycin (mTOR) in the pathophysiology of multiple diseases is well established. Inhibition of the mTOR pathway may block disease progression and improve patient outcomes. Everolimus, an mTOR inhibitor, began in clinical development as part of a regimen (Certican, Zortress) for prevention of organ transplant rejection and is now an approved oncology agent. AREAS COVERED The objective of this review is to discuss the history of key findings and innovative cancer research undertaken to successfully develop everolimus as an oncology therapy (Afinitor) now approved for patients with advanced renal cell carcinoma (RCC) and for subependymal giant cell astrocytomas (SEGAs) associated with tuberous sclerosis. In addition, data for the use of everolimus in the treatment of other cancers and rare diseases are also discussed. A PubMed search of English articles without time restrictions was conducted using the search terms 'everolimus or rapamycin' and 'cancer'. Bibliographies of retrieved articles were manually searched for additional relevant articles. Major cancer congresses were also searched. EXPERT OPINION The clinical efficacy of everolimus alone and in combination with other agents has been observed in recently completed Phase II-III studies in a wide spectrum of tumors, including RCC, neuroendocrine tumors, tuberous sclerosis complex, SEGAs and angiomyolipomas, lymphoma and gastric, breast and hepatocellular cancers. These findings emphasize the importance of mTOR in diverse cancers and rare diseases and underscore the potential role for everolimus as an effective agent in multiple indications.
Collapse
Affiliation(s)
- David Lebwohl
- Novartis Pharmaceuticals, Inc., 180 Park Avenue, Florham Park, NJ 07932, USA +1 862 778 7218 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Neuroendocrine tumors (NETs) are a genetically diverse group of malignancies that sometimes produce peptides that cause characteristic hormonal syndromes. NETs can be clinically symptomatic (functioning) or silent (nonfunctioning); both types frequently synthesize more than one peptide, although often these are not associated with specific syndromes. Based on data from various sources, the incidence and prevalence of NETs is increasing. The primary treatment goal for patients with NETs is curative, with symptom control and the limitation of tumor progression as secondary goals. Surgery is the only possible curative approach and so represents the traditional first-line therapy. However, as most patients with NETs are diagnosed once metastases have occurred, curative surgery is generally not possible. Patients therefore require chronic postoperative medical management with the aim of relieving symptoms and, in recent years, suppressing tumor growth and spread. Somatostatin analogues, such as octreotide long-acting repeatable (LAR), can improve the symptoms of carcinoid syndrome and stabilize tumor growth in many patients. Results from the placebo-controlled, double-blind, prospective randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID study) demonstrate that octreotide LAR 30 mg is an effective antiproliferative treatment in patients with newly diagnosed, functionally active or inactive, well-differentiated metastatic midgut NETs. An antiproliferative effect can also be achieved with everolimus, and combination therapy with octreotide LAR has shown synergistic antiproliferative activity. Sunitinib, a tyrosine kinase inhibitor, is active in pancreatic NETs. In the future, pasireotide, the multireceptor targeted somatostatin analogue, has the potential to be an effective therapy for de novo or octreotide-refractory carcinoid syndrome and for inhibiting tumor cell proliferation. Peptide receptor radiotherapy with 90Yttrium-DOTATOC or 177Lutetium-DOTATE is also a new interesting treatment option for NETs.
Collapse
Affiliation(s)
- Kjell E Öberg
- a Department of Endocrine Oncology, University Hospital, Uppsala University, Department of Medical Sciences, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
121
|
Abstract
Inhibitors of mammalian target of rapamycin (mTOR) have been approved for the treatment of renal cell carcinoma and appear to have a role in the treatment of other malignancies. The primary objective of this drug review is to provide pharmacokinetic and dynamic properties of the commonly used drugs everolimus and temsirolimus. Additionally, information on clinical use, mechanism of action, bioanalysis, drug-drug interactions, alterations with disease or age, pharmacogenetics, and drug resistance is given. This overview should assist the treating medical oncologist in adjusting treatment with mTOR inhibitors to individual patient circumstances.
Collapse
Affiliation(s)
- Heinz-Josef Klümpen
- Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
122
|
Tarhini A, Kotsakis A, Gooding W, Shuai Y, Petro D, Friedland D, Belani CP, Dacic S, Argiris A. Phase II study of everolimus (RAD001) in previously treated small cell lung cancer. Clin Cancer Res 2010; 16:5900-7. [PMID: 21045083 DOI: 10.1158/1078-0432.ccr-10-0802] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Mammalian target of rapamycin (mTOR) is a promising target in small cell lung cancer (SCLC). We designed a phase II study of everolimus, an mTOR inhibitor, in previously treated, relapsed SCLC. EXPERIMENTAL DESIGN Patients were treated with everolimus 10 mg orally daily until disease progression. The primary endpoint was disease control rate (DCR) at 6 weeks. PI3K/Akt signaling pathway biomarkers were evaluated on baseline tumor tissue. RESULTS A total of 40 patients were treated: 23 had 1 prior regimen/sensitive relapse, 4 had 1 prior regimen/refractory, and 13 had 2 prior regimens. Twenty-eight patients received 2 or more cycles of everolimus, 7 received 1 cycle, and 5 did not complete the first cycle. Best response in 35 evaluable patients: 1 (3%) partial response (in sensitive relapse), 8 (23%) stable disease, and 26 (74%) progression; DCR at 6 weeks was 26% (95% CI = 11-40). Median survival was 6.7 months and median time to progression was 1.3 months. Grade 3 toxicities included thrombocytopenia (n = 2), neutropenia (n = 2), infection (n = 2), pneumonitis (n = 1), fatigue (n = 1), elevated transaminases (n = 1), diarrhea (n = 2), and acute renal failure (n = 1). High phosphorylated AKT expression was modestly associated with overall survival (HR = 2.07; 95% CI = 0.97-4.43). Baseline S6 kinase protein expression was significantly higher in patients with disease control versus patients with progression (P = 0.0093). CONCLUSIONS Everolimus was well tolerated but had limited single-agent antitumor activity in unselected previously treated patients with relapsed SCLC. Further evaluation in combination regimens for patients with sensitive relapse may be considered.
Collapse
Affiliation(s)
- Ahmad Tarhini
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
McAuliffe PF, Meric-Bernstam F, Mills GB, Gonzalez-Angulo AM. Deciphering the role of PI3K/Akt/mTOR pathway in breast cancer biology and pathogenesis. Clin Breast Cancer 2010; 10 Suppl 3:S59-65. [PMID: 21115423 DOI: 10.3816/cbc.2010.s.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway mediates multiple cellular functions critical to tumor initiation, progression, and outcomes, including growth and proliferation, metabolism, motility, migration, invasion, angiogenesis, survival, and autophagy. Tight regulation of this pathway is paramount to ensure that multiple cellular inputs are integrated for appropriate cellular outcomes. Frequent deregulation and aberrations of this pathway have been implicated in breast cancer development and progression. This review focuses on the biology of this pathway and its role in breast cancer pathogenesis. The role of therapies directed at targeting mTOR in the PI3K/Akt/mTOR pathway, which are currently being evaluated in clinical trials, will also be reviewed.
Collapse
Affiliation(s)
- Priscilla F McAuliffe
- Departments of Surgical Oncology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | |
Collapse
|
124
|
Ramalingam SS, Harvey RD, Saba N, Owonikoko TK, Kauh J, Shin DM, Sun SY, Strychor S, Tighiouart M, Egorin MJ, Fu H, Khuri FR. Phase 1 and pharmacokinetic study of everolimus, a mammalian target of rapamycin inhibitor, in combination with docetaxel for recurrent/refractory nonsmall cell lung cancer. Cancer 2010; 116:3903-9. [PMID: 20564143 DOI: 10.1002/cncr.25264] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Everolimus is a novel inhibitor of the mammalian target of rapamycin pathway, which is aberrantly activated in nonsmall cell lung cancer (NSCLC). The authors conducted a phase 1 and pharmacokinetic study of everolimus and docetaxel for recurrent NSCLC. METHODS Patients with advanced stage NSCLC and progression after prior platinum-based chemotherapy were eligible. Sequential cohorts were treated with escalating doses of docetaxel (Day 1) and everolimus (orally daily, Days 1-19) every 3 weeks. Pharmacokinetic sampling of everolimus and docetaxel was done in Cycle 1. The primary endpoint was determination of the recommended phase 2 doses of the combination. RESULTS Twenty-four patients were enrolled (median age, 62 years; women, 11; number of prior regimens, 1 [n=13], 2 [n=6], >or=3 [n=5]; Eastern Cooperative Oncology Group performance status, 0 [n=6], 1 [n=17]). The dose-limiting toxicities (DLTs) were fever with grade 3/4 neutropenia, grade 3 fatigue, and grade 3 mucositis. None of the 7 patients treated at the recommended phase 2 dose (docetaxel 60 mg/m2 and everolimus 5 mg daily) experienced DLT. Everolimus area under the concentration time curve (AUC) was not different with 60 or 75 mg/m2 docetaxel. Mean+/-standard deviation AUC-based accumulation factors for everolimus on Days 8 and 15 were 1.16+/-0.37 and 1.42+/-0.42, respectively. Docetaxel Day 1 half-life was 9.4+/-3.4 hours. Among 21 patients evaluable, 1 had a partial response, and 10 had disease stabilization. CONCLUSIONS The recommended phase 2 doses of docetaxel and everolimus for combination therapy are 60 mg/m2 and 5 mg orally daily, respectively. Promising anticancer activity has been noted.
Collapse
Affiliation(s)
- Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Schayowitz A, Sabnis G, Goloubeva O, Njar VCO, Brodie AMH. Prolonging hormone sensitivity in prostate cancer xenografts through dual inhibition of AR and mTOR. Br J Cancer 2010; 103:1001-7. [PMID: 20842117 PMCID: PMC2965879 DOI: 10.1038/sj.bjc.6605882] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND To determine the mechanisms associated with loss of androgen dependency and disease progression in prostate cancer (PCa), we investigated the relationship between the androgen receptor (AR) and mTOR pathways and the impact of inhibiting both pathways in androgen-dependent and castration-resistant PCa models. EXPERIMENTAL DESIGN Androgen-dependent (LNCaP) and castration-resistant PCa (HP-LNCaP) cells were grown as tumours in SCID mice. Once tumours reached 500 mm(3), animals were grouped and injected subcutaneous with vehicle, our novel anti-androgen/androgen synthesis inhibitor, VN/124-1, bicalutamide, and everolimus. Tumour volumes were measured biweekly. The PSA and protein analyses were performed after completion of the treatment. RESULTS The addition of everolimus to bicalutamide treatment of resistant tumours significantly reduced tumour growth rates and tumour volumes. Anti-androgen treatment also increased protein expression of multiple signal transduction pathways earlier than vehicle-treated control xenografts. VN/124-1 plus everolimus acted in concert to reduce tumour growth rates in our castration-resistant xenograft model. CONCLUSIONS This study suggests that dual inhibition of AR and mTOR in castration-resistant xenograft models can restore sensitivity of tumours to anti-androgen therapy. Furthermore, after bicalutamide failure, dual inhibition with VN/124-1 and everolimus was the most effective treatment.
Collapse
Affiliation(s)
- A Schayowitz
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, University of Maryland, Health Science Facility I, Room 580G, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - G Sabnis
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, University of Maryland, Health Science Facility I, Room 580G, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - O Goloubeva
- Department of Epidemiology and Biostatistics, Baltimore, MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - V C O Njar
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, University of Maryland, Health Science Facility I, Room 580G, 685 West Baltimore Street, Baltimore, MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - A M H Brodie
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, University of Maryland, Health Science Facility I, Room 580G, 685 West Baltimore Street, Baltimore, MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
126
|
Bae-Jump VL, Zhou C, Boggess JF, Whang YE, Barroilhet L, Gehrig PA. Rapamycin inhibits cell proliferation in type I and type II endometrial carcinomas: a search for biomarkers of sensitivity to treatment. Gynecol Oncol 2010; 119:579-85. [PMID: 20863555 DOI: 10.1016/j.ygyno.2010.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/17/2010] [Accepted: 08/20/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Our goal was to evaluate the effect of rapamycin, an mTOR inhibitor, in type I and II human endometrial cancer tumor explants. METHODS Short-term tissue culture with fresh endometrial cancer tumor explants was performed. Cell proliferation was assessed by MTS assay after treatment with rapamycin. Akt and PTEN status were documented by Western blotting. The effect of rapamycin on phosphorylated-S6 and 4E-BP-1 was also assessed by Western blotting. Real-time RT-PCR was used to quantify hTERT mRNA expression. Telomere length was determined by terminal restriction fragment Southern blotting. RESULTS Thirteen fresh endometrial cancer tumor explants (nine Type I, four Type II) were placed in short-term culture and treated with rapamycin. Nine of the endometrial cancer tumors responded to rapamycin, with a median IC₅₀ of 11.4 nM. Sensitivity to rapamycin was independent of PTEN and Akt status. Tumors (13/13) had a reduction in phosphorylated-S6 and 10/13 had a reduction in phosphorylated 4E-BP-1. Rapamycin decreased hTERT mRNA expression in all of the endometrial cancer tumors. Telomere length did not correspond with responsiveness to this drug. CONCLUSIONS Rapamycin demonstrated activity in fresh endometrial tumor explants independent of PTEN and Akt status. Some tumors demonstrated a reduction in phosphorylated-S6 and 4E-BP-1 without a significant change in cellular proliferation, suggesting that additional pathways may modulate cellular proliferation. Thus, mTOR inhibitors may be a useful targeted therapy for both type I and type II endometrial cancers, but the search remains for a predictive biomarker of sensitivity to this therapy.
Collapse
Affiliation(s)
- Victoria L Bae-Jump
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
127
|
Aide N, Kinross K, Cullinane C, Roselt P, Waldeck K, Neels O, Dorow D, McArthur G, Hicks RJ. 18F-FLT PET as a Surrogate Marker of Drug Efficacy During mTOR Inhibition by Everolimus in a Preclinical Cisplatin-Resistant Ovarian Tumor Model. J Nucl Med 2010; 51:1559-64. [DOI: 10.2967/jnumed.109.073288] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
128
|
Zhou H, Luo Y, Huang S. Updates of mTOR inhibitors. Anticancer Agents Med Chem 2010; 10:571-81. [PMID: 20812900 PMCID: PMC2980558 DOI: 10.2174/187152010793498663] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/26/2010] [Indexed: 12/31/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation, metabolism and angiogenesis. mTOR signaling is often dysregulated in various human diseases and thus attracts great interest in developing drugs that target mTOR. Currently it is known that mTOR functions as two complexes, mTOR complex 1/2 (mTORC1/2). Rapamycin and its analogs (all termed rapalogs) first form a complex with the intracellular receptor FK506 binding protein 12 (FKBP12) and then bind a domain separated from the catalytic site of mTOR, blocking mTOR function. Rapalogs are selective for mTORC1 and effective as anticancer agents in various preclinical models. In clinical trials, rapalogs have demonstrated efficacy against certain types of cancer. Recently, a new generation of mTOR inhibitors, which compete with ATP in the catalytic site of mTOR and inhibit both mTORC1 and mTORC2 with a high degree of selectivity, have been developed. Besides, some natural products, such as epigallocatechin gallate (EGCG), caffeine, curcumin and resveratrol, have been found to inhibit mTOR as well. Here, we summarize the current findings regarding mTOR signaling pathway and review the updated data about mTOR inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Correspondence: Shile Huang, Ph.D., Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA, Phone: (318) 675-7759; Fax: (318) 675-5180,
| |
Collapse
|
129
|
Clark PE. Rationale for targeted therapies and potential role of pazopanib in advanced renal cell carcinoma. Biologics 2010; 4:187-97. [PMID: 20714356 PMCID: PMC2921256 DOI: 10.2147/btt.s7818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Indexed: 11/23/2022]
Abstract
Advanced renal cell carcinoma (RCC) remains a challenging, major health problem. Recent advances in understanding the fundamental biology underlying one form of RCC, ie, clear cell (or conventional) RCC, have opened the door to a series of targeted agents, such as the tyrosine kinase inhibitors (TKIs), which have become the standard of care in managing advanced clear cell RCC. Among the newest of these agents to receive Food and Drug Administration approval in this disease is pazopanib. This review will summarize what is known about the fundamental biology that underlies clear cell RCC, the data surrounding the previously approved targeted agents for this disease, including not only the TKIs but also the mTOR inhibitors and the vascular endothelial growth factor-specific agent, bevacizumab, and the newest TKI, pazopanib. It will also explore the potential role for pazopanib relative to the other available agents and where it may fit into the armamentarium for treatment of advanced/metastatic RCC.
Collapse
Affiliation(s)
- Peter E Clark
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
130
|
Canaud G, Knebelmann B, Harris PC, Vrtovsnik F, Correas JM, Pallet N, Heyer CM, Letavernier E, Bienaimé F, Thervet E, Martinez F, Terzi F, Legendre C. Therapeutic mTOR inhibition in autosomal dominant polycystic kidney disease: What is the appropriate serum level? Am J Transplant 2010; 10:1701-6. [PMID: 20642692 PMCID: PMC3697013 DOI: 10.1111/j.1600-6143.2010.03152.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited renal disease, and sirolimus, a mammalian target of rapamycin (mTOR) inhibitor, has been shown to significantly retard cyst expansion in animal models. The optimal therapeutic dose of sirolimus is not yet defined. Here, we report the history of a previously unknown ADPKD deceased donor whose kidneys were engrafted in two different recipients. One of the two received an immunosuppressive regimen based on sirolimus for 5 years while the other did not. After transplantation, both patients developed severe transplant cystic disease. Donor DNA sequence identified a new hypomorphic mutation in PKD1. The rate of cyst growth was identical in the two patients regardless of the treatment. While sirolimus treatment reduced the activation of mTOR in peripheral blood mononuclear cells, it failed to prevent mTOR activation in kidney tubular cells, this could account for the inefficiency of treatment on cyst growth. Together, our results suggest that the dose of sirolimus required to inhibit mTOR varies according to the tissue.
Collapse
Affiliation(s)
- G. Canaud
- INSERM U845, Centre de Recherche Croissance et Signalisation, Hôpital Necker Rue de Sèvres, Paris,Service de Transplantation et Unité de Soins Intensifs, Hôpital Necker, APHP, Rue de Sèvres, Paris,Université Paris Descartes, Rue de l'Ecole de Médecine, Paris,Corresponding author: Guillaume Canaud,
| | - B. Knebelmann
- INSERM U845, Centre de Recherche Croissance et Signalisation, Hôpital Necker Rue de Sèvres, Paris,Université Paris Descartes, Rue de l'Ecole de Médecine, Paris,Service de Néphrologie Adultes, Hôpital Necker, APHP, Rue de Sèvres, Paris
| | - P. C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, MN
| | - F. Vrtovsnik
- Service de Néphrologie, Hôpital Bichat, APHP, Rue Henri-Huchard, Paris
| | - J. M. Correas
- Service de Radiologie Adultes, Hôpital Necker, APHP, Rue de Sèvres, Paris
| | - N. Pallet
- Service de Transplantation et Unité de Soins Intensifs, Hôpital Necker, APHP, Rue de Sèvres, Paris,Université Paris Descartes, Rue de l'Ecole de Médecine, Paris
| | - C. M. Heyer
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, MN
| | - E. Letavernier
- Service de Néphrologie, Hôpital Bichat, APHP, Rue Henri-Huchard, Paris
| | - F. Bienaimé
- INSERM U845, Centre de Recherche Croissance et Signalisation, Hôpital Necker Rue de Sèvres, Paris,Université Paris Descartes, Rue de l'Ecole de Médecine, Paris
| | - E. Thervet
- Service de Transplantation et Unité de Soins Intensifs, Hôpital Necker, APHP, Rue de Sèvres, Paris,Université Paris Descartes, Rue de l'Ecole de Médecine, Paris
| | - F. Martinez
- Service de Transplantation et Unité de Soins Intensifs, Hôpital Necker, APHP, Rue de Sèvres, Paris,Université Paris Descartes, Rue de l'Ecole de Médecine, Paris
| | - F. Terzi
- INSERM U845, Centre de Recherche Croissance et Signalisation, Hôpital Necker Rue de Sèvres, Paris,Université Paris Descartes, Rue de l'Ecole de Médecine, Paris
| | - C. Legendre
- Service de Transplantation et Unité de Soins Intensifs, Hôpital Necker, APHP, Rue de Sèvres, Paris,Université Paris Descartes, Rue de l'Ecole de Médecine, Paris
| |
Collapse
|
131
|
Taguchi F, Kodera Y, Katanasaka Y, Yanagihara K, Tamura T, Koizumi F. Efficacy of RAD001 (everolimus) against advanced gastric cancer with peritoneal dissemination. Invest New Drugs 2010; 29:1198-205. [DOI: 10.1007/s10637-010-9464-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/20/2010] [Indexed: 12/25/2022]
|
132
|
Rafiee P, Binion DG, Wellner M, Behmaram B, Floer M, Mitton E, Nie L, Zhang Z, Otterson MF. Modulatory effect of curcumin on survival of irradiated human intestinal microvascular endothelial cells: role of Akt/mTOR and NF-{kappa}B. Am J Physiol Gastrointest Liver Physiol 2010; 298:G865-77. [PMID: 20299603 PMCID: PMC3774333 DOI: 10.1152/ajpgi.00339.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Radiation therapy is an essential modality in the treatment of colorectal cancers. Radiation exerts an antiangiogenic effect on tumors, inhibiting endothelial proliferation and survival in the tumor microvasculature. However, damage from low levels of irradiation can induce a paradoxical effect, stimulating survival in endothelial cells. We used human intestinal microvascular endothelial cells (HIMEC) to define effects of radiation on these gut-specific endothelial cells. Low-level irradiation (1-5 Gy) activates NF-kappaB and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is involved in cell cycle reentry and cell survival in HIMEC. A downstream target of PI3K/Akt is mammalian target of rapamycin (mTOR), which contributes to endothelial proliferation and angiogenesis. The aim of this study was to investigate the signaling molecules involved in the radiosensitizing effects of curcumin on HIMEC subjected to low levels of irradiation. We have demonstrated that exposure of HIMEC to low levels of irradiation induced Akt and mTOR phosphorylation, which was attenuated by curcumin, rapamycin, LY294002, and mTOR small interference RNA (siRNA). Activation of NF-kappaB by low levels of irradiation was inhibited by curcumin, SN-50, and mTOR siRNA. Curcumin also induced apoptosis by induction of caspase-3 cleavage in irradiated HIMEC. In conclusion, curcumin significantly inhibited NF-kappaB and attenuated the effect of irradiation-induced prosurvival signaling through the PI3K/Akt/mTOR and NF-kappaB pathways in these gut-specific endothelial cells. Curcumin may be a potential radiosensitizing agent for enhanced antiangiogenic effect in colorectal cancer radiation therapy.
Collapse
Affiliation(s)
- Parvaneh Rafiee
- Department. of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | - David G. Binion
- 2Department of Medicine University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; and
| | | | | | - Martin Floer
- 4Department of Medicine B, University Hospital, Muenster, Germany
| | - Elizabeth Mitton
- 5Division of Gastroenterology/Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| | | | - Zhihong Zhang
- 5Division of Gastroenterology/Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| | | |
Collapse
|
133
|
Coppin C. Everolimus: the first approved product for patients with advanced renal cell cancer after sunitinib and/or sorafenib. Biologics 2010; 4:91-101. [PMID: 20531964 PMCID: PMC2880340 DOI: 10.2147/btt.s6748] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Indexed: 01/22/2023]
Abstract
Everolimus (RAD001, Afinitor® Novartis) is the first oral inhibitor of mTOR (mammalian target of rapamycin) to reach the oncology clinic. Everolimus 10 mg daily achieves complete inhibition of its target at below the maximum tolerable dose for most patients. A phase III randomized placebo-controlled trial has examined the impact of everolimus in patients with clear cell renal cancers and progressive disease on or within 6 months of the VEGFR tyrosine kinase inhibitors sunitinib and/or sorafenib. The primary endpoint of progression-free survival was increased from median 1.9 to 4.9 months (hazard ratio 0.33, P < 0.001) and 25% were still progression-free after 10 months of everolimus therapy. There was a delay in time to decline of performance status and trends to improvement in quality of life, disease-related symptoms, and overall survival despite crossover of the majority of patients assigned to placebo. In 2009, everolimus was approved in the US and Europe as the only validated option for this indication. Toxicities are usually mild to moderate and can be managed with dose reduction or interruption if necessary. Opportunistic infections and non-infectious pneumonitis are seen as a class effect. Management of common practical management issues are discussed. Clinical trials are in progress to examine additional roles for everolimus in renal cancer, alone and in combination with other agents.
Collapse
Affiliation(s)
- Chris Coppin
- Medical Oncology, BC Cancer Agency and University of British Columbia, Vancouver, Canada
| |
Collapse
|
134
|
Sabine VS, Sims AH, Macaskill EJ, Renshaw L, Thomas JS, Dixon JM, Bartlett JMS. Gene expression profiling of response to mTOR inhibitor everolimus in pre-operatively treated post-menopausal women with oestrogen receptor-positive breast cancer. Breast Cancer Res Treat 2010; 122:419-28. [PMID: 20480226 DOI: 10.1007/s10549-010-0928-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/28/2010] [Indexed: 12/16/2022]
Abstract
There is growing evidence that uncontrolled activation of the PI3K/Akt/mTOR pathway contributes to the development and progression of breast cancer. Inhibition of this pathway has antitumour effects in preclinical studies and efficacy in combination with other agents in breast cancer patients. The aim of this study is to characterise the effects of pre-operative everolimus treatment in primary breast cancer patients and to identify potential molecular predictors of response. Twenty-seven patients with oestrogen receptor (ER)-positive breast cancer completed 11-14 days of neoadjuvant treatment with 5-mg everolimus. Core biopsies were taken before and after treatment and analysed using Illumina HumanRef-8 v2 Expression BeadChips. Changes in proliferation (Ki67) and phospho-AKT were measured on diagnostic core biopsies/resection samples embedded in paraffin by immunohistochemistry to determine response to treatment. Patients that responded to everolimus treatment with significant reductions in proliferation (fall in % Ki67 positive cells) also had significant decreases in the expression of genes involved in cell cycle (P = 8.70E-09) and p53 signalling (P = 0.01) pathways. Highly proliferating tumours that have a poor prognosis exhibited dramatic reductions in the expression of cell cycle genes following everolimus treatment. The genes that most clearly separated responding from non-responding pre-treatment tumours were those involved with protein modification and dephosphorylation, including DYNLRB2, ERBB4, PTPN13, ULK2 and DUSP16. The majority of ER-positive breast tumours treated with everolimus showed a significant reduction in genes involved with proliferation, these may serve as markers of response and predict which patients will derive most benefit from mTOR inhibition.
Collapse
Affiliation(s)
- Vicky S Sabine
- Endocrine Cancer Group, University of Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | | | | | | | | | | | | |
Collapse
|
135
|
Application of T cell-based transcriptomics to identify three candidate biomarkers for monitoring anti-TGFbetaR therapy. Pharmacogenet Genomics 2010; 20:147-56. [PMID: 20084050 DOI: 10.1097/fpc.0b013e328335731c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The development of targeted drugs would greatly benefit from the simultaneous identification of biomarkers to determine the aspects of bioactivity, drug safety and efficacy, particularly when affecting receptor-signaling pathways. However, the establishment of appropriate systems to monitor drug-induced events requires an accessible surrogate tissue for functional read out. METHODS Therefore we present a universal platform based upon T cell-based gene expression profiling for the identification of biomarkers using the antitransforming growth factor beta receptor inhibitor LY2109761 as an example. RESULTS Our initial screen revealed 12 candidate genes specifically regulated in T cells by the inhibitor. In subsequent in-vitro and in-vivo analyses, the combined monitoring of independent gene regulation of three genes was established in peripheral blood mononuclear cells as novel pharmacodynamic candidate biomarkers for antitransforming growth factor beta receptor based therapies. CONCLUSION Overall, the proposed concept of biomarker identification can be easily adapted towards other drug candidates for whom gene regulation can be established in cellular components of peripheral blood.
Collapse
|
136
|
O'Reilly T, McSheehy PM. Biomarker Development for the Clinical Activity of the mTOR Inhibitor Everolimus (RAD001): Processes, Limitations, and Further Proposals. Transl Oncol 2010; 3:65-79. [PMID: 20360931 PMCID: PMC2847314 DOI: 10.1593/tlo.09277] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/18/2022] Open
Abstract
The mTOR inhibitor everolimus (RAD001, Afinitor) is an orally active anticancer agent. Everolimus demonstrates growth-inhibitory activity against a broad range of tumor cell histotypes in vitro and has the capacity to retard tumor growth in preclinical tumor models in vivo through mechanisms directed against both the tumor cell and the solid tumor stroma components. These properties have rendered it to be a clinically active drug, with subsequent registration in renal cell carcinoma (Motzer et al. [2008]. Lancet372, 449-456) as well as showing strong potential as a combination partner (André F et al. [2008]. J Clin Oncol26. Abstract 1003). Although everolimus has a high specificity for its molecular target, the ubiquitous nature of mTOR and the multifactorial influence that mTOR signaling has on cell physiology have made studies difficult on the identification and validation of a biomarker set to predict and monitor drug sensitivity for clinical use. In this review, a summary of the preclinical and clinical data relevant to biomarker development for everolimus is presented, and the advantages and problems of current biomarkers are reviewed. In addition, alternative approaches to biomarker development are proposed on the basis of examples of a combination of markers and functional noninvasive imaging. In particular, we show how basal levels of pAKT and pS6 together could, in principle, be used to stratify patients for likely response to an mTOR inhibitor.
Collapse
Affiliation(s)
- Terence O'Reilly
- Oncology Research, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
137
|
Guigon CJ, Fozzatti L, Lu C, Willingham MC, Cheng SY. Inhibition of mTORC1 signaling reduces tumor growth but does not prevent cancer progression in a mouse model of thyroid cancer. Carcinogenesis 2010; 31:1284-91. [PMID: 20299527 DOI: 10.1093/carcin/bgq059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Selective drugs targeting dysregulated oncogenic pathways are promising cancer therapies. Because the mammalian target of rapamycin complex 1 (mTORC1) pathway is hyperactivated in human follicular thyroid cancer (FTC), we hypothesized that its inhibition could block cancer development and progression. We, therefore, analyzed the effect of a treatment with a specific mTORC1 inhibitor (RAD001) in a faithful mouse model of FTC with constitutive mTORC1 activation (TRbeta(PV/PV)Pten(+/-) mice). The treatment did not prevent capsular and vascular invasion of the thyroid and the occurrence of lung metastasis. However, it substantially decelerated thyroid tumor growth, thereby prolonging TRbeta(PV/PV)Pten(+/-) mouse life span. RAD001 efficiently inhibited mTORC1 activity, as shown by the reduced phosphorylation of its downstream targets involved in the activity of the translation machinery, such as ribosomal S6 kinase (p70(S6K)), eukaryotic translation initiation factor 4E binding protein (4E-BP1) and the eukaryotic translation initiation factors eIF-4B and eIF-4G. Whereas mTORC1 signaling inhibition did not alter cell apoptosis, it induced a significant decrease in cell proliferation that was associated with the reduced abundance and altered activity of key regulators of cell cycle progression. Altogether, our data indicate that mTORC1 signaling plays a major role in the integration of the mitogenic signal in FTC. Therefore, our preclinical study with a relevant mouse model of FTC demonstrates for the first time that RAD001 efficaciously stabilizes cancer growth although it does not prevent its fatal outcome. In conclusion, our work underscores that in the treatment of FTC patients, RAD001 can only be used in combination with drugs and therapies inducing tumor shrinkage and blocking metastasis.
Collapse
Affiliation(s)
- Celine J Guigon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4264, USA
| | | | | | | | | |
Collapse
|
138
|
Ekshyyan O, Mills GM, Lian T, Amirghahari N, Rong X, Lowery-Nordberg M, Abreo F, Veillon DM, Caldito G, Speicher L, Glass J, Nathan CAO. Pharmacodynamic evaluation of temsirolimus in patients with newly diagnosed advanced-stage head and neck squamous cell carcinoma. Head Neck 2010; 32:1619-28. [DOI: 10.1002/hed.21374] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
139
|
Kuo HP, Lee DF, Chen CT, Liu M, Chou CK, Lee HJ, Du Y, Xie X, Wei Y, Xia W, Weihua Z, Yang JY, Yen CJ, Huang TH, Tan M, Xing G, Zhao Y, Lin CH, Tsai SF, Fidler IJ, Hung MC. ARD1 stabilization of TSC2 suppresses tumorigenesis through the mTOR signaling pathway. Sci Signal 2010; 3:ra9. [PMID: 20145209 DOI: 10.1126/scisignal.2000590] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian target of rapamycin (mTOR) regulates various cellular functions, including tumorigenesis, and is inhibited by the tuberous sclerosis 1 (TSC1)-TSC2 complex. Here, we demonstrate that arrest-defective protein 1 (ARD1) physically interacts with, acetylates, and stabilizes TSC2, thereby repressing mTOR activity. The inhibition of mTOR by ARD1 inhibits cell proliferation and increases autophagy, thereby inhibiting tumorigenicity. Correlation between ARD1 and TSC2 abundance was apparent in multiple tumor types. Moreover, evaluation of loss of heterozygosity at Xq28 revealed allelic loss in 31% of tested breast cancer cell lines and tumor samples. Together, our findings suggest that ARD1 functions as an inhibitor of the mTOR pathway and that dysregulation of the ARD1-TSC2-mTOR axis may contribute to cancer development.
Collapse
Affiliation(s)
- Hsu-Ping Kuo
- 1Department of Molecular and Cellular Oncology, Unit 108, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Yao JC, Lombard-Bohas C, Baudin E, Kvols LK, Rougier P, Ruszniewski P, Hoosen S, St Peter J, Haas T, Lebwohl D, Van Cutsem E, Kulke MH, Hobday TJ, O'Dorisio TM, Shah MH, Cadiot G, Luppi G, Posey JA, Wiedenmann B. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 2009; 28:69-76. [PMID: 19933912 DOI: 10.1200/jco.2009.24.2669] [Citation(s) in RCA: 474] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE No established treatment exists for pancreatic neuroendocrine tumor (NET) progression after failure of chemotherapy. Everolimus (RAD001), an oral inhibitor of mammalian target of rapamycin, in combination with octreotide has demonstrated encouraging antitumor activity in patients with NETs. PATIENTS AND METHODS This open-label, phase II study assessed the clinical activity of everolimus in patients with metastatic pancreatic NETs who experienced progression on or after chemotherapy. Patients were stratified by prior octreotide therapy (stratum 1: everolimus 10 mg/d, n = 115; stratum 2: everolimus 10 mg/d plus octreotide long-acting release [LAR], n = 45). Tumor assessments (using Response Evaluation Criteria in Solid Tumors) were performed every 3 months. Chromogranin A (CgA) and neuron-specific enolase (NSE) were assessed monthly if elevated at baseline. Trough concentrations of everolimus and octreotide were assessed. Results By central radiology review, in stratum 1, there were 11 partial responses (9.6%), 78 patients (67.8%) with stable disease (SD), and 16 patients (13.9%) with progressive disease; median progression-free survival (PFS) was 9.7 months. In stratum 2, there were two partial responses (4.4%), 36 patients (80%) with SD, and no patients with progressive disease; median PFS was 16.7 months. Patients with an early CgA or NSE response had a longer PFS compared with patients without an early response. Coadministration of octreotide LAR and everolimus did not impact exposure to either drug. Most adverse events were mild to moderate and were consistent with those previously seen with everolimus. CONCLUSION Daily everolimus, with or without concomitant octreotide LAR, demonstrates antitumor activity as measured by objective response rate and PFS and is well tolerated in patients with advanced pancreatic NETs after failure of prior systemic chemotherapy.
Collapse
Affiliation(s)
- James C Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 426, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
|
142
|
|
143
|
O'Reilly T, McSheehy PMJ, Kawai R, Kretz O, McMahon L, Brueggen J, Bruelisauer A, Gschwind HP, Allegrini PR, Lane HA. Comparative pharmacokinetics of RAD001 (everolimus) in normal and tumor-bearing rodents. Cancer Chemother Pharmacol 2009; 65:625-39. [PMID: 19784839 DOI: 10.1007/s00280-009-1068-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 07/06/2009] [Indexed: 01/29/2023]
Abstract
PURPOSE Comparative pharmacokinetic (PK) analysis of the mTOR inhibitor RAD001 (everolimus) in rats and mice. METHODS Blood cell partitioning, plasma protein binding and PK parameters of RAD001 in blood and tissues (including brain) of both mice and rats were determined. PK modeling predicted plasma/blood and tumor levels from a variety of regimens and these were compared with the known human PK profile. DCE-MRI was used to compare tumor vascularity between mice and rats. Estimation of IC50 values in vitro and ED50 values in vivo were used to provide an indication of anti-tumor activity. RESULTS The PK properties of RAD001 differed between mice and rats, including erythrocyte partitioning, plasma protein binding, plasma/blood t(1/2), oral bioavailability, volume of distribution, tissue/tumor penetration and elimination. Modeling of tumor and blood/plasma PK suggested that in mice, multiple daily administrations result in a 2-fold increase in tumor levels of RAD001 at steady state, whereas in rats, a 7.9-fold increase would occur. Weekly high-dose regimens were predicted not to facilitate tumor accumulation in either species. Total tumor levels of RAD001 were four- to eight-fold greater in rats than in mice. Rat tumors had a >2-fold greater plasma content and permeability compared to mouse tumors, which could contribute to differences in tumor drug uptake. Maximal antitumor effects (T/C of 0.04-0.35) were observed in both species after daily administration with similar C(max) and AUC values of unbound (free) RAD001. These free levels of RAD001 are exceeded in serum from cancer patients receiving clinically beneficial daily regimens. In rodents, brain penetration of RAD001 was poor, but was dose-dependent and showed over-proportional uptake in rats with a longer t(1/2) compared to the systemic circulation. CONCLUSIONS The PK of RAD001 differed between mice and rats, with rats having a PK profile closer to that of humans. High intermittent doses of RAD001 may be more appropriate for treatment of brain tumors.
Collapse
Affiliation(s)
- Terence O'Reilly
- Department of Oncology Research, Novartis Institutes for BioMedical Research, WKL-125.13.17, 4002, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Dowling RJO, Pollak M, Sonenberg N. Current status and challenges associated with targeting mTOR for cancer therapy. BioDrugs 2009; 23:77-91. [PMID: 19489650 DOI: 10.2165/00063030-200923020-00002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in the regulation of cellular growth, survival, and proliferation. Inappropriate activation of PI3K/Akt/mTOR signaling can promote a cellular environment that is favorable for transformation. In fact, dysregulation of this pathway, as a result of genetic mutations and amplifications, is implicated in a variety of human cancers. Therefore, mTOR has emerged as a key target for the treatment of cancer, particularly in the treatment of tumors that exhibit increased mTOR signaling as a result of genetic lesions. The immunosuppressant sirolimus (rapamycin) directly inhibits mTOR activity and suppresses the growth of cancer cells in vitro and in vivo. As a result, a number of sirolimus derivatives have been developed as anti-cancer therapies, and these compounds are currently under investigation in phase I-III clinical trials. In this review, we summarize the use of sirolimus derivatives in clinical trials and address some of the challenges associated with targeting mTOR for the treatment of human cancer.
Collapse
Affiliation(s)
- Ryan J O Dowling
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
145
|
Mabuchi S, Kawase C, Altomare DA, Morishige K, Sawada K, Hayashi M, Tsujimoto M, Yamoto M, Klein-Szanto AJ, Schilder RJ, Ohmichi M, Testa JR, Kimura T. mTOR is a promising therapeutic target both in cisplatin-sensitive and cisplatin-resistant clear cell carcinoma of the ovary. Clin Cancer Res 2009; 15:5404-13. [PMID: 19690197 DOI: 10.1158/1078-0432.ccr-09-0365] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Mammalian target of rapamycin (mTOR) plays a central role in cell proliferation and is regarded as a promising target in cancer therapy, including for ovarian cancer. This study aimed to examine the role of mTOR as a therapeutic target in clear cell carcinoma of the ovary, which is regarded as an aggressive, chemoresistant histologic subtype. EXPERIMENTAL DESIGN Using tissue microarrays of 98 primary ovarian cancers (52 clear cell carcinomas and 46 serous adenocarcinomas), the expression of phospho-mTOR was assessed by immunohistochemistry. Then, the growth-inhibitory effect of mTOR inhibition by RAD001 (everolimus) was examined using two pairs of cisplatin-sensitive parental (RMG1 and KOC7C) and cisplatin-resistant human clear cell carcinoma cell lines (RMG1-CR and KOC7C-CR) both in vitro and in vivo. RESULTS Immunohistochemical analysis showed that mTOR was more frequently activated in clear cell carcinomas than in serous adenocarcinomas (86.6% versus 50%). Treatment with RAD001 markedly inhibited the growth of both RMG1 and KOC7C cells both in vitro and in vivo. Increased expression of phospho-mTOR was observed in cisplatin-resistant RMG1-CR and KOC7C-CR cells, compared with the respective parental cells. This increased expression of phospho-mTOR in cisplatin-resistant cells was associated with increased activation of AKT. RMG1-CR and KOC7C-CR cells showed greater sensitivity to RAD001 than did parental RMG1 and KOC7C cells, respectively, in vitro and in vivo. CONCLUSION mTOR is frequently activated in clear cell carcinoma and can be a promising therapeutic target in the management of clear cell carcinoma. Moreover, mTOR inhibition by RAD001 may be efficacious as a second-line treatment of recurrent disease in patients previously treated with cisplatin.
Collapse
Affiliation(s)
- Seiji Mabuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int 2009; 76:939-45. [PMID: 19657325 DOI: 10.1038/ki.2009.296] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The basic biology underlying the development of clear-cell renal cell carcinoma (ccRCC) is critically dependent on the von Hippel-Lindau gene (VHL), whose protein product is important in the cell's normal response to hypoxia. Aberrations in VHL's function, either through mutation or promoter hypermethylation, lead to accumulation of the transcriptional regulatory molecule, hypoxia-inducible factor alpha (HIFalpha). HIFalpha can then dimerize with HIFbeta and translocate to the nucleus, where it will transcriptionally upregulate a series of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and others. Binding of these ligands to their cognate receptors activates a series of kinase- dependent signaling pathways, including the RAF-MEK-ERK and phosphatidylinositol-3 kinase-AKT-mTOR pathways. Targeted agents developed and now approved for use in advanced ccRCC include humanized monoclonal antibodies against VEGF, small-molecule tyrosine kinase inhibitors, and inhibitors of mTOR. Understanding the biology of ccRCC is critical in understanding the current therapy for the disease and in developing novel therapeutics in the future. This review will provide an overview of the genetics of ccRCC, with an emphasis on how this has informed the development of the targeted therapeutics for this disease.
Collapse
|
147
|
Soria JC, Shepherd FA, Douillard JY, Wolf J, Giaccone G, Crino L, Cappuzzo F, Sharma S, Gross SH, Dimitrijevic S, Di Scala L, Gardner H, Nogova L, Papadimitrakopoulou V. Efficacy of everolimus (RAD001) in patients with advanced NSCLC previously treated with chemotherapy alone or with chemotherapy and EGFR inhibitors. Ann Oncol 2009; 20:1674-81. [PMID: 19549709 DOI: 10.1093/annonc/mdp060] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Treatment options are scarce in pretreated advanced non-small-cell lung cancer (NSCLC) patients. RAD001, an oral inhibitor of the mammalian target of rapamycin (mTOR), has shown phase I efficacy in NSCLC. METHODS Stage IIIb or IV NSCLC patients, with two or fewer prior chemotherapy regimens, one platinum based (stratum 1) or both chemotherapy and epidermal growth factor receptor tyrosine kinase inhibitors (stratum 2), received RAD001 10 mg/day until progression or unacceptable toxicity. Primary objective was overall response rate (ORR). Analyses of markers associated with the mTOR pathway were carried out on archival tumor from a subgroup using immunohistochemistry (IHC) and direct mutation sequencing. RESULTS Eighty-five patients were enrolled, 42 in stratum 1 and 43 in stratum. ORR was 4.7% (7.1% stratum 1; 2.3% stratum 2). Overall disease control rate was 47.1%. Median progression-free survivals (PFSs) were 2.6 (stratum 1) and 2.7 months (stratum 2). Common > or =grade 3 events were fatigue, dyspnea, stomatitis, anemia, and thrombocytopenia. Pneumonitis, probably or possibly related, mainly grade 1/2, occurred in 25%. Cox regression analysis of IHC scores found that only phospho AKT (pAKT) was a significant independent predictor of worse PFS. CONCLUSIONS RAD001 10 mg/day was well tolerated, showing modest clinical activity in pretreated NSCLC. Evaluation of RAD001 plus standard therapy for metastatic NSCLC continues.
Collapse
Affiliation(s)
- J-C Soria
- Lung Cancer Unit, Gustave Roussy Institute, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Anagnostou VK, Bepler G, Syrigos KN, Tanoue L, Gettinger S, Homer RJ, Boffa D, Detterbeck F, Rimm DL. High Expression of Mammalian Target of Rapamycin Is Associated with Better Outcome for Patients with Early Stage Lung Adenocarcinoma. Clin Cancer Res 2009; 15:4157-64. [DOI: 10.1158/1078-0432.ccr-09-0099] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
149
|
Presneau N, Shalaby A, Idowu B, Gikas P, Cannon SR, Gout I, Diss T, Tirabosco R, Flanagan AM. Potential therapeutic targets for chordoma: PI3K/AKT/TSC1/TSC2/mTOR pathway. Br J Cancer 2009; 100:1406-14. [PMID: 19401700 PMCID: PMC2694420 DOI: 10.1038/sj.bjc.6605019] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chordomas are radio- and chemo-resistant tumours and metastasise in as many as 40% of patients. The aim of this study was to identify potential molecular targets for the treatment of chordoma. In view of the reported association of chordoma and tuberous sclerosis complex syndrome, and the available therapeutic agents against molecules in the PI3K/AKT/TSC1/TSC2/mTOR pathway, a tissue microarray of 50 chordoma cases was analysed for expression of active molecules involved in this signalling pathway by immunohistochemistry and a selected number by western blot analysis. Chordomas were positive for p-AKT (92%), p-TSC2 (96%), p-mTOR (27%), total mTOR (75%), p-p70S6K (62%), p-RPS6 (22%), p-4E-BP1 (96%) and eIF-4E (98%). Phosphatase and tensin homologue deleted on chromosome 10 expression was lost in 16% of cases. Mutations failed to be identified in PI3KCA and RHEB1 in the 23 cases for which genomic DNA was available. Fluorescence in situ hybridisation analysis for mTOR and RPS6 loci showed that 11 of 33 and 21 of 44 tumours had loss of one copy of the respective genes, results which correlated with the loss of the relevant total proteins. Fluorescence in situ hybridisation analysis for loci containing TSC1 and TSC2 revealed that all cases analysed harboured two copies of the respective genes. On the basis of p-mTOR and or p-p70S6K expression there is evidence indicating that 65% of the chordomas studied may be responsive to mTOR inhibitors, rapamycin or its analogues, and that patients may benefit from combined therapy including drugs that inhibit AKT.
Collapse
Affiliation(s)
- N Presneau
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Cejka D, Kuntner C, Preusser M, Fritzer-Szekeres M, Fueger BJ, Strommer S, Werzowa J, Fuereder T, Wanek T, Zsebedics M, Mueller M, Langer O, Wacheck V. FDG uptake is a surrogate marker for defining the optimal biological dose of the mTOR inhibitor everolimus in vivo. Br J Cancer 2009; 100:1739-45. [PMID: 19436299 PMCID: PMC2695687 DOI: 10.1038/sj.bjc.6605076] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study aimed to test whether [18F]fluoro-D-glucose (FDG) uptake of tumours measured by positron emission tomography (PET) can be used as surrogate marker to define the optimal biological dose (OBD) of mTOR inhibitors in vivo. Everolimus at 0.05, 0.5, 5 and 15 mg kg−1 per day was administered to gastric cancer xenograft-bearing mice for 23 days and FDG uptake of tumours was measured using PET from day 1 to day 8. To provide standard comparators for FDG uptake, tumour volume, S6 protein phosphorylation, Ki-67 staining and everolimus blood levels were evaluated. Everolimus blood levels increased in a dose-dependent manner but antitumour activity of everolimus reached a plateau at doses ⩾5 mg kg−1 per day (tumour volume treated vs control (T/C): 51% for 5 mg kg−1 per day and 57% for 15 mg kg−1 per day). Correspondingly, doses ⩾5 mg kg−1 per day led to a significant reduction in FDG uptake of tumours. Dose escalation above 5 mg kg−1 per day did not reduce FDG uptake any further (FDG uptake T/C: 49% for 5 mg kg−1 per day and 52% for 15 mg kg−1 per day). Differences in S6 protein phosphorylation and Ki-67 index reflected tumour volume and changes in FDG uptake but did not reach statistical significance. In conclusion, FDG uptake might serve as a surrogate marker for dose finding studies for mTOR inhibitors in (pre)clinical trials.
Collapse
Affiliation(s)
- D Cejka
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|