101
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
102
|
Boucher Y, Posada JM, Subudhi S, Kumar AS, Rosario SR, Gu L, Kumra H, Mino-Kenudson M, Talele NP, Duda DG, Fukumura D, Wo JY, Clark JW, Ryan DP, Fernandez-Del Castillo C, Hong TS, Pittet MJ, Jain RK. Addition of Losartan to FOLFIRINOX and Chemoradiation Reduces Immunosuppression-Associated Genes, Tregs, and FOXP3+ Cancer Cells in Locally Advanced Pancreatic Cancer. Clin Cancer Res 2023; 29:1605-1619. [PMID: 36749873 PMCID: PMC10106451 DOI: 10.1158/1078-0432.ccr-22-1630] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/31/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE Adding losartan (LOS) to FOLFIRINOX (FFX) chemotherapy followed by chemoradiation (CRT) resulted in 61% R0 surgical resection in our phase II trial in patients with locally advanced pancreatic cancer (LAPC). Here we identify potential mechanisms of benefit by assessing the effects of neoadjuvant LOS on the tumor microenvironment. EXPERIMENTAL DESIGN We performed a gene expression and immunofluorescence (IF) analysis using archived surgical samples from patients treated with LOS+FFX+CRT (NCT01821729), FFX+CRT (NCT01591733), or surgery upfront, without any neoadjuvant therapy. We also conducted a longitudinal analysis of multiple biomarkers in the plasma of treated patients. RESULTS In comparison with FFX+CRT, LOS+FFX+CRT downregulated immunosuppression and pro-invasion genes. Overall survival (OS) was associated with dendritic cell (DC) and antigen presentation genes for patients treated with FFX+CRT, and with immunosuppression and invasion genes or DC- and blood vessel-related genes for those treated with LOS+FFX+CRT. Furthermore, LOS induced specific changes in circulating levels of IL-8, sTie2, and TGF-β. IF revealed significantly less residual disease in lesions treated with LOS+FFX+CRT. Finally, patients with a complete/near complete pathologic response in the LOS+FFX+CRT-treated group had reduced CD4+FOXP3+ regulatory T cells (Tregs), fewer immunosuppressive FOXP3+ cancer cells (C-FOXP3), and increased CD8+ T cells in pancreatic ductal adenocarcinoma lesions. CONCLUSIONS Adding LOS to FFX+CRT reduced pro-invasion and immunosuppression-related genes, which were associated with improved OS in patients with LAPC. Lesions from responders in the LOS+FFX+CRT-treated group had reduced Tregs, decreased C-FOXP3 and increased CD8+ T cells. These findings suggest that LOS may potentiate the benefit of FFX+CRT by reducing immunosuppression.
Collapse
Affiliation(s)
- Yves Boucher
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jessica M. Posada
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Pathology, Brigham and Women’s Hospital, Boston, University of Geneva, CH-1211 Geneva, Switzerland
| | - Sonu Subudhi
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Ashwin S. Kumar
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
- Harvard–MIT Division of Health Sciences and Technology, Cambridge, University of Geneva, CH-1211 Geneva, Switzerland
| | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, University of Geneva, CH-1211 Geneva, Switzerland
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, University of Geneva, CH-1211 Geneva, Switzerland
| | - Liqun Gu
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Heena Kumra
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Mari Mino-Kenudson
- Department of Pathology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Nilesh P. Talele
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Dan G. Duda
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Dai Fukumura
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jennifer Y. Wo
- Department of Radiation Oncology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jeffrey W. Clark
- Department of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - David P. Ryan
- Department of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | | | - Theodore S. Hong
- Department of Radiation Oncology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Mikael J. Pittet
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland
- Ludwig Institute for Cancer Research, 1005 Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Rakesh K. Jain
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
103
|
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: Advances and challenges. Cell 2023; 186:1729-1754. [PMID: 37059070 PMCID: PMC10182830 DOI: 10.1016/j.cell.2023.02.014] [Citation(s) in RCA: 479] [Impact Index Per Article: 239.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers. Significant efforts have largely defined major genetic factors driving PDAC pathogenesis and progression. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this review, we highlight the foundational studies that have driven our understanding of these processes. We further discuss the recent technological advances that continue to expand our understanding of PDAC complexity. We posit that the clinical translation of these research endeavors will enhance the currently dismal survival rate of this recalcitrant disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA.
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
104
|
Huang J, Wang M, Zhang F, Shao S, Yao Z, Zhao X, Hu Q, Liang T. An Ionic Liquid Ablation Agent for Local Ablation and Immune Activation in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206756. [PMID: 36698308 PMCID: PMC10074093 DOI: 10.1002/advs.202206756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Pancreatic ductal adenocarcinoma rapidly acquires resistance to chemotherapy, remaining a fatal disease. Immunotherapy is one of the breakthroughs in cancer treatment, which includes immune checkpoint inhibitors, chimeric antigen receptor T-cell immunotherapy, and neoantigen vaccines. However, immunotherapy has not achieved satisfactory results in the treatment of pancreatic cancer. Immunogenic death comprises proinflammatory cell death, which provides a way to enhance tumor immunogenicity and promote an immune response in solid tumors. Herein, an ionic liquid ablation agent (LAA), synthesized from choline and geranic acid, which triggers necrosis-induced immunotherapy by remodeling an immunosuppressive "cold" tumor to an immune activated "hot" tumor is described. The results indicate that LAA-treated tumor cells can enhance immunogenicity, inducing dendritic cell maturation, macrophage M1 polarization, and cytotoxic T lymphocyte infiltration. The results of the present study provide a novel strategy for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Junming Huang
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310006P. R. China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310006P. R. China
| | - Fu Zhang
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310006P. R. China
| | - Shiyi Shao
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310006P. R. China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhou310003P. R. China
| | - Zhuo Yao
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310006P. R. China
| | - Xinyu Zhao
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310006P. R. China
| | - Qida Hu
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310006P. R. China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhou310003P. R. China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310006P. R. China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhou310003P. R. China
- Innovation Center for the Study of Pancreatic DiseasesHangzhou310003P. R. China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic DiseasesHangzhou310003P. R. China
- Cancer CenterZhejiang UniversityHangzhou310058P. R. China
- Research Center for Healthcare Data ScienceZhejiang LabHangzhou310003P. R. China
| |
Collapse
|
105
|
Li Y, Xiang S, Pan W, Wang J, Zhan H, Liu S. Targeting tumor immunosuppressive microenvironment for pancreatic cancer immunotherapy: Current research and future perspective. Front Oncol 2023; 13:1166860. [PMID: 37064113 PMCID: PMC10090519 DOI: 10.3389/fonc.2023.1166860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with increased incidence rate. The effect of surgery combined with chemoradiotherapy on survival of patients is unsatisfactory. New treatment strategy such as immunotherapy need to be investigated. The accumulation of desmoplastic stroma, infiltration of immunosuppressive cells including myeloid derived suppressor cells (MDSCs), tumor associated macrophages (TAMs), cancer‐associated fibroblasts (CAFs), and regulatory T cells (Tregs), as well as tumor associated cytokine such as TGF-β, IL-10, IL-35, CCL5 and CXCL12 construct an immunosuppressive microenvironment of pancreatic cancer, which presents challenges for immunotherapy. In this review article, we explore the roles and mechanism of immunosuppressive cells and lymphocytes in establishing an immunosuppressive tumor microenvironment in pancreatic cancer. In addition, immunotherapy strategies for pancreatic cancer based on tumor microenvironment including immune checkpoint inhibitors, targeting extracellular matrix (ECM), interfering with stromal cells or cytokines in TME, cancer vaccines and extracellular vesicles (EVs) are also discussed. It is necessary to identify an approach of immunotherapy in combination with other modalities to produce a synergistic effect with increased response rates in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Xiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjun Pan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| |
Collapse
|
106
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
107
|
CD4 + T cells in cancer. NATURE CANCER 2023; 4:317-329. [PMID: 36894637 DOI: 10.1038/s43018-023-00521-2] [Citation(s) in RCA: 205] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/20/2023] [Indexed: 03/11/2023]
Abstract
Cancer immunology and immunotherapy are driving forces of research and development in oncology, mostly focusing on CD8+ T cells and the tumor microenvironment. Recent progress highlights the importance of CD4+ T cells, corresponding to the long-known fact that CD4+ T cells are central players and coordinators of innate and antigen-specific immune responses. Moreover, they have now been recognized as anti-tumor effector cells in their own right. Here we review the current status of CD4+ T cells in cancer, which hold great promise for improving knowledge and therapies in cancer.
Collapse
|
108
|
Mahadevan KK, Dyevoich AM, Chen Y, Li B, Sugimoto H, Sockwell AM, McAndrews KM, Wang H, Shalapour S, Watowich SS, Kalluri R. Antigen-presenting type-I conventional dendritic cells facilitate curative checkpoint blockade immunotherapy in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531191. [PMID: 36945457 PMCID: PMC10028824 DOI: 10.1101/2023.03.05.531191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type-I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8 + T cell activation and eradication of ptPDAC with restoration of lifespan even upon PDAC re-challenge. Such eradication of ptPDAC was reversed following specific depletion of dendritic cells. Employing PDAC antigen-loaded cDC1s as a vaccine, immunotherapy-resistant PDAC was rendered sensitive to iCBT with a curative outcome. Analysis of the T-cell receptor (TCR) sequences in the tumor infiltrating CD8 + T cells following cDC1 vaccination coupled with iCBT identified unique CDR3 sequences with potential therapeutic significance. Our findings identify a fundamental difference in the immune microenvironment and adaptive immune response in PDAC concurrent with, or without pancreatitis, and provides a rationale for combining cDC1 vaccination with iCBT as a potential treatment option.
Collapse
|
109
|
Sun D, Dai T, Ji Y, Shen W, Bian W. COL11A1-driven positive feedback loop modulates fibroblast transformation and activates pancreatic cancer progression. Cell Biol Int 2023; 47:1081-1091. [PMID: 36861686 DOI: 10.1002/cbin.12009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 03/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common leading causes of cancer death. The cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) aggravate the malignant behavior of PDAC. However, it is still unknown how PDAC induces normal fibroblasts (NFs) to CAFs. In present research, we found that PDAC-derived collagen type XI alpha 1 (COL11A1) promoted the conversion of NFs to CAF-like cells. It included morphological and corresponding molecular marker changes. Activation of the nuclear factor-κB (NF-κB) pathway was involved in this process. Corresponding, CAFs cells could secrete interleukin 6 (IL-6), which promoted the invasion and the epithelial-mesenchymal transition of PDAC cells. Furthermore, IL-6 promoted the expression of transcription factor Activating Transcription Factor 4 by activating the Mitogen-Activated Protein Kinase/extracellular-signal-regulated kinase pathway. The latter directly promotes the expression of COL11A1. This way, a feedback loop of mutual influence was constructed between PDAC and CAFs. Our research proposed a novel concept for PDAC-educated NFs. PDAC-COL11A1-fibroblast-IL-6-PDAC axis might contribute to the cascade between PDAC and TME.
Collapse
Affiliation(s)
- Defeng Sun
- Department of Hepatobiliary Surgery, Affiliated Wuxi 2 People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China.,Department of Hepatobiliary, Wuxi Clinical College, Nantong University, Wuxi, Jiangsu, People's Republic of China
| | - Tu Dai
- Department of Hepatobiliary Surgery, Affiliated Wuxi 2 People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China.,Department of Hepatobiliary, Wuxi Clinical College, Nantong University, Wuxi, Jiangsu, People's Republic of China
| | - Yuan Ji
- Department of Hepatobiliary Surgery, Affiliated Wuxi 2 People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China.,Department of Hepatobiliary, Wuxi Clinical College, Nantong University, Wuxi, Jiangsu, People's Republic of China
| | - Weibo Shen
- Department of Hepatobiliary Surgery, Affiliated Wuxi 2 People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China.,Department of Hepatobiliary, Wuxi Clinical College, Nantong University, Wuxi, Jiangsu, People's Republic of China
| | - Wuyang Bian
- Department of Hepatobiliary Surgery, Affiliated Wuxi 2 People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China.,Department of Hepatobiliary, Wuxi Clinical College, Nantong University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
110
|
TGF-β2 antisense oligonucleotide enhances T-cell mediated anti-tumor activities by IL-2 via attenuation of fibrotic reaction in a humanized mouse model of pancreatic ductal adenocarcinoma. Biomed Pharmacother 2023; 159:114212. [PMID: 36610224 DOI: 10.1016/j.biopha.2022.114212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with high mortality and recurrence rate. In this study, we generated a human immune system mouse model by transplanting human peripheral blood mononuclear cells into NSG-B2m mice followed by xenografting AsPC-1 cells, after which we assessed the role of transforming growth factor-β2 (TGF-β2) in T-cell-mediated anti-tumor immunity. We observed that inhibiting the TGF-β2 production by TGF-β2 antisense oligonucleotide (TASO) combined with IL-2 delays pancreatic cancer growth. Co-treatment of TASO and IL-2 had little effect on the SMAD-dependent pathway, but significantly inhibited the Akt phosphorylation and sequentially activated GSK-3β. Activation of GSK-3β by TASO subsequently suppressed β-catenin and α-SMA expression and resulted in attenuated fibrotic reactions, facilitating the infiltration of CD8 + cytotoxic T lymphocytes (CTLs) into the tumor. TGF-β2 inhibition suppressed the Foxp3 + regulatory T-cells in peripheral blood and tumors, thereby enhancing the tumoricidal effects of CTLs associated with increased granzyme B and cleaved caspase-3. Moreover, changes in the T-cell composition in peripheral blood and at the tumor site by TASO and IL-2 induced the increase of pro-inflammatory cytokines such as IFN-γ and TNF-α and the decrease of anti-inflammatory cytokines such as TGF-βs. These results indicate that the TGF-β2 inhibition by TASO combined with IL-2 enhances the T-cell mediated anti-tumor immunity against SMAD4-mutated PDAC by modulating the tumor-associated fibrosis, suggesting that TASO in combination with IL-2 may be a promising immunotherapeutic intervention for PDAC.
Collapse
|
111
|
Huang CK, Lv L, Chen H, Sun Y, Ping Y. ENO1 promotes immunosuppression and tumor growth in pancreatic cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03114-8. [PMID: 36820953 DOI: 10.1007/s12094-023-03114-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is a highly aggressive and malignant cancer type with the highest mortality rate of all major cancers. However, the molecular and tumor immune escape mechanism underlying pancreatic cancer remains largely unclear. α-enolase (ENO1) is a glycolytic enzyme reported to overexpress in a variety of cancer types. This study was undertaken to investigate the functional role and therapeutic potential of ENO1 in pancreatic cancer. METHODS We examined the expression levels of ENO1 across a broad spectrum of cancer types from the TCGA database. ENO1-knockout (ENO1-KO) through CRISPR/CAS9 technology in a mouse pancreatic cancer cell line (PAN02) was used to analyze the role of ENO1 on proliferation and colony formation. Flow cytometry and RT-PCR were also applied to analyze T lymphocytes and relevant cytokines. RESULTS In the present study, we identified that ENO1 promoted pancreatic cancer cell proliferation. Our bioinformatics data indicated that ENO1 was significantly overexpressed in pancreatic cancer cell lines and tissues. Survival analyses revealed that ENO1 overexpression implicated poor survival of PAAD patients. Knockout of ENO1 expression repressed the ability of proliferation and colony formation in PAN02. In addition, ENO1-KO significantly decreased tumor growth in mouse models. Further flow cytometry and RT-PCR analysis revealed that ENO1-KO modulates the tumor microenvironment (TME), especially in suppressed Treg cells and inducing anti-tumor cytokine responses. CONCLUSIONS Taken together, our data showed that ENO1 was an oncogenic biomarker and might serve as a promising target for immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Chen Kai Huang
- Department of Molecular and Cellular Biology, University of California, Berkeley, 110 Sproul Hall, Berkeley, CA, 94720, USA
| | - Lei Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Huanliang Chen
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Ying Sun
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
112
|
Hom LM, Sun S, Campbell J, Liu P, Culbert S, Murphy IM, Schafer ZT. A role for fibroblast-derived SASP factors in the activation of pyroptotic cell death in mammary epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529458. [PMID: 36865231 PMCID: PMC9980130 DOI: 10.1101/2023.02.21.529458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In normal tissue homeostasis, bidirectional communication between different cell types can shape numerous biological outcomes. Many studies have documented instances of reciprocal communication between fibroblasts and cancer cells that functionally change cancer cell behavior. However, less is known about how these heterotypic interactions shape epithelial cell function in the absence of oncogenic transformation. Furthermore, fibroblasts are prone to undergo senescence, which is typified by an irreversible cell cycle arrest. Senescent fibroblasts are also known to secrete various cytokines into the extracellular space; a phenomenon that is termed the senescence-associated secretory phenotype (SASP). While the role of fibroblast derived SASP factors on cancer cells has been well studied, the impact of these factors on normal epithelial cells remains poorly understood. We discovered that treatment of normal mammary epithelial cells with conditioned media (CM) from senescent fibroblasts (SASP CM) results in a caspase-dependent cell death. This capacity of SASP CM to cause cell death is maintained across multiple senescence-inducing stimuli. However, the activation of oncogenic signaling in mammary epithelial cells mitigates the ability of SASP CM to induce cell death. Despite the reliance of this cell death on caspase activation, we discovered that SASP CM does not cause cell death by the extrinsic or intrinsic apoptotic pathway. Instead, these cells die by an NLRP3, caspase-1, and gasdermin D (GSDMD)-dependent induction of pyroptosis. Taken together, our findings reveal that senescent fibroblasts can cause pyroptosis in neighboring mammary epithelial cells, which has implications for therapeutic strategies that perturb the behavior of senescent cells.
Collapse
|
113
|
Xu PL, Cheng CS, Wang T, Dong S, Li P. Immune landscape and prognostic index for pancreatic cancer based on TCGA database and in vivo validation. BMC Cancer 2023; 23:139. [PMID: 36765322 PMCID: PMC9912589 DOI: 10.1186/s12885-023-10597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
The immunotherapy efficacy on pancreatic cancer remains unsatisfactory. Therefore, it is still necessary to further clarify the pancreatic immune cell infiltration and search for immune-related prognostic indicators. We analyzed the 135 pancreatic cancer patients' data retrieved from the TCGA database for the immune cell infiltration, tumor microenvironment score and the correlation of the immune cells, followed by identification of prognostic immune clusters and genes clusters. The R language was used for the immune score calculation, and immune cells proportion related survival differences identification. The function of immune cells was verified through datasets in the GEO database and in vivo experiments. The results showed that M0 Macrophages had negative relations to CD8 + T cells and immune scores. There were differences in median survival in ICI clusters, gene clusters, and immune score groups (p < 0.05). M0 macrophages accounted for more than 9.8%, indicating a poor prognosis, while T cells accounted for more than 9.2%, indicating a good prognosis. In vivo results showed that M0 macrophages promote pancreatic cancer growth. Elimination of M0 macrophages may be a hopeful strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Pan-ling Xu
- grid.412679.f0000 0004 1771 3402Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui China
| | - Chien-shan Cheng
- grid.452404.30000 0004 1808 0942Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Ting Wang
- grid.412679.f0000 0004 1771 3402Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui China
| | - Shu Dong
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui, China.
| |
Collapse
|
114
|
Falcomatà C, Bärthel S, Schneider G, Rad R, Schmidt-Supprian M, Saur D. Context-Specific Determinants of the Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. Cancer Discov 2023; 13:278-297. [PMID: 36622087 PMCID: PMC9900325 DOI: 10.1158/2159-8290.cd-22-0876] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 01/10/2023]
Abstract
Immunotherapies have shown benefits across a range of human cancers, but not pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that the immunosuppressive tumor microenvironment (TME) constitutes an important roadblock to their efficacy. The landscape of the TME differs substantially across PDAC subtypes, indicating context-specific principles of immunosuppression. In this review, we discuss how PDAC cells, the local TME, and systemic host and environmental factors drive immunosuppression in context. We argue that unraveling the mechanistic drivers of the context-specific modes of immunosuppression will open new possibilities to target PDAC more efficiently by using multimodal (immuno)therapeutic interventions. SIGNIFICANCE Immunosuppression is an almost universal hallmark of pancreatic cancer, although this tumor entity is highly heterogeneous across its different subtypes and phenotypes. Here, we provide evidence that the diverse TME of pancreatic cancer is a central executor of various different context-dependent modes of immunosuppression, and discuss key challenges and novel opportunities to uncover, functionalize, and target the central drivers and functional nodes of immunosuppression for therapeutic exploitation.
Collapse
Affiliation(s)
- Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Günter Schneider
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
115
|
Walcheck MT, Schwartz PB, Carrillo ND, Matkowsky KA, Nukaya M, Bradfield CA, Ronnekleiv-Kelly SM. Aryl hydrocarbon receptor knockout accelerates PanIN formation and fibro-inflammation in a mutant Kras-driven pancreatic cancer model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526625. [PMID: 36778364 PMCID: PMC9915668 DOI: 10.1101/2023.02.01.526625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objectives The pathogenesis of pancreas cancer (PDAC) remains poorly understood, hindering efforts to develop a more effective therapy for PDAC. Recent discoveries show the aryl hydrocarbon receptor (AHR) plays a crucial role in the pathogenesis of several cancers, and can be targeted for therapeutic effect. However, its involvement in PDAC remains unclear. Therefore, we evaluated the role of AHR in the development of PDAC in vivo. Methods We created a global AHR-null, mutant Kras-driven PDAC mouse model (A-/-KC) and evaluated the changes in PDAC precursor lesion formation (Pan-IN 1, 2, and 3) and associated fibro-inflammation between KC and A-/-KC at 5 months of age. We then examined the changes in the immune microenvironment followed by single-cell RNA-sequencing analysis to evaluate concomitant transcriptomic changes. Results We found a significant increase in PanIN-1 lesion formation and PanIN-1 associated fibro-inflammatory infiltrate in A-/-KC vs KC mice. This was associated with significant changes in the adaptive immune system, particularly a decrease in the CD4+/CD8+ T-cell ratio, as well as a decrease in the T-regulatory/Th17 T-cell ratio suggesting unregulated inflammation. Conclusion These findings show the loss of AHR results in heightened Kras-induced PanIN formation, through modulation of immune cells within the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- Morgan T Walcheck
- University of Wisconsin School of Medicine and Public Health, Department of Surgery, Division of Surgical Oncology, K4/747 CSC, 600 Highland Avenue, Madison, WI 53792
| | - Patrick B Schwartz
- University of Wisconsin School of Medicine and Public Health, Department of Surgery, Division of Surgical Oncology, K4/747 CSC, 600 Highland Avenue, Madison, WI 53792
| | - Noah D Carrillo
- University of Wisconsin, McArdle Laboratory for Cancer Research, 1400 University Avenue, McArdle Research Building, Madison, WI, 53706
| | - Kristina A Matkowsky
- University of Wisconsin School of Medicine and Public Health, Department of Pathology and Laboratory Medicine, L5/183 CSC, 600 Highland Avenue, Madison, WI 53792
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
| | - Manabu Nukaya
- University of Wisconsin School of Medicine and Public Health, Department of Surgery, Division of Surgical Oncology, K4/747 CSC, 600 Highland Avenue, Madison, WI 53792
- University of Wisconsin, McArdle Laboratory for Cancer Research, 1400 University Avenue, McArdle Research Building, Madison, WI, 53706
| | - Christopher A Bradfield
- University of Wisconsin, McArdle Laboratory for Cancer Research, 1400 University Avenue, McArdle Research Building, Madison, WI, 53706
| | - Sean M Ronnekleiv-Kelly
- University of Wisconsin School of Medicine and Public Health, Department of Surgery, Division of Surgical Oncology, K4/747 CSC, 600 Highland Avenue, Madison, WI 53792
- University of Wisconsin, McArdle Laboratory for Cancer Research, 1400 University Avenue, McArdle Research Building, Madison, WI, 53706
| |
Collapse
|
116
|
Abstract
Pancreatic ductal adenocarcinomas are distinguished by their robust desmoplasia, or fibroinflammatory response. Dominated by non-malignant cells, the mutated epithelium must therefore combat, cooperate with or co-opt the surrounding cells and signalling processes in its microenvironment. It is proposed that an invasive pancreatic ductal adenocarcinoma represents the coordinated evolution of malignant and non-malignant cells and mechanisms that subvert and repurpose normal tissue composition, architecture and physiology to foster tumorigenesis. The complex kinetics and stepwise development of pancreatic cancer suggests that it is governed by a discrete set of organizing rules and principles, and repeated attempts to target specific components within the microenvironment reveal self-regulating mechanisms of resistance. The histopathological and genetic progression models of the transforming ductal epithelium must therefore be considered together with a programme of stromal progression to create a comprehensive picture of pancreatic cancer evolution. Understanding the underlying organizational logic of the tumour to anticipate and pre-empt the almost inevitable compensatory mechanisms will be essential to eradicate the disease.
Collapse
Affiliation(s)
- Sunil R Hingorani
- Division of Hematology and Oncology, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
117
|
Barrera LN, Ridley PM, Bermejo-Rodriguez C, Costello E, Perez-Mancera PA. The role of microRNAs in the modulation of cancer-associated fibroblasts activity during pancreatic cancer pathogenesis. J Physiol Biochem 2023; 79:193-204. [PMID: 35767180 PMCID: PMC9905185 DOI: 10.1007/s13105-022-00899-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest of the common cancers. A major hallmark of PDAC is an abundant and dense fibrotic stroma, the result of a disproportionate deposition of extracellular matrix (ECM) proteins. Cancer-associated fibroblasts (CAFs) are the main mediators of PDAC desmoplasia. CAFs represent a heterogenous group of activated fibroblasts with different origins and activation mechanisms. microRNAs (miRNAs) are small non-coding RNAs with critical activity during tumour development and resistance to chemotherapy. Increasing evidence has revealed that miRNAs play a relevant role in the differentiation of normal fibroblasts into CAFs in PDAC. In this review, we discuss recent findings on the role of miRNAs in the activation of CAFs during the progression of PDAC and its response to therapy, as well as the potential role that PDAC-derived exosomal miRNAs may play in the activation of hepatic stellate cells (HSCs) and formation of liver metastasis. Since targeting of CAF activation may be a viable strategy for PDAC therapy, and miRNAs have emerged as potential therapeutic targets, understanding the biology underpinning miRNA-mediated tumour cell-CAF interactions is an important component in guiding rational approaches to treating this deadly disease.
Collapse
Affiliation(s)
- Lawrence N Barrera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Department of Molecular Cell Biology, School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 1JQ, UK
| | - P Matthew Ridley
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| | - Pedro A Perez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
118
|
Zhu YH, Zheng JH, Jia QY, Duan ZH, Yao HF, Yang J, Sun YW, Jiang SH, Liu DJ, Huo YM. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol (Dordr) 2023; 46:17-48. [PMID: 36367669 DOI: 10.1007/s13402-022-00741-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by poor treatment response and low survival time. The current clinical treatment for advanced PDAC is still not effective. In recent years, the research and application of immunotherapy have developed rapidly and achieved substantial results in many malignant tumors. However, the translational application in PDAC is still far from satisfactory and needs to be developed urgently. To carry out the study of immunotherapy, it is necessary to fully decipher the immune characteristics of PDAC. This review summarizes the recent progress of the tumor microenvironment (TME) of PDAC and highlights its link with immunotherapy. We describe the molecular cues and corresponding intervention methods, collate several promising targets and progress worthy of further study, and put forward the importance of integrated immunotherapy to provide ideas for future research of TME and immunotherapy of PDAC.
Collapse
Affiliation(s)
- Yu-Heng Zhu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jia-Hao Zheng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Qin-Yuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Zong-Hao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Hong-Fei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, 200240, People's Republic of China.
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
119
|
Velasco RM, García AG, Sánchez PJ, Sellart IM, Sánchez-Arévalo Lobo VJ. Tumour microenvironment and heterotypic interactions in pancreatic cancer. J Physiol Biochem 2023; 79:179-192. [PMID: 35102531 DOI: 10.1007/s13105-022-00875-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a disease with a survival rate of 9%; this is due to its chemoresistance and the large tumour stroma that occupies most of the tumour mass. It is composed of a large number of cells of the immune system, such as Treg cells, tumour-associated macrophages (TAMs), myeloid suppressor cells (MDCs) and tumour-associated neutrophiles (TANs) that generate an immunosuppressive environment by the release of inflammatory cytokines. Moreover, cancer-associated fibroblast (CAFs) provide a protective coverage that would difficult the access of chemotherapy to the tumour. According to this, new therapies that could remodel this heterogeneous tumour microenvironment, such as adoptive T cell therapies (ACT), immune checkpoint inhibitors (ICI), and CD40 agonists, should be developed for targeting PDA. This review organizes the different cell populations found in the tumour stroma involved in tumour progression in addition to the different therapies that are being studied to counteract the tumour.
Collapse
Affiliation(s)
- Raúl Muñoz Velasco
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Ana García García
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Paula Jiménez Sánchez
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Inmaculada Montanuy Sellart
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
| | - Víctor Javier Sánchez-Arévalo Lobo
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain.
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain.
| |
Collapse
|
120
|
Sherman MH, Beatty GL. Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. ANNUAL REVIEW OF PATHOLOGY 2023; 18:123-148. [PMID: 36130070 PMCID: PMC9877114 DOI: 10.1146/annurev-pathmechdis-031621-024600] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a prominent stromal microenvironment with remarkable cellular and spatial heterogeneity that meaningfully impacts disease biology and treatment resistance. Recent advances in tissue imaging capabilities, single-cell analytics, and disease modeling have shed light on organizing principles that shape the stromal complexity of PDAC tumors. These insights into the functional and spatial dependencies that coordinate cancer cell biology and the relationships that exist between cells and extracellular matrix components present in tumors are expected to unveil therapeutic vulnerabilities. We review recent advances in the field and discuss current understandings of mechanisms by which the tumor microenvironment shapes PDAC pathogenesis and therapy resistance.
Collapse
Affiliation(s)
- Mara H Sherman
- Department of Cell, Developmental and Cancer Biology; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
| | - Gregory L Beatty
- Abramson Cancer Center; and Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
121
|
Carpenter ES, Elhossiny AM, Kadiyala P, Li J, McGue J, Griffith B, Zhang Y, Edwards J, Nelson S, Lima F, Donahue KL, Du W, Bischoff AC, Alomari D, Watkoske H, Mattea M, The S, Espinoza C, Barrett M, Sonnenday CJ, Olden N, Peterson N, Gunchick V, Sahai V, Rao A, Bednar F, Shi J, Frankel TL, Di Magliano MP. Analysis of donor pancreata defines the transcriptomic signature and microenvironment of early pre-neoplastic pancreatic lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523300. [PMID: 36712058 PMCID: PMC9882230 DOI: 10.1101/2023.01.13.523300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The adult healthy human pancreas has been poorly studied given lack of indication to obtain tissue from the pancreas in the absence of disease and rapid postmortem degradation. We obtained pancreata from brain dead donors thus avoiding any warm ischemia time. The 30 donors were diverse in age and race and had no known pancreas disease. Histopathological analysis of the samples revealed PanIN lesions in most individuals irrespective of age. Using a combination of multiplex immunohistochemistry, single cell RNA sequencing, and spatial transcriptomics, we provide the first ever characterization of the unique microenvironment of the adult human pancreas and of sporadic PanIN lesions. We compared healthy pancreata to pancreatic cancer and peritumoral tissue and observed distinct transcriptomic signatures in fibroblasts, and, to a lesser extent, macrophages. PanIN epithelial cells from healthy pancreata were remarkably transcriptionally similar to cancer cells, suggesting that neoplastic pathways are initiated early in tumorigenesis. Statement of significance The causes underlying the onset of pancreatic cancer remain largely unknown, hampering early detection and prevention strategies. Here, we show that PanIN are abundant in healthy individuals and present at a much higher rate than the incidence of pancreatic cancer, setting the stage for efforts to elucidate the microenvironmental and cell intrinsic factors that restrain, or, conversely, promote, malignant progression.
Collapse
Affiliation(s)
- Eileen S Carpenter
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Ahmed M Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Padma Kadiyala
- Immunology Graduate Program, University of Michigan, Ann Arbor, MI
| | - Jay Li
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jake McGue
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Brian Griffith
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Jacob Edwards
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Sarah Nelson
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Fatima Lima
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Danyah Alomari
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI
| | - Hannah Watkoske
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Michael Mattea
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Stephanie The
- Cancer Data Science Resource, University of Michigan, Ann Arbor, MI
| | - Carlos Espinoza
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | | | | | - Nicole Peterson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Valerie Gunchick
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Arvind Rao
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
- Cancer Data Science Resource, University of Michigan, Ann Arbor, MI
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Jiaqi Shi
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Timothy L Frankel
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Immunology Graduate Program, University of Michigan, Ann Arbor, MI
| | - Marina Pasca Di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
122
|
Rochefort J, Karagiannidis I, Baillou C, Belin L, Guillot-Delost M, Macedo R, Le Moignic A, Mateo V, Soussan P, Brocheriou I, Teillaud JL, Dieu-Nosjean MC, Bertolus C, Lemoine FM, Lescaille G. Defining biomarkers in oral cancer according to smoking and drinking status. Front Oncol 2023; 12:1068979. [PMID: 36713516 PMCID: PMC9875375 DOI: 10.3389/fonc.2022.1068979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Oral Squamous Cell Carcinomas (OSCC) are mostly related to tobacco consumption eventually associated to alcohol (Smoker/Drinker patients: SD), but 25-30% of the patients have no identified risk factors (Non-Smoker/Non-Drinker patients: NSND). We hypothesized that these patients have distinguishable immune profiles that could be useful for prognosis. Materials and Methods Cells present in immune tumor microenvironment (TME) and blood from 87 OSCC HPV-negative patients were analyzed using a multiparameter flow cytometry assay, in a prospective case-control study. Cytokine levels in tumor supernatants and blood were determined by a cytometric bead array (CBA) assay. Results Normal gingiva and blood from healthy donors (HD) were used as controls. A significant increase of granulocytes (p<0.05 for blood), of monocytes-macrophages (p<0.01 for blood) and of CD4+ T cells expressing CD45RO and CCR6 (p<0.001 for blood; p<0.0001 for TME) as well as higher levels of IL-6 (p<0.01 for sera, p<0.05 for tumor supernatant) were observed in SD patients as compared to NSND OSCC patients and HD. High percentages of CD4+ T cells expressing CD45RO and CCR6 cells in tumor tissue (p=0.05) and blood (p=0.05) of SD OSCC patients were also associated with a poorer prognosis while a high percentage of regulatory T cells (Treg) in tumor tissue was associated with a more favorable prognostic factor (p=0.05). Also, a higher percentage of blood CD8+ T lymphocytes among CD45+ cells in NSND patients was associated with a better disease-free survival (p=0.004). Conclusion Granulocytes, monocytes-macrophages, and CD4+ T cells expressing CD45RO and CCR6 in blood and TME as well as serum IL-6 can therefore distinguish OSCC SD and NSND patients. Quantifying the proportion of CD4+ T cells expressing CD45RO and CCR6 and of Treg in SD patients and CD8+ T cells in NSND patients could help defining the prognostic of OSCC patients.
Collapse
Affiliation(s)
- Juliette Rochefort
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France,Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe hospitalier Pitié-Salpêtrière, Department of Odontology, Paris, France,Faculty of Odontology Université Paris Cité, Paris, France,*Correspondence: Juliette Rochefort,
| | - Ioannis Karagiannidis
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Claude Baillou
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Lisa Belin
- Sorbonne Université, Inserm, Institut Pierre Louis d'Épidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Département de Santé Publique, Paris, France
| | - Maude Guillot-Delost
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Rodney Macedo
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Aline Le Moignic
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Véronique Mateo
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | | | - Isabelle Brocheriou
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Pathology, Paris, France
| | - Jean-Luc Teillaud
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Chloé Bertolus
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France,AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Maxillo-Facial Surgery, Paris, France
| | - Francois Michel Lemoine
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France,AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Immunology, Paris, France
| | - Géraldine Lescaille
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France,Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe hospitalier Pitié-Salpêtrière, Department of Odontology, Paris, France,Faculty of Odontology Université Paris Cité, Paris, France
| |
Collapse
|
123
|
Du W, Menjivar RE, Donahue KL, Kadiyala P, Velez-Delgado A, Brown KL, Watkoske HR, He X, Carpenter ES, Angeles CV, Zhang Y, Pasca di Magliano M. WNT signaling in the tumor microenvironment promotes immunosuppression in murine pancreatic cancer. J Exp Med 2023; 220:e20220503. [PMID: 36239683 PMCID: PMC9577101 DOI: 10.1084/jem.20220503] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/06/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is associated with activation of WNT signaling. Whether this signaling pathway regulates the tumor microenvironment has remained unexplored. Through single-cell RNA sequencing of human pancreatic cancer, we discovered that tumor-infiltrating CD4+ T cells express TCF7, encoding for the transcription factor TCF1. We conditionally inactivated Tcf7 in CD4 expressing T cells in a mouse model of pancreatic cancer and observed changes in the tumor immune microenvironment, including more CD8+ T cells and fewer regulatory T cells, but also compensatory upregulation of PD-L1. We then used a clinically available inhibitor of Porcupine, a key component of WNT signaling, and observed similar reprogramming of the immune response. WNT signaling inhibition has limited therapeutic window due to toxicity, and PD-L1 blockade has been ineffective in PDA. Here, we show that combination targeting reduces pancreatic cancer growth in an experimental model and might benefit the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Rosa E. Menjivar
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | | | - Padma Kadiyala
- Immunology Program, University of Michigan, Ann Arbor, MI
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | | | | - Xi He
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| | - Eileen S. Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Christina V. Angeles
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
124
|
Translational nanomedicine potentiates immunotherapy in sarcoma by normalizing the microenvironment. J Control Release 2023; 353:956-964. [PMID: 36516902 DOI: 10.1016/j.jconrel.2022.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Nanocarrier-based chemo-immunotherapy has succeeded in clinical trials and understanding its effect on the tumor microenvironment could facilitate development of strategies to increase efficacy of these regimens further. NC-6300 (epirubicin micelle) demonstrates anti-tumor activity in sarcoma patients, but whether it is combinable with immune checkpoint inhibition is unclear. Here, we tested NC-6300 combined with anti-PD-L1 antibody in mouse models of osteosarcoma and fibrosarcoma. We found that sarcoma responds to NC-6300 in a dose-dependent manner, while anti-PD-L1 efficacy is potentiated even at a dose of NC-6300 less than 10% of the maximum tolerated dose. Furthermore, NC-6300 is more effective than the maximum tolerated dose of doxorubicin in increasing the tumor growth delay induced by anti-PD-L1 antibody. We investigated the mechanism of action of this combination. NC-6300 induces immunogenic cell death and its effect on the efficacy of anti-PD-L1 antibody is dependent on T cells. Also, NC-6300 normalized the tumor microenvironment (i.e., ameliorated pathophysiology towards normal phenotype) as evidenced through increased blood vessel maturity and reduced fibrosis. As a result, the combination with anti-PD-L1 antibody increased the intratumor density and proliferation of T cells. In conclusion, NC-6300 potentiates immune checkpoint inhibition in sarcoma, and normalization of the tumor microenvironment should be investigated when developing nanocarrier-based chemo-immunotherapy regimens.
Collapse
|
125
|
Du Y, Cai Y, Lv Y, Zhang L, Yang H, Liu Q, Hong M, Teng Y, Tang W, Ma R, Wu J, Wu J, Wang Q, Chen H, Li K, Feng J. Single-cell RNA sequencing unveils the communications between malignant T and myeloid cells contributing to tumor growth and immunosuppression in cutaneous T-cell lymphoma. Cancer Lett 2022; 551:215972. [PMID: 36265653 DOI: 10.1016/j.canlet.2022.215972] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
Cutaneous T cell lymphoma (CTCL) is characterized by the accumulation of malignant T cells in the skin. However, advanced CTCL pathophysiology remains elusive and therapeutic options are limited due to the high intratumoral heterogeneity and complicated tumor microenvironment (TME). By comparing the single-cell RNA-seq (scRNA-seq) data from advanced CTCL patients and healthy controls (HCs), we showed that CTCL had a higher enrichment of T/NK and myeloid cells. Subpopulations of T cells (CXCR3+, GNLY+, CREM+, and MKI67+ T cells), with high proliferation, stemness, and copy number variation (CNV) levels, contribute to the malignancy of CTCL. Besides, CCL13+ monocytes/macrophages and LAMP3+ cDC cells were enriched and mediated the immunosuppression via inhibitory interactions with malignant T cells, such as CD47-SIRPA, MIF-CD74, and CCR1-CCL18. Notably, elevated expressions of S100A9 and its receptor TLR4, as well as the activation of downstream toll-like receptor and NF-κB pathway were observed in both malignant cells and myeloid cells in CTCL. Cell co-culture experiments further confirmed that the interaction between malignant CTCL cells and macrophages contributed to tumor growth via S100A9 upregulation and NF-kb activation. Our results showed that blocking the S100A9-TLR4 interaction using tasquinimod could inactivate the NF-κB pathway and inhibit the growth of CTCL tumor cells, and trigger cell apoptosis. Collectively, our study revealed a landscape of immunosuppressive TME mediated by interactions between malignant T cells and myeloid cells, and provided novel targets and potential treatment strategies for advanced CTCL patients.
Collapse
Affiliation(s)
- Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Yun Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China
| | - Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Lishen Zhang
- Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Quanzhong Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China
| | - Ming Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Teng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Weiyan Tang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Rong Ma
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Jianqiu Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Jianzhong Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Qianghu Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China; Biomedical Big Data Center, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hongshan Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Kening Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China.
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China.
| |
Collapse
|
126
|
Gu L, Liao P, Liu H. Cancer-associated fibroblasts in acute leukemia. Front Oncol 2022; 12:1022979. [PMID: 36601484 PMCID: PMC9806275 DOI: 10.3389/fonc.2022.1022979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Although the prognosis for acute leukemia has greatly improved, treatment of relapsed/refractory acute leukemia (R/R AL) remains challenging. Recently, increasing evidence indicates that the bone marrow microenvironment (BMM) plays a crucial role in leukemogenesis and therapeutic resistance; therefore, BMM-targeted strategies should be a potent protocol for treating R/R AL. The targeting of cancer-associated fibroblasts (CAFs) in solid tumors has received much attention and has achieved some progress, as CAFs might act as an organizer in the tumor microenvironment. Additionally, over the last 10 years, attention has been drawn to the role of CAFs in the BMM. In spite of certain successes in preclinical and clinical studies, the heterogeneity and plasticity of CAFs mean targeting them is a big challenge. Herein, we review the heterogeneity and roles of CAFs in the BMM and highlight the challenges and opportunities associated with acute leukemia therapies that involve the targeting of CAFs.
Collapse
Affiliation(s)
- Ling Gu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore, Singapore,Academic & Clinical Development, Duke-NUS Medical School, Singapore, Singapore,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Hanmin Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| |
Collapse
|
127
|
Identification of the Genetic Association Between Type-2-Diabetes and Pancreatic Cancer. Biochem Genet 2022; 61:1143-1162. [DOI: 10.1007/s10528-022-10308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
|
128
|
IGFBP2 Drives Regulatory T Cell Differentiation through STAT3/IDO Signaling Pathway in Pancreatic Cancer. J Pers Med 2022; 12:jpm12122005. [PMID: 36556226 PMCID: PMC9785430 DOI: 10.3390/jpm12122005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest malignancies. Elevated regulatory T cell (Treg) infiltration has a potent immunosuppressive function in tumor biology, which contributes to low survival in PDAC. Nonetheless, the crosstalk between malignant cells and tumor-infiltrating Tregs in PDAC is not well understood. Here, clinical data demonstrates that the insulin-like growth factor binding protein 2 (IGFBP2) is associated with Treg accumulation in the microenvironment of PDAC in humans. Additionally, IGFBP2 increases Treg infiltration in the tumor microenvironment and promotes disease progression in mouse PDAC. Bioinformatic analysis and mechanistic assessment reveals IGFBP2 upregulated indoleamine 2, 3-dioxygenase (IDO) by activating signal transducer and activator of transcription 3 (STAT3) signaling in PDAC cells, thus inducing Treg differentiation and an immunosuppressive tumor microenvironment. These findings provide mechanistic insights into an important molecular pathway that promotes an immunosuppressive microenvironment, which suggests the IGFBP2 axis as a potential target for improved immune response in PDAC.
Collapse
|
129
|
Sang Y, Li Y, Xu L, Chen J, Li D, Du M. Dysfunction of CCR1 + decidual macrophages is a potential risk factor in the occurrence of unexplained recurrent pregnancy loss. Front Immunol 2022; 13:1045532. [PMID: 36532057 PMCID: PMC9755158 DOI: 10.3389/fimmu.2022.1045532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Recurrent pregnancy loss (RPL) puzzles 1-3% of women of childbearing age worldwide. Immunological factors account for more than 60% of cases of unexplained RPL (URPL); however, the underlying mechanism remains unclear. Here, using single-cell sequencing data and functional experiments with clinical samples, we identified a distinct population of CCR1+ decidual macrophages (dMφ) that were preferentially enriched in the decidua from normal early pregnancies but were substantially decreased in patients with URPL. Specific gene signatures endowed CCR1+ dMφ with immunosuppressive and migration-regulatory properties, which were attenuated in URPL. Additionally, CCR1+ dMφ promoted epithelial-to-mesenchymal transition (EMT) to promote trophoblast migration and invasion by activating the ERK1/2 signaling pathway. Decidual stromal cell (DSC)-derived CCL8 was the key regulator of CCR1+ dMφ as CCL8 recruited peripheral CCR1+ monocytes, induced a CCR1+ dMφ-like phenotype, and reinforced the CCR1+ dMφ-exerted modulation of trophoblasts. In patients with URPL, CCL8 expression in DSCs was decreased and trophoblast EMT was defective. Our findings revealed that CCR1+ dMφ play an important role in immune tolerance and trophoblast functions at the maternal-fetal interface. Additionally, decreased quantity and dysregulated function of CCR1+ dMφ result in URPL. In conclusion, we provide insights into the crosstalk between CCR1+ dMφ, trophoblasts, and DSCs at the maternal-fetal interface and macrophage-targeted interventions of URPL.
Collapse
Affiliation(s)
- Yifei Sang
- National Health Council (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Yanhong Li
- National Health Council (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Ling Xu
- National Health Council (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiajia Chen
- National Health Council (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Dajin Li
- National Health Council (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai, China,*Correspondence: Meirong Du, ; Dajin Li,
| | - Meirong Du
- National Health Council (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai, China,Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, Macau SAR, China,*Correspondence: Meirong Du, ; Dajin Li,
| |
Collapse
|
130
|
Pollini T, Adsay V, Capurso G, Molin MD, Esposito I, Hruban R, Luchini C, Maggino L, Matthaei H, Marchegiani G, Scarpa A, Wood LD, Bassi C, Salvia R, Mino-Kenudson M, Maker AV. The tumour immune microenvironment and microbiome of pancreatic intraductal papillary mucinous neoplasms. Lancet Gastroenterol Hepatol 2022; 7:1141-1150. [PMID: 36057265 PMCID: PMC9844533 DOI: 10.1016/s2468-1253(22)00235-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/19/2023]
Abstract
Pancreatic intraductal papillary mucinous neoplasms (IPMNs) have gained substantial attention because they represent one of the only radiographically identifiable precursors of invasive pancreatic ductal adenocarcinoma. Although most of these neoplasms have low-grade dysplasia and will remain indolent, a subset of IPMNs will progress to invasive cancer. The role of the immune system in the progression of IPMNs is unclear, but understanding its role could reveal the mechanism of neoplastic progression and targets for immunotherapy to inhibit progression or treat invasive disease. The available evidence supports a shift in the immune composition of IPMNs during neoplastic progression. Although low-grade lesions contain a high proportion of effector T cells, high-grade IPMNs, and IPMNs with an associated invasive carcinoma lose the T-cell infiltrate and are characterised by a predominance of immunosuppressive elements. Several possible therapeutic strategies emerge from this analysis that are unique to IPMNs and its microbiome.
Collapse
Affiliation(s)
- Tommaso Pollini
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA, USA,Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Volcan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Gabriele Capurso
- Department of Pancreatobiliary Endoscopy and Endosonography, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele, Milan, Italy
| | - Marco Dal Molin
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, USA
| | - Irene Esposito
- Department of Pathology, Heinrich Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Ralph Hruban
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology University of Verona, Verona, Italy
| | - Laura Maggino
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Hanno Matthaei
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Giovanni Marchegiani
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology University of Verona, Verona, Italy
| | - Laura D Wood
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Claudio Bassi
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Roberto Salvia
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ajay V Maker
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
131
|
Hughes R, Snook AE, Mueller AC. The poorly immunogenic tumor microenvironment of pancreatic cancer: the impact of radiation therapy, and strategies targeting resistance. Immunotherapy 2022; 14:1393-1405. [PMID: 36468417 DOI: 10.2217/imt-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the most lethal cancers, due to its uniquely aggressive behavior and resistance to therapy. The tumor microenvironment of pancreatic cancer is immunosuppressive, and attempts at utilizing immunotherapies have been unsuccessful. Radiation therapy (RT) results in immune activation and antigen presentation in other cancers, but in pancreatic cancer has had limited success in stimulating immune responses. RT activates common pathways of fibrosis and chronic inflammation seen in pancreatic cancer, resulting in immune suppression. Here we describe the pancreatic tumor microenvironment with regard to fibrosis, myeloid and lymphoid cells, and the impact of RT. We also describe strategies of targeting these pathways that have promise to improve outcomes by harnessing the cytotoxic and immune-activating aspects of RT.
Collapse
Affiliation(s)
- Robert Hughes
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam C Mueller
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
132
|
Zhou Q, Chen D, Zhang J, Xiang J, Zhang T, Wang H, Zhang Y. Pancreatic ductal adenocarcinoma holds unique features to form an immunosuppressive microenvironment: a narrative review. JOURNAL OF PANCREATOLOGY 2022. [DOI: 10.1097/jp9.0000000000000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
133
|
Li X, Gulati M, Larson AC, Solheim JC, Jain M, Kumar S, Batra SK. Immune checkpoint blockade in pancreatic cancer: Trudging through the immune desert. Semin Cancer Biol 2022; 86:14-27. [PMID: 36041672 PMCID: PMC9713834 DOI: 10.1016/j.semcancer.2022.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer (PC) has exceptionally high mortality due to ineffective treatment strategies. Immunotherapy, which mobilizes the immune system to fight against cancer, has been proven successful in multiple cancers; however, its application in PC has met with limited success. In this review, we articulated that the pancreatic tumor microenvironment is immuno-suppressive with extensive infiltration by M2-macrophages and myeloid-derived suppressive cells but low numbers of cytotoxic T-cells. In addition, low mutational load and poor antigen processing, presentation, and recognition contribute to the limited response to immunotherapy in PC. Immune checkpoints, the critical targets for immunotherapy, have high expression in PC and stromal cells, regulated by tumor microenvironmental milieu (cytokine and metabolites) and cell-intrinsic mechanisms (epigenetic regulation, oncogenic signaling, and post-translational modifications). Combining immunotherapy with modulators of the tumor microenvironment may facilitate the development of novel therapeutic regimens to manage PC.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alaina C Larson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joyce C Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
134
|
The microbiota and aging microenvironment in pancreatic cancer: Cell origin and fate. Biochim Biophys Acta Rev Cancer 2022; 1877:188826. [DOI: 10.1016/j.bbcan.2022.188826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
|
135
|
Bhatia R, Bhyravbhatla N, Kisling A, Li X, Batra SK, Kumar S. Cytokines chattering in pancreatic ductal adenocarcinoma tumor microenvironment. Semin Cancer Biol 2022; 86:499-510. [PMID: 35346801 PMCID: PMC9510605 DOI: 10.1016/j.semcancer.2022.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME) consists of multiple cell types interspersed by dense fibrous stroma. These cells communicate through low molecular weight signaling molecules called cytokines. The cytokines, through their receptors, facilitate PDAC initiation, progression, metastasis, and distant colonization of malignant cells. These signaling mediators secreted from tumor-associated macrophages, and cancer-associated fibroblasts in conjunction with oncogenic Kras mutation initiate acinar to ductal metaplasia (ADM), resulting in the appearance of early preneoplastic lesions. Further, M1- and M2-polarized macrophages provide proinflammatory conditions and promote deposition of extracellular matrix, whereas myofibroblasts and T-lymphocytes, such as Th17 and T-regulatory cells, create a fibroinflammatory and immunosuppressive environment with a significantly reduced cytotoxic T-cell population. During PDAC progression, cytokines regulate the expression of various oncogenic regulators such as NFκB, c-myc, growth factor receptors, and mucins resulting in the formation of high-grade PanIN lesions, epithelial to mesenchymal transition, invasion, and extravasation of malignant cells, and metastasis. During metastasis, PDAC cells colonize at the premetastatic niche created in the liver, and lung, an organotropic function primarily executed by cytokines in circulation or loaded in the exosomes from the primary tumor cells. The indispensable contribution of these cytokines at every stage of PDAC tumorigenesis makes them exciting candidates in combination with immune-, chemo- and targeted radiation therapy.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Namita Bhyravbhatla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Omaha, NE, USA.
| |
Collapse
|
136
|
Bryce AS, Dreyer SB, Froeling FEM, Chang DK. Exploring the Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer. Cancers (Basel) 2022; 14:5302. [PMID: 36358721 PMCID: PMC9659154 DOI: 10.3390/cancers14215302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy characterised by a stubbornly low 5-year survival which is essentially unchanged in the past 5 decades. Despite recent advances in chemotherapy and surgical outcomes, progress continues to lag behind that of other cancers. The PDAC microenvironment is characterised by a dense, fibrotic stroma of which cancer-associated fibroblasts (CAFs) are key players. CAFs and fibrosis were initially thought to be uniformly tumour-promoting, however this doctrine is now being challenged by a wealth of evidence demonstrating CAF phenotypic and functional heterogeneity. Recent technological advances have allowed for the molecular profiling of the PDAC tumour microenvironment at exceptional detail, and these technologies are being leveraged at pace to improve our understanding of this previously elusive cell population. In this review we discuss CAF heterogeneity and recent developments in CAF biology. We explore the complex relationship between CAFs and other cell types within the PDAC microenvironment. We discuss the potential for therapeutic targeting of CAFs, and we finally provide an overview of future directions for the field and the possibility of improving outcomes for patients with this devastating disease.
Collapse
Affiliation(s)
- Adam S. Bryce
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| | - Stephan B. Dreyer
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| | - Fieke E. M. Froeling
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Beatson West of Scotland Cancer Centre, 1053 Great Western Rd, Glasgow G12 0YN, UK
| | - David K. Chang
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| |
Collapse
|
137
|
Wang B, Wei W, Long S, Wang L, Yang B, Wu D, Li Z, Li Z, Arshad M, Li X, Chen J. CENPA acts as a prognostic factor that relates to immune infiltrates in gliomas. Front Neurol 2022; 13:1015221. [DOI: 10.3389/fneur.2022.1015221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlioma is the most common primary tumor of the central nervous system (CNS). Centromere protein A (CENPA) plays an essential role in ensuring that mitosis proceeds normally. The effect of CENPA on glioma is rarely reported. However, the current study aims to explore whether aberrant CENPA expression promotes glioma progression and the potential mechanisms involved.MethodsThe GEPIA website, The Cancer Genome Atlas, and the Gene Expression Omnibus (GEO) were used to assess the expression of CENPA in glioma. The results were validated by real-time quantitative polymerase chain reaction and immunohistochemical staining of clinical samples. The relationship between the expression and prognostic value of the CENPA gene in glioma was investigated by Kaplan–Meier (KM) survival analysis with RNA-seq and clinical profiles downloaded from the Chinese Glioma Genome Atlas (CGGA) and UCSC Xena. The association between CENPA and clinical characteristics was also evaluated. Cell Counting Kit-8 (CCK8) assay, wound healing assay using two glioma cell lines, gene set enrichment analysis (GSEA), KEGG and gene ontology (GO) enrichment analysis, immune infiltration analysis, temozolomide (TMZ) sensitivity analysis, and single-cell sequence analysis were performed to explore the underlying mechanisms of high CENPA expression and its effect on glioma development. Finally, we performed a Cox analysis based on the expression of CENPA to predict patient prognosis.ResultsCENPA was significantly upregulated in glioma tissue samples and correlated with patient prognosis. Moreover, the downregulation of CENPA inhibited the migration and proliferation of glioma cells. In addition, the expression level of CENPA was significantly correlated with the grade, primary–recurrent–secondary (PRS) type, IDH mutation status, and 1p19q codeletion status. Furthermore, CENPA could serve as an independent prognostic factor for glioma that mainly interferes with the normal progression of mitosis and regulates the tumor immune microenvironment favoring glioma development.ConclusionCENPA may act as a prognostic factor in patients with glioma and provide a novel target for the treatment of gliomas.
Collapse
|
138
|
Bou Zerdan M, Shatila M, Sarwal D, Bouferraa Y, Bou Zerdan M, Allam S, Ramovic M, Graziano S. Single Cell RNA Sequencing: A New Frontier in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14194589. [PMID: 36230515 PMCID: PMC9559389 DOI: 10.3390/cancers14194589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Pancreatic cancer has a very low survival rate for several reasons. One of those is primarily due to the difficulty in diagnosing it at an early stage. For this reason, it is important to refine our understanding of this disease to guide the development of new diagnostic and therapeutic modalities to combat this fatal illness. Here we attempt to provide a review of current progress in utilizing single-cell RNA sequencing (scRNA-seq) techniques in the molecular profiling of pancreatic ductal adenocarcinoma. Abstract Pancreatic ductal adenocarcinoma is a malignancy with a high mortality rate. It exhibits significant heterogeneity in metabolic pathways which are associated with its progression. In this review, we discuss the role of single cell RNA sequencing in unraveling the metabolic and clinical features of these highly malignant tumors.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Malek Shatila
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dhruv Sarwal
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Youssef Bouferraa
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44118, USA
| | | | - Sabine Allam
- Faculty of Medicine, University of Balamand, Beirut 0000, Lebanon
| | - Merima Ramovic
- Department of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence: (M.R.); (S.G.)
| | - Stephen Graziano
- Department of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence: (M.R.); (S.G.)
| |
Collapse
|
139
|
Deng D, Patel R, Chiang CY, Hou P. Role of the Tumor Microenvironment in Regulating Pancreatic Cancer Therapy Resistance. Cells 2022; 11:2952. [PMID: 36230914 PMCID: PMC9563251 DOI: 10.3390/cells11192952] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic cancer has a notoriously poor prognosis, exhibits persistent drug resistance, and lacks a cure. Unique features of the pancreatic tumor microenvironment exacerbate tumorigenesis, metastasis, and therapy resistance. Recent studies emphasize the importance of exploiting cells in the tumor microenvironment to thwart cancers. In this review, we summarize the hallmarks of the multifaceted pancreatic tumor microenvironment, notably pancreatic stellate cells, tumor-associated fibroblasts, macrophages, and neutrophils, in the regulation of chemo-, radio-, immuno-, and targeted therapy resistance in pancreatic cancer. The molecular insight will facilitate the development of novel therapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Daiyong Deng
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Riya Patel
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Cheng-Yao Chiang
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Pingping Hou
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
140
|
Regulatory T Cells in Pancreatic Cancer: Of Mice and Men. Cancers (Basel) 2022; 14:cancers14194582. [PMID: 36230505 PMCID: PMC9559359 DOI: 10.3390/cancers14194582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Regulatory T cells (Treg) are a major immunosuppressive cell subset in the pancreatic tumor microenvironment. Tregs influence tumor growth by acting either directly on cancer cells or via the inhibition of effector immune cells. Treg cells form a partially redundant network with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSC) that confer robustness to tumor immunosuppression and resistance to immunotherapy. The results obtained in preclinical studies, whereupon Treg depletion, MDSCs concomitantly decreased in early tumors whereas an inverse association was seen in advanced PCa, urge a comprehensive analysis of the immunosuppressive profile of PCa throughout tumorigenesis. One relevant context to analyse these compensatory mechanisms may be patients with locally advanced PCa undergoing neoadjuvant therapy (neoTx). In order to understand these dynamics and to uncover stage-specific actional strategies involving Tregs, pre-clinical models that allow the administration of neoTx to different stages of PCa may be a very useful platform. Abstract Regulatory T cells (Treg) are one of the major immunosuppressive cell subsets in the pancreatic tumor microenvironment. Tregs influence tumor growth by acting either directly on cancer cells or via the inhibition of effector immune cells. Treg cells mechanisms form a partially redundant network with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSC) that confer robustness to tumor immunosuppression and resistance to immunotherapy. The results obtained in preclinical studies where after Treg depletion, MDSCs concomitantly decreased in early tumors whereas an inverse association was seen in advanced PCa, urge a comprehensive analysis of the immunosuppressive profile of PCa throughout tumorigenesis. One relevant context to analyse these complex compensatory mechanisms may be the tumors of patients who underwent neoTx. Here, we observed a parallel decrease in the numbers of both intratumoral Tregs and MDSC after neoTx even in locally advanced PCa. NeoTx also led to decreased amounts of αSMA+ myofibroblastic cancer-associated fibroblasts (myCAF) and increased proportions of CD8+ cytotoxic T lymphocytes in the tumor. In order to understand these dynamics and to uncover stage-specific actional strategies involving Tregs, pre-clinical models that allow the administration of neoTx to different stages of PCa may be a very useful platform.
Collapse
|
141
|
Liu T, Cheng S, Xu Q, Wang Z. Management of Advanced Pancreatic Cancer through Stromal Depletion and Immune Modulation. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091298. [PMID: 36143975 PMCID: PMC9502806 DOI: 10.3390/medicina58091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
Pancreatic cancer is one of the leading causes of cancer-related deaths worldwide. Unfortunately, therapeutic gains in the treatment of other cancers have not successfully translated to pancreatic cancer treatments. Management of pancreatic cancer is difficult due to the lack of effective therapies and the rapid development of drug resistance. The cytotoxic agent gemcitabine has historically been the first-line treatment, but combinations of other immunomodulating and stroma-depleting drugs are currently undergoing clinical testing. Moreover, the treatment of pancreatic cancer is complicated by its heterogeneity: analysis of genomic alterations and expression patterns has led to the definition of multiple subtypes, but their usefulness in the clinical setting is limited by inter-tumoral and inter-personal variability. In addition, various cell types in the tumor microenvironment exert immunosuppressive effects that worsen prognosis. In this review, we discuss current perceptions of molecular features and the tumor microenvironment in pancreatic cancer, and we summarize emerging drug options that can complement traditional chemotherapies.
Collapse
Affiliation(s)
- Tiantong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100006, China
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100006, China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100006, China
- Correspondence: (Q.X.); (Z.W.); Tel.: +86-10-69156007 (Q.X.); +86-10-69159567 (Z.W.)
| | - Zhiwei Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100006, China
- Correspondence: (Q.X.); (Z.W.); Tel.: +86-10-69156007 (Q.X.); +86-10-69159567 (Z.W.)
| |
Collapse
|
142
|
Li Y, Zhang K, Peng L, Chen L, Gao H, Chen H. Multiple Perspectives Reveal the Role of DNA Damage Repair Genes in the Molecular Classification and Prognosis of Pancreatic Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810231. [PMID: 36142142 PMCID: PMC9499455 DOI: 10.3390/ijms231810231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly heterogeneous and immunosuppressive cancer. This study investigated the diversity of DNA damage repair (DDR) and immune microenvironment in PAAD by transcriptomic and genomic analysis. Patients with PAAD were divided into two DDR-based subtypes with distinct prognosis and molecular characteristics. The differential expression genes were mostly enriched in DDR and immune-related pathways. In order to distinguish high- and low-risk groups clinically, a DDR- and immune-based 5-gene prognostic signature (termed DPRS) was established. Patients in the high-risk group had inferior prognosis, a low level of immune checkpoint gene expression and low sensitivity to DDR-associated inhibitors. Furthermore, single-cell sequencing was used to observe the performance of the DDR-based signature in a high dimension, and immunohistochemistry was used to verify the relationship between the genes we identified and the prognosis of patients with PAAD. In conclusion, the DDR heterogeneity of PAAD was demonstrated, and a novel DDR- and immune-based risk-scoring model was constructed, which indicated the feasibility of DPRS in predicting prognosis and drug response in PAAD patients.
Collapse
Affiliation(s)
- Yujie Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ke Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linjia Peng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huifeng Gao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-18017312356
| |
Collapse
|
143
|
Ahmed A, Klotz R, Köhler S, Giese N, Hackert T, Springfeld C, Jäger D, Halama N. Immune features of the peritumoral stroma in pancreatic ductal adenocarcinoma. Front Immunol 2022; 13:947407. [PMID: 36131941 PMCID: PMC9483939 DOI: 10.3389/fimmu.2022.947407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background The peritumoral stroma is a hallmark of pancreatic ductal adenocarcinoma (PDA) with implications for disease development, progression and therapy resistance. We systematically investigated immune features of the stroma in PDA patients to identify markers of clinical importance and potential therapeutic targets. Methods Tissue and blood samples of 51 PDA patients with clinical and follow-up information were included. Laser Capture Microdissection allowed us to analyze the stromal compartment in particular. Systematic immunohistochemistry, followed by software-based image analysis were conducted. Also, multiplex cytokine analyses (including 50 immune-related molecules) were performed. Functional analyses were performed using patient-derived 3D bioprints. Clinical information was used for survival analyses. Intercompartmental IL9 and IL18 gradients were assessed in matched samples of tumor epithelium, stroma, and serum of patients. Serum levels were compared to an age-matched healthy control group. Results Stromal IL9 and IL18 are significantly associated with patient survival. While IL9 is a prognostic favorable marker (p=0.041), IL18 associates with poor patient outcomes (p=0.030). IL9 correlates with an anti-tumoral cytokine network which connects regulation of T helper (Th) 9, Th1 and Th17 cells (all: p<0.05 and r>0.5). IL18 correlates with a Th1-type cytokine phenotype and stromal CXCL12 expression (all: p<0.05 and r>0.5). Further, IL18 associates with a higher level of exhausted T cells. Inhibition of IL18 results in diminished Th1- and Th2-type cytokines. Patients with high stromal IL9 expression have a tumor-to-stroma IL9 gradient directed towards the stroma (p=0.019). Low IL18 expression associates with a tumor-to-stroma IL18 gradient away from the stroma (p=0.007). PDA patients showed higher serum levels of IL9 than healthy controls while serum IL18 levels were significantly lower than in healthy individuals. The stromal immune cell composition is distinct from the tumor epithelium. Stromal density of FoxP3+ regulatory T cells showed a tendency towards improved patient survival (p=0.071). Conclusion An unexpected high expression of the cytokines IL9 and IL18 at different ends is of significance in the stroma of PDA and relates to opposing patient outcomes. Sub-compartmental cytokine analyses highlight the importance of a differentiated gradient assessment. The findings suggest stromal IL9 and/or IL18 as markers for patient stratification and as potential therapeutic targets. Future steps include investigating e. g. the role of local microbiota as both cytokines are also regulated by microbial compositions.
Collapse
Affiliation(s)
- Azaz Ahmed
- Translational Immunotherapy (D240), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- BioQuant, Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Rosa Klotz
- General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sophia Köhler
- Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalia Giese
- General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Springfeld
- Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Applied Tumor Immunity Clinical Cooperation Unit (D120), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niels Halama
- Translational Immunotherapy (D240), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- BioQuant, Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON), Mainz, Germany
- *Correspondence: Niels Halama,
| |
Collapse
|
144
|
Gao Z, Zhang Q, Zhang X, Song Y. Advance of T regulatory cells in tumor microenvironment remodeling and immunotherapy in pancreatic cancer. EUR J INFLAMM 2022; 20. [DOI: 10.1177/1721727x221092900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive, deadly, and is rarely diagnosed early. Regulatory T cells (Treg) are a multifunctional class of immunosuppressive T cells that help maintain immunologic homeostasis and participate in autoimmune diseases, transplants, and tumors. This cell type mediates immune homeostasis, tolerance, and surveillance and is associated with poor outcomes in PDAC. Tregs remodel the tumor immune microenvironment, mediate tumor immune escape, and promote tumor invasion and metastasis. A promising area of research involves regulating Tregs to reduce their infiltration into tumor tissues. However, the complexity of the immune microenvironment has limited the efficacy of immunotherapy in PDAC. Treg modulation combined with other treatments is emerging. This review summarizes the mechanisms of Tregs activity in tumor immune microenvironments in PDAC and the latest developments in immunotherapy and clinical trials.
Collapse
Affiliation(s)
- Zetian Gao
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Qiubo Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xie Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yufei Song
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
145
|
The Tumor Immune Microenvironment in Pancreatic Ductal Adenocarcinoma: Neither Hot nor Cold. Cancers (Basel) 2022; 14:cancers14174236. [PMID: 36077772 PMCID: PMC9454892 DOI: 10.3390/cancers14174236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this review, we discuss the current understanding of pro- and anticancer immune responses in the tumor immune microenvironment of pancreatic ductal adenocarcinoma. We describe the duality and complexity of immune cell functions in the tumor microenvironment and also illustrate therapeutic approaches that modulate the antitumor immune response. Abstract Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic tumor and is associated with poor prognosis and treatment response. The tumor microenvironment (TME) is recognized as an important factor in metastatic progression across cancers. Despite extensive study of the TME in PDAC, the cellular and molecular signaling networks remain poorly understood, largely due to the tremendous heterogeneity across tumors. While earlier work characterized PDAC as an immunologically privileged tumor poorly recognized by the immune system, recent studies revealed the important and nuanced roles of immune cells in the pathogenesis of PDAC. Distinct lymphoid, myeloid, and stromal cell types in the TME exert opposing influences on PDAC tumor trajectory, suggesting a more complex organization than the classical “hot” versus “cold” tumor distinction. We review the pro- and antitumor immune processes found in PDAC and briefly discuss their leverage for the development of novel therapeutic approaches in the field.
Collapse
|
146
|
Song Y, Liu X, Yuan J, Sha Z, Jiang W, Liu M, Qian Y, Gao C, Gong Z, Luo H, Zhou X, Huang J, Jiang R, Quan W. Atorvastatin combined with low-dose dexamethasone improves the neuroinflammation and survival in mice with intracerebral hemorrhage. Front Neurosci 2022; 16:967297. [PMID: 36071715 PMCID: PMC9441757 DOI: 10.3389/fnins.2022.967297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a fatal disease with high mortality and poor prognosis that triggers multiple severe brain injuries associated with an inflammatory cascade response that cannot be treated with any effective medication. Atorvastatin (ATO) suppresses inflammation, alleviates brain trauma, and eliminates subdural hematoma. Dexamethasone (DXM) also has the capacity to inhibit inflammation. Thus, we combined ATO with low-dose DXM to treat ICH mice in vivo to examine whether the combined treatment can inhibit secondary inflammation around the cerebral hemorrhage and decrease overall mortality. Compared to the monotherapy by either ATO or DXM, the combined treatment significantly improves the survivorship of the ICH mice, accelerates their recovery of impaired neurological function, and modulates the circulating cytokines, oxidative products, and apoptosis. Moreover, the benefit of ATO-DXM combination therapy was most pronounced on day 3 after dosing compared to ATO or DXM alone. Thus, early administration of ATO combined with low-dose-DXM promotes better survival of ICH and improves neurological function by reducing neuroinflammation and brain edema in their early phase.
Collapse
Affiliation(s)
- Yiming Song
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
| | - Zhitao Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
| | - Hongliang Luo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
| | - Xin Zhou
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinhao Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
- *Correspondence: Jinhao Huang,
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
- Rongcai Jiang,
| | - Wei Quan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- The State Key Laboratory of Neurotrauma Repair and Regeneration, Ministry of Education, Tianjin, China
- Wei Quan,
| |
Collapse
|
147
|
Heterogeneity of Cancer-Associated Fibroblasts and the Tumor Immune Microenvironment in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14163994. [PMID: 36010986 PMCID: PMC9406547 DOI: 10.3390/cancers14163994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Stroma-targeting therapy in pancreatic ductal adenocarcinoma (PDAC) has been extensively investigated, but no candidates have shown efficacy at the clinical trial stage. Studies of cancer-associated fibroblast (CAF) depletion in a mouse model suggested that CAFs have not only tumor-promoting function but also tumor-suppressive activity. Recently, single-cell RNA sequencing (scRNA-seq) has revealed the complex tumor microenvironment within PDAC, and subpopulations of functionally distinct CAFs and their association with tumor immunity have been reported. However, the existence of tumor suppressive CAFs and CAFs involved in the maintenance of PDAC differentiation has also been reported. In the future, therapeutic strategies should be developed considering these CAF subpopulations, with the hope of improving the prognosis of PDAC. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a 5-year survival rate of 9%. Cancer-associated fibroblasts (CAFs) have historically been considered tumor-promoting. However, multiple studies reporting that suppression of CAFs in PDAC mouse models resulted in more aggressive tumors and worse prognosis have suggested the existence of a tumor-suppressive population within CAFs, leading to further research on heterogeneity within CAFs. In recent years, the benefits of cancer immunotherapy have been reported in various carcinomas. Unfortunately, the efficacy of immunotherapies in PDAC has been limited, and the CAF-driven cancer immunosuppressive microenvironment has been suggested as the cause. Thus, clarification of heterogeneity within the tumor microenvironment, including CAFs and tumor immunity, is urgently needed to establish effective therapeutic strategies for PDAC. In this review, we report the latest findings on the heterogeneity of CAFs and the functions of each major CAF subtype, which have been revealed by single-cell RNA sequencing in recent years. We also describe reports of tumor-suppressive CAF subtypes and the existence of CAFs that maintain a differentiated PDAC phenotype and review the potential for targeted therapy.
Collapse
|
148
|
Multi-omics data integration and modeling unravels new mechanisms for pancreatic cancer and improves prognostic prediction. NPJ Precis Oncol 2022; 6:57. [PMID: 35978026 PMCID: PMC9385633 DOI: 10.1038/s41698-022-00299-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), has recently been found to be a heterogeneous disease, although the extension of its diversity remains to be fully understood. Here, we harmonize transcriptomic profiles derived from both PDAC epithelial and microenvironment cells to develop a Master Regulators (MR)-Gradient model that allows important inferences on transcriptional networks, epigenomic states, and metabolomics pathways that underlies this disease heterogeneity. This gradient model was generated by applying a blind source separation based on independent components analysis and robust principal component analyses (RPCA), following regulatory network inference. The result of these analyses reveals that PDAC prognosis strongly associates with the tumor epithelial cell phenotype and the immunological component. These studies were complemented by integration of methylome and metabolome datasets generated from patient-derived xenograft (PDX), together experimental measurements of metabolites, immunofluorescence microscopy, and western blot. At the metabolic level, PDAC favorable phenotype showed a positive correlation with enzymes implicated in complex lipid biosynthesis. In contrast, the unfavorable phenotype displayed an augmented OXPHOS independent metabolism centered on the Warburg effect and glutaminolysis. Epigenetically, we find that a global hypermethylation profile associates with the worst prognosis. Lastly, we report that, two antagonistic histone code writers, SUV39H1/SUV39H2 (H3K9Me3) and KAT2B (H3K9Ac) were identified key deregulated pathways in PDAC. Our analysis suggests that the PDAC phenotype, as it relates to prognosis, is determined by a complex interaction of transcriptomic, epigenomic, and metabolic features. Furthermore, we demonstrated that PDAC prognosis could be modulated through epigenetics.
Collapse
|
149
|
A Paradoxical Role for Regulatory T Cells in the Tumor Microenvironment of Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14163862. [PMID: 36010856 PMCID: PMC9405872 DOI: 10.3390/cancers14163862] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most lethal cancer types and its high refractoriness to therapies, including immunotherapy, has often been associated with the predominantly immune suppressive tumor microenvironment that characterizes pancreatic tumors. Regulatory T cells (Tregs) are generally considered as drivers of immune suppression in cancers. However, an increasing number of reports suggest a paradoxical association between tumor infiltration by Tregs and improved patient prognosis, in particular in gastrointestinal cancers. Here we show that Treg infiltration in pancreatic ductal adenocarcinomas (PDAC) is associated with better overall survival of patients. Abstract Pancreatic ductal adenocarcinoma (PDAC) is considered to be a poorly immunogenic cancer type that combines a low mutation burden with a strong immunosuppressive tumor microenvironment. Regulatory T cells (Tregs) are major drivers of immune suppression but their prognostic role, particularly in gastrointestinal malignancies, remains controversial. Lymphocytic infiltration in 122 PDAC samples was assessed by multispectral immunofluorescence with anti-Keratin, -CD3, -CD8, -FOXP3 and -CD163 antibodies. Differential infiltration by Tregs was analyzed in the context of transcriptomic profiles that were available for 65 tumors. High infiltration of CD3+CD8− (mainly CD4+) T cells and, especially, of the subset expressing FOXP3 (Tregs) was associated with improved patient survival, whilst cytotoxic CD3+CD8+ T cell infiltration did not have an impact on overall survival. Transcriptomic analysis revealed three signatures in PDAC tumors comprising of epithelial-mesenchymal transition (EMT)/stromal, metabolic, and secretory/pancreatic signature. However, none of these signatures explained differences in Treg infiltration. We show that Tregs associate with improved overall survival in PDAC patients. This effect was independent of cytotoxic T cell infiltration and the transcriptomic profiles of their respective tumors. These findings provide a new layer of complexity in the study of PDAC tumor microenvironment that must be considered when developing immunotherapeutic interventions for this disease.
Collapse
|
150
|
Majewski M, Mertowska P, Mertowski S, Smolak K, Grywalska E, Torres K. Microbiota and the Immune System-Actors in the Gastric Cancer Story. Cancers (Basel) 2022; 14:cancers14153832. [PMID: 35954495 PMCID: PMC9367521 DOI: 10.3390/cancers14153832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Stomach cancer is one of the most commonly diagnosed cancers in the world. Although the number of new cases is decreasing year by year, the death rate for this type of cancer is still high. The heterogeneous course and the lack of symptoms in the early stages of the disease mean that the diagnosis is made late, which translates into a worse prognosis for such patients. That is why it is so important to analyze potential risk factors that may increase the risk of developing gastric cancer and to search for new effective methods of treatment. These requirements are met by the analysis of the composition of the gastric microbiota and its relationship with the immune system, which is a key element in the human anti-cancer fight. This publication was created to systematize the current knowledge on the impact of dysbiosis of human microbiota on the development and progression of gastric cancer. Particular emphasis was placed on taking into account the role of the immune system in this process. Abstract Gastric cancer remains one of the most commonly diagnosed cancers in the world, with a relatively high mortality rate. Due to the heterogeneous course of the disease, its diagnosis and treatment are limited and difficult, and it is associated with a reduced prognosis for patients. That is why it is so important to understand the mechanisms underlying the development and progression of this cancer, with particular emphasis on the role of risk factors. According to the literature data, risk factors include: changes in the composition of the stomach and intestinal microbiota (microbiological dysbiosis and the participation of Helicobacter pylori), improper diet, environmental and genetic factors, and disorders of the body’s immune homeostasis. Therefore, the aim of this review is to systematize the knowledge on the influence of human microbiota dysbiosis on the development and progression of gastric cancer, with particular emphasis on the role of the immune system in this process.
Collapse
Affiliation(s)
- Marek Majewski
- 2nd Department of General, Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, 20-081 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Kamil Torres
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|