101
|
Zhang Y, Wang Y, Zhou D, Zhang LS, Deng FX, Shu S, Wang LJ, Wu Y, Guo N, Zhou J, Yuan ZY. Angiotensin II deteriorates advanced atherosclerosis by promoting MerTK cleavage and impairing efferocytosis through the AT1R/ROS/p38 MAPK/ADAM17 pathway. Am J Physiol Cell Physiol 2019; 317:C776-C787. [PMID: 31390228 DOI: 10.1152/ajpcell.00145.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vulnerable plaques in advanced atherosclerosis have defective efferocytosis. The role of ANG II in the progression of atherosclerosis is not fully understood. Herein, we investigated the effects and the underlying mechanisms of ANG II on macrophage efferocytosis in advanced atherosclerosis. ANG II decreased the surface expression of Mer tyrosine kinase (MerTK) in macrophages through a disintegrin and metalloproteinase17 (ADAM17)-mediated shedding of the soluble form of MerTK (sMer) in the medium, which led to efferocytosis suppression. ANG II-activated ADAM17 required reactive oxygen species (ROS) and p38 MAPK phosphorylation. Selective angiotensin II type 1 receptor (AT1R) blocker losartan suppressed ROS production, and ROS scavenger N-acetyl-l-cysteine (NAC) prevented p38 MAPK phosphorylation. In addition, mutant MERTKΔ483-488was resistant to ANG II-induced MerTK shedding and efferocytosis suppression. The advanced atherosclerosis model that is characterized by larger necrotic cores, and less collagen content was established by feeding apolipoprotein E knockout (ApoE−/−) mice with a high-fat diet for 16 wk. NAC and losartan oral administration prevented atherosclerotic lesion progression. Meanwhile, the inefficient efferocytosis represented by decreased macrophage-associated apoptotic cells and decreased MerTK+CD68+double-positive macrophages in advanced atherosclerosis were prevented by losartan and NAC. Additionally, the serum levels of sMer were increased and positively correlated with the upregulated levels of ANG II in acute coronary syndrome (ACS) patients. In conclusion, ANG II promotes MerTK shedding via AT1R/ROS/p38 MAPK/ADAM17 pathway in macrophages, which led to defective efferocytosis and atherosclerosis progression. Defining the molecular mechanisms of defective efferocytosis may provide a promising prognosis and therapy for ACS patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Ying Wang
- Department of Critical Care Medicine, Xi’an No. 4 Hospital, Xi’an, China
| | - Dong Zhou
- Department of Cardiovascular Medicine, Hanzhong 3201 Hospital, Hanzhong, China
| | - Li-Sha Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Fu-Xue Deng
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Shan Shu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Li-Jun Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Yue Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Ning Guo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Juan Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Molecular Cardiology of Shannxi Province, Xi’an, China
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Key Laboratory of Molecular Cardiology of Shannxi Province, Xi’an, China
| |
Collapse
|
102
|
Chiang HY, Chu PH, Lee TH. MFG-E8 mediates arterial aging by promoting the proinflammatory phenotype of vascular smooth muscle cells. J Biomed Sci 2019; 26:61. [PMID: 31470852 PMCID: PMC6716880 DOI: 10.1186/s12929-019-0559-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Among older adults, arterial aging is the major factor contributing to increased risk for cardiovascular disease-related morbidity and mortality. The chronic vascular inflammation that accompanies aging causes diffuse intimal-medial thickening of the arterial wall, thus increasing the vulnerability of aged vessels to vascular insults. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a biomarker for aging arteries. This integrin-binding glycoprotein, induced by angiotensin II, facilitates vascular smooth muscle cell (VSMC) proliferation and invasion in aging vasculatures. This study investigated whether MFG-E8 directly mediates the initial inflammatory responses in aged arteries or VSMCs. METHODS A model of neointimal hyperplasia was induced in the common carotid artery (CCA) of aged mice to exacerbate age-associated vascular remodeling. Recombinant MFG-E8 (rMFG-E8) was administered to the injured artery using Pluronic gel to accentuate the effect on age-related vascular pathophysiology. The MFG-E8 level, leukocyte infiltration, and proinflammatory cell adhesion molecule (CAM) expression in the arterial wall were evaluated through immunohistochemistry. By using immunofluorescence and immunoblotting, the activation of the critical proinflammatory transcription factor nuclear factor (NF)-κB in the injured CCAs was analyzed. Immunofluorescence, immunoblotting, and quantitative real-time polymerase chain reaction were conducted using VSMCs isolated from the aortas of young and aged mice to assess NF-κB nuclear translocation, NF-κB-dependent gene expression, and cell proliferation. The extent of intimal-medial thickening in the injured vessels was analyzed morphometrically. Finally, Transwell migration assay was used to examine VSMC migration. RESULTS Endogenous MFG-E8 expression in aged CCAs was significantly induced by ligation injury. Aged CCAs treated with rMFG-E8 exhibited increased leukocyte extravasation, CAM expression, and considerably increased NF-κB activation induced by rMFG-E8 in the ligated vessels. Exposure of early passage VSMCs from aged aortas to rMFG-E8 substantially increased NF-κB activation, proinflammatory gene expression, and cell proliferation. However, rMFG-E8 attenuated VSMC migration. CONCLUSIONS MFG-E8 promoted the proinflammatory phenotypic shift of aged VSMCs and arteries, rendering the vasculature prone to vascular diseases. MFG-E8 may constitute a novel therapeutic target for retarding the aging processes in such vessels.
Collapse
Affiliation(s)
- Hou-Yu Chiang
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Hein Lee
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
103
|
Rinne P, Guillamat-Prats R, Rami M, Bindila L, Ring L, Lyytikäinen LP, Raitoharju E, Oksala N, Lehtimäki T, Weber C, van der Vorst EPC, Steffens S. Palmitoylethanolamide Promotes a Proresolving Macrophage Phenotype and Attenuates Atherosclerotic Plaque Formation. Arterioscler Thromb Vasc Biol 2019; 38:2562-2575. [PMID: 30354245 DOI: 10.1161/atvbaha.118.311185] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective- Palmitoylethanolamide is an endogenous fatty acid mediator that is synthetized from membrane phospholipids by N-acyl phosphatidylethanolamine phospholipase D. Its biological actions are primarily mediated by PPAR-α (peroxisome proliferator-activated receptors α) and the orphan receptor GPR55. Palmitoylethanolamide exerts potent anti-inflammatory actions but its physiological role and promise as a therapeutic agent in chronic arterial inflammation, such as atherosclerosis remain unexplored. Approach and Results- First, the polarization of mouse primary macrophages towards a proinflammatory phenotype was found to reduce N-acyl phosphatidylethanolamine phospholipase D expression and palmitoylethanolamide bioavailability. N-acyl phosphatidylethanolamine phospholipase D expression was progressively downregulated in the aorta of apolipoprotein E deficient (ApoE-/-) mice during atherogenesis. N-acyl phosphatidylethanolamine phospholipase D mRNA levels were also downregulated in unstable human plaques and they positively associated with smooth muscle cell markers and negatively with macrophage markers. Second, ApoE-/- mice were fed a high-fat diet for 4 or 16 weeks and treated with either vehicle or palmitoylethanolamide (3 mg/kg per day, 4 weeks) to study the effects of palmitoylethanolamide on early established and pre-established atherosclerosis. Palmitoylethanolamide treatment reduced plaque size in early atherosclerosis, whereas in pre-established atherosclerosis, palmitoylethanolamide promoted signs of plaque stability as evidenced by reduced macrophage accumulation and necrotic core size, increased collagen deposition and downregulation of M1-type macrophage markers. Mechanistically, we found that palmitoylethanolamide, by activating GPR55, increases the expression of the phagocytosis receptor MerTK (proto-oncogene tyrosine-protein kinase MER) and enhances macrophage efferocytosis, indicative of proresolving properties. Conclusions- The present study demonstrates that palmitoylethanolamide protects against atherosclerosis by promoting an anti-inflammatory and proresolving phenotype of lesional macrophages, representing a new therapeutic approach to resolve arterial inflammation.
Collapse
Affiliation(s)
- Petteri Rinne
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S).,Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Finland (P.R.)
| | - Raquel Guillamat-Prats
- Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Finland (P.R.)
| | - Martina Rami
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S)
| | - Laura Bindila
- Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University Mainz, Germany (L.B.)
| | - Larisa Ring
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S)
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., E.R., N.O., T.L.)
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., E.R., N.O., T.L.)
| | - Niku Oksala
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., E.R., N.O., T.L.).,Department of Surgery, Tampere University Hospital, Finland (N.O.)
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., E.R., N.O., T.L.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S).,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands (C.W.).,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (C.W., S.S.)
| | - Emiel P C van der Vorst
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S)
| | - Sabine Steffens
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S).,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (C.W., S.S.)
| |
Collapse
|
104
|
Stoeva M. RETRACTED ARTICLE: Apoptotic suppression of inflammatory macrophages and foam cells in vascular tissue by miR-23a. HEALTH AND TECHNOLOGY 2019. [DOI: 10.1007/s12553-019-00301-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
105
|
Zhuo X, Wu Y, Yang Y, Gao L, Qiao X, Chen T. Knockdown of LSD1 meliorates Ox-LDL-stimulated NLRP3 activation and inflammation by promoting autophagy via SESN2-mesiated PI3K/Akt/mTOR signaling pathway. Life Sci 2019; 233:116696. [PMID: 31351969 DOI: 10.1016/j.lfs.2019.116696] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 01/25/2023]
Abstract
AIMS To explore the mechanism of how LSD1 regulates autophagy and the correlation between LSD1 and Ox-LDL-induced inflammation. MAIN METHODS RAW264.7 cells were used during the whole study. Firstly, the effect of Ox-LDL-stimulation on LSD1 expression was detected. Through loss-of-function assay, the associations between LSD1 interference and SESN2 expression, autophagy, NLRP3 inflammasome and inflammatory cytokines were explored. Finally, the function of LSD1 exerted on activation of PI3K/Akt/mTOR signal pathway was detected using western blotting assay. KEY FINDINGS The expression of LSD1 was significantly elevated in Ox-LDL-treated RAW264.7 cells. Inhibition of LSD1 promoted autophagy, inhibited inflammation and activated NLRP3 inflammasome. SESN2 was elevated by LSD1 inhibition, and thus activate the PI3K/Akt/mTOR signal pathway. What' more, Knockdown of SESN2 or deactivate the PI3K/Akt/mTOR signal pathway partly reversed the effect of LSD1 inhibition on autophagy. SIGNIFICANCE Our present study drew the finding that the knockdown of LSD1 meliorated Ox-LDL-stimulated NLRP3 activation and inflammation through promoting autophagy via SESN2-mediated PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Xiaozhen Zhuo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yan Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yanjie Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Li Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Xiangrui Qiao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Tao Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, China.
| |
Collapse
|
106
|
Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, De Meyer GRY. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 2019; 114:622-634. [PMID: 29360955 DOI: 10.1093/cvr/cvy007] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
In the present review, we describe the causes and consequences of loss of vascular smooth muscle cells (VSMCs) or their function in advanced atherosclerotic plaques and discuss possible mechanisms such as cell death or senescence, and induction of autophagy to promote cell survival. We also highlight the potential use of pharmacological modulators of these processes to limit plaque progression and/or improve plaque stability. VSMCs play a pivotal role in atherogenesis. Loss of VSMCs via initiation of cell death leads to fibrous cap thinning and promotes necrotic core formation and calcification. VSMC apoptosis is induced by pro-inflammatory cytokines, oxidized low density lipoprotein, high levels of nitric oxide and mechanical injury. Apoptotic VSMCs are characterized by a thickened basal lamina surrounding the cytoplasmic remnants of the VSMC. Inefficient clearance of apoptotic VSMCs results in secondary necrosis and subsequent inflammation. A critical determinant in the VSMC stress response and phenotypic switching is autophagy, which is activated by various stimuli, including reactive oxygen and lipid species, cytokines, growth factors and metabolic stress. Successful autophagy stimulates VSMC survival, whereas reduced autophagy promotes age-related changes in the vasculature. Recently, an interesting link between autophagy and VSMC senescence has been uncovered. Defective VSMC autophagy accelerates not only the development of stress-induced premature senescence but also atherogenesis, albeit without worsening plaque stability. VSMC senescence in atherosclerosis is likely a result of replicative senescence and/or stress-induced premature senescence in response to DNA damaging and/or oxidative stress-inducing stimuli. The finding that VSMC senescence can promote atherosclerosis further illustrates that normal, adequate VSMC function is crucial in protecting the vessel wall against atherosclerosis.
Collapse
Affiliation(s)
- Mandy O J Grootaert
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Manon Moulis
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases and University Paul Sabatier, F-31342 Toulouse, France
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Cécile Vindis
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases and University Paul Sabatier, F-31342 Toulouse, France
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
107
|
McShane L, Tabas I, Lemke G, Kurowska-Stolarska M, Maffia P. TAM receptors in cardiovascular disease. Cardiovasc Res 2019; 115:1286-1295. [PMID: 30980657 PMCID: PMC6587925 DOI: 10.1093/cvr/cvz100] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/28/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
The TAM receptors are a distinct family of three receptor tyrosine kinases, namely Tyro3, Axl, and MerTK. Since their discovery in the early 1990s, they have been studied for their ability to influence numerous diseases, including cancer, chronic inflammatory and autoimmune disorders, and cardiovascular diseases. The TAM receptors demonstrate an ability to influence multiple aspects of cardiovascular pathology via their diverse effects on cells of both the vasculature and the immune system. In this review, we will explore the various functions of the TAM receptors and how they influence cardiovascular disease through regulation of vascular remodelling, efferocytosis and inflammation. Based on this information, we will suggest areas in which further research is required and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lucy McShane
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, UK,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ira Tabas
- Departments of Medicine, Physiology, and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Greg Lemke
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA,Immunobiology and Microbial Pathogenesis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mariola Kurowska-Stolarska
- Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, UK,Corresponding authors. Tel: +44 141 330 7142; E-mail: (P.M.) Tel: +44 141 330 6085; E-mail: (M.K.-S.)
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, UK,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK,Department of Pharmacy, University of Naples Federico II, Naples, Italy,Corresponding authors. Tel: +44 141 330 7142; E-mail: (P.M.) Tel: +44 141 330 6085; E-mail: (M.K.-S.)
| |
Collapse
|
108
|
Biological profile of monocyte-derived macrophages in coronary heart disease patients: implications for plaque morphology. Sci Rep 2019; 9:8680. [PMID: 31213640 PMCID: PMC6581961 DOI: 10.1038/s41598-019-44847-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of a macrophage phenotype in atherosclerotic plaque may drive its progression and/or instability. Macrophages from coronary plaques are not available, and monocyte-derived macrophages (MDMs) are usually considered as a surrogate. We compared the MDM profile obtained from coronary artery disease (CAD) patients and healthy subjects, and we evaluated the association between CAD MDM profile and in vivo coronary plaque characteristics assessed by optical coherence tomography (OCT). At morphological analysis, MDMs of CAD patients had a higher prevalence of round than spindle cells, whereas in healthy subjects the prevalence of the two morphotypes was similar. Compared to healthy subjects, MDMs of CAD patients had reduced efferocytosis, lower transglutaminase-2, CD206 and CD163 receptor levels, and higher tissue factor (TF) levels. At OCT, patients with a higher prevalence of round MDMs showed more frequently a lipid-rich plaque, a thin-cap fibroatheroma, a greater intra-plaque macrophage accumulation, and a ruptured plaque. The MDM efferocytosis correlated with minimal lumen area, and TF levels in MDMs correlated with the presence of ruptured plaque. MDMs obtained from CAD patients are characterized by a morpho-phenotypic heterogeneity with a prevalence of round cells, showing pro-inflammatory and pro-thrombotic properties. The MDM profile allows identifying CAD patients at high risk.
Collapse
|
109
|
Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, Tan Y, Wu W, Wang G. Atherosclerosis Treatment with Stimuli-Responsive Nanoagents: Recent Advances and Future Perspectives. Adv Healthc Mater 2019; 8:e1900036. [PMID: 30945462 DOI: 10.1002/adhm.201900036] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/06/2019] [Indexed: 01/04/2023]
Abstract
Atherosclerosis is the root of approximately one-third of global mortalities. Nanotechnology exhibits splendid prospects to combat atherosclerosis at the molecular level by engineering smart nanoagents with versatile functionalizations. Significant advances in nanoengineering enable nanoagents to autonomously navigate in the bloodstream, escape from biological barriers, and assemble with their nanocohort at the targeted lesion. The assembly of nanoagents with endogenous and exogenous stimuli breaks down their shells, facilitates intracellular delivery, releases their cargo to kill the corrupt cells, and gives imaging reports. All these improvements pave the way toward personalized medicine for atherosclerosis. This review systematically summarizes the recent advances in stimuli-responsive nanoagents for atherosclerosis management and its progress in clinical trials.
Collapse
Affiliation(s)
- Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Tieyin Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Nan Wang
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Colm Durkan
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Youhua Tan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic University Hong Kong SAR 999077 China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| |
Collapse
|
110
|
Pastore M, Grimaudo S, Pipitone RM, Lori G, Raggi C, Petta S, Marra F. Role of Myeloid-Epithelial-Reproductive Tyrosine Kinase and Macrophage Polarization in the Progression of Atherosclerotic Lesions Associated With Nonalcoholic Fatty Liver Disease. Front Pharmacol 2019; 10:604. [PMID: 31191323 PMCID: PMC6548874 DOI: 10.3389/fphar.2019.00604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Recent lines of evidence highlight the involvement of myeloid-epithelial-reproductive tyrosine kinase (MerTK) in metabolic disease associated with liver damage. MerTK is mainly expressed in anti-inflammatory M2 macrophages where it mediates transcriptional changes including suppression of proinflammatory cytokines and enhancement of inflammatory repressors. MerTK is regulated by metabolic pathways through nuclear sensors including LXRs, PPARs, and RXRs, in response to apoptotic bodies or to other sources of cholesterol. Nonalcoholic fatty liver disease (NAFLD) is one of the most serious public health problems worldwide. It is a clinicopathological syndrome closely related to obesity, insulin resistance, and oxidative stress. It includes a spectrum of conditions ranging from simple steatosis, characterized by hepatic fat accumulation with or without inflammation, to nonalcoholic steatohepatitis (NASH), defined by hepatic fat deposition with hepatocellular damage, inflammation, and accumulating fibrosis. Several studies support an association between NAFLD and the incidence of cardiovascular diseases including atherosclerosis, a major cause of death worldwide. This pathological condition consists in a chronic and progressive inflammatory process in the intimal layer of large- and medium-sized arteries. The complications of advanced atherosclerosis include chronic or acute ischemic damage in the tissue perfused by the affected artery, leading to cellular death. By identifying specific targets influencing lipid metabolism and cardiovascular-related diseases, the present review highlights the role of MerTK in NAFLD-associated atherosclerotic lesions as a potential innovative therapeutic target. Therapeutic advantages might derive from the use of compounds selective for nuclear receptors targeting PPARs rather than LXRs regulating macrophage lipid metabolism and macrophage mediated inflammation, by favoring the expression of MerTK, which mediates an immunoregulatory action with a reduction in inflammation and in atherosclerosis.
Collapse
Affiliation(s)
- Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Grimaudo
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Rosaria Maria Pipitone
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
111
|
Tezcan G, Martynova EV, Gilazieva ZE, McIntyre A, Rizvanov AA, Khaiboullina SF. MicroRNA Post-transcriptional Regulation of the NLRP3 Inflammasome in Immunopathologies. Front Pharmacol 2019; 10:451. [PMID: 31118894 PMCID: PMC6504709 DOI: 10.3389/fphar.2019.00451] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammation has a crucial role in protection against various pathogens. The inflammasome is an intracellular multiprotein signaling complex that is linked to pathogen sensing and initiation of the inflammatory response in physiological and pathological conditions. The most characterized inflammasome is the NLRP3 inflammasome, which is a known sensor of cell stress and is tightly regulated in resting cells. However, altered regulation of the NLRP3 inflammasome is found in several pathological conditions, including autoimmune disease and cancer. NLRP3 expression was shown to be post-transcriptionally regulated and multiple miRNA have been implicated in post-transcriptional regulation of the inflammasome. Therefore, in recent years, miRNA based post-transcriptional control of NLRP3 has become a focus of much research, especially as a potential therapeutic approach. In this review, we provide a summary of the recent investigations on the role of miRNA in the post-transcriptional control of the NLRP3 inflammasome, a key regulator of pro-inflammatory IL-1β and IL-18 cytokine production. Current approaches to targeting the inflammasome product were shown to be an effective treatment for diseases linked to NLRP3 overexpression. Although utilizing NLRP3 targeting miRNAs was shown to be a successful therapeutic approach in several animal models, their therapeutic application in patients remains to be determined.
Collapse
Affiliation(s)
- Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Zarema E. Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alan McIntyre
- Centre for Cancer Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
112
|
Abstract
Microparticles are a distinctive group of small vesicles, without nucleus, which are involved as significant modulators in several physiological and pathophysiological mechanisms. Plasma microparticles from various cellular lines have been subject of research. Data suggest that they are key players in development and manifestation of cardiovascular diseases and their presence, in high levels, is associated with chronic inflammation, endothelial damage and thrombosis. The strong correlation of microparticle levels with several outcomes in cardiovascular diseases has led to their utilization as biomarkers. Despite the limited clinical application at present, their significance emerges, mainly because their detection and enumeration methods are improving. This review article summarizes the evidence derived from research, related with the genesis and the function of microparticles in the presence of various cardiovascular risk factors and conditions. The current data provide a substrate for several theories of how microparticles influence various cellular mechanisms by transferring biological information.
Collapse
Affiliation(s)
- Christos Voukalis
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Eduard Shantsila
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Gregory Y H Lip
- b Liverpool Centre for Cardiovascular Science , University of Liverpool and Liverpool Heart & Chest Hospital , Liverpool , UK.,c Department of Clinical Medicine, Aalborg Thrombosis Research Unit , Aalborg University , Aalborg , Denmark
| |
Collapse
|
113
|
Manega CM, Fiorelli S, Porro B, Turnu L, Cavalca V, Bonomi A, Cosentino N, Di Minno A, Marenzi G, Tremoli E, Eligini S. 12(S)-Hydroxyeicosatetraenoic acid downregulates monocyte-derived macrophage efferocytosis: New insights in atherosclerosis. Pharmacol Res 2019; 144:336-342. [PMID: 31028904 DOI: 10.1016/j.phrs.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/24/2022]
Abstract
The involvement of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), a 12-lipooxygenase product of arachidonic acid, has been suggested in atherosclerosis. However, its effect on macrophage functions is not completely understood, so far. The uptake of apoptotic cells (efferocytosis) by macrophages is an anti-inflammatory process, impaired in advanced atherosclerotic lesions. This process induces the release of the anti-inflammatory cytokine interleukin-10 (IL-10), and it is regulated by Rho-GTPases, whose activation involves the isoprenylation, a modification inhibited by statins. We assessed 12-HETE levels in serum of coronary artery disease (CAD) patients, and explored 12(S)-HETE in vitro effect on monocyte-derived macrophage (MDM) efferocytosis. Sixty-four CAD patients and 24 healthy subjects (HS) were enrolled. Serum 12-HETE levels were measured using a tandem mass spectrometry method. MDMs, obtained from a spontaneous differentiation of adherent monocytes, were treated with 12(S)-HETE (10-50 ng/mL). Efferocytosis and RhoA activation were evaluated by flow cytometry. IL-10 was measured by ELISA. CAD patients showed increased 12-HETE serum levels compared to HS (665.2 [438.1-896.2] ng/mL and 525.1 [380.1-750.1] ng/mL, respectively, p < 0.05) and reduced levels of IL-10. MDMs expressed the 12(S)-HETE cognate receptor GPR31. CAD-derived MDMs displayed defective efferocytosis vs HS-MDMs (9.4 [7.7-11.3]% and 11.1 [9.6-14.1]% of MDMs that have engulfed apoptotic cells, respectively, p < 0.01). This reduction is marked in MDMs obtained from patients not treated with statin (9.3 [7.4-10.6]% statin-free CAD vs HS, p = 0.01; and 9.9 [8.6-11.6]% statin-treated CAD vs HS, p = 0.07). The in vitro treatment of MDMs with 12(S)-HETE (20 ng/mL) induced 20% decrease of efferocytosis (p < 0.01) and 71% increase of RhoA activated form (p < 0.05). Atorvastatin (0.1 μM) counteracted these 12(S)-HETE-mediated effects.These results show a 12(S)-HETE pro-inflammatory effect and suggest a new potential contribution of this mediator in the development of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | - Linda Turnu
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | | | - Alice Bonomi
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | | | | | | | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Sonia Eligini
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| |
Collapse
|
114
|
Martinet W, Coornaert I, Puylaert P, De Meyer GRY. Macrophage Death as a Pharmacological Target in Atherosclerosis. Front Pharmacol 2019; 10:306. [PMID: 31019462 PMCID: PMC6458279 DOI: 10.3389/fphar.2019.00306] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual build-up of plaques within the vessel wall of middle-sized and large arteries. Over the past decades, treatment of atherosclerosis mainly focused on lowering lipid levels, which can be accomplished by the use of statins. However, some patients do not respond sufficiently to statin therapy and therefore still have a residual cardiovascular risk. This issue highlights the need for novel therapeutic strategies. As macrophages are implicated in all stages of atherosclerotic lesion development, they represent an important alternative drug target. A variety of anti-inflammatory strategies have recently emerged to treat or prevent atherosclerosis. Here, we review the canonical mechanisms of macrophage death and their impact on atherogenesis and plaque stability. Macrophage death is a prominent feature of advanced plaques and is a major contributor to necrotic core formation and plaque destabilization. Mechanisms of macrophage death in atherosclerosis include apoptosis, passive or accidental necrosis as well as secondary necrosis, a type of death that typically occurs when apoptotic cells are insufficiently cleared by neighboring cells via a phagocytic process termed efferocytosis. In addition, less-well characterized types of regulated necrosis in macrophages such as necroptosis, pyroptosis, ferroptosis, and parthanatos may occur in advanced plaques and are also discussed. Autophagy in plaque macrophages is an important survival pathway that protects against cell death, yet massive stimulation of autophagy promotes another type of death, usually referred to as autosis. Multiple lines of evidence indicate that a better insight into the different mechanisms of macrophage death, and how they mutually interact, will provide novel pharmacological strategies to resolve atherosclerosis and stabilize vulnerable, rupture-prone plaques.
Collapse
Affiliation(s)
- Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Isabelle Coornaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
115
|
Tajbakhsh A, Gheibi Hayat SM, Butler AE, Sahebkar A. Effect of soluble cleavage products of important receptors/ligands on efferocytosis: Their role in inflammatory, autoimmune and cardiovascular disease. Ageing Res Rev 2019; 50:43-57. [PMID: 30639340 DOI: 10.1016/j.arr.2019.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Efferocytosis, the clearance of apoptotic cells (ACs), is a physiologic, multifaceted and dynamic process and a fundamental mechanism for the preservation of tissue homeostasis by avoiding unwanted inflammation and autoimmune responses through special phagocytic receptors. Defective efferocytosis is associated with several disease states, including cardiovascular disease and impaired immune surveillance, as occurs in cancer and autoimmune disease. A major cause of defective efferocytosis is non-functionality of surface receptors on either the phagocytic cells or the ACs, such as TAM family tyrosine kinase, which turns to a soluble form by cleavage/shedding or alternative splicing. Recently, soluble forms have featured prominently as potential biomarkers, indicative of prognosis and enabling targeted therapy using several commonly employed drugs and inhibitors, such as bleomycin, dexamethasone, statins and some matrix metalloproteinase inhibitors such as TAPI-1 and BB3103. Importantly, to design drug carriers with enhanced circulatory durability, the adaptation of soluble forms of physiological receptors/ligands has been purported. Research has shown that soluble forms are more effective than antibody forms in enabling targeted treatment of certain conditions, such as autoimmune diseases. In this review, we sought to summarize the current knowledge of these soluble products, how they are generated, their interactions, roles, and their potential use as biomarkers in prognosis and treatment related to inflammatory, cardiovascular, and autoimmune diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
116
|
Momtazi-Borojeni AA, Abdollahi E, Nikfar B, Chaichian S, Ekhlasi-Hundrieser M. Curcumin as a potential modulator of M1 and M2 macrophages: new insights in atherosclerosis therapy. Heart Fail Rev 2019; 24:399-409. [DOI: 10.1007/s10741-018-09764-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
117
|
Analysis of differential gene expression by RNA-seq data in ABCG1 knockout mice. Gene 2018; 689:24-33. [PMID: 30528268 DOI: 10.1016/j.gene.2018.11.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/05/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022]
Abstract
AIMS The previous studies on ABCG1 using genetically modified mice showed inconsistent results on atherosclerosis. The aim of this study was to determine whether accurate target knockout of ABCG1 would result in transcriptional changes of other atherosclerosis-related genes. METHODS ABCG1 knockout mouse model was obtained by precise gene targeting without affecting non-target DNA sequences in C57BL/6 background. The wildtype C57BL/6 mice were regarded as control group. 12-week-old male mice were used in current study. We performed whole transcriptome analysis on the peripheral blood mononuclear cells obtained from ABCG1 knockout mice (n = 3) and their wildtype controls (n = 3) by RNA-seq. RESULTS Compared with wildtype group, 605 genes were modified at the time of ABCG1 knockout and expressed differentially in knockout group, including 306 up-regulated genes and 299 down-regulated genes. 54 genes were associated with metabolism regulation, of which 13 were related to lipid metabolism. We also found some other modified genes in knockout mice involved in cell adhesion, leukocyte transendothelial migration and apoptosis, which might also play roles in the process of atherosclerosis. 7 significantly enriched GO terms and 19 significantly enriched KEGG pathways were identified, involving fatty acid biosynthesis, immune response and intracellular signal transduction. CONCLUSIONS ABCG1 knockout mice exhibited an altered expression of multiple genes related to many aspects of atherosclerosis, which might affect the further studies to insight into the effect of ABCG1 on atherosclerosis with this animal model.
Collapse
|
118
|
Jacinto TA, Meireles GS, Dias AT, Aires R, Porto ML, Gava AL, Vasquez EC, Pereira TMC, Campagnaro BP, Meyrelles SS. Increased ROS production and DNA damage in monocytes are biomarkers of aging and atherosclerosis. Biol Res 2018; 51:33. [PMID: 30185234 PMCID: PMC6123971 DOI: 10.1186/s40659-018-0182-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/31/2018] [Indexed: 01/11/2023] Open
Abstract
Background New evidence demonstrates that aging and dyslipidemia are closely associated with oxidative stress, DNA damage and apoptosis in some cells and extravascular tissues. However, in monocytes, which are naturally involved in progression and/or resolution of plaque in atherosclerosis, this concurrence has not yet been fully investigated. In this study, we evaluated the influence of aging and hypercholesterolemia on serum pro-inflammatory cytokines, oxidative stress, DNA damage and apoptosis in monocytes from apolipoprotein E-deficient (apoE−/−) mice compared with age-matched wild-type C57BL/6 (WT) mice. Experiments were performed in young (2-months) and in old (18-months) male wild-type (WT) and apoE−/− mice. Results Besides the expected differences in serum lipid profile and plaque formation, we observed that atherosclerotic mice exhibited a significant increase in monocytosis and in serum levels of pro-inflammatory cytokines compared to WT mice. Moreover, it was observed that the overproduction of ROS, led to an increased DNA fragmentation and, consequently, apoptosis in monocytes from normocholesterolemic old mice, which was aggravated in age-matched atherosclerotic mice. Conclusions In this study, we demonstrate that a pro-inflammatory systemic status is associated with an impairment of functionality of monocytes during aging and that these parameters are fundamental extra-arterial contributors to the aggravation of atherosclerosis. The present data open new avenues for the development of future strategies with the purpose of treating atherosclerosis.
Collapse
Affiliation(s)
- Thais A Jacinto
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Giselle S Meireles
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil
| | - Ananda T Dias
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Marcella L Porto
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Agata L Gava
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil.,Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil.,Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil
| | - Thiago Melo C Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil.,Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Bianca P Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil.
| | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| |
Collapse
|
119
|
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol 2018; 112:54-71. [PMID: 30115528 DOI: 10.1016/j.vph.2018.08.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
During atherosclerosis, the gradual accumulation of lipids into the subendothelial space of damaged arteries results in several lipid modification processes followed by macrophage uptake in the arterial wall. The way in which these modified lipoproteins are dealt with determines the likelihood of cholesterol accumulation within the monocyte-derived macrophage and thus its transformation into the foam cell that makes up the characteristic fatty streak observed in the early stages of atherosclerosis. The unique expression of chemokine receptors and cellular adhesion molecules expressed on the cell surface of monocytes points to a particular extravasation route that they can take to gain entry into atherosclerotic site, in order to undergo differentiation into the phagocytic macrophage. Indeed several GWAS and animal studies have identified key genes and proteins required for monocyte recruitment as well cholesterol handling involving lipid uptake, cholesterol esterification and cholesterol efflux. A re-examination of the previously accepted paradigm of macrophage foam cell origin has been called into question by recent studies demonstrating shared expression of scavenger receptors, cholesterol transporters and pro-inflammatory cytokine release by alternative cell types present in the neointima, namely; endothelial cells, vascular smooth muscle cells and stem/progenitor cells. Thus, therapeutic targets aimed at a more heterogeneous foam cell population with shared functions, such as enhanced protease activity, and signalling pathways, mediated by non-coding RNA molecules, may provide greater therapeutic outcome in patients. Finally, studies targeting each aspect of foam cell formation and death using both genetic knock down and pharmacological inhibition have provided researchers with a clearer understanding of the cellular processes at play, as well as helped researchers to identify key molecular targets, which may hold significant therapeutic potential in the future.
Collapse
Affiliation(s)
- Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Stuart W A Pearce
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
120
|
Tajbakhsh A, Rezaee M, Kovanen PT, Sahebkar A. Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms. Pharmacol Ther 2018; 188:12-25. [DOI: 10.1016/j.pharmthera.2018.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
121
|
Mohammadi A, Sharifi A, Pourpaknia R, Mohammadian S, Sahebkar A. Manipulating macrophage polarization and function using classical HDAC inhibitors: Implications for autoimmunity and inflammation. Crit Rev Oncol Hematol 2018; 128:1-18. [DOI: 10.1016/j.critrevonc.2018.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
|
122
|
Zhang W, Xu W, Chen W, Zhou Q. Interplay of Autophagy Inducer Rapamycin and Proteasome Inhibitor MG132 in Reduction of Foam Cell Formation and Inflammatory Cytokine Expression. Cell Transplant 2018; 27:1235-1248. [PMID: 30001636 PMCID: PMC6434468 DOI: 10.1177/0963689718786229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022] Open
Abstract
MG132 is a pivotal inhibitor of the ubiquitin-proteasome system (UPS), and rapamycin (RAPA) is an important inducer of autophagy. MG132 and RAPA have been shown to be effective agents that can cure multiple autoimmune diseases by reducing inflammation. Although individual MG132 and RAPA showed protective effects for atherosclerosis (AS), the combined effect of these two drugs and its molecular mechanism are still unclear. In this article we investigate the regulation of oxidative modification of low-density lipoprotein (ox-LDL) stress and foam cell formation in the presence of both proteasome inhibitor MG132 and the autophagy inducer RAPA to uncover the molecular mechanism underlying this process. We established the foam cells model by ox-LDL and an animal model. Then, we tested six experimental groups of MG132, RAPA, and 3MA drugs. As a result, RAPA-induced autophagy reduces accumulation of polyubiquitinated proteins and apoptosis of foam cells. The combination of MG132 with RAPA not only suppressed expression of the inflammatory cytokines and formation of macrophage foam cells, but also significantly affected the NF-κB signaling pathway and the polarization of RAW 264.7 cells. These data suggest that the combination of proteasome inhibitor and autophagy inducer ameliorates the inflammatory response and reduces the formation of macrophage foam cells during development of AS. Our research provides a new way to suppress vascular inflammation and stabilize plaques of late atherosclerosis.
Collapse
Affiliation(s)
- Wei Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wan Xu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
123
|
Rahman K, Fisher EA. Insights From Pre-Clinical and Clinical Studies on the Role of Innate Inflammation in Atherosclerosis Regression. Front Cardiovasc Med 2018; 5:32. [PMID: 29868610 PMCID: PMC5958627 DOI: 10.3389/fcvm.2018.00032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis, the underlying cause of coronary artery (CAD) and other cardiovascular diseases, is initiated by macrophage-mediated immune responses to lipoprotein and cholesterol accumulation in artery walls, which result in the formation of plaques. Unlike at other sites of inflammation, the immune response becomes maladaptive and inflammation fails to resolve. The most common treatment for reducing the risk from atherosclerosis is low density lipoprotein cholesterol (LDL-C) lowering. Studies have shown, however, that while significant lowering of LDL-C reduces the risk of heart attacks to some degree, there is still residual risk for the majority of the population. We and others have observed “residual inflammatory risk” of atherosclerosis after plasma cholesterol lowering in pre-clinical studies, and that this phenomenon is clinically relevant has been dramatically reinforced by the recent Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS) trial. This review will summarize the role of the innate immune system, specifically macrophages, in atherosclerosis progression and regression, as well as the pre-clinical and clinical models that have provided significant insights into molecular pathways involved in the resolution of plaque inflammation and plaque regression. Partnered with clinical studies that can be envisioned in the post-CANTOS period, including progress in developing targeted plaque therapies, we expect that pre-clinical studies advancing on the path summarized in this review, already revealing key mechanisms, will continue to be essential contributors to achieve the goals of dampening plaque inflammation and inducing its resolution in order to maximize the therapeutic benefits of conventional risk factor modifications, such as LDL-C lowering.
Collapse
Affiliation(s)
- Karishma Rahman
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
124
|
Zhang X, Huang F, Li W, Dang JL, Yuan J, Wang J, Zeng DL, Sun CX, Liu YY, Ao Q, Tan H, Su W, Qian X, Olsen N, Zheng SG. Human Gingiva-Derived Mesenchymal Stem Cells Modulate Monocytes/Macrophages and Alleviate Atherosclerosis. Front Immunol 2018; 9:878. [PMID: 29760701 PMCID: PMC5937358 DOI: 10.3389/fimmu.2018.00878] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is the major cause of cardiovascular diseases. Current evidences indicate that inflammation is involved in the pathogenesis of atherosclerosis. Human gingiva-derived mesenchymal stem cells (GMSC) have shown anti-inflammatory and immunomodulatory effects on autoimmune and inflammatory diseases. However, the function of GMSC in controlling atherosclerosis is far from clear. The present study is aimed to elucidate the role of GMSC in atherosclerosis, examining the inhibition of GMSC on macrophage foam cell formation, and further determining whether GMSC could affect the polarization and activation of macrophages under different conditions. The results show that infusion of GMSC to AopE−/− mice significantly reduced the frequency of inflammatory monocytes/macrophages and decreased the plaque size and lipid deposition. Additionally, GMSC treatment markedly inhibited macrophage foam cell formation and reduced inflammatory macrophage activation, converting inflammatory macrophages to anti-inflammatory macrophages in vitro. Thus, our study has revealed a significant role of GMSC on modulating inflammatory monocytes/macrophages and alleviating atherosclerosis.
Collapse
Affiliation(s)
- Ximei Zhang
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China.,Division of Cardiology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Feng Huang
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Weixuan Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun-Long Dang
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Jia Yuan
- Division of Stomatology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Julie Wang
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Dong-Lan Zeng
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Can-Xing Sun
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Yan-Ying Liu
- Division of Rheumatology, Peking University People's Hospital, Beijing, China
| | - Qian Ao
- Department of Regeneration, Chinese Medical University, Shenyang, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxian Qian
- Division of Cardiology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - Nancy Olsen
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Song Guo Zheng
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
125
|
Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J. Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease. Front Immunol 2018; 9:706. [PMID: 29719532 PMCID: PMC5913371 DOI: 10.3389/fimmu.2018.00706] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 01/08/2023] Open
Abstract
Plaque microvascularization and increased endothelial permeability are key players in the development of atherosclerosis, from the initial stages of plaque formation to the occurrence of acute cardiovascular events. First, endothelial dysfunction and increased permeability facilitate the entry of diverse inflammation-triggering molecules and particles such as low-density lipoproteins into the artery wall from the arterial lumen and vasa vasorum (VV). Recognition of entering particles by resident phagocytes in the vessel wall triggers a maladaptive inflammatory response that initiates the process of local plaque formation. The recruitment and accumulation of inflammatory cells and the subsequent release of several cytokines, especially from resident macrophages, stimulate the expansion of existing VV and the formation of new highly permeable microvessels. This, in turn, exacerbates the deposition of pro-inflammatory particles and results in the recruitment of even more inflammatory cells. The progressive accumulation of leukocytes in the intima, which trigger proliferation of smooth muscle cells in the media, results in vessel wall thickening and hypoxia, which further stimulates neoangiogenesis of VV. Ultimately, this highly inflammatory environment damages the fragile plaque microvasculature leading to intraplaque hemorrhage, plaque instability, and eventually, acute cardiovascular events. This review will focus on the pivotal roles of endothelial permeability, neoangiogenesis, and plaque microvascularization by VV during plaque initiation, progression, and rupture. Special emphasis will be given to the underlying molecular mechanisms and potential therapeutic strategies to selectively target these processes.
Collapse
Affiliation(s)
- Daniel G Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Erin C Boyle
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jasper A F Demandt
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,BHF Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - Jochen Dutzmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
126
|
Ihalin R, Eneslätt K, Asikainen S. Peptidoglycan-associated lipoprotein of Aggregatibacter actinomycetemcomitans induces apoptosis and production of proinflammatory cytokines via TLR2 in murine macrophages RAW 264.7 in vitro. J Oral Microbiol 2018; 10:1442079. [PMID: 29686780 PMCID: PMC5907638 DOI: 10.1080/20002297.2018.1442079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/14/2018] [Indexed: 11/25/2022] Open
Abstract
Peptidoglycan-associated lipoprotein (PAL) is a conserved pro-inflammatory outer membrane lipoprotein in Gram-negative bacteria. Compared to systemic pathogens, little is known about the virulence properties of PAL in Aggregatibacter actinomycetemcomitans (AaPAL). The aims of this study were to investigate the cytolethality of AaPAL and its ability to induce pro-inflammatory cytokine production in macrophages. Mouse macrophages were stimulated with AaPAL, and the production of IL-1β, IL-6, TNF-α, and MCP-1 was measured after 6, 24, and 48 h. To investigate which receptor AaPAL employs for its interaction with macrophages, anti-toll-like receptor (TLR)2 and anti-TLR4 antibodies were used to block respective TLRs on macrophages. Metabolic activity and apoptosis of the macrophages were investigated after stimulation with AaPAL. AaPAL induced the production of MCP-1, TNF-α, IL-6, and IL-1β from mouse macrophages in order of decreasing abundance. The pre-treatment of macrophages with an anti-TLR2 antibody significantly diminished cytokine production. Under AaPAL stimulation, the metabolic activity of macrophages decreased in a dose- and time-dependent manner. Furthermore, AaPAL induced apoptosis in 56% of macrophages after 48 h of incubation. Our data suggest that AaPAL can kill macrophages by apoptosis. The results also emphasize the role of AaPAL as a potent pro-inflammatory agent in A. actinomycetemcomitans-associated infections.
Collapse
Affiliation(s)
- Riikka Ihalin
- Department of Odontology, Oral Microbiology, Umeå University, Umeå, Sweden.,Department of Biochemistry, University of Turku, Turku, Finland
| | - Kjell Eneslätt
- Department of Odontology, Oral Microbiology, Umeå University, Umeå, Sweden
| | - Sirkka Asikainen
- Department of Odontology, Oral Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
127
|
Yamada S, Senokuchi T, Matsumura T, Morita Y, Ishii N, Fukuda K, Murakami-Nishida S, Nishida S, Kawasaki S, Motoshima H, Furukawa N, Komohara Y, Fujiwara Y, Koga T, Yamagata K, Takeya M, Araki E. Inhibition of Local Macrophage Growth Ameliorates Focal Inflammation and Suppresses Atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38:994-1006. [PMID: 29496659 DOI: 10.1161/atvbaha.117.310320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/18/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Macrophages play a central role in various stages of atherosclerotic plaque formation and progression. The local macrophages reportedly proliferate during atherosclerosis, but the pathophysiological significance of macrophage proliferation in this context remains unclear. Here, we investigated the involvement of local macrophage proliferation during atherosclerosis formation and progression using transgenic mice, in which macrophage proliferation was specifically suppressed. APPROACH AND RESULTS Inhibition of macrophage proliferation was achieved by inducing the expression of cyclin-dependent kinase inhibitor 1B, also known as p27kip, under the regulation of a scavenger receptor promoter/enhancer. The macrophage-specific human p27kip Tg mice were subsequently crossed with apolipoprotein E-deficient mice for the atherosclerotic plaque study. Results showed that a reduced number of local macrophages resulted in marked suppression of atherosclerotic plaque formation and inflammatory response in the plaque. Moreover, fewer local macrophages in macrophage-specific human p27kip Tg mice helped stabilize the plaque, as evidenced by a reduced necrotic core area, increased collagenous extracellular matrix, and thickened fibrous cap. CONCLUSIONS These results provide direct evidence of the involvement of local macrophage proliferation in formation and progression of atherosclerotic plaques and plaque stability. Thus, control of macrophage proliferation might represent a therapeutic target for treating atherosclerotic diseases.
Collapse
Affiliation(s)
- Sarie Yamada
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Takafumi Senokuchi
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Takeshi Matsumura
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Yutaro Morita
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Norio Ishii
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Kazuki Fukuda
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Saiko Murakami-Nishida
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Shuhei Nishida
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Shuji Kawasaki
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Hiroyuki Motoshima
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | - Noboru Furukawa
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| | | | | | - Tomoaki Koga
- Department of Medical Cell Biology (T.K.), Faculty of Life Sciences, Kumamoto University, Japan
| | | | | | - Eiichi Araki
- From the Department of Metabolic Medicine (S.Y., T.S., T.M., Y.M., N.I., K.F., S.M.-N., S.N., S.K., H.M., N.F., E.A.)
| |
Collapse
|
128
|
Cong L, Yang S, Zhang Y, Cao J, Fu X. DFMG attenuates the activation of macrophages induced by co‑culture with LPC‑injured HUVE‑12 cells via the TLR4/MyD88/NF‑κB signaling pathway. Int J Mol Med 2018; 41:2619-2628. [PMID: 29484368 PMCID: PMC5846668 DOI: 10.3892/ijmm.2018.3511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/09/2018] [Indexed: 12/30/2022] Open
Abstract
7‑difluoromethoxy‑5,4'‑dimethoxy‑genistein (DFMG) is a novel active chemical entity, which modulates the function and signal transduction of endothelial cells and macrophages (MPs), and is essential in the prevention of atherosclerosis. In the present study, the activity and molecular mechanism of DFMG on MPs was investigated using a Transwell assay to construct a non‑contact co‑culture model. Human umbilical vein endothelial cells (HUVE‑12), which were incubated with lysophosphatidylcholine (LPC), were seeded in the upper chambers, whereas PMA‑induced MPs were grown in the lower chambers. The generation of reactive oxygen species (ROS) and the release of lactate dehydrogenase (LDH) were measured using the corresponding assay kits. The proliferation and migration were assessed using 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide and wound healing assays, respectively. Foam cell formation was examined using oil red O staining and a total cholesterol assay. The protein expression levels of Toll‑like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear factor (NF)‑κB p65 were detected by western immunoblotting. The secretion of interleukin (IL)‑1β was examined using an enzyme‑linked immunosorbent assay. It was found that LPC significantly increased the generation of ROS and the release of LDH in HUVE‑12 cells. The LPC‑injured HUVE‑12 cells activated MPs under co‑culture conditions and this process was inhibited by DFMG treatment. LPC upregulated the expression levels of TLR4, MyD88 and NF‑κB p65, and the secretion of IL‑1β in the supernatant of the co‑cultured HUVE‑12 cells and MPs. These effects were reversed by the application of DFMG. Furthermore, CLI‑095 and IL‑1Ra suppressed the activation of MPs that was induced by co‑culture with injured HUVE‑12 cells. These effects were further enhanced by co‑treatment with DFMG, and DFMG exhibited synergistic effects with a TLR4‑specific inhibitor. Take together, these findings revealed that DFMG attenuated the activation of MP induced by co‑culture with LPC‑injured HUVE‑12 cells. This process was mediated via inhibition of the TLR4/MyD88/NF‑κB signaling pathway in HUVE‑12 cells.
Collapse
Affiliation(s)
- Li Cong
- College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Shuting Yang
- Center for Molecular Medicine, Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yong Zhang
- College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Jianguo Cao
- College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Xiaohua Fu
- College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
129
|
Sun W, Lin Y, Chen L, Ma R, Cao J, Yao J, Chen K, Wan J. Legumain suppresses OxLDL-induced macrophage apoptosis through enhancement of the autophagy pathway. Gene 2018; 652:16-24. [PMID: 29414692 DOI: 10.1016/j.gene.2018.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/23/2018] [Accepted: 02/04/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Autophagy plays a prominent role in the pathogenesis of plaques formation and progression of atherosclerosis (AS). The cysteine protease legumain is known to participate in atherogenesis, but its function and underlying mechanism in AS macrophages remain unclear. METHODS The expressions of legumain in plaques isolated from AS patients and in macrophages stimulated with oxLDL were examined. Moreover, we effectively altered legumain expression in macrophages to characterize the effect of legumain on oxLDL-induced macrophage apoptosis. The expression of apoptotic and autophagic factors was analysed. RESULTS Legumain was present in plaques, and its expression was upregulated in macrophages treated with oxLDL. Suppressing legumain significantly increased oxLDL-induced macrophage apoptosis and the expression of caspase 3, caspase 9 and Bax. However, legumain overexpression decreased macrophage apoptosis upon oxLDL exposure and the levels of caspase 3, caspase 9 and Bax. In addition, recombinant legumain protein suppressed macrophage apoptosis. Biochemical experiments revealed that legumain deficiency decreased the levels of Beclin1 and LC3, whereas increased legumain expression increased the levels of Beclin1 and LC3 significantly. CONCLUSION Legumain regulates oxLDL-induced macrophage apoptosis by enhancing the autophagy pathway, which may also influence the vulnerability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Wenhua Sun
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yingying Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Liling Chen
- Department of Cardiology, Longyan First Hospital affiliated to Fujian Medical University, Fujian 364000, People's Republic of China
| | - Rong Ma
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jiayu Cao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jing Yao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Kaihong Chen
- Department of Cardiology, Longyan First Hospital affiliated to Fujian Medical University, Fujian 364000, People's Republic of China
| | - Jieqing Wan
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| |
Collapse
|
130
|
Yang P, Ling L, Sun W, Yang J, Zhang L, Chang G, Guo J, Sun J, Sun L, Lu D. Ginsenoside Rg1 inhibits apoptosis by increasing autophagy via the AMPK/mTOR signaling in serum deprivation macrophages. Acta Biochim Biophys Sin (Shanghai) 2018; 50:144-155. [PMID: 29324976 DOI: 10.1093/abbs/gmx136] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
Ginsenoside Rg1 (Rg1) has been widely used in a broad range of cardiovascular and cerebral-vascular diseases because of its unique therapeutic properties. However, the underlying mechanisms of Rg1 in the treatment of atherosclerosis have not been fully explored. This study sought to determine the precise molecular mechanisms on how Rg1 might be involved in regulating apoptosis in serum deprivation-induced Raw264.7 macrophages and primary bone marrow-derived macrophages. Results demonstrated that Rg1 treatment effectively suppressed apoptosis and the expression of phosphorylation level of mTOR induced by serum deprivation in Raw264.7 macrophages; the expressions of autophagic flux-related proteins including Atg5, Beclin1, microtubule-associated protein 1 light chain 3 (LC3), p62/SQSMT1, and the phosphorylation level of AMPK were concomitantly up-regulated. 3-Methyl-adennine (3-MA), the most widely used autophagy inhibitor, strongly up-regulated the expression of cleaved caspase-3, and blocked the anti-apoptosis function of Rg1 in macrophages. Importantly, autophagic flux was activated by Rg1, while Beclin1 knockdown partially abolished the anti-apoptosis of Rg1. Moreover, compound C, an AMPK inhibitor, partially decreased the expressions of phosphorylation of mTOR, Atg5, Beclin1, LC3, and p62/SQSMT1, which were increased by Rg1. AICAR, an AMPK inducer, promoted the protein expressions of phosphorylation of mTOR, Atg5, Beclin1, LC3, and p62/SQSMT1. In conclusion, Rg1 significantly suppressed apoptosis induced by serum deprivation in macrophages. Furthermore, Rg1 could effectively induce the autophagic flux by attenuating serum deprivation-induced apoptosis in Raw264.7 macrophages through activating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Ping Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lu Ling
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Wenjing Sun
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Junquan Yang
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Ling Zhang
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Guoji Chang
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Jiazhi Guo
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Jun Sun
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lin Sun
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Di Lu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
131
|
Li H, Xiao Y, Tang L, Zhong F, Huang G, Xu JM, Xu AM, Dai RP, Zhou ZG. Adipocyte Fatty Acid-Binding Protein Promotes Palmitate-Induced Mitochondrial Dysfunction and Apoptosis in Macrophages. Front Immunol 2018; 9:81. [PMID: 29441065 PMCID: PMC5797554 DOI: 10.3389/fimmu.2018.00081] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/11/2018] [Indexed: 11/13/2022] Open
Abstract
A high level of circulating free fatty acids (FFAs) is known to be an important trigger for macrophage apoptosis during the development of atherosclerosis. However, the underlying mechanism by which FFAs result in macrophage apoptosis is not well understood. In cultured human macrophage Thp-1 cells, we showed that palmitate (PA), the most abundant FFA in circulation, induced excessive reactive oxidative substance production, increased malondialdehyde concentration, and decreased adenosine triphosphate levels. Furthermore, PA treatment also led to mitochondrial dysfunction, including the decrease of mitochondrial number, the impairment of respiratory complex IV and succinate dehydrogenase activity, and the reduction of mitochondrial membrane potential. Mitochondrial apoptosis was also detected after PA treatment, indicated by a decrease in cytochrome c release, downregulation of Bcl-2, upregulation of Bax, and increased caspase-3 activity. PA treatment upregulated the expression of adipocyte fatty acid-binding protein (A-FABP), a critical regulator of fatty acid trafficking and lipid metabolism. Inhibition of A-FABP with BMS309403, a small-molecule A-FABP inhibitor, almost reversed all of these indexes. Thus, this study suggested that PA-mediated macrophage apoptosis through A-FABP upregulation, which subsequently resulted in mitochondrial dysfunction and reactive oxidative stress. Inhibition of A-FABP may be a potential therapeutic target for macrophage apoptosis and to delay the progress of atherosclerosis.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Tang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Zhong
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun-Mei Xu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ai-Min Xu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Guang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
132
|
Li X, Feng S, Luo Y, Long K, Lin Z, Ma J, Jiang A, Jin L, Tang Q, Li M, Wang X. Expression profiles of microRNAs in oxidized low-density lipoprotein-stimulated RAW 264.7 cells. In Vitro Cell Dev Biol Anim 2018; 54:99-110. [PMID: 29322359 DOI: 10.1007/s11626-017-0225-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022]
Abstract
Macrophage-derived foam cells were one of the hallmarks of atherosclerosis, and microRNAs played an important role in the formation of foam cells. In order to explore the roles of miRNA in the formation of foam cells, we investigated miRNA expression profiles in foam cells through high-throughput sequencing technology. A total of 84 miRNAs were differentially expressed between RAW 264.7 macrophages and foam cells induced by ox-LDL. Thirty miRNAs were upregulated and 54 miRNAs were downregulated. GO terms and KEGG pathways analysis revealed that the target genes of most of DE miRNAs were mainly enriched in "cell differentiation," "endocytosis," "MAPK signaling pathway," and "FoxO signaling pathway." The target genes of some DE miRNAs were enriched in "Insulin signaling pathway," "Hippo signaling pathway," "TNF signaling pathway," "NF-kappa B signaling pathway," and "cell death." Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-28a-5p and miR-30c-1-3p directly inhibited LRAD3 and LOX-1 mRNA expression through targeting the 3'UTR of LRAD3 and LOX-1 mRNA, respectively. Our study indicates that miRNAs are extensively involved in the formation of foam cells, and provides a valuable resource for further study the role of miRNAs in atherosclerosis.
Collapse
Affiliation(s)
- Xiaokai Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyuan Feng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Luo
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhenghao Lin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anan Jiang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
133
|
Yurdagul A, Doran AC, Cai B, Fredman G, Tabas IA. Mechanisms and Consequences of Defective Efferocytosis in Atherosclerosis. Front Cardiovasc Med 2018. [PMID: 29379788 DOI: 10.3389/fcvm.2017.00086e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Efficient clearance of apoptotic cells, termed efferocytosis, critically regulates normal homeostasis whereas defective uptake of apoptotic cells results in chronic and non-resolving inflammatory diseases, such as advanced atherosclerosis. Monocyte-derived macrophages recruited into developing atherosclerotic lesions initially display efficient efferocytosis and temper inflammatory responses, processes that restrict plaque progression. However, during the course of plaque development, macrophages undergo cellular reprogramming that reduces efferocytic capacity, which results in post-apoptotic necrosis of apoptotic cells and inflammation. Furthermore, defective efferocytosis in advanced atherosclerosis is a major driver of necrotic core formation, which can trigger plaque rupture and acute thrombotic cardiovascular events. In this review, we discuss the molecular and cellular mechanisms that regulate efferocytosis, how efferocytosis promotes the resolution of inflammation, and how defective efferocytosis leads to the formation of clinically dangerous atherosclerotic plaques.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| | - Amanda C Doran
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| | - Bishuang Cai
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| | - Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Ira A Tabas
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| |
Collapse
|
134
|
Yurdagul A, Doran AC, Cai B, Fredman G, Tabas IA. Mechanisms and Consequences of Defective Efferocytosis in Atherosclerosis. Front Cardiovasc Med 2018; 4:86. [PMID: 29379788 PMCID: PMC5770804 DOI: 10.3389/fcvm.2017.00086] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Efficient clearance of apoptotic cells, termed efferocytosis, critically regulates normal homeostasis whereas defective uptake of apoptotic cells results in chronic and non-resolving inflammatory diseases, such as advanced atherosclerosis. Monocyte-derived macrophages recruited into developing atherosclerotic lesions initially display efficient efferocytosis and temper inflammatory responses, processes that restrict plaque progression. However, during the course of plaque development, macrophages undergo cellular reprogramming that reduces efferocytic capacity, which results in post-apoptotic necrosis of apoptotic cells and inflammation. Furthermore, defective efferocytosis in advanced atherosclerosis is a major driver of necrotic core formation, which can trigger plaque rupture and acute thrombotic cardiovascular events. In this review, we discuss the molecular and cellular mechanisms that regulate efferocytosis, how efferocytosis promotes the resolution of inflammation, and how defective efferocytosis leads to the formation of clinically dangerous atherosclerotic plaques.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| | - Amanda C Doran
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| | - Bishuang Cai
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| | - Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Ira A Tabas
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| |
Collapse
|
135
|
Activation of aldehyde dehydrogenase 2 slows down the progression of atherosclerosis via attenuation of ER stress and apoptosis in smooth muscle cells. Acta Pharmacol Sin 2018; 39:48-58. [PMID: 28858301 DOI: 10.1038/aps.2017.81] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 05/19/2017] [Indexed: 12/13/2022]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a key mitochondrial enzyme in the metabolism of aldehydes and may have beneficial cardiovascular effects for conditions such as cardiac hypertrophy, heart failure, myocardial I/R injury, reperfusion, arrhythmia, coronary heart disease and atherosclerosis. In this study we investigated the role of ALDH2 in the progression of atherosclerosis and the underlying mechanisms, with a focus on endoplasmic reticulum (ER) stress. A clinical study was performed in 248 patients with coronary heart disease. The patients were divided into two groups according to their ALDH2 genotype. Baseline clinical characteristics and coronary angiography were recorded, and the coronary artery Gensini score was calculated. Serum levels of 4-hydroxy-2-nonenal (4-HNE) were detected. The clinical study revealed that the mutant ALDH2 genotype was an independent risk factor for coronary heart disease. ALDH2 gene polymorphism is closely associated with atherosclerosis and the severity of coronary artery stenosis. Serum levels of 4-HNE were significantly higher in patients with the mutant ALDH2 genotype than in patients with the wild-type ALDH2 genotype. As an in vitro model of atherosclerosis, rat smooth muscle cells (SMCs) were treated with oxygenized low-density lipoprotein (ox-LDL), which significantly elevated the levels of ER markers glucose-regulated protein78 (GRP78), protein kinase R-like ER kinase (PERK), phosphorylated eukaryotic translation initiation factor α subunit (p-eIF2α), activating transcription factor-4 (ATF-4), CEBP homologous protein (CHOP) and 4-HNE in the cells. All the ox-LDL-induced responses were significantly attenuated in the presence of Alda-1 (an ALDH2 activating agent), and accentuated in the presence of daidzin (an ALDH2 inhibitor). Furthermore, pretreatment with ALDH2 activator Alda-1 significantly decreased ox-LDL-induced apoptosis. Similarly, overexpression of ALDH2 protected SMCs against ox-LDL-induced ER stress as well as ER stress-induced apoptosis. These findings suggest that ALDH2 may slow the progression of atherosclerosis via the attenuation of ER stress and apoptosis in smooth muscle cells.
Collapse
|
136
|
Banik B, Wen R, Marrache S, Kumar A, Kolishetti N, Howerth EW, Dhar S. Core hydrophobicity tuning of a self-assembled particle results in efficient lipid reduction and favorable organ distribution. NANOSCALE 2017; 10:366-377. [PMID: 29218349 PMCID: PMC5744677 DOI: 10.1039/c7nr06295h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Atherosclerosis, the deadliest disease in the United States, arises due to the build up of plaques in the arteries as a result of excessive cholesterol deposition and an impaired cholesterol removal process. High density lipoproteins (HDL), popularly known as "good cholesterol", are naturally occurring nano-sized particles that, along with apolipoproteins, are deployed to maintain cholesterol homeostasis in the body. Both cholesterol efflux, from the fat-laden macrophages in the arteries, and intracellular lipid transport, to deliver cholesterol to the mitochondria of liver cells for metabolism, hold key responsibilities to maintain healthy lipid levels inside the body. We designed a library of nine mitochondria targeted polymer-lipid hybrid nanoparticles (NPs), comprised of completely synthetic yet biodegradable components, that are capable of performing HDL-like functions. Using this library, we optimized a superior mitochondria targeted NP candidate, which can show favourable organ distribution, therapeutic potential, and non-toxic properties. Two targeted NP formulations with optimum NP size, zeta potential, and cholesterol binding and release properties were identified. Lipid reduction and anti-oxidative properties of these two NPs demonstrated cholesterol removal ability. In vivo therapeutic evaluation of the targeted-NP formulations in apolipoprotein E knockout (apoE-/-) mice indicated lipid reduction and anti-inflammatory properties compared to non-targeted NPs. This synthetic targeted NP with potential abilities to participate in both extra- and intracellular cholesterol transport might potentiate therapeutic interventions for heart diseases.
Collapse
Affiliation(s)
- Bhabatosh Banik
- Department of Biochemistry and Molecular Biology Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
137
|
Davies JMS, Cillard J, Friguet B, Cadenas E, Cadet J, Cayce R, Fishmann A, Liao D, Bulteau AL, Derbré F, Rébillard A, Burstein S, Hirsch E, Kloner RA, Jakowec M, Petzinger G, Sauce D, Sennlaub F, Limon I, Ursini F, Maiorino M, Economides C, Pike CJ, Cohen P, Salvayre AN, Halliday MR, Lundquist AJ, Jakowec NA, Mechta-Grigoriou F, Mericskay M, Mariani J, Li Z, Huang D, Grant E, Forman HJ, Finch CE, Sun PY, Pomatto LCD, Agbulut O, Warburton D, Neri C, Rouis M, Cillard P, Capeau J, Rosenbaum J, Davies KJA. The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 2017; 39:499-550. [PMID: 29270905 PMCID: PMC5745211 DOI: 10.1007/s11357-017-0002-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.
Collapse
Affiliation(s)
- Joanna M S Davies
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Josiane Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Bertrand Friguet
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Enrique Cadenas
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Rachael Cayce
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Andrew Fishmann
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - David Liao
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon,ENS de Lyon, CNRS, 69364, Lyon Cedex 07, France
| | - Frédéric Derbré
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Amélie Rébillard
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Steven Burstein
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Etienne Hirsch
- INSERM UMR 1127-CNRS UMR 7225, Institut du cerveau et de la moelle épinière-ICM Thérapeutique Expérimentale de la Maladie de Parkinson, Université Pierre et Marie Curie, 75651, Paris Cedex 13, France
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, 91105, USA
| | - Michael Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giselle Petzinger
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Delphine Sauce
- Chronic infections and Immune ageing, INSERM U1135, Hopital Pitie-Salpetriere, Pierre et Marie Curie University, 75013, Paris, France
| | | | - Isabelle Limon
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Christina Economides
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Neurobiology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anne Negre Salvayre
- Lipid peroxidation, Signalling and Vascular Diseases INSERM U1048, 31432, Toulouse Cedex 4, France
| | - Matthew R Halliday
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Adam J Lundquist
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicolaus A Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Mathias Mericskay
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire-Inserm UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry, Paris, France
| | - Jean Mariani
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Zhenlin Li
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - David Huang
- Department of Radiation Oncology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Ellsworth Grant
- Department of Oncology & Hematology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Henry J Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - David Warburton
- Children's Hospital of Los Angeles, Developmental Biology, Regenerative Medicine and Stem Cell Therapeutics program and the Center for Environmental Impact on Global Health Across the Lifespan at The Saban Research Institute, Los Angeles, CA, 90027, USA
- Department of Pediatrics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Neri
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Mustapha Rouis
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Pierre Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Jacqueline Capeau
- DR Saint-Antoine UMR_S938, UPMC, Inserm Faculté de Médecine, Université Pierre et Marie Curie, 75012, Paris, France
| | - Jean Rosenbaum
- Scientific Service of the Embassy of France in the USA, Consulate General of France in Los Angeles, Los Angeles, CA, 90025, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA.
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA.
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| |
Collapse
|
138
|
Thon MP, Ford HZ, Gee MW, Myerscough MR. A Quantitative Model of Early Atherosclerotic Plaques Parameterized Using In Vitro Experiments. Bull Math Biol 2017; 80:175-214. [DOI: 10.1007/s11538-017-0367-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/10/2017] [Indexed: 01/13/2023]
|
139
|
Tabas I, Lichtman AH. Monocyte-Macrophages and T Cells in Atherosclerosis. Immunity 2017; 47:621-634. [PMID: 29045897 PMCID: PMC5747297 DOI: 10.1016/j.immuni.2017.09.008] [Citation(s) in RCA: 459] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/13/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is an arterial disease process characterized by the focal subendothelial accumulation of apolipoprotein-B-containing lipoproteins, immune and vascular wall cells, and extracellular matrix. The lipoproteins acquire features of damage-associated molecular patterns and trigger first an innate immune response, dominated by monocyte-macrophages, and then an adaptive immune response. These inflammatory responses often become chronic and non-resolving and can lead to arterial damage and thrombosis-induced organ infarction. The innate immune response is regulated at various stages, from hematopoiesis to monocyte changes and macrophage activation. The adaptive immune response is regulated primarily by mechanisms that affect the balance between regulatory and effector T cells. Mechanisms related to cellular cholesterol, phenotypic plasticity, metabolism, and aging play key roles in affecting these responses. Herein, we review select topics that shed light on these processes and suggest new treatment strategies.
Collapse
Affiliation(s)
- Ira Tabas
- Departments of Medicine, Physiology, and Pathology & Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
140
|
Daugherty A, Tall AR, Daemen MJ, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Circ Res 2017; 121:e53-e79. [DOI: 10.1161/res.0000000000000169] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
141
|
Filipek A, Czerwińska ME, Kiss AK, Polański JA, Naruszewicz M. Oleacein may inhibit destabilization of carotid plaques from hypertensive patients. Impact on high mobility group protein-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 32:68-73. [PMID: 28732809 DOI: 10.1016/j.phymed.2017.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/20/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In patients with hypertension the haemorrhage into carotid atherosclerotic plaque increases risk of plaque destabilization and rupture. Our previous study showed that oleacein, a secoiridoid present in extra virgin olive oil, enhanced uptake of haemoglobin-haptoglobin complex and change macrophage phenotype from pro-inflammatory M1 to anti-inflammatory M2. PURPOSE The aim this study was to investigate a potential role of oleacein in attenuation of carotid plaque destabilisation ex vivo. METHODS Samples of atherosclerotic plaque were harvested from 20 patients with hypertension /11 women and 9 men/, who underwent carotid endarterectomy after transient ischemic attacks. Matching pieces of each plaque were incubated with increased concentration of pure oleacein /range 0-20 µM/ for 24 h. HMGB1, MMP-9, MMP-9/NGAL, TF and IL-10, as well as HO-1 secretion from plaque was measured by enzyme-linked immunosorbent assay /ELISA/. Statistical significance was set at P < 0.05 and P < 0.001. RESULTS Oleacein at the concentrations of 10 and 20 µM significantly (P < 0.001) decreased secretion of HMGB1 (up 90%), MMP-9 (up to 80%), MMP-9/NGAL complex (up to 80%) and TF (more than 90%) from the treated plaque, as compared to control. At the same time IL-10 and HO-1 release increased by more than 80% (P < 0.001). CONCLUSION Our results indicate that oleacein possess ability to attenuate the destabilization of carotid plaque and could be potentially useful in the reduction of ischemic stroke risk.
Collapse
Affiliation(s)
- Agnieszka Filipek
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Anna K Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Jerzy A Polański
- Chair and Department of General, Vascular and Oncologic Surgery, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Marek Naruszewicz
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
142
|
Subramanian P, Prucnal M, Gercken B, Economopoulou M, Hajishengallis G, Chavakis T. Endothelial cell-specific overexpression of developmental endothelial locus-1 does not influence atherosclerosis development in ApoE -/- mice. Thromb Haemost 2017; 117:2003-2005. [PMID: 28796274 DOI: 10.1160/th17-03-0160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022]
Abstract
Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
Affiliation(s)
- Pallavi Subramanian
- Dr. Pallavi Subramanian, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany, Tel.: +49 351 458 6250, Fax: +49 351 458 6324, E-mail:
| | | | | | | | | | | |
Collapse
|
143
|
Tian H, Yao ST, Yang NN, Ren J, Jiao P, Zhang X, Li DX, Zhang GA, Xia ZF, Qin SC. D4F alleviates macrophage-derived foam cell apoptosis by inhibiting the NF-κB-dependent Fas/FasL pathway. Sci Rep 2017; 7:7333. [PMID: 28779128 PMCID: PMC5544683 DOI: 10.1038/s41598-017-07656-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023] Open
Abstract
This study was designed to explore the protective effect of D4F, an apolipoprotein A-I mimetic peptide, on nuclear factor-κB (NF-κB)-dependent Fas/Fas ligand (FasL) pathway-mediated apoptosis in macrophages induced by oxidized low-density lipoprotein (ox-LDL). Our results showed that ox-LDL induced apoptosis, NF-κB P65 nuclear translocation and the upregulation of Fas/FasL pathway-related proteins, including Fas, FasL, Fas-associated death domain proteins (FADD), caspase-8 and caspase-3 in RAW264.7 macrophages, whereas silencing of Fas blocked ox-LDL-induced macrophage apoptosis. Furthermore, silencing of P65 attenuated macrophage apoptosis and the upregulation of Fas caused by ox-LDL, whereas P65 expression was not significantly affected by treatment with Fas siRNA. D4F attenuated the reduction of cell viability and the increase in lactate dehydrogenase leakage and apoptosis. Additionally, D4F inhibited ox-LDL-induced P65 nuclear translocation and upregulation of Fas/FasL pathway-related proteins in RAW264.7 cells and in atherosclerotic lesions of apoE-/- mice. However, Jo2, a Fas-activating monoclonal antibody, reversed the inhibitory effect of D4F on ox-LDL-induced cell apoptosis and upregulation of Fas, FasL and FADD. These data indicate that NF-κB mediates Fas/FasL pathway activation and apoptosis in macrophages induced by ox-LDL and that D4F protects macrophages from ox-LDL-induced apoptosis by suppressing the activation of NF-κB and the Fas/FasL pathway.
Collapse
Affiliation(s)
- Hua Tian
- Key Laboratory of Atherosclerosis in Universities of Shandong, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Shu-Tong Yao
- Key Laboratory of Atherosclerosis in Universities of Shandong, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China. .,College of Basic Medical Sciences, Taishan Medical University, Taian, 271000, China.
| | - Na-Na Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Jie Ren
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, Jinan, 250022, China
| | - Peng Jiao
- Key Laboratory of Atherosclerosis in Universities of Shandong, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, 050000, China
| | - Dong-Xuan Li
- Key Laboratory of Atherosclerosis in Universities of Shandong, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Gong-An Zhang
- Key Laboratory of Atherosclerosis in Universities of Shandong, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Zhen-Fang Xia
- Key Laboratory of Atherosclerosis in Universities of Shandong, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China
| | - Shu-Cun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong, Institute of Atherosclerosis, Taishan Medical University, Taian, 271000, China.
| |
Collapse
|
144
|
Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2017; 37:e131-e157. [PMID: 28729366 DOI: 10.1161/atv.0000000000000062] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
145
|
Meeuwsen JAL, Wesseling M, Hoefer IE, de Jager SCA. Prognostic Value of Circulating Inflammatory Cells in Patients with Stable and Acute Coronary Artery Disease. Front Cardiovasc Med 2017; 4:44. [PMID: 28770211 PMCID: PMC5509763 DOI: 10.3389/fcvm.2017.00044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is a lipid driven chronic inflammatory disease underlying the majority of ischemic events such as myocardial infarction or stroke. Clinical management of ischemic events has improved considerably in the past decades. Accordingly, survival rates have increased. Nevertheless, 12% of patients die within 6 months after the initial event. To improve secondary prevention, appropriate risk prediction is key. However, up to date, there is no clinically available routine marker to identify patients at high risk for recurrent cardiovascular events. Due to the central role of inflammation in atherosclerotic lesion progression and destabilization, many studies have focused on the role of circulating inflammatory cells in these processes. This review summarizes the current evidence on the potential of circulating inflammatory cells as biomarkers for recurrent adverse manifestations in acute coronary syndrome and stable coronary artery disease patients.
Collapse
Affiliation(s)
- John A L Meeuwsen
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marian Wesseling
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Imo E Hoefer
- Laboratory for Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saskia C A de Jager
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
146
|
Mao Z, Gan C, Zhu J, Ma N, Wu L, Wang L, Wang X. Anti-atherosclerotic activities of flavonoids from the flowers of Helichrysum arenarium L. MOENCH through the pathway of anti-inflammation. Bioorg Med Chem Lett 2017; 27:2812-2817. [DOI: 10.1016/j.bmcl.2017.04.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/24/2017] [Accepted: 04/25/2017] [Indexed: 11/27/2022]
|
147
|
Sukhovershin RA, Toledano Furman NE, Tasciotti E, Trachtenberg BH. Local Inhibition of Macrophage and Smooth Muscle Cell Proliferation to Suppress Plaque Progression. Methodist Debakey Cardiovasc J 2017; 12:141-145. [PMID: 27826367 DOI: 10.14797/mdcj-12-3-141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is a complex process responsible for a major burden of cardiovascular morbidity and mortality. Macrophages and smooth muscle cells (SMCs) are abundant within atherosclerotic plaques. This review discusses the role of macrophages and SMCs in plaque progression and provides an overview of nanoparticle-based approaches and other current methods for local targeting of atherosclerotic plaques.
Collapse
Affiliation(s)
| | | | | | - Barry H Trachtenberg
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
148
|
Kayashima Y, Makhanova N, Maeda N. DBA/2J Haplotype on Distal Chromosome 2 Reduces Mertk Expression, Restricts Efferocytosis, and Increases Susceptibility to Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:e82-e91. [PMID: 28473436 DOI: 10.1161/atvbaha.117.309522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/24/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Arch atherosclerosis 4 (Aath4) is a quantitative trait locus for atherosclerotic plaque formation in the inner curve of the aortic arch previously identified in an F2 cross of Apoe-/- mice on DBA/2J and 129S6 backgrounds. C-mer proto-oncogene tyrosine kinase (Mertk), coding for a ligand-activated transmembrane tyrosine kinase, is a candidate gene within the same chromosomal region. Our objective was to determine whether strain differences in Mertk influence plaque formation. APPROACH AND RESULTS To dissect the strain effects of Mertk on atherosclerosis, we first established a congenic mouse line (Aath4aDBA/DBA ) in which a 5' region of Aath4 of DBA/2J, including Mertk, was backcrossed onto a 129S6-Apoe-/- background. The resulting Aath4aDBA/DBA male mice developed significantly larger plaques compared with control mice (Aath4a129/129 ), proving that the DBA/2J allele of Aath4a is proatherogenic. Thioglycollate-elicited peritoneal macrophages from Aath4aDBA/DBA mice express less than 50% of Mertk mRNA and cell-surface MERTK protein compared with those from the control mice. Moreover, both large and small peritoneal Aath4aDBA/DBA macrophages showed reduced phagocytosis of apoptotic cells. When Mertk cDNAs from 129S6 and DBA/2J mice were overexpressed in HEK293T (human embryonic kidney 293T) cells, phagocytosis of apoptotic cells was equally enhanced in direct proportion to Mertk levels, indicating that phagocytosis is modulated by the amount of MERTK, but that it is not affected by MERTK amino acid differences between 129S6 and DBA/2J. CONCLUSIONS Reduced transcription of Mertk, rather than differences in MERTK protein structure, determines the reduced efficiency of apoptotic cell clearance in the Aath4aDBA/DBA mice, which, in turn, contributes to their increased susceptibility to atherosclerosis.
Collapse
Affiliation(s)
- Yukako Kayashima
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
| | - Natalia Makhanova
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
| | - Nobuyo Maeda
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill.
| |
Collapse
|
149
|
Nowak M, Tardivel S, Nguyen-Khoa T, Abreu S, Allaoui F, Fournier N, Chaminade P, Paul JL, Lacour B. Mycophenolate Mofetil and Rapamycin Induce Apoptosis in the Human Monocytic U937 Cell Line Through Two Different Pathways. J Cell Biochem 2017; 118:3480-3487. [PMID: 28345768 DOI: 10.1002/jcb.26007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
Transplant vasculopathy may be considered as an accelerated form of atherosclerosis resulting in chronic rejection of vascularized allografts. After organ transplantation, a diffuse intimal thickening is observed, leading to the development of an atherosclerosis plaque due to a significant monocyte infiltration. This results from a chronic inflammatory process induced by the immune response. In this study, we investigated the impact of two immunosuppressive drugs used in therapy initiated after organ transplantation, mycophenolate mofetil, and rapamycin, on the apoptotic response of monocytes induced or not by oxidized LDL. Here we show the pro-apoptotic effect of these two drugs through two distinct signaling pathways and we highlight a synergistic effect of rapamycin on apoptosis induced by oxidized LDL. In conclusion, since immunosuppressive therapy using mycophenolate mofetil or rapamycin can increase the cell death in a monocyte cell line, this treatment could exert similar effects on human monocytes in transplant patients, and thus, prevent transplant vasculopathy, atherosclerosis development, and chronic allograft rejection. J. Cell. Biochem. 118: 3480-3487, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maxime Nowak
- Lip(Sys)2-Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Sylviane Tardivel
- Lip(Sys)2-Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.,Ecole Pratique des Hautes Etudes, Laboratoire nutrition lipidique et apoptose dans le système vasculaire-Faculté de Pharmacie, 92290 Châtenay-Malabry, France
| | - Thao Nguyen-Khoa
- Laboratoire de Biochimie générale-AP-HP (Assistance publique-Hôpitaux de Paris)-Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Sonia Abreu
- Lip(Sys)2-Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Fatima Allaoui
- Lip(Sys)2-Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Natalie Fournier
- Lip(Sys)2-Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.,Laboratoire de Biochimie-AP-HP (Assistance publique-Hôpitaux de Paris)-Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Pierre Chaminade
- Lip(Sys)2-Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Jean-Louis Paul
- Lip(Sys)2-Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.,Laboratoire de Biochimie-AP-HP (Assistance publique-Hôpitaux de Paris)-Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Bernard Lacour
- Lip(Sys)2-Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.,Ecole Pratique des Hautes Etudes, Laboratoire nutrition lipidique et apoptose dans le système vasculaire-Faculté de Pharmacie, 92290 Châtenay-Malabry, France.,Laboratoire de Biochimie générale-AP-HP (Assistance publique-Hôpitaux de Paris)-Hôpital Necker Enfants Malades, 75015 Paris, France
| |
Collapse
|
150
|
Schumacher T, Benndorf RA. ABC Transport Proteins in Cardiovascular Disease-A Brief Summary. Molecules 2017; 22:molecules22040589. [PMID: 28383515 PMCID: PMC6154303 DOI: 10.3390/molecules22040589] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters may play an important role in the pathogenesis of atherosclerotic vascular diseases due to their involvement in cholesterol homeostasis, blood pressure regulation, endothelial function, vascular inflammation, as well as platelet production and aggregation. In this regard, ABC transporters, such as ABCA1, ABCG5 and ABCG8, were initially found to be responsible for genetically-inherited syndromes like Tangier diseases and sitosterolemia. These findings led to the understanding of those transporter’s function in cellular cholesterol efflux and thereby also linked them to atherosclerosis and cardiovascular diseases (CVD). Subsequently, further ABC transporters, i.e., ABCG1, ABCG4, ABCB6, ABCC1, ABCC6 or ABCC9, have been shown to directly or indirectly affect cellular cholesterol efflux, the inflammatory response in macrophages, megakaryocyte proliferation and thrombus formation, as well as vascular function and blood pressure, and may thereby contribute to the pathogenesis of CVD and its complications. Furthermore, ABC transporters, such as ABCB1, ABCC2 or ABCG2, may affect the safety and efficacy of several drug classes currently in use for CVD treatment. This review will give a brief overview of ABC transporters involved in the process of atherogenesis and CVD pathology. It also aims to briefly summarize the role of ABC transporters in the pharmacokinetics and disposition of drugs frequently used to treat CVD and CVD-related complications.
Collapse
Affiliation(s)
- Toni Schumacher
- Institute of Pharmacy, Department of Clinical Pharmacy and Pharmacotherapy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), Germany.
| | - Ralf A Benndorf
- Institute of Pharmacy, Department of Clinical Pharmacy and Pharmacotherapy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), Germany.
| |
Collapse
|