101
|
Comorbidities of HIV infection: role of Nef-induced impairment of cholesterol metabolism and lipid raft functionality. AIDS 2020; 34:1-13. [PMID: 31789888 PMCID: PMC6903377 DOI: 10.1097/qad.0000000000002385] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Combination antiretroviral therapy has dramatically changed the outcome of HIV infection, turning it from a death sentence to a manageable chronic disease. However, comorbidities accompanying HIV infection, such as metabolic and cardio-vascular diseases, as well as cognitive impairment, persist despite successful virus control by combination antiretroviral therapy and pose considerable challenges to clinical management of people living with HIV. These comorbidities involve a number of pathological processes affecting a variety of different tissues and cells, making it challenging to identify a common cause(s) that would link these different diseases to HIV infection. In this article, we will present evidence that impairment of cellular cholesterol metabolism may be a common factor driving pathogenesis of HIV-associated comorbidities. Potential implications for therapeutic approaches are discussed.
Collapse
|
102
|
Bonacina F, Pirillo A, Catapano AL, Norata GD. Cholesterol membrane content has a ubiquitous evolutionary function in immune cell activation: the role of HDL. Curr Opin Lipidol 2019; 30:462-469. [PMID: 31577612 DOI: 10.1097/mol.0000000000000642] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Cellular cholesterol content influences the structure and function of lipid rafts, plasma membrane microdomains essential for cell signaling and activation. HDL modulate cellular cholesterol efflux, thus limiting cholesterol accumulation and controlling immune cell activation. Aim of this review is to discuss the link between HDL and cellular cholesterol metabolism in immune cells and the therapeutic potential of targeting cholesterol removal from cell membranes. RECENT FINDINGS The inverse relationship between HDL-cholesterol (HDL-C) levels and the risk of cardiovascular disease has been recently challenged by observations linking elevated levels of HDL-C with increased risk of all-cause mortality, infections and autoimmune diseases, paralleled by the failure of clinical trials with HDL-C-raising therapies. These findings suggest that improving HDL function might be more important than merely raising HDL-C levels. New approaches aimed at increasing the ability of HDL to remove cellular cholesterol have been assessed for their effect on immune cells, and the results have suggested that this could be a new effective approach. SUMMARY Cholesterol removal from plasma membrane by different means affects the activity of immune cells, suggesting that approaches aimed at increasing the ability of HDL to mobilize cholesterol from cells would represent the next step in HDL biology.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, University of Milan
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital
- IRCCS MultiMedica, Milan, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan
- IRCCS MultiMedica, Milan, Italy
| | - Giuseppe D Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan
- Center for the Study of Atherosclerosis, E. Bassini Hospital
| |
Collapse
|
103
|
HDL Cholesterol Efflux is Impaired in Older Patients with Early Sepsis: A Subanalysis of a Prospective Pilot Study. Shock 2019; 50:66-70. [PMID: 29049133 DOI: 10.1097/shk.0000000000001030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Proper functioning of high-density lipoprotein (HDL) is necessary for protection against sepsis. However, previous work has demonstrated that HDL becomes oxidized and dysfunctional (Dys-HDL) during sepsis. Older (aged >65 years) patients are at particularly high risk of sepsis and poor outcomes from sepsis. STUDY OBJECTIVE The aim of the study was to compare functional properties of HDL (cholesterol efflux capacity and paraoxonase enzyme 1 [PON-1] activity) and Dys-HDL between older (aged >65 years) sepsis patients and older healthy volunteers. METHODS This was a subanalysis of a prospective study in which patients with sepsis were prospectively enrolled from the emergency department within the first 24 h. Serum and plasma samples were drawn from septic patients and age- and sex-matched control subjects. Percent cholesterol efflux, HDL inflammatory index, and PON1 activity were measured. Data were analyzed using Student t test or Wilcoxon rank-sum test. RESULTS Ten sepsis and 10 healthy controls were analyzed. Mean age of sepsis patients (80 ± 2 years [SD]) and control subjects (77 ± 2 years) was similar (P = 0.31). Mean systolic blood pressures were significantly different in sepsis patients (113 ± 8 mmHg) compared with controls (133 ± 6 mmHg) (P = 0.049). Median SOFA scores for sepsis patients were 5.5 (interquartile range [IQR] 4-9). Mean percent cholesterol efflux was significantly reduced in sepsis (24.1 ± 1.2%) compared with controls (31.5 ± 1.0%) (P < 0.001). HDL inflammatory index was also significantly elevated in septic patients (1.63, IQR 1.3-2.34) compared with controls (0.62, IQR 0.56-0.67) (P < 0.001). However, PON1 activity was not significantly different between septic patients (70.3 ± 16.3 nmol/min/mL) and control subjects (88.8 ± 18.3 nmol/min/mL). CONCLUSIONS Cholesterol efflux capacity seems to be significantly impaired in sepsis patients who also exhibited a higher index of Dys-HDL. The findings suggest that HDL function may be impaired in older individuals with sepsis.
Collapse
|
104
|
Guirgis FW, Black LP, Rosenthal MD, Henson M, Ferreira J, Leeuwenburgh C, Kalynych C, Moldawer LL, Miller T, Jones L, Crandall M, Reddy ST, Wu SS, Moore FA. LIPid Intensive Drug therapy for Sepsis Pilot (LIPIDS-P): Phase I/II clinical trial protocol of lipid emulsion therapy for stabilising cholesterol levels in sepsis and septic shock. BMJ Open 2019; 9:e029348. [PMID: 31537565 PMCID: PMC6756323 DOI: 10.1136/bmjopen-2019-029348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Sepsis is a life-threatening, dysregulated response to infection. Both high-density lipoprotein and low-density lipoprotein cholesterol should protect against sepsis by several mechanisms; however, for partially unknown reasons, cholesterol levels become critically low in patients with early sepsis who experience poor outcomes. An anti-inflammatory lipid injectable emulsion containing fish oil is approved by the Food and Drug Administration as parenteral nutrition for critically ill patients and may prevent this decrease in serum cholesterol levels by providing substrate for cholesterol synthesis and may favourably modulate inflammation. This LIPid Intensive Drug therapy for Sepsis Pilot clinical trial is the first study to attempt to stabilise early cholesterol levels using lipid emulsion as a treatment modality for sepsis. METHODS AND ANALYSIS This is a two-centre, phase I/II clinical trial. Phase I is a non-randomised dose-escalation study using a Bayesian optimal interval design in which up to 16 patients will be enrolled to evaluate the safest and most efficacious dose for stabilising cholesterol levels. Based on phase I results, the two best doses will be used to randomise 48 patients to either lipid injectable emulsion or active control (no treatment). Twenty-four patients will be randomised to one of two doses of the study drug, while 24 control group patients will receive no drug and will be followed during their hospitalisation. The control group will receive all standard treatments mandated by the institutional sepsis alert protocol. The phase II study will employ a permuted blocked randomisation technique, and the primary endpoint will be change in serum total cholesterol level (48 hours - enrolment). Secondary endpoints include change in cholesterol level from enrolment to 7 days, change in Sequential Organ Failure Assessment score over the first 48 hours and 7 days, in-hospital and 28-day mortality, lipid oxidation status, inflammatory biomarkers, and high-density lipoprotein function. ETHICS AND DISSEMINATION Investigators are trained and follow good clinical practices, and each phase of the study was reviewed and approved by the institutional review boards of each institution. Results of each phase will be disseminated through presentations at national meetings and publication in peer-reviewed journals. If promising, data from the pilot study will be used for a larger, multicentre, phase II clinical trial. TRIAL REGISTRATION NUMBER NCT03405870.
Collapse
Affiliation(s)
- Faheem W Guirgis
- Emergency Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, Florida, USA
| | - Lauren Page Black
- Emergency Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, Florida, USA
| | | | - Morgan Henson
- Emergency Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, Florida, USA
| | - Jason Ferreira
- Pharmacy, University of Florida Health at Jacksonville, Jacksonville, Florida, USA
| | | | - Colleen Kalynych
- Emergency Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, Florida, USA
| | - Lyle L Moldawer
- Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Taylor Miller
- Emergency Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, Florida, USA
| | - Lisa Jones
- Medicine, Division of Pulmonary and Critical Care Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, Florida, USA
| | - Marie Crandall
- Surgery, University of Florida College of Medicine - Jacksonville, Jacksonville, Florida, USA
| | - Srinivasa T Reddy
- Medicine; Molecular and Medical Pharmacology, UCLA College of Medicine, Los Angeles, California, USA
| | - Samuel S Wu
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Frederick A Moore
- Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
105
|
Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11081097. [PMID: 31374929 PMCID: PMC6721368 DOI: 10.3390/cancers11081097] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoproteins (HDL) is a multifunctional protein, involved in cholesterol traffic and inflammatory and immune response regulation. Many studies revealing alterations of ApoA-I during the development and progression of various types of cancer suggest that serum ApoA-I levels may represent a useful biomarker contributing to better estimation of cancer risk, early cancer diagnosis, follow up, and prognosis stratification of cancer patients. In addition, recent in vitro and animal studies disclose a more direct, tumor suppressive role of ApoA-I in cancer pathogenesis, which involves anti-inflammatory and immune-modulatory mechanisms. Herein, we review recent epidemiologic, clinicopathologic, and mechanistic studies investigating the role of ApoA-I in cancer biology, which suggest that enhancing the tumor suppressive activity of ApoA-I may contribute to better cancer prevention and treatment.
Collapse
|
106
|
Li Y, Xu Y, Jadhav K, Zhu Y, Yin L, Zhang Y. Hepatic Forkhead Box Protein A3 Regulates ApoA-I (Apolipoprotein A-I) Expression, Cholesterol Efflux, and Atherogenesis. Arterioscler Thromb Vasc Biol 2019; 39:1574-1587. [PMID: 31291759 DOI: 10.1161/atvbaha.119.312610] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the role of hepatic FOXA3 (forkhead box A3) in lipid metabolism and atherosclerosis. Approach and Results: Hepatic FOXA3 expression was reduced in diabetic or high fat diet-fed mice or patients with nonalcoholic steatohepatitis. We then used adenoviruses to overexpress or knock down hepatic FOXA3 expression. Overexpression of FOXA3 in the liver increased hepatic ApoA-I (apolipoprotein A-I) expression, plasma HDL-C (high-density lipoprotein cholesterol) level, macrophage cholesterol efflux, and macrophage reverse cholesterol transport. In contrast, knockdown of hepatic FOXA3 expression had opposite effects. We further showed that FOXA3 directly bound to the promoter of the Apoa1 gene to regulate its transcription. Finally, AAV8 (adeno-associated virus serotype 8)-mediated overexpression of human FOXA3 in the hepatocytes of Apoe-/- (apolipoprotein E-deficient) mice raised plasma HDL-C levels and significantly reduced atherosclerotic lesions. CONCLUSIONS Hepatocyte FOXA3 protects against atherosclerosis by inducing ApoA-I and macrophage reverse cholesterol transport.
Collapse
Affiliation(s)
- Yuanyuan Li
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Yanyong Xu
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Kavita Jadhav
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Yingdong Zhu
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Liya Yin
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Yanqiao Zhang
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| |
Collapse
|
107
|
Bonaventura A, Montecucco F, Dallegri F, Carbone F, Lüscher TF, Camici GG, Liberale L. Novel findings in neutrophil biology and their impact on cardiovascular disease. Cardiovasc Res 2019; 115:1266-1285. [PMID: 30918936 DOI: 10.1093/cvr/cvz084] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 08/30/2023] Open
Abstract
Neutrophils are the most abundant circulating leucocytes in healthy humans. These cells are central players during acute inflammatory responses, although a growing body of evidence supports a crucial role in chronic inflammation and chemokines and cytokines related to it as well. Thus, both humoral and cellular components are involved in the development of plaque formation and atherosclerosis. Accordingly, CANTOS trial using an interleukin-1 beta antibody confirmed that inflammatory cytokines contribute to the occurrence of myocardial infarction and cardiac death independent of changes in lipids. Recent data revealed that neutrophils are a heterogeneous population with different subsets and functional characteristics (i.e. CD177+ cells, OLFM4+ neutrophils, proangiogenic neutrophils, neutrophils undergoing reverse migration, and aged neutrophils). Importantly, neutrophils are able to synthesize de novo proteins. Neutrophil extracellular trap generation and NETosis have been considered as very important weapons in sterile inflammation. Neutrophil-derived microvesicles represent another mechanism by which neutrophils amplify inflammatory processes, being found at high levels both at the site of injury and in the bloodstream. Finally, neutrophil aging can influence their functions also in relation with host age. These recent acquisitions in the field of neutrophil biology might pave the way for new therapeutic targets to prevent or even treat patients experiencing cardiovascular (CV) diseases. Here, we discuss novel findings in neutrophil biology, their impact on CV and cerebrovascular diseases, and the potential implementation of these notions into daily clinical practice.
Collapse
Affiliation(s)
- Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
- Heart Division, Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
- University Heart Center, University Hospital Zürich, Rämistrasse 100, Zürich, Switzerland
- Department of Research and Education, University Hospital Zürich, Rämistrasse 100, Zürich, Switzerland
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| |
Collapse
|
108
|
Tanaka S, Diallo D, Delbosc S, Genève C, Zappella N, Yong-Sang J, Patche J, Harrois A, Hamada S, Denamur E, Montravers P, Duranteau J, Meilhac O. High-density lipoprotein (HDL) particle size and concentration changes in septic shock patients. Ann Intensive Care 2019; 9:68. [PMID: 31197574 PMCID: PMC6565796 DOI: 10.1186/s13613-019-0541-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sepsis is associated with systemic inflammation that may impact lipoprotein function. In particular, high-density lipoproteins (HDLs) that display pleiotropic protective roles may be dysfunctional in septic conditions. The aim of this study was to evaluate the HDL profile and the inflammatory context in septic shock patients admitted to our intensive care unit (ICU). METHODS In this study, 20 septic shock patients and 20 controls (ICU patients without septic shock) were included. Plasma samples were collected on days 1, 2 and 7. Total cholesterol and lipoprotein concentrations were determined. HDL profiles were obtained using the Lipoprint® System (non-denaturing electrophoresis). Quantification of pro-inflammatory cytokines (interleukin 1b, 6 and 8), cell-free DNA and lipopolysaccharide-binding protein was also performed. RESULTS HDL concentration was statistically lower in septic shock patients than in controls. At days 1 and 2, septic patients had significantly more large-sized HDL than control patients. Patients recovered a normal lipid profile at day 7. CONCLUSIONS Our results emphasize that HDL levels are dramatically decreased in the acute phase of septic shock and that there is a shift toward large HDL particles, which may reflect a major dysfunction of these lipoproteins. Further mechanistic studies are required to explore this shift observed during sepsis.
Collapse
Affiliation(s)
- Sébastien Tanaka
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 2 Rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
- AP-HP, Service d’Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 46 Rue Henri Huchard, 75018 Paris, France
| | - Dévy Diallo
- Inserm U1148, Laboratory for Vascular, Translational Science Bichat Hospital, 46 Rue Henri Huchard, 75018 Paris, France
| | - Sandrine Delbosc
- Inserm U1148, Laboratory for Vascular, Translational Science Bichat Hospital, 46 Rue Henri Huchard, 75018 Paris, France
| | - Claire Genève
- AP-HP, Service d’Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 46 Rue Henri Huchard, 75018 Paris, France
| | - Nathalie Zappella
- AP-HP, Service d’Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 46 Rue Henri Huchard, 75018 Paris, France
| | - Jennyfer Yong-Sang
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 2 Rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
| | - Jessica Patche
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 2 Rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
| | - Anatole Harrois
- AP-HP, Service d’Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
- Laboratoire d’étude de la Microcirculation, «Bio-CANVAS: Biomarkers in CardioNeuroVascular DISEASES» UMRS 942, Paris, France
| | - Sophie Hamada
- AP-HP, Service d’Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Erick Denamur
- UMR1137 IAME, Inserm, Laboratoire de Génétique Moléculaire, Université Paris Diderot and AP-HP, Hôpital Bichat, Paris, France
| | - Philippe Montravers
- AP-HP, Service d’Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 46 Rue Henri Huchard, 75018 Paris, France
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France
| | - Jacques Duranteau
- AP-HP, Service d’Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
- Laboratoire d’étude de la Microcirculation, «Bio-CANVAS: Biomarkers in CardioNeuroVascular DISEASES» UMRS 942, Paris, France
| | - Olivier Meilhac
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 2 Rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
- CHU de La Réunion, Saint-Denis, France
- INSERM U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion au CYROI, 2, Rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
| |
Collapse
|
109
|
Le QV, Suh J, Oh YK. Nanomaterial-Based Modulation of Tumor Microenvironments for Enhancing Chemo/Immunotherapy. AAPS JOURNAL 2019; 21:64. [PMID: 31102154 DOI: 10.1208/s12248-019-0333-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) has drawn considerable research attention as an alternative target for nanomedicine-based cancer therapy. Various nanomaterials that carry active substances have been designed to alter the features or composition of the TME and thereby improve the delivery and efficacy of anticancer chemotherapeutics. These alterations include disruption of the extracellular matrix and tumor vascular systems to promote perfusion or modulate hypoxia. Nanomaterials have also been used to modulate the immunological microenvironment of tumors. In this context, nanomaterials have been shown to alter populations of cancer-associated fibroblasts, tumor-associated macrophages, regulatory T cells, and myeloid-derived suppressor cells. Despite considerable progress, nanomaterial-based TME modulation must overcome several limitations before this strategy can be translated to clinical trials, including issues related to limited tumor tissue penetration, tumor heterogeneity, and immune toxicity. In this review, we summarize recent progress and challenges of nanomaterials used to modulate the TME to enhance the efficacy of anticancer chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Quoc-Viet Le
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak gu, Seoul, 08826, Republic of Korea
| | - Juhan Suh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak gu, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
110
|
Bright LA, Dittmar W, Nanduri B, McCarthy FM, Mujahid N, Costa LR, Burgess SC, Swiderski CE. Modeling the pasture-associated severe equine asthma bronchoalveolar lavage fluid proteome identifies molecular events mediating neutrophilic airway inflammation. VETERINARY MEDICINE-RESEARCH AND REPORTS 2019; 10:43-63. [PMID: 31119093 PMCID: PMC6504673 DOI: 10.2147/vmrr.s194427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022]
Abstract
Background: Pasture-associated severe equine asthma is a warm season, environmentally-induced respiratory disease characterized by reversible airway obstruction, persistent and non-specific airway hyper-responsiveness, and chronic neutrophilic airway inflammation. During seasonal exacerbation, signs vary from mild to life-threatening episodes of wheezing, coughing, and chronic debilitating labored breathing. Purpose: In human asthma, neutrophilic airway inflammation is associated with more severe and steroid-refractory asthma phenotypes, highlighting a need to decipher the mechanistic basis of this disease characteristic. We hypothesize that the collective biological activities of proteins in bronchoalveolar lavage fluid (BALF) of horses with pasture-associated severe asthma predict changes in neutrophil functions that contribute to airway neutrophilic inflammation. Methods: Using shotgun proteomics, we identified 1,003 unique proteins in cell-free BALF from six horses experiencing asthma exacerbation and six control herdmates. Contributions of each protein to ten neutrophil functions were modeled using manual biocuration to determine each protein’s net effect on the respective neutrophil functions. Results: A total of 417 proteins were unique to asthmatic horses, 472 proteins were unique to control horses (p<0.05), and 114 proteins were common in both groups. Proteins whose biological activities are responsible for increasing neutrophil migration, chemotaxis, cell spreading, transmigration, and infiltration, which would collectively bring neutrophils to airways, were over-represented in the BALF of asthmatic relative to control horses. By contrast, proteins whose biological activities support neutrophil activation, adhesion, phagocytosis, respiratory burst, and apoptosis, which would collectively shorten neutrophil lifespan, were under-represented in BALF of asthmatic relative to control horses. Interaction networks generated using Ingenuity® Pathways Analysis further support the results of our biocuration. Conclusion: Congruent with our hypothesis, the collective biological functions represented in differentially expressed proteins of BALF from horses with pasture-associated severe asthma support neutrophilic airway inflammation. This illustrates the utility of systems modeling to organize functional genomics data in a manner that characterizes complex molecular events associated with clinically relevant disease.
Collapse
Affiliation(s)
- Lauren A Bright
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Wellesley Dittmar
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Fiona M McCarthy
- School of Animal Comparative and Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Nisma Mujahid
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Lais Rr Costa
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Shane C Burgess
- School of Animal Comparative and Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Cyprianna E Swiderski
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
111
|
Gender Dictates the Relationship between Serum Lipids and Leukocyte Counts in the National Health and Nutrition Examination Survey 1999⁻2004. J Clin Med 2019; 8:jcm8030365. [PMID: 30875952 PMCID: PMC6463027 DOI: 10.3390/jcm8030365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Dyslipidemias and leukocytosis are associated with cardiovascular disease and immune disorders. Mechanistic studies have shown lipoprotein metabolism to play a significant role in the regulation of atherosclerosis development and leukocyte activation, whereas lipid-lowering treatments have been shown to exert beneficial anti-inflammatory and immunomodulatory effects in clinical trials. However, the relationship between clinical markers of lipid metabolism and leukocyte counts has not been extensively evaluated at the population level. We aimed to determine whether clinical blood lipid measures are associated with leukocyte counts in the general U.S. population represented in the National Health and Nutrition Examination Survey (NHANES) 1999–2004, and whether differences exist between men and women (n = 5647). We observed a strong positive linear trend between serum triglycerides vs. blood lymphocyte and basophil counts in both men and women, whereas a positive trend between monocytes vs. triglycerides and lymphocytes vs. total cholesterol and LDL-cholesterol (LDL-C) was only detected in women. Conversely, HDL-C was inversely associated with a greater number of leukocyte subsets in men, whereas inverse trends between HDL-C vs. lymphocytes were observed in both men and women. In multiple regression models, a 10% increase in total cholesterol, LDL-C, and triglycerides was associated with a predicted 1.6%, 0.6%, and 1.4% increase in blood lymphocyte counts in women, respectively, whereas no relationship was observed in men. In both men and women, a 10% increase in triglycerides was additionally associated with higher lymphocyte, neutrophil, and basophil counts, whereas 10% increases in HDL-cholesterol were associated with significantly lower lymphocyte, neutrophil, eosinophil, and basophil counts in men, in addition to lower lymphocyte and monocyte counts in women. These findings suggest that clinical lipid markers may be used to predict blood leukocyte distributions, and that a gender-specific relationship exists between distinct classes of serum lipids and immune cell subsets.
Collapse
|
112
|
Fournier M, Bonneil E, Garofalo C, Grimard G, Laverdière C, Krajinovic M, Drouin S, Sinnett D, Marcil V, Levy E. Altered proteome of high-density lipoproteins from paediatric acute lymphoblastic leukemia survivors. Sci Rep 2019; 9:4268. [PMID: 30862935 PMCID: PMC6414624 DOI: 10.1038/s41598-019-40906-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/30/2019] [Indexed: 01/16/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent malignancy in children. With the use of more modern, efficient treatments, 5-year survival has reached more than 90% in this population. However, this achievement comes with many secondary and long-term effects since more than 65% of the survivors experience at least one severe complication, including the metabolic syndrome and cardiovascular diseases. The main objective of the present work was to characterize the composition of HDL particles isolated from pediatric ALL survivors. HDLs from 8 metabolically healthy ALL survivors, 8 metabolically unhealthy ALL survivors and 8 age- and gender-matched controls were analyzed. The HDL fraction from the survivors contained less cholesterol than the controls. In addition, proteomic analyses revealed an enrichment of pro-thrombotic (e.g., fibrinogen) and pro-inflammatory (e.g., amyloid A) proteins in the HDLs deriving from metabolically unhealthy survivors. These results indicate an alteration in the composition of lipid and protein content of HDL from childhood ALL survivors with metabolic disorders. Although more work is needed to validate the functionality of these HDLs, the data seem relevant for survivor health given the detection of potential biomarkers related to HDL metabolism and functionality in cancer.
Collapse
Affiliation(s)
- Maryse Fournier
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Eric Bonneil
- Institute of Research in Immunology and Cancer, Université de Montréal, QC, H3C 3J7, Montréal, Canada
| | - Carole Garofalo
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Guy Grimard
- Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Caroline Laverdière
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Maja Krajinovic
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Simon Drouin
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Daniel Sinnett
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Valérie Marcil
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada. .,Department of Nutrition, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.
| |
Collapse
|
113
|
Wu Z, Koh B, Lawrence LM, Kanamala M, Pool B, Svirskis D, Dalbeth N, Astin JW, Crosier KE, Crosier PS, Hall CJ. Liposome-Mediated Drug Delivery in Larval Zebrafish to Manipulate Macrophage Function. Zebrafish 2019; 16:171-181. [PMID: 30724716 DOI: 10.1089/zeb.2018.1681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chemical interventions are regularly used to examine and manipulate macrophage function in larval zebrafish. Given chemicals are typically administered by simple immersion or injection, it is not possible to resolve whether their impact on macrophage function is direct or indirect. Liposomes provide an attractive strategy to target drugs to specific cellular compartments, including macrophages. As an example, injecting liposomal clodronate into animal models, including zebrafish, is routinely used to deliver toxic levels of clodronate specifically to macrophages for targeted cell ablation. Here we show that liposomes can also target the delivery of drugs to zebrafish macrophages to selectively manipulate their function. We utilized the drugs etomoxir (a fatty acid oxidation inhibitor) and MitoTEMPO (a scavenger of mitochondrial reactive oxygen species [mROS]), that we have previously shown, through free drug delivery, suppress monosodium urate (MSU) crystal-driven macrophage activation. We generated poloxamer 188 modified liposomes that were readily phagocytosed by macrophages, but not by neutrophils. Loading these liposomes with etomoxir or MitoTEMPO and injecting into larvae suppressed macrophage activation in response to MSU crystals, as evidenced by proinflammatory cytokine expression and macrophage-driven neutrophil recruitment. This work reveals the utility of packaging drugs into liposomes as a strategy to selectively manipulate macrophage function.
Collapse
Affiliation(s)
- Zimei Wu
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ben Koh
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lisa M Lawrence
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Manju Kanamala
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bregina Pool
- 3 Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Darren Svirskis
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Nicola Dalbeth
- 3 Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan W Astin
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn E Crosier
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Philip S Crosier
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher J Hall
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
114
|
High-Density Lipoprotein from Chronic Kidney Disease Patients Modulates Polymorphonuclear Leukocytes. Toxins (Basel) 2019; 11:toxins11020073. [PMID: 30717079 PMCID: PMC6409858 DOI: 10.3390/toxins11020073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/24/2022] Open
Abstract
The anti-inflammatory properties of high-density lipoproteins (HDL) are lost in uremia. These HDL may show pro-inflammatory features partially as a result of changed protein composition. Alterations of polymorphonuclear leukocytes (PMNLs) in chronic kidney disease (CKD) may contribute to chronic inflammation and high vascular risk. We investigated if HDL from uremic patients is related to systemic inflammation by interfering with PMNL function. PMNL apoptosis was investigated by assessing morphological features and DNA content. CD11b surface expression was quantified by flow cytometry. Oxidative burst was measured via cytochrome c reduction assay. Chemotaxis was assessed by using an under-agarose migration assay. We found that HDL from CKD and hemodialysis (HD) patients significantly attenuated PMNL apoptosis, whereas HDL isolated from healthy subjects had no effect on PMNL apoptosis. The use of signal transduction inhibitors indicated that uremic HDL exerts anti-apoptotic effects by activating pathways involving phosphoinositide 3-kinase and extracellular-signal regulated kinase. Healthy HDL attenuated the surface expression of CD11b, whereas HDL from CKD and HD patients had no effect. All tested isolates increased the stimulation of oxidative burst, but did not affect PMNL chemotactic movement. In conclusion, HDL may contribute to the systemic inflammation in uremic patients by modulating PMNL functions.
Collapse
|
115
|
Guirgis FW, Dodani S, Leeuwenburgh C, Moldawer L, Bowman J, Kalynych C, Grijalva V, Reddy ST, Jones AE, Moore FA. HDL inflammatory index correlates with and predicts severity of organ failure in patients with sepsis and septic shock. PLoS One 2018; 13:e0203813. [PMID: 30216360 PMCID: PMC6138388 DOI: 10.1371/journal.pone.0203813] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
Objective High density lipoprotein (HDL) is important for defense against sepsis but becomes dysfunctional (Dys-HDL) during inflammation. We hypothesize that Dys-HDL correlates with organ dysfunction (sequential organ failure assessment (SOFA) score) early sepsis. Methods A prospective cohort study of adult ED sepsis patients enrolled within 24 hours. Results Eighty eight patients were analyzed. Dys-HDL (expressed as HDL inflammatory index (HII)) correlated with SOFA at enrollment (r = 0.23, p = 0.024) and at 48 hours (r = 0.24, p = 0.026) but HII change over the first 48 hours did not correlate with change in SOFA (r = 0.06, p = 0.56). Enrollment HII was significantly different in patients with most severe organ failure (2.31, IQR 1.33–5.2) compared to less severe organ failure (1.81, IQR 1.23–2.64, p = 0.043). Change in HII over 48 hours was significantly different for in-hospital non-survivors (-0.45, IQR-2.6, -0.14 p = 0.015) and for 28-day non-survivors (-1.12, IQR -1.52, 0.12, p = 0.044). In a multivariable linear regression equation (R2 = 0.13), for each unit HII increase, 48-hour SOFA increased by 0.72 (p = 0.009). Conclusion HII correlated with SOFA and predicted 48-hour SOFA score in early sepsis. Future studies are needed to delineate potential mechanisms. Trial registration NCT02370186. Registered February 24, 2015.
Collapse
Affiliation(s)
- Faheem W. Guirgis
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, United States of America
- * E-mail:
| | - Sunita Dodani
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States of America
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatrics, University of Florida, College of Medicine, Gainesville, FL, United States of America
| | - Lyle Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Jennifer Bowman
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, United States of America
| | - Colleen Kalynych
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, United States of America
| | - Victor Grijalva
- Department of Medicine, Molecular & Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Srinivasa T. Reddy
- Department of Medicine, Molecular & Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Alan E. Jones
- Department of Emergency Medicine, University of Mississippi College of Medicine, Jackson, MS, United States of America
| | - Frederick A. Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States of America
| |
Collapse
|
116
|
Wegner A, Pavlovic D, Haußmann-Vopel S, Lehmann C. Impact of lipid modulation on the intestinal microcirculation in experimental sepsis. Microvasc Res 2018; 120:41-46. [PMID: 29859746 DOI: 10.1016/j.mvr.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 01/14/2023]
Abstract
It has been observed, that patients who were treated medically for dyslipoproteinemia had a potentially lower risk of complications during infection and sepsis, regarding both morbidity and mortality. Aim of this study in experimental sepsis was to elucidate the impact of lipid metabolism modulation by simvastatin, HDL, or bezafibrate, respectively, on the intestinal microcirculation which plays a crucial role in the development of multiple organ failure in sepsis. Experimental sepsis was induced in Lewis rats by intravenous lipopolysaccharide (LPS) administration. Animals were treated with simvastatin, HDL or bezafibrate. By means of intestinal intravital microscopy (IVM), the inflammatory response in the microcirculation was studied by leukocyte adherence assessment (LA) and functional capillary density (FCD) measurements. In addition, plasma levels of pro-inflammatory cytokines were determined. Bezafibrate treatment led to a reduction in leukocyte adherence, improved functional capillary density (FCD), and a reduction in interleukin-1α (IL-1α), tumour necrosis factor α (TNF-α) and granulocyte macrophage colony stimulating factors (GM-CSF) plasma levels in experimental sepsis. Contrary to this, the administration of HDL increased leukocyte adherence as well as the number of rolling leukocytes. Only IL-1α plasma levels were decreased by HDL. No significant changes were observed following simvastatin treatment. In summary, only bezafibrate showed anti-inflammatory effects in endotoxemia. This effect cannot be explained by the HDL-enhancing effect of the bezafibrate, since the direct administration of HDL showed opposite effects. Bezafibrate induced reduction of inflammation in sepsis should be investigated in further studies.
Collapse
Affiliation(s)
- Annette Wegner
- Department of Anesthesia and Intensive Care Medicine, University of Greifswald, Ferdinand-Sauerbruch, 17475 Greifswald, Germany.
| | - Dragan Pavlovic
- Department of Anesthesia and Intensive Care Medicine, University of Greifswald, Ferdinand-Sauerbruch, 17475 Greifswald, Germany
| | - Sebastian Haußmann-Vopel
- Department of Anesthesia and Intensive Care Medicine, University of Greifswald, Ferdinand-Sauerbruch, 17475 Greifswald, Germany
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
117
|
Plebanek MP, Bhaumik D, Bryce PJ, Thaxton CS. Scavenger Receptor Type B1 and Lipoprotein Nanoparticle Inhibit Myeloid-Derived Suppressor Cells. Mol Cancer Ther 2017; 17:686-697. [PMID: 29282300 DOI: 10.1158/1535-7163.mct-17-0981] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are innate immune cells that potently inhibit T cells. In cancer, novel therapies aimed to activate T cells can be rendered ineffective due to the activity of MDSCs. Thus, targeted inhibition of MDSCs may greatly enhance T-cell-mediated antitumor immunity, but mechanisms remain obscure. Here we show, for the first time, that scavenger receptor type B-1 (SCARB1), a high-affinity receptor for spherical high-density lipoprotein (HDL), is expressed by MDSCs. Furthermore, we demonstrate that SCARB1 is specifically targeted by synthetic high-density lipoprotein-like nanoparticles (HDL NP), which reduce MDSC activity. Using in vitro T-cell proliferation assays, data show that HDL NPs specifically bind SCARB1 to inhibit MDSC activity. In murine cancer models, HDL NP treatment significantly reduces tumor growth, metastatic tumor burden, and increases survival due to enhanced adaptive immunity. Flow cytometry and IHC demonstrate that HDL NP-mediated suppression of MDSCs increased CD8+ T cells and reduced Treg cells in the metastatic tumor microenvironment. Using transgenic mice lacking SCARB1, in vivo data clearly show that the HDL NPs specifically target this receptor for suppressing MDSCs. Ultimately, our data provide a new mechanism and targeted therapy, HDL NPs, to modulate a critical innate immune cell checkpoint to enhance the immune response to cancer. Mol Cancer Ther; 17(3); 686-97. ©2017 AACR.
Collapse
Affiliation(s)
- Michael P Plebanek
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Driskill Graduate Program in the Life Sciences, Northwestern University, Chicago, Illinois
| | - Debayan Bhaumik
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Paul J Bryce
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - C Shad Thaxton
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. .,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois.,International Institute for Nanotechnology, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
118
|
Chengmao X, Li L, Yan L, Jie Y, Xiaoju W, Xiaohui C, Huimin G. ABCA1 affects placental function via trophoblast and macrophage. Life Sci 2017; 191:150-156. [DOI: 10.1016/j.lfs.2017.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/09/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|
119
|
Rouer M, Alsac JM, Louedec L, Shoukr FA, Rouzet F, Michel JB, Meilhac O, Delbosc S. High-density lipoprotein therapy inhibits Porphyromonas gingivalis-induced abdominal aortic aneurysm progression. Thromb Haemost 2017; 115:789-99. [DOI: 10.1160/th15-05-0398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/13/2015] [Indexed: 12/19/2022]
Abstract
SummaryClinical and experimental studies have highlighted the potential implication of periondontal bacteria contamination in the pathogenesis of abdominal aortic aneurysms (AAA). In addition to their role in reverse cholesterol transport, high-density lipoproteins (HDLs) display multiple functions, including anti-inflammatory and lipopolysaccharide scavenging properties. Low plasma levels of HDL-cholesterol have been reported in AAA patients. We tested the effect of a HDL therapy in Sprague-Dawley rat model of AAA, obtained by intraluminal elastase infusion followed by repeated injections of Porphyromonas gingivalis (Pg). HDLs, isolated by ultracentrifugation of plasma from healthy human volunteers, were co-injected intravenously (10 mg/kg) with Pg (1.107 Colony Forming Unit) one, eight and 15 days after elastase perfusion. Rats were sacrificed one week after the last injection. Our results show that Pg injections promote the formation of a persistent neutrophil-rich thrombus associated with increased aortic diameter in this AAA model. HDLs significantly reduced the increased AAA diameter induced by Pg. Histology showed the onset of a healing process in the Pg/HDL group. HDL injections also reduced neutrophil activation in Pg-injected rats associated with decreased cytokine levels in conditioned media and plasma. Scintigraphic analysis showed an intense uptake of 99mTc-HDL by the AAA suggesting that HDLs could exert their beneficial effect by acting directly on the thrombus components. HDL supplementation may therefore constitute a new therapeutic tool for AAA treatment.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
120
|
Guirgis FW, Dodani S, Moldawer L, Leeuwenburgh C, Bowman J, Kalynych C, Jones AE, Reddy ST, Moore FA. Exploring the Predictive Ability of Dysfunctional High-Density Lipoprotein for Adverse Outcomes in Emergency Department Patients with Sepsis: A Preliminary Investigation. Shock 2017; 48:539-544. [PMID: 28452909 PMCID: PMC5643216 DOI: 10.1097/shk.0000000000000887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND High density lipoprotein (HDL) can be readily oxidized in inflammatory conditions and exhibit pro-inflammatory and dysfunctional (Dys-HDL) characteristics. We hypothesize that Dys-HDL may predict adverse outcomes and correlate with inflammatory cytokines in sepsis. METHODS Emergency department (ED) patients with sepsis were enrolled. Blood was drawn at enrollment and after 48 h. Dys-HDL, expressed as HDL inflammatory index (HII), and cytokines were measured. Multivariable logistic regression was used to determine the predictive ability of Dys-HDL for adverse outcomes (death, discharge to hospice, or nursing home). RESULTS Thirty-five patients were included in the study. HII was not significantly different at baseline or 48 h between patients with adverse outcomes versus those without. However, there was a significant difference in change in HII over the first 48 h between those with adverse outcomes (+0.21, 95% CI -0.13 to 0.31) versus those without (-0.11, 95% CI -1 to 0.11) (P = 0.025). Logistic regression revealed increasing HII to be an independent predictor of adverse outcomes (OR 5.2, 95% CI 1.1-25.1 P = 0.040). Of the 24 patents with cytokine measurements at both time points, significant inverse correlations between change in HII and change in GRO (rs = -0.52, P = 0.0088) and monocyte chemotactic protein-1 (rs = -0.61, P = 0.0014) concentrations over 48 h were observed. CONCLUSION Increasing Dys-HDL concentrations in the first 48 h of sepsis are associated with an ongoing inflammatory response and adverse clinical outcomes. Early changes in HII may be a potential biomarker in ED patients admitted with sepsis.
Collapse
Affiliation(s)
- Faheem W Guirgis
- *Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Florida †Department of Family and Community Medicine, College of Medicine, Mayo Clinic, Jacksonville, Florida ‡Department of Surgery, University of Florida College of Medicine, Gainesville, Florida §Department of Aging and Geriatrics, University of Florida College of Medicine, Gainesville, Florida ||Department of Emergency Medicine, University of Mississippi College of Medicine, Jackson, Mississippi ¶Department of Medicine, Molecular, and Medical Pharmacology, UCLA School of Medicine, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Secretory phospholipase A 2 modified HDL rapidly and potently suppresses platelet activation. Sci Rep 2017; 7:8030. [PMID: 28808297 PMCID: PMC5556053 DOI: 10.1038/s41598-017-08136-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/05/2017] [Indexed: 12/16/2022] Open
Abstract
Levels of secretory phospholipases A2 (sPLA2) highly increase under acute and chronic inflammatory conditions. sPLA2 is mainly associated with high-density lipoproteins (HDL) and generates bioactive lysophospholipids implicated in acute and chronic inflammatory processes. Unexpectedly, pharmacological inhibition of sPLA2 in patients with acute coronary syndrome was associated with an increased risk of myocardial infarction and stroke. Given that platelets are key players in thrombosis and inflammation, we hypothesized that sPLA2-induced hydrolysis of HDL-associated phospholipids (sPLA2-HDL) generates modified HDL particles that affect platelet function. We observed that sPLA2-HDL potently and rapidly inhibited platelet aggregation induced by several agonists, P-selectin expression, GPIIb/IIIa activation and superoxide production, whereas native HDL showed little effects. sPLA2-HDL suppressed the agonist-induced rise of intracellular Ca2+ levels and phosphorylation of Akt and ERK1/2, which trigger key steps in promoting platelet activation. Importantly, sPLA2 in the absence of HDL showed no effects, whereas enrichment of HDL with lysophosphatidylcholines containing saturated fatty acids (the main sPLA2 products) mimicked sPLA2-HDL activities. Our findings suggest that sPLA2 generates lysophosphatidylcholine-enriched HDL particles that modulate platelet function under inflammatory conditions.
Collapse
|
122
|
Rahman MS, Murphy AJ, Woollard KJ. Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nat Rev Cardiol 2017; 14:387-400. [PMID: 28300081 DOI: 10.1038/nrcardio.2017.34] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monocytes are heterogeneous effector cells involved in the maintenance and restoration of tissue integrity. Monocytes and macrophages are involved in cardiovascular disease progression, and are associated with the development of unstable atherosclerotic plaques. Hyperlipidaemia can accelerate cardiovascular disease progression. However, monocyte responses to hyperlipidaemia are poorly understood. In the past decade, accumulating data describe the relationship between the dynamic blood lipid environment and the heterogeneous circulating monocyte pool, which might have profound consequences for cardiovascular disease. In this Review, we explore the updated view of monocytes in cardiovascular disease and their relationship with macrophages in promoting the homeostatic and inflammatory responses related to atherosclerosis. We describe the different definitions of dyslipidaemia, highlight current theories on the ontogeny of monocyte heterogeneity, discuss how dyslipidaemia might alter monocyte production, and explore the mechanistic interface linking dyslipidaemia with monocyte effector functions, such as migration and the inflammatory response. Finally, we discuss the role of dietary and endogenous lipid species in mediating dyslipidaemic responses, and the role of these lipids in promoting the risk of cardiovascular disease through modulation of monocyte behaviour.
Collapse
Affiliation(s)
- Mohammed Shamim Rahman
- Renal &Vascular Inflammation Section, Division of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology Lab, Baker IDI Heart &Diabetes Research Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia.,Department of Immunology, Monash University, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Kevin J Woollard
- Renal &Vascular Inflammation Section, Division of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
123
|
Robertson JD, Ward JR, Avila-Olias M, Battaglia G, Renshaw SA. Targeting Neutrophilic Inflammation Using Polymersome-Mediated Cellular Delivery. THE JOURNAL OF IMMUNOLOGY 2017; 198:3596-3604. [PMID: 28289157 PMCID: PMC5392731 DOI: 10.4049/jimmunol.1601901] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/15/2017] [Indexed: 12/19/2022]
Abstract
Neutrophils are key effector cells in inflammation and play an important role in neutralizing invading pathogens. During inflammation resolution, neutrophils undergo apoptosis before they are removed by macrophages, but if apoptosis is delayed, neutrophils can cause extensive tissue damage and chronic disease. Promotion of neutrophil apoptosis is a potential therapeutic approach for treating persistent inflammation, yet neutrophils have proven difficult cells to manipulate experimentally. In this study, we deliver therapeutic compounds to neutrophils using biocompatible, nanometer-sized synthetic vesicles, or polymersomes, which are internalized by binding to scavenger receptors and subsequently escape the early endosome through a pH-triggered disassembly mechanism. This allows polymersomes to deliver molecules into the cell cytosol of neutrophils without causing cellular activation. After optimizing polymersome size, we show that polymersomes can deliver the cyclin-dependent kinase inhibitor (R)-roscovitine into human neutrophils to promote apoptosis in vitro. Finally, using a transgenic zebrafish model, we show that encapsulated (R)-roscovitine can speed up inflammation resolution in vivo more efficiently than the free drug. These results show that polymersomes are effective intracellular carriers for drug delivery into neutrophils. This has important consequences for the study of neutrophil biology and the development of neutrophil-targeted therapeutics.
Collapse
Affiliation(s)
- James D Robertson
- Department of Biomedical Science, University College London, London WC1E 6BT, United Kingdom.,Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom.,The Bateson Centre, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Jon R Ward
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom.,The Bateson Centre, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Milagros Avila-Olias
- Department of Biomedical Science, University College London, London WC1E 6BT, United Kingdom
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom; and .,The Medical Research Council/University College London Centre for Molecular and Medical Virology, University College London, London WC1E 6BT, United Kingdom
| | - Stephen A Renshaw
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom; .,The Bateson Centre, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
124
|
Gabor KA, Fessler MB. Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense. Curr Mol Pharmacol 2017; 10:27-45. [PMID: 26758950 PMCID: PMC6026538 DOI: 10.2174/1874467209666160112123603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/01/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
Abstract
The mevalonic acid synthesis pathway, cholesterol, and lipoproteins play fundamental roles in lung physiology and the innate immune response. Recent literature investigating roles for cholesterol synthesis and trafficking in host defense against respiratory infection was critically reviewed. The innate immune response and the cholesterol biosynthesis/trafficking network regulate one another, with important implications for pathogen invasion and host defense in the lung. The activation of pathogen recognition receptors and downstream cellular host defense functions are critically sensitive to cellular cholesterol. Conversely, microorganisms can co-opt the sterol/lipoprotein network in order to facilitate replication and evade immunity. Emerging literature suggests the potential for harnessing these insights towards therapeutic development. Given that >50% of adults in the U.S. have serum cholesterol abnormalities and pneumonia remains a leading cause of death, the potential impact of cholesterol on pulmonary host defense is of tremendous public health significance and warrants further mechanistic and translational investigation.
Collapse
Affiliation(s)
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, Maildrop D2-01, Research Triangle Park, NC 27709, United States
| |
Collapse
|
125
|
Guirgis FW, Donnelly JP, Dodani S, Howard G, Safford MM, Levitan EB, Wang HE. Cholesterol levels and long-term rates of community-acquired sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:408. [PMID: 28010729 PMCID: PMC5180408 DOI: 10.1186/s13054-016-1579-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/25/2016] [Indexed: 02/02/2023]
Abstract
Background Dyslipidemia is a risk factor for cardiovascular disease, with elevated low-density lipoprotein cholesterol (LDL-C) and decreased high-density lipoprotein cholesterol (HDL-C) recognized as risk factors for acute coronary events. Studies suggest an association between low cholesterol levels and poor outcomes in acute sepsis. We sought to determine the relationship between baseline cholesterol levels and long-term rates of sepsis. Methods We used data from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort, a population-based cohort of 30,239 community-dwelling adults. The primary outcome was first sepsis event, defined as hospitalization for an infection with the presence of ≥2 systemic inflammatory response syndrome criteria (abnormal temperature, heart rate, respiratory rate, white blood cell count) during the first 28 hours of hospitalization. Cox models assessed the association between quartiles of HDL-C or LDL-C and first sepsis event, adjusted for participant demographics, health behaviors, chronic medical conditions, and biomarkers. Results We included 29,690 subjects with available baseline HDL-C and LDL-C. There were 3423 hospitalizations for serious infections, with 1845 total sepsis events among 1526 individuals. Serum HDL-C quartile was not associated with long-term rates of sepsis (hazard ratio (HR) (95% CI): Q1 (HDL-C 5–40 mg/dl), 1.08 (0.91–1.28); Q2 (HDL-C 41–49 mg/dl), 1.06 (0.90–1.26); Q3 (HDL-C 50–61 mg/dl), 1.04 (0.89–1.23); Q4, reference). However, compared with the highest quartile of LDL-C, low LDL-C was associated with higher rates of sepsis (Q1 (LDL-C 3–89 mg/dl), 1.30 (1.10–1.52); Q2 (LDL-C 90–111 mg/dl), 1.24 (1.06–1.47); Q3 (LDL-C 112–135 mg/dl), 1.07 (0.91–1.26); Q4, reference). Conclusion Low LDL-C was associated with higher long-terms rates of community-acquired sepsis. HDL-C level was not associated with long-term sepsis rates. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1579-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Faheem W Guirgis
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, FL, USA
| | - John P Donnelly
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, AL, USA.,Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sunita Dodani
- Department of Epidemiology, University of Florida, Gainesville, FL, USA.,Department of Family Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - George Howard
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Monika M Safford
- Department of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Emily B Levitan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Henry E Wang
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, AL, USA. .,Department of Emergency Medicine, University of Alabama at Birmingham, 619 19th Street South, OHB 251, Birmingham, AL, 35249, USA.
| |
Collapse
|
126
|
Sengupta MB, Saha S, Mohanty PK, Mukhopadhyay KK, Mukhopadhyay D. Increased expression of ApoA1 after neuronal injury may be beneficial for healing. Mol Cell Biochem 2016; 424:45-55. [PMID: 27734225 DOI: 10.1007/s11010-016-2841-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/06/2016] [Indexed: 01/24/2023]
Abstract
ApoA1 is a player in reverse cholesterol transport that initiates multiple cellular pathways on binding to its receptor ABCA1. Its relation to neuronal injury is however unclear. We found ApoA1 to be increasingly abundant at a later time point in the secondary phase of traumatic spinal cord injury. In a cellular injury model of neuroblastoma, ApoA1 showed an initial diminished expression after infliction of injury, which sharply increased thereafter. Subsequently, ApoA1 was shown to alter wound healing dynamics in neuroblastoma injury model. It was observed that an initial lag in scratch wound closure was followed by rapid healing in the ApoA1 treatment group. Activation of ERK pathway and Actin polymerisation by ApoA1 corroborated its role in healing after neuronal injury. We propose that ApoA1 is increasingly expressed and secreted as a delayed response to neuronal injury, and this is a self-protecting mechanism of the injured system.
Collapse
Affiliation(s)
- Mohor B Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Suparna Saha
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Pradeep K Mohanty
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Kiran K Mukhopadhyay
- Department of Orthopaedic Surgery, Nil Ratan Sircar Medical College and Hospital, 138 AJC Bose Road, Kolkata, 700014, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
| |
Collapse
|
127
|
Bühler S, Frahm J, Tienken R, Kersten S, Meyer U, Huber K, Dänicke S. Influence of energy level and nicotinic acid supplementation on apoptosis of blood leukocytes of periparturient dairy cows. Vet Immunol Immunopathol 2016; 179:36-45. [DOI: 10.1016/j.vetimm.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 01/21/2023]
|
128
|
Iqbal AJ, Barrett TJ, Taylor L, McNeill E, Manmadhan A, Recio C, Carmineri A, Brodermann MH, White GE, Cooper D, DiDonato JA, Zamanian-Daryoush M, Hazen SL, Channon KM, Greaves DR, Fisher EA. Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo. eLife 2016; 5. [PMID: 27572261 PMCID: PMC5030090 DOI: 10.7554/elife.15190] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Apolipoprotein A1 (apoA1) is the major protein component of high-density lipoprotein (HDL) and has well documented anti-inflammatory properties. To better understand the cellular and molecular basis of the anti-inflammatory actions of apoA1, we explored the effect of acute human apoA1 exposure on the migratory capacity of monocyte-derived cells in vitro and in vivo. Acute (20-60 min) apoA1 treatment induced a substantial (50-90%) reduction in macrophage chemotaxis to a range of chemoattractants. This acute treatment was anti-inflammatory in vivo as shown by pre-treatment of monocytes prior to adoptive transfer into an on-going murine peritonitis model. We find that apoA1 rapidly disrupts membrane lipid rafts, and as a consequence, dampens the PI3K/Akt signalling pathway that coordinates reorganization of the actin cytoskeleton and cell migration. Our data strengthen the evidence base for therapeutic apoA1 infusions in situations where reduced monocyte recruitment to sites of inflammation could have beneficial outcomes.
Collapse
Affiliation(s)
- Asif J Iqbal
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Tessa J Barrett
- Division of Cardiology, NYU School of Medicine, New York, United States.,Department of Medicine, NYU School of Medicine, New York, United States.,Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, United States
| | - Lewis Taylor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Eileen McNeill
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom.,John Radcliffe Hospital, Oxford, United Kingdom.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Arun Manmadhan
- Division of Cardiology, NYU School of Medicine, New York, United States.,Department of Medicine, NYU School of Medicine, New York, United States.,Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, United States
| | - Carlota Recio
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alfredo Carmineri
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Dianne Cooper
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Joseph A DiDonato
- Department of Cellular and Molecular Medicine, Lerner Research Institute of the Cleveland Clinic, Cleavland, United States
| | - Maryam Zamanian-Daryoush
- Department of Cellular and Molecular Medicine, Lerner Research Institute of the Cleveland Clinic, Cleavland, United States
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute of the Cleveland Clinic, Cleavland, United States
| | - Keith M Channon
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom.,John Radcliffe Hospital, Oxford, United Kingdom.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Edward A Fisher
- Division of Cardiology, NYU School of Medicine, New York, United States.,Department of Medicine, NYU School of Medicine, New York, United States.,Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, United States
| |
Collapse
|
129
|
Nowacki TM, Remaley AT, Bettenworth D, Eisenblätter M, Vowinkel T, Becker F, Vogl T, Roth J, Tietge UJ, Lügering A, Heidemann J, Nofer JR. The 5A apolipoprotein A-I (apoA-I) mimetic peptide ameliorates experimental colitis by regulating monocyte infiltration. Br J Pharmacol 2016; 173:2780-92. [PMID: 27425846 DOI: 10.1111/bph.13556] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE New therapies for inflammatory bowel disease (IBD) are highly desirable. As apolipoprotein (apo)A-I mimetic peptides are beneficial in several animal models of inflammation, we hypothesized that they might be effective at inhibiting murine colitis. EXPERIMENTAL APPROACH Daily injections of 5A peptide, a synthetic bihelical apoA-I mimetic dissolved in PBS, or PBS alone were administered to C57BL/6 mice fed 3% (w v(-1) ) dextran sodium sulfate (DSS) in drinking water or healthy controls. KEY RESULTS Daily treatment with 5A peptide potently restricted DSS-induced inflammation, as indicated by improved disease activity indices and colon histology, as well as decreased intestinal tissue myeloperoxidase levels and plasma TNFα and IL-6 concentrations. Additionally, plasma levels of monocyte chemoattractant protein-1 and the monocyte expression of adhesion-mediating molecule CD11b were down-regulated, pro-inflammatory CD11b(+) /Ly6c(high) monocytes were decreased, and the number of intestinal monocytes was reduced in 5A peptide-treated animals as determined by intravital macrophage-related peptide-8/14-directed fluorescence-mediated tomography and post-mortem immunhistochemical F4/80 staining. Intravital fluorescence microscopy of colonic microvasculature demonstrated inhibitory effects of 5A peptide on leukocyte adhesion accompanied by reduced plasma levels of the soluble adhesion molecule sICAM-1. In vitro 5A peptide reduced monocyte adhesion and transmigration in TNFα-stimulated monolayers of human intestinal microvascular endothelial cells. Increased susceptibility to DSS-induced inflammation was noted in apoA-I(-/-) mice. CONCLUSIONS AND IMPLICATIONS The 5A peptide is effective at ameliorating murine colitis by preventing intestinal monocyte infiltration and activation. These findings point to apoA-I mimetics as a potential treatment approach for IBD.
Collapse
Affiliation(s)
- Tobias M Nowacki
- Department of Medicine B, University Hospital Münster, Münster, Germany
| | - Alan T Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Michel Eisenblätter
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Thorsten Vowinkel
- Department of General and Visceral Surgery, University Hospital Münster, Münster, Germany
| | - Felix Becker
- Department of General and Visceral Surgery, University Hospital Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Uwe J Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, GZ Groningen, The Netherlands
| | | | - Jan Heidemann
- Department of Medicine B, University Hospital Münster, Münster, Germany.,Department of Gastroenterology, Klinikum Bielefeld, Bielefeld, Germany
| | - Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
130
|
Murphy AJ, Tall AR. Disordered haematopoiesis and athero-thrombosis. Eur Heart J 2016; 37:1113-21. [PMID: 26869607 PMCID: PMC4823636 DOI: 10.1093/eurheartj/ehv718] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/22/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis, the major underlying cause of cardiovascular disease, is characterized by a lipid-driven infiltration of inflammatory cells in large and medium arteries. Increased production and activation of monocytes, neutrophils, and platelets, driven by hypercholesterolaemia and defective high-density lipoproteins-mediated cholesterol efflux, tissue necrosis and cytokine production after myocardial infarction, or metabolic abnormalities associated with diabetes, contribute to atherogenesis and athero-thrombosis. This suggests that in addition to traditional approaches of low-density lipoproteins lowering and anti-platelet drugs, therapies directed at abnormal haematopoiesis, including anti-inflammatory agents, drugs that suppress myelopoiesis, and excessive platelet production, rHDL infusions and anti-obesity and anti-diabetic agents, may help to prevent athero-thrombosis.
Collapse
Affiliation(s)
- Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia Department of Immunology, Monash University, Melbourne, Victoria 3165, Australia
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, USA
| |
Collapse
|
131
|
Flote VG, Vettukattil R, Bathen TF, Egeland T, McTiernan A, Frydenberg H, Husøy A, Finstad SE, Lømo J, Garred Ø, Schlichting E, Wist EA, Thune I. Lipoprotein subfractions by nuclear magnetic resonance are associated with tumor characteristics in breast cancer. Lipids Health Dis 2016; 15:56. [PMID: 26970778 PMCID: PMC4789271 DOI: 10.1186/s12944-016-0225-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/08/2016] [Indexed: 12/25/2022] Open
Abstract
Background High-Density Lipoprotein (HDL)-cholesterol, has been associated with breast cancer development, but the association is under debate, and whether lipoprotein subfractions is associated with breast tumor characteristics remains unclear. Methods Among 56 women with newly diagnosed invasive breast cancer stage I/II, aged 35–75 years, pre-surgery overnight fasting serum concentrations of lipids were assessed, and body mass index (BMI) was measured. All breast tumors were immunohistochemically examined in the surgical specimen. Serum metabolomics of lipoprotein subfractions and their contents of cholesterol, free cholesterol, phospholipids, apolipoprotein-A1 and apolipoprotein-A2, were assessed using nuclear magnetic resonance. Principal component analysis, partial least square analysis, and uni- and multivariable linear regression models were used to study whether lipoprotein subfractions were associated with breast cancer tumor characteristics. Results The breast cancer patients had following means: age at diagnosis: 55.1 years; BMI: 25.1 kg/m2; total-Cholesterol: 5.74 mmol/L; HDL-Cholesterol: 1.78 mmol/L; Low-Density Lipoprotein (LDL)-Cholesterol: 3.45 mmol/L; triglycerides: 1.18 mmol/L. The mean tumor size was 16.4 mm, and the mean Ki67 hotspot index was 26.5 %. Most (93 %) of the patients had estrogen receptor (ER) positive tumors (≥1 % ER+), and 82 % had progesterone receptor (PgR) positive tumors (≥10 % PgR+). Several HDL subfraction contents were strongly associated with PgR expression: Apolipoprotein-A1 (β 0.46, CI 0.22–0.69, p < 0.001), HDL cholesterol (β 0.95, CI 0.51–1.39, p < 0.001), HDL free cholesterol (β 2.88, CI 1.28–4.48, p = 0.001), HDL phospholipids (β 0.70, CI 0.36–1.04, p < 0.001). Similar results were observed for the subfractions of HDL1-3. We observed inverse associations between HDL phospholipids and Ki67 (β -0.25, p = 0.008), and in particular between HDL1’s contents of cholesterol, phospholipids, apolipoprotein-A1, apolipoprotein-A2 and Ki67. No association was observed between lipoproteins and ER expression. Conclusion Our findings hypothesize associations between different lipoprotein subfractions, and PgR expression, and Ki 67 % in breast tumors. These findings may have clinical implications, but require confirmation in larger studies. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0225-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vidar G Flote
- The Cancer Centre, Oslo University Hospital HF, N-0424, Oslo, Norway.
| | - Riyas Vettukattil
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thore Egeland
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432, Aas, Norway
| | - Anne McTiernan
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hanne Frydenberg
- The Cancer Centre, Oslo University Hospital HF, N-0424, Oslo, Norway
| | - Anders Husøy
- The Cancer Centre, Oslo University Hospital HF, N-0424, Oslo, Norway
| | - Sissi E Finstad
- Norwegian Directorate of Health, PO Box 7000, St. Olavs plass, N-0130, Oslo, Norway
| | - Jon Lømo
- Department of Pathology, Oslo University Hospital, N-0424, Oslo, Norway
| | - Øystein Garred
- Department of Pathology, Oslo University Hospital, N-0424, Oslo, Norway
| | - Ellen Schlichting
- Department of Breast and Endocrine Surgery, Oslo University Hospital, N-0424, Oslo, Norway
| | - Erik A Wist
- The Cancer Centre, Oslo University Hospital HF, N-0424, Oslo, Norway
| | - Inger Thune
- The Cancer Centre, Oslo University Hospital HF, N-0424, Oslo, Norway.,Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway
| |
Collapse
|
132
|
|
133
|
Does high-density lipoprotein protect vascular function in healthy pregnancy? Clin Sci (Lond) 2016; 130:491-7. [DOI: 10.1042/cs20150475] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The maternal adaptation to pregnancy includes hyperlipidaemia, oxidative stress and chronic inflammation. In non-pregnant individuals, these processes are usually associated with poor vascular function. However, maternal vascular function is enhanced in pregnancy. It is not understood how this is achieved in the face of the adverse metabolic and inflammatory environment. Research into cardiovascular disease demonstrates that plasma HDL (high-density lipoprotein), by merit of its functionality rather than its plasma concentration, exerts protective effects on the vascular endothelium. HDL has vasodilatory, antioxidant, anti-thrombotic and anti-inflammatory effects, and can protect against endothelial cell damage. In pregnancy, the plasma HDL concentration starts to rise at 10 weeks of gestation, peaking at 20 weeks. The initial rise in plasma HDL occurs around the time of the establishment of the feto-placental circulation, a time when the trophoblast plugs in the maternal spiral arteries are released, generating oxidative stress. Thus there is the intriguing possibility that new HDL of improved function is synthesized around the time of the establishment of the feto-placental circulation. In obese pregnancy and, to a greater extent, in pre-eclampsia, plasma HDL levels are significantly decreased and maternal vascular function is reduced. Wire myography studies have shown an association between the plasma content of apolipoprotein AI, the major protein constituent of HDL, and blood vessel relaxation. These observations lead us to hypothesize that HDL concentration, and function, increases in pregnancy in order to protect the maternal vascular endothelium and that in pre-eclampsia this fails to occur.
Collapse
|
134
|
Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE. Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 2016; 310:E1-E14. [PMID: 26530157 DOI: 10.1152/ajpendo.00429.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022]
Abstract
Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.
Collapse
Affiliation(s)
| | - Eleni A Karavia
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Eugenia Papakosta
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Marilena Karavyraki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Aikaterini Hatziri
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | | | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
135
|
Al-Sharea A, Lee MKS, Moore XL, Fang L, Sviridov D, Chin-Dusting J, Andrews KL, Murphy AJ. Native LDL promotes differentiation of human monocytes to macrophages with an inflammatory phenotype. Thromb Haemost 2015; 115:762-72. [PMID: 26676845 DOI: 10.1160/th15-07-0571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/13/2015] [Indexed: 11/05/2022]
Abstract
Recruitment of monocytes in atherosclerosis is dependent upon increased levels of plasma lipoproteins which accumulate in the blood vessel wall. The extracellular milieu can influence the phenotype of monocyte subsets (classical: CD14++CD16-, intermediate: CD14+CD16+ and non-classical: CD14dimCD16++) and macrophages (M1 or M2) and consequently the initiation, progression and/or regression of atherosclerosis. However, it is not known what effect lipoproteins, in particular native low-density lipoproteins (nLDL), have on the polarisation of monocyte-derived macrophages. Monocytes were differentiated into macrophages in the presence of nLDL. nLDL increased gene expression of the inflammatory cytokines TNFα and IL-6 in macrophages polarised towards the M1 phenotype while decreasing the M2 surface markers, CD206 and CD200R and the anti-inflammatory cytokines TGFβ and IL-10. Compared to the classical and intermediate subsets, the non-classical subset-derived macrophages had a reduced ability to respond to M1 stimuli (LPS and IFNγ). nLDL enhanced the TNFα and IL-6 gene expression in macrophages from all monocyte subsets, indicating an inflammatory effect of nLDL. Further, the classical and intermediate subsets both responded to M2 stimuli (IL-4) with upregulation of TGFβ and SR-B1 mRNA; an effect, which was reduced by nLDL. In contrast, the non-classical subset failed to respond to IL-4 or nLDL, suggesting it may be unable to polarise into M2 macrophages. Our data suggests that monocyte interaction with nLDL significantly affects macrophage polarisation and that this interaction appears to be subset dependent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrew J Murphy
- Dr. Andrew J. Murphy, Baker IDI Heart and Diabetes Institute, PO Box 6492, St Kilda Road central, Melbourne, VIC 8008, Australia, Tel.: +61 3 8532 1292, Fax: +61 3 8532 1100, E-mail:
| |
Collapse
|
136
|
Zamanian-Daryoush M, DiDonato JA. Apolipoprotein A-I and Cancer. Front Pharmacol 2015; 6:265. [PMID: 26617517 PMCID: PMC4642354 DOI: 10.3389/fphar.2015.00265] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
High-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I), the predominant protein in plasma HDL, have long been the focus of intense studies in the field of atherosclerosis and cardiovascular disease. ApoA-I, in large part, is responsible for HDL assembly and its main atheroprotective function, that of shuttling excess cholesterol from peripheral tissues to the liver for excretion (reverse cholesterol transport). Recently, a protective role for HDL in cancer was suggested from several large clinical studies where an inverse relationship between plasma HDL-cholesterol (HDL-C) levels and risk of developing cancer was noted. This notion has now been tested and found to be supported in mouse tumor studies, where increasing levels of apoA-I/HDL were discovered to protect against tumor development and provision of human apoA-I was therapeutic against established tumors. This mini-review discusses the emerging role of apoA-I in tumor biology and its potential as cancer therapeutic.
Collapse
Affiliation(s)
- Maryam Zamanian-Daryoush
- Department of Cellular and Molecular Medicine, and Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland OH, USA
| | - Joseph A DiDonato
- Department of Cellular and Molecular Medicine, and Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
137
|
Lee MKS, Moore XL, Fu Y, Al-Sharea A, Dragoljevic D, Fernandez-Rojo MA, Parton R, Sviridov D, Murphy AJ, Chin-Dusting JPF. High-density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolin-1. Br J Pharmacol 2015; 173:741-51. [PMID: 26332942 DOI: 10.1111/bph.13319] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Monocyte-derived macrophages are critical in the development of atherosclerosis and can adopt a wide range of functional phenotypes depending on their surrounding milieu. High-density lipoproteins (HDLs) have many cardio-protective properties including potent anti-inflammatory effects. We investigated the effects of HDL on human macrophage phenotype and the mechanisms by which these occur. EXPERIMENTAL APPROACH Human blood monocytes were differentiated into macrophages in the presence or absence of HDL and were then induced to either an inflammatory macrophage (M1) or anti-inflammatory macrophage (M2) phenotype using LPS and IFN-γ or IL-4, respectively. KEY RESULTS HDL inhibited the induction of macrophages to an M1-phenotype, as evidenced by a decrease in the expression of M1-specific cell surface markers CD192 and CD64, as well as M1-associated inflammatory genes TNF-α, IL-6 and MCP-1 (CCL2). HDL also inhibited M1 function by reducing the production of ROS. In contrast, HDL had no effect on macrophage induction to the M2-phenotype. Similarly, methyl-β-cyclodextrin, a non-specific cholesterol acceptor also suppressed the induction of M1 suggesting that cholesterol efflux is important in this process. Furthermore, HDL decreased membrane caveolin-1 in M1 macrophages. We confirmed that caveolin-1 is required for HDL to inhibit M1 induction as bone marrow-derived macrophages from caveolin-1 knockout mice continued to polarize into M1-phenotype despite the presence of HDL. Moreover, HDL decreased ERK1/2 and STAT3 phosphorylation in M1 macrophages. CONCLUSIONS AND IMPLICATIONS We concluded that HDL reduces the induction of macrophages to the inflammatory M1-phenotype via redistribution of caveolin-1, preventing the activation of ERK1/2 and STAT3.
Collapse
Affiliation(s)
- Man K S Lee
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine (Alfred), Monash University, Melbourne, Australia
| | - Xiao-Lei Moore
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Yi Fu
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Annas Al-Sharea
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine (Alfred), Monash University, Melbourne, Australia
| | - Dragana Dragoljevic
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine (Alfred), Monash University, Melbourne, Australia
| | - Manuel A Fernandez-Rojo
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Robert Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| | - Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Andrew J Murphy
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | - Jaye P F Chin-Dusting
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine (Alfred), Monash University, Melbourne, Australia
| |
Collapse
|
138
|
Milleret V, Buzzi S, Gehrig P, Ziogas A, Grossmann J, Schilcher K, Zinkernagel AS, Zucker A, Ehrbar M. Protein adsorption steers blood contact activation on engineered cobalt chromium alloy oxide layers. Acta Biomater 2015; 24:343-51. [PMID: 26102336 DOI: 10.1016/j.actbio.2015.06.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 12/01/2022]
Abstract
Biomaterials upon implantation are immediately covered by blood proteins which direct the subsequent blood activation. These early events determine the following cascade of biological reactions and consequently the long-term success of implants. The ability to modulate surface properties of biomaterials is therefore of considerable clinical significance. Goal of this study was an in-depth understanding of the biological response to cobalt chromium stent alloys with engineered surface oxide layers, which showed altered body reactions in vivo. We analyzed in vitro the biological events following initial blood contact on engineered cobalt chromium surfaces featuring said oxide layers. Surface-specific blood reactions were confirmed by scanning electron microscopy and the adsorbed protein layers were characterized by mass spectrometry. This powerful proteomics tool allowed the identification and quantification of over hundred surface-adhering proteins. Proteins associated with the coagulation cascade, platelet adhesion and neutrophil function correlated with the various blood surface activations observed. Furthermore, results of pre-coated surfaces with defined fibrinogen-albumin mixtures suggest that neutrophil adhesion was controlled by fibrinogen orientation and conformation rather than quantity. This study highlights the importance of controlling the biological response in the complex protein-implant surface interactions and the potential of the surface modifications to improve the clinical performance of medical implants. STATEMENT OF SIGNIFICANCE The blood contact activation of CoCr alloys is determined by their surface oxide layer properties. Modifications of the oxide layer affected the total amount of adsorbed proteins and the composition of the adsorbed protein layer. Additionally fibrinogen coatings mediated the surface-dependent neutrophil adhesion in a concentration-independent manner, indicating the influence of conformation and/or orientation of the adsorbed protein. Despite the complexity of protein-implant interactions, this study highlights the importance of understanding and controlling mechanisms of protein adhesion in order to improve and steer the performance of medical implants. It shows that modification of the surface oxide layer is a very attractive strategy to directly functionalize metallic implant surfaces and optimize their blood interaction for the desired orthopedic or cardiovascular applications.
Collapse
Affiliation(s)
- Vincent Milleret
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Switzerland
| | | | - Peter Gehrig
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Switzerland
| | - Algirdas Ziogas
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Switzerland
| | - Katrin Schilcher
- Division of Infectious Diseases and Hospital Epidemiology, University of Zurich, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University of Zurich, Switzerland
| | | | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Switzerland.
| |
Collapse
|
139
|
Sharifov OF, Xu X, Gaggar A, Tabengwa EM, White CR, Palgunachari MN, Anantharamaiah GM, Gupta H. L-4F inhibits lipopolysaccharide-mediated activation of primary human neutrophils. Inflammation 2015; 37:1401-12. [PMID: 24647607 DOI: 10.1007/s10753-014-9864-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human apolipoprotein A-I (apoA-I) mimetic L-4F inhibits acute inflammation in endotoxemic animals. Since neutrophils play a crucial role in septic inflammation, we examined the effects of L-4F, compared to apoA-I, on lipopolysaccharide (LPS)-mediated activation of human neutrophils. We performed bioassays in human blood, isolated human neutrophils (incubated in 50 % donor plasma), and isolated human leukocytes (incubated in 5 and 50 % plasma) in vitro. In whole blood, both L-4F and apoA-I inhibited LPS-mediated elevation of TNF-α and IL-6. In LPS-stimulated neutrophils, L-4F and apoA-I (40 μg/ml) also decreased myeloperoxidase and TNF-α levels; however, L-4F tended to be superior in inhibiting LPS-mediated increase in IL-6 levels, membrane lipid rafts abundance and CD11b expression. In parallel experiments, when TNF-α and IL-8, instead of LPS, was used for cell stimulation, L-4F and/or apoA-I revealed only limited efficacy. In LPS-stimulated leukocytes, L-4F was as effective as apoA-I in reducing superoxide formation in 50 % donor plasma, and more effective in 5 % donor plasma (P<0.05). Limulus ambocyte lysate (LAL) and surface plasmon resonance assays showed that L-4F neutralizes LAL endotoxin activity more effectively than apoA-I (P<0.05) likely due to avid binding to LPS. We conclude that (1) direct binding/neutralization of LPS is a major mechanism of L-4F in vitro; (2) while L-4F has similar efficacy to apoA-I in anti-endotoxin effects in whole blood, it demonstrates superior efficacy to apoA-I in aqueous solutions and fluids with limited plasma components. This study rationalizes the utility of L-4F in the treatment of inflammation that is mediated by endotoxin-activated neutrophils.
Collapse
Affiliation(s)
- Oleg F Sharifov
- Department of Medicine, University of Alabama at Birmingham, BDB-101, 1808 7th Avenue South, Birmingham, AL, 35294-0012, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Niyonzima N, Samstad EO, Aune MH, Ryan L, Bakke SS, Rokstad AM, Wright SD, Damås JK, Mollnes TE, Latz E, Espevik T. Reconstituted High-Density Lipoprotein Attenuates Cholesterol Crystal-Induced Inflammatory Responses by Reducing Complement Activation. THE JOURNAL OF IMMUNOLOGY 2015; 195:257-64. [PMID: 26026058 DOI: 10.4049/jimmunol.1403044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/23/2015] [Indexed: 11/19/2022]
Abstract
Chronic inflammation of the arterial wall is a key element in the development of atherosclerosis, and cholesterol crystals (CC) that accumulate in plaques are associated with initiation and progression of the disease. We recently revealed a link between the complement system and CC-induced inflammasome caspase-1 activation, showing that the complement system is a key trigger in CC-induced inflammation. HDL exhibits cardioprotective and anti-inflammatory properties thought to explain its inverse correlation to cardiovascular risk. In this study, we sought to determine the effect of reconstituted HDL (rHDL) on CC-induced inflammation in a human whole blood model. rHDL bound to CC and inhibited the CC-induced complement activation as measured by soluble terminal C5b-9 formation and C3c deposition on the CC surface. rHDL attenuated the amount of CC-induced complement receptor 3 (CD11b/CD18) expression on monocytes and granulocytes, as well as reactive oxygen species generation. Moreover, addition of CC to whole blood resulted in release of proinflammatory cytokines that were inhibited by rHDL. Our results support and extend the notion that CC are potent triggers of inflammation, and that rHDL may have a beneficial role in controlling the CC-induced inflammatory responses by inhibiting complement deposition on the crystals.
Collapse
Affiliation(s)
- Nathalie Niyonzima
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Eivind O Samstad
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; Department of Medicine, Ålesund Hospital, Ålesund 6026, Norway
| | - Marie H Aune
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Liv Ryan
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Siril S Bakke
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Anne Mari Rokstad
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; Central Norway Regional Health Authority, Trondheim N-7501, Norway
| | - Samuel D Wright
- Cardiovascular Therapeutics, CSL Behring, King of Prussia, PA 19406
| | - Jan K Damås
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Tom E Mollnes
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; Department of Immunology, Oslo University Hospital, Oslo N-0027, Norway; K.G. Jebsen Inflammatory Research Centre, University of Oslo, Oslo N-0027, Norway; Research Laboratory, Nordland Hospital, Bodø N-8092, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø N-9037, Norway; and
| | - Eicke Latz
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; Biomedical Center, Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
| | - Terje Espevik
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
| |
Collapse
|
141
|
Key role for scavenger receptor B-I in the integrative physiology of host defense during bacterial pneumonia. Mucosal Immunol 2015; 8:559-71. [PMID: 25336169 PMCID: PMC4406784 DOI: 10.1038/mi.2014.88] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 08/16/2014] [Indexed: 02/04/2023]
Abstract
Scavenger receptor B-I (SR-BI) is a multirecognition receptor that regulates cholesterol trafficking and cardiovascular inflammation. Although it is expressed by neutrophils (PMNs) and lung-resident cells, no role for SR-BI has been defined in pulmonary immunity. Herein, we report that, compared with SR-BI(+/+) counterparts, SR-BI(-/-) mice suffer markedly increased mortality during bacterial pneumonia associated with higher bacterial burden in the lung and blood, deficient induction of the stress glucocorticoid corticosterone, higher serum cytokines, and increased organ injury. SR-BI(-/-) mice had significantly increased PMN recruitment and cytokine production in the infected airspace. This was associated with defective hematopoietic cell-dependent clearance of lipopolysaccharide from the airspace and increased cytokine production by SR-BI(-/-) macrophages. Corticosterone replacement normalized alveolar neutrophilia but not alveolar cytokines, bacterial burden, or mortality, suggesting that adrenal insufficiency derepresses PMN trafficking to the SR-BI(-/-) airway in a cytokine-independent manner. Despite enhanced alveolar neutrophilia, SR-BI(-/-) mice displayed impaired phagocytic killing. Bone marrow chimeras revealed this defect to be independent of the dyslipidemia and adrenal insufficiency of SR-BI(-/-) mice. During infection, SR-BI(-/-) PMNs displayed deficient oxidant production and CD11b externalization, and increased surface L-selectin, suggesting defective activation. Taken together, SR-BI coordinates several steps in the integrated neutrophilic host defense response to pneumonia.
Collapse
|
142
|
The systemic milieu as a mediator of dietary influence on stem cell function during ageing. Ageing Res Rev 2015; 19:53-64. [PMID: 25481406 DOI: 10.1016/j.arr.2014.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/09/2023]
Abstract
The regenerative decline of organisms during ageing is linked to the reduced proliferative activity, impaired function and exhaustion of tissue-specific stem and progenitor cells. Studies using heterochronic parabiosis, involving the surgical attachment of young and old organisms so that they share a common vascular system, have revealed that the systemic environment has a profound effect on stem cell function. In particular, specific youthful rejuvenating circulatory factors reverse age-related declines in stem cell function, whereas the old milieu contains inhibitory factors that impede stem cell function in young animals. Similarly, the effects of certain dietary interventions, namely calorie restriction, also induce a more youthful cellular and molecular phenotype in ageing stem cells throughout the body. Further to this, there are key molecular pathways involved in translating the availability of nutrients into altered stem cell function, including signalling in the insulin and insulin-like growth factor and mechanistic target of rapamycin (mTOR) pathways. In this review, we discuss the potential role of dietary interventions to promote a more rejuvenating systemic milieu in order to enhance stem cell function and promote healthy ageing.
Collapse
|
143
|
Abstract
Besides their well-documented function of reverse transport of cholesterol, high-density lipoproteins (HDLs) display pleiotropic effects due to their antioxidant, antithrombotic, anti-inflammatory and antiapoptotic properties that may play a major protective role in acute stroke, in particular by limiting the deleterious effects of ischaemia on the blood-brain barrier (BBB) and on the parenchymal cerebral compartment. HDLs may also modulate leukocyte and platelet activation, which may also represent an important target that would justify the use of HDL-based therapy in acute stroke. In this review, we will present an update of all the recent findings in HDL biology that could support a potential clinical use of HDL therapy in ischaemic stroke.
Collapse
|
144
|
Abstract
During infection significant alterations in lipid metabolism and lipoprotein composition occur. Triglyceride and VLDL cholesterol levels increase, while reduced HDL cholesterol (HDL-C) and LDL cholesterol (LDL-C) levels are observed. More importantly, endotoxemia modulates HDL composition and size: phospholipids are reduced as well as apolipoprotein (apo) A-I, while serum amyloid A (SAA) and secretory phospholipase A2 (sPLA2) dramatically increase, and, although the total HDL particle number does not change, a significant decrease in the number of small- and medium-size particles is observed. Low HDL-C levels inversely correlate with the severity of septic disease and associate with an exaggerated systemic inflammatory response. HDL, as well as other plasma lipoproteins, can bind and neutralize Gram-negative bacterial lipopolysaccharide (LPS) and Gram-positive bacterial lipoteichoic acid (LTA), thus favoring the clearance of these products. HDLs are emerging also as a relevant player during parasitic infections, and a specific component of HDL, namely, apoL-1, confers innate immunity against trypanosome by favoring lysosomal swelling which kills the parasite. During virus infections, proteins associated with the modulation of cholesterol bioavailability in the lipid rafts such as ABCA1 and SR-BI have been shown to favor virus entry into the cells. Pharmacological studies support the benefit of recombinant HDL or apoA-I mimetics during bacterial infection, while apoL-1-nanobody complexes were tested for trypanosome infection. Finally, SR-BI antagonism represents a novel and forefront approach interfering with hepatitis C virus entry which is currently tested in clinical studies. From the coming years, we have to expect new and compelling observations further linking HDL to innate immunity and infections.
Collapse
|
145
|
Abstract
Numerous epidemiologic studies revealed that high-density lipoprotein (HDL) is an important risk factor for coronary heart disease. There are several well-documented HDL functions such as reversed cholesterol transport, inhibition of inflammation, or inhibition of platelet activation that may account for the atheroprotective effects of this lipoprotein. Mechanistically, these functions are carried out by a direct interaction of HDL particle or its components with receptors localized on the cell surface followed by generation of intracellular signals. Several HDL-associated receptor ligands such as apolipoprotein A-I (apoA-I) or sphingosine-1-phosphate (S1P) have been identified in addition to HDL holoparticles, which interact with surface receptors such as ATP-binding cassette transporter A1 (ABCA1); S1P receptor types 1, 2, and 3 (S1P1, S1P2, and S1P3); or scavenger receptor type I (SR-BI) and activate intracellular signaling cascades encompassing kinases, phospholipases, trimeric and small G-proteins, and cytoskeletal proteins such as actin or junctional protein such as connexin43. In addition, depletion of plasma cell cholesterol mediated by ABCA1, ATP-binding cassette transporter G1 (ABCG1), or SR-BI was demonstrated to indirectly inhibit signaling over proinflammatory or proliferation-stimulating receptors such as Toll-like or growth factor receptors. The present review summarizes the current knowledge regarding the HDL-induced signal transduction and its relevance to athero- and cardioprotective effects as well as other physiological effects exerted by HDL.
Collapse
|
146
|
Parra S, Castro A, Masana L. The pleiotropic role of HDL in autoimmune diseases. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2014; 27:97-106. [PMID: 25444650 DOI: 10.1016/j.arteri.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 01/11/2023]
Abstract
As is widely known, the classic function of HDL is reverse cholesterol transport (RCT), thus removing cholesterol from peripheral tissues. Early epidemiological studies, such as Framingham's, stated that increased HDL levels were associated with a significant decrease in relative risk for cardiovascular disease (CVD) mortality. However, those with heightened expectations in recent years for the development of therapeutic targets to increase HDL levels have been disappointed, because efforts have demonstrated the opposite effect on cardiovascular and global mortality. However, in contrast, studies have highlighted the complexity and the intriguing role of HDL in different pathological conditions, such as infections, neoplasms, and autoimmune diseases. In this review an attempt is made to summarize some biological pathways that link HDL function with the immune system, and its possible clinical repercussions in autoimmune diseases.
Collapse
Affiliation(s)
- Sandra Parra
- Internal Medicine, Sant Joan University Hospital, Reus, Spain.
| | - Antoni Castro
- Internal Medicine, Sant Joan University Hospital, Reus, Spain
| | - Luis Masana
- Internal Medicine, Sant Joan University Hospital, Reus, Spain
| |
Collapse
|
147
|
Moreno JA, Ortega-Gomez A, Rubio-Navarro A, Louedec L, Ho-Tin-Noé B, Caligiuri G, Nicoletti A, Levoye A, Plantier L, Meilhac O. High-density lipoproteins potentiate α1-antitrypsin therapy in elastase-induced pulmonary emphysema. Am J Respir Cell Mol Biol 2014; 51:536-49. [PMID: 24787644 DOI: 10.1165/rcmb.2013-0103oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several studies report that high-density lipoproteins (HDLs) can carry α1-antitrypsin (AAT; an elastase inhibitor). We aimed to determine whether injection of exogenous HDL, enriched or not in AAT, may have protective effects against pulmonary emphysema. After tracheal instillation of saline or elastase, mice were randomly treated intravenously with saline, human plasma HDL (75 mg apolipoprotein A1/kg), HDL-AAT (75 mg apolipoprotein A1-3.75 mg AAT/kg), or AAT alone (3.75 mg/kg) at 2, 24, 48, and 72 hours. We have shown that HDL-AAT reached the lung and prevented the development of pulmonary emphysema by 59.3% at 3 weeks (alveoli mean chord length, 22.9 ± 2.8 μm versus 30.7 ± 4.5 μm; P < 0.001), whereas injection of HDL or AAT alone only showed a moderate, nonsignificant protective effect (28.2 ± 4.2 μm versus 30.7 ± 5 μm [P = 0.23] and 27.3 ± 5.66 μm versus 30.71 ± 4.96 μm [P = 0.18], respectively). Indeed, protection by HDL-AAT was significantly higher than that observed with HDL or AAT (P = 0.006 and P = 0.048, respectively). This protective effect was associated (at 6, 24, and 72 h) with: (1) a reduction in neutrophil and macrophage number in the bronchoalveolar lavage fluid; (2) decreased concentrations of IL-6, monocyte chemoattractant protein-1, and TNF-α in both bronchoalveolar lavage fluid and plasma; (3) a reduction in matrix metalloproteinase-2 and matrix metalloproteinase-9 activities; and (4) a reduction in the degradation of fibronectin, a marker of tissue damage. In addition, HDL-AAT reduced acute cigarette smoke-induced inflammatory response. Intravenous HDL-AAT treatment afforded a better protection against elastase-induced pulmonary emphysema than AAT alone, and may represent a significant development for the management of emphysema associated with AAT deficiency.
Collapse
Affiliation(s)
- Juan-Antonio Moreno
- 1 Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1148, DHU FIRE (Département Hospitalo-Universitaire Fibrosis, Inflammation, REmodeling in cardiovascular, respiratory and renal diseases), Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
ABCA1 mediates the secretion of cellular free cholesterol and phospholipids to an extracellular acceptor, apolipoprotein AI, to form nascent high-density lipoprotein (HDL). Thus, ABCA1 is a key molecule in cholesterol homeostasis. Functional studies of certain Tangier disease mutations demonstrate that ABCA1 has multiple activities, including plasma membrane remodeling and apoAI binding to cell surface, which participate in nascent HDL biogenesis. Recent advances in our understanding of ABCA1 have demonstrated that ABCA1also mediates unfolding the N terminus of apoAI on the cell surface, followed by lipidation of apoAI and release of nascent HDL. Although ABCA1-mediated cholesterol efflux to apoAI can occur on the plasma membrane, the role of apoAI retroendocytosis during cholesterol efflux may play a role in macrophage foam cells that store cholesterol esters in cytoplasmic lipid droplets.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland OH 44195, USA
| | - Jonathan D. Smith
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland OH 44195, USA
| |
Collapse
|
149
|
Tran-Dinh A, Diallo D, Delbosc S, Varela-Perez LM, Dang QB, Lapergue B, Burillo E, Michel JB, Levoye A, Martin-Ventura JL, Meilhac O. HDL and endothelial protection. Br J Pharmacol 2014; 169:493-511. [PMID: 23488589 DOI: 10.1111/bph.12174] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/07/2013] [Accepted: 02/24/2013] [Indexed: 12/23/2022] Open
Abstract
High-density lipoproteins (HDLs) represent a family of particles characterized by the presence of apolipoprotein A-I (apoA-I) and by their ability to transport cholesterol from peripheral tissues back to the liver. In addition to this function, HDLs display pleiotropic effects including antioxidant, anti-apoptotic, anti-inflammatory, anti-thrombotic or anti-proteolytic properties that account for their protective action on endothelial cells. Vasodilatation via production of nitric oxide is also a hallmark of HDL action on endothelial cells. Endothelial cells express receptors for apoA-I and HDLs that mediate intracellular signalling and potentially participate in the internalization of these particles. In this review, we will detail the different effects of HDLs on the endothelium in normal and pathological conditions with a particular focus on the potential use of HDL therapy to restore endothelial function and integrity.
Collapse
|
150
|
Larbi A, Fortin C, Dupuis G, Berrougui H, Khalil A, Fulop T. Immunomodulatory role of high-density lipoproteins: impact on immunosenescence. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9712. [PMID: 25216565 PMCID: PMC4162887 DOI: 10.1007/s11357-014-9712-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Natural aging is accompanied by a dysregulation of the host immune response that has well-known clinical consequences but poorly defined underlying causes. It has previously been reported that advancing age is associated with an increase in membrane cholesterol level in T cells. The aim of this study was to investigate whether high-density lipoprotein (HDL) can modulate the age-related accumulation of membrane cholesterol in T cells and impact on their subsequent responsiveness. Our data reveal that cholesterol metabolism, influx, and efflux are altered in T cells with aging, which may in part explain the increase in membrane cholesterol level observed in T cells in elderly individuals. HDL was unable to promote reverse cholesterol transport in T cells from elderly subjects with the same efficiency as was observed in T cells from young subjects besides unchanged ABCA-1 and SR-BI expressions. HDL exhibited a short-acting co-stimulatory effect by enhancing T cell production of interleukin-2 (IL-2). Moreover, HDL from healthy normolipemic individuals exerted differential effects on T cell proliferation that depended on the age of the HDL donor. Finally, HDL modulated TCR/CD28 activation by inducing sustained signaling through pLck, pERK, and pAkt. These data suggest that HDL has immunomodulatory effects on T cells that are influenced by age.
Collapse
Affiliation(s)
- Anis Larbi
- />Singapore Immunology Network (SIgN), Biopolis, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Carl Fortin
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| | - Gilles Dupuis
- />Clinical Research Center, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Canada
| | - Hicham Berrougui
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| | - Abdelouahed Khalil
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| | - Tamas Fulop
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|