101
|
Parker LE, Landstrom AP. The clinical utility of pediatric cardiomyopathy genetic testing: From diagnosis to a precision medicine-based approach to care. PROGRESS IN PEDIATRIC CARDIOLOGY 2021; 62. [PMID: 34776723 DOI: 10.1016/j.ppedcard.2021.101413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Pediatric-onset cardiomyopathies are rare yet cause significant morbidity and mortality in affected children. Genetic testing has a major role in the clinical evaluation of pediatric-onset cardiomyopathies, and identification of a variant in an associated gene can be used to confirm the clinical diagnosis and exclude syndromic causes that may warrant different treatment strategies. Further, risk-predictive testing of first-degree relatives can assess who is at-risk of disease and requires continued clinical follow-up. Aim of Review In this review, we seek to describe the current role of genetic testing in the clinical diagnosis and management of patients and families with the five major cardiomyopathies. Further, we highlight the ongoing development of precision-based approaches to diagnosis, prognosis, and treatment. Key Scientific Concepts of Review Emerging application of genotype-phenotype correlations opens the door for genetics to guide a precision medicine-based approach to prognosis and potentially for therapies. Despite advances in our understanding of the genetic etiology of cardiomyopathy and increased accessibility of clinical genetic testing, not all pediatric cardiomyopathy patients have a clear genetic explanation for their disease. Expanded genomic studies are needed to understand the cause of disease in these patients, improve variant classification and genotype-driven prognostic predictions, and ultimately develop truly disease preventing treatment.
Collapse
Affiliation(s)
- Lauren E Parker
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
102
|
Shah MJ, Silka MJ, Avari Silva JN, Balaji S, Beach CM, Benjamin MN, Berul CI, Cannon B, Cecchin F, Cohen MI, Dalal AS, Dechert BE, Foster A, Gebauer R, Gonzalez Corcia MC, Kannankeril PJ, Karpawich PP, Kim JJ, Krishna MR, Kubuš P, LaPage MJ, Mah DY, Malloy-Walton L, Miyazaki A, Motonaga KS, Niu MC, Olen M, Paul T, Rosenthal E, Saarel EV, Silvetti MS, Stephenson EA, Tan RB, Triedman J, Von Bergen NH, Wackel PL. 2021 PACES expert consensus statement on the indications and management of cardiovascular implantable electronic devices in pediatric patients. Indian Pacing Electrophysiol J 2021; 21:367-393. [PMID: 34333141 PMCID: PMC8577100 DOI: 10.1016/j.ipej.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consensus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology (ACC), and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate CIED follow-up in pediatric patients.
Collapse
Affiliation(s)
- Maully J Shah
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Michael J Silka
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| | | | | | | | - Monica N Benjamin
- Hospital de Pediatría Juan P. Garrahan, Hospital El Cruce, Hospital Británico de Buenos Aires, Instituto Cardiovascular ICBA, Buenos Aires, Argentina
| | | | | | - Frank Cecchin
- New York University Grossman School of Medicine, New York, NY, USA
| | | | - Aarti S Dalal
- Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Anne Foster
- Advocate Children's Heart Institute, Chicago, IL, USA
| | - Roman Gebauer
- Heart Centre Leipzig, University of Leipzig, Leipzig, Germany
| | | | | | - Peter P Karpawich
- University Pediatricians, Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | - Peter Kubuš
- Children's Heart Center, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | | | | | | | - Aya Miyazaki
- Shizuoka General Hospital and Mt. Fuji Shizuoka Children's Hospital, Shizuoka, Japan
| | | | - Mary C Niu
- University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | | | - Thomas Paul
- Georg-August-University Medical Center, Göttingen, Germany
| | - Eric Rosenthal
- Evelina London Children's Hospital and St Thomas' Hospital, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | | | | | - Reina B Tan
- New York University Langone Health, New York, NY, USA
| | | | | | | |
Collapse
|
103
|
Shah MJ, Silka MJ, Silva JNA, Balaji S, Beach CM, Benjamin MN, Berul CI, Cannon B, Cecchin F, Cohen MI, Dalal AS, Dechert BE, Foster A, Gebauer R, Gonzalez Corcia MC, Kannankeril PJ, Karpawich PP, Kim JJ, Krishna MR, Kubuš P, LaPage MJ, Mah DY, Malloy-Walton L, Miyazaki A, Motonaga KS, Niu MC, Olen M, Paul T, Rosenthal E, Saarel EV, Silvetti MS, Stephenson EA, Tan RB, Triedman J, Bergen NHV, Wackel PL. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients: Developed in collaboration with and endorsed by the Heart Rhythm Society (HRS), the American College of Cardiology (ACC), the American Heart Association (AHA), and the Association for European Paediatric and Congenital Cardiology (AEPC) Endorsed by the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). JACC Clin Electrophysiol 2021; 7:1437-1472. [PMID: 34794667 DOI: 10.1016/j.jacep.2021.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consensus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology (ACC), and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate CIED follow-up in pediatric patients.
Collapse
Affiliation(s)
- Maully J Shah
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| | - Michael J Silka
- University of Southern California Keck School of Medicine, Los Angeles, California, USA.
| | | | | | | | - Monica N Benjamin
- Hospital de Pediatría Juan P. Garrahan, Hospital El Cruce, Hospital Británico de Buenos Aires, Instituto Cardiovascular ICBA, Buenos Aires, Argentina
| | | | | | - Frank Cecchin
- New York University Grossman School of Medicine, New York, New York, USA
| | | | - Aarti S Dalal
- Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Anne Foster
- Advocate Children's Heart Institute, Chicago, Illinois, USA
| | - Roman Gebauer
- Heart Centre Leipzig, University of Leipzig, Leipzig, Germany
| | | | | | - Peter P Karpawich
- University Pediatricians, Children's Hospital of Michigan, Detroit, Michigan, USA
| | | | | | - Peter Kubuš
- Children's Heart Center, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | | | | | | | - Aya Miyazaki
- Shizuoka General Hospital and Mt. Fuji Shizuoka Children's Hospital, Shizuoka, Japan
| | | | - Mary C Niu
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Melissa Olen
- Nicklaus Children's Hospital, Miami, Florida, USA
| | - Thomas Paul
- Georg-August-University Medical Center, Göttingen, Germany
| | - Eric Rosenthal
- Evelina London Children's Hospital and St Thomas' Hospital, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | | | | | - Reina B Tan
- New York University Langone Health, New York, New York, USA
| | | | - Nicholas H Von Bergen
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | |
Collapse
|
104
|
2021 PACES expert consensus statement on the indications and management of cardiovascular implantable electronic devices in pediatric patients. Cardiol Young 2021; 31:1738-1769. [PMID: 34338183 DOI: 10.1017/s1047951121003413] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consensus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology (ACC), and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate CIED follow-up in pediatric patients.
Collapse
|
105
|
Guzman NA, Guzman DE. Immunoaffinity Capillary Electrophoresis in the Era of Proteoforms, Liquid Biopsy and Preventive Medicine: A Potential Impact in the Diagnosis and Monitoring of Disease Progression. Biomolecules 2021; 11:1443. [PMID: 34680076 PMCID: PMC8533156 DOI: 10.3390/biom11101443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Over the years, multiple biomarkers have been used to aid in disease screening, diagnosis, prognosis, and response to therapy. As of late, protein biomarkers are gaining strength in their role for early disease diagnosis and prognosis in part due to the advancements in identification and characterization of a distinct functional pool of proteins known as proteoforms. Proteoforms are defined as all of the different molecular forms of a protein derived from a single gene caused by genetic variations, alternative spliced RNA transcripts and post-translational modifications. Monitoring the structural changes of each proteoform of a particular protein is essential to elucidate the complex molecular mechanisms that guide the course of disease. Clinical proteomics therefore holds the potential to offer further insight into disease pathology, progression, and prevention. Nevertheless, more technologically advanced diagnostic methods are needed to improve the reliability and clinical applicability of proteomics in preventive medicine. In this manuscript, we review the use of immunoaffinity capillary electrophoresis (IACE) as an emerging powerful diagnostic tool to isolate, separate, detect and characterize proteoform biomarkers obtained from liquid biopsy. IACE is an affinity capture-separation technology capable of isolating, concentrating and analyzing a wide range of biomarkers present in biological fluids. Isolation and concentration of target analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. IACE has the potential to generate rapid results with significant accuracy, leading to reliability and reproducibility in diagnosing and monitoring disease. Additionally, IACE has the capability of monitoring the efficacy of therapeutic agents by quantifying companion and complementary protein biomarkers. With advancements in telemedicine and artificial intelligence, the implementation of proteoform biomarker detection and analysis may significantly improve our capacity to identify medical conditions early and intervene in ways that improve health outcomes for individuals and populations.
Collapse
Affiliation(s)
| | - Daniel E. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, USA;
- Division of Hospital Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
106
|
Zhang H, Hua X, Song J. Phenotypes of Cardiovascular Diseases: Current Status and Future Perspectives. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:229-241. [PMID: 36939805 PMCID: PMC9590492 DOI: 10.1007/s43657-021-00022-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Cardiovascular diseases (CVDs) are a large group of diseases and have become the leading cause of morbidity and mortality worldwide. Although considerable progresses have been made in the diagnosis, treatment and prognosis of CVD, communication barriers between clinicians and researchers still exist because the phenotypes of CVD are complex and diverse in clinical practice and lack of unity. Therefore, it is particularly important to establish a standardized and unified terminology to describe CVD. In recent years, there have been several studies, such as the Human Phenotype Ontology, attempting to provide a standardized description of the disease phenotypes. In the present article, we outline recent advances in the classification of the major types of CVD to retrospectively review the current progresses of phenotypic studies in the cardiovascular field and provide a reference for future cardiovascular research.
Collapse
Affiliation(s)
- Hang Zhang
- grid.506261.60000 0001 0706 7839The Cardiomyopathy Research Group, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037 China
| | - Xiumeng Hua
- grid.506261.60000 0001 0706 7839The Cardiomyopathy Research Group, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037 China
| | - Jiangping Song
- grid.506261.60000 0001 0706 7839The Cardiomyopathy Research Group, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037 China
| |
Collapse
|
107
|
Bezinover D, Mukhtar A, Wagener G, Wray C, Blasi A, Kronish K, Zerillo J, Tomescu D, Pustavoitau A, Gitman M, Singh A, Saner FH. Hemodynamic Instability During Liver Transplantation in Patients With End-stage Liver Disease: A Consensus Document from ILTS, LICAGE, and SATA. Transplantation 2021; 105:2184-2200. [PMID: 33534523 DOI: 10.1097/tp.0000000000003642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hemodynamic instability (HDI) during liver transplantation (LT) can be difficult to manage and increases postoperative morbidity and mortality. In addition to surgical causes of HDI, patient- and graft-related factors are also important. Nitric oxide-mediated vasodilatation is a common denominator associated with end-stage liver disease related to HDI. Despite intense investigation, optimal management strategies remain elusive. In this consensus article, experts from the International Liver Transplantation Society, the Liver Intensive Care Group of Europe, and the Society for the Advancement of Transplant Anesthesia performed a rigorous review of the most current literature regarding the epidemiology, causes, and management of HDI during LT. Special attention has been paid to unique LT-associated conditions including the causes and management of vasoplegic syndrome, cardiomyopathies, LT-related arrhythmias, right and left ventricular dysfunction, and the specifics of medical and fluid management in end-stage liver disease as well as problems specifically related to portal circulation. When possible, management recommendations are made.
Collapse
Affiliation(s)
- Dmitri Bezinover
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University, Penn State Health, Milton S. Hershey Medical Center, Hershey, PA. Represents ILTS and LICAGE
| | - Ahmed Mukhtar
- Department of Anesthesia and Surgical Intensive Care, Cairo University, Almanyal, Cairo, Egypt. Represents LICAGE
| | - Gebhard Wagener
- Department of Anesthesiology, Columbia University Medical Center, New York, NY. Represents SATA and ILTS
| | - Christopher Wray
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Ronald Reagan Medical Center, Los Angeles, CA. Represents SATA
| | - Annabel Blasi
- Department of Anesthesia, IDIBAPS (Institut d´investigació biomèdica Agustí Pi i Sunyé) Hospital Clinic, Villaroel, Barcelona, Spain. Represents LICAGE and ILTS
| | - Kate Kronish
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA. Represents SATA
| | - Jeron Zerillo
- Department of Anesthesiology, Perioperative and Pain Medicine, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY. Represents SATA and ILTS
| | - Dana Tomescu
- Department of Anesthesiology and Intensive Care, Carol Davila University of Medicine and Pharmacy, Fundeni Clinical Institute, Bucharest, Romania. Represents LICAGE
| | - Aliaksei Pustavoitau
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins Hospital, Johns Hopkins School of Medicine, Baltimore, MD. Represents ILTS
| | - Marina Gitman
- Department of Anesthesiology, University of Illinois Hospital, Chicago, IL. Represents SATA and ILTS
| | - Anil Singh
- Department of Liver Transplant and GI Critical Care, Sir HN Reliance Foundation Hospital, Cirgaon, Mumbai, India. Represents ILTS
| | - Fuat H Saner
- Department of General, Visceral and Transplant Surgery, Essen University Medical Center, Essen, Germany. Represents LICAGE
| |
Collapse
|
108
|
Abstract
Cardiomyopathy affects approximately 1 in 500 adults and is the leading cause of death. Familial cases are common, and mutations in many genes are involved in cardiomyopathy, especially those in genes encoding cytoskeletal, sarcomere, and nuclear envelope proteins. Filamin C is an actin-binding protein encoded by filamin C (FLNC) gene and participates in sarcomere stability maintenance. FLNC was first demonstrated to be a causal gene of myofibrillar myopathy; recently, it has been found that FLNC mutation plays a critical role in the pathogenesis of cardiomyopathy. In this review, we summarized the physiological roles of filamin C in cardiomyocytes and the genetic evidence for links between FLNC mutations and cardiomyopathies. Truncated FLNC is enriched in dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. Non-truncated FLNC is enriched in hypertrophic cardiomyopathy and restrictive cardiomyopathy. Two major pathomechanisms in FLNC-related cardiomyopathy have been described: protein aggregation resulting from non-truncating mutations and haploinsufficiency triggered by filamin C truncation. Therefore, it is important to understand the cellular biology and molecular regulation of FLNC to design new therapies to treat patients with FLNC-related cardiomyopathy.
Collapse
|
109
|
Abstract
Cardiomyopathies are a heterogeneous group of heart muscle diseases and an important cause of heart failure (HF) in young populations. The variety of causes, multiple underlying pathophysiological mechanisms, and different phenotypic expressions influence their presentation and response to treatment. Dilated cardiomyopathy is the most prevalent cause of HF. Advanced HF in hypertrophic, restrictive, and arrhythmogenic cardiomyopathies is rare, but its development portends a poor prognosis. The active phase of fulminant myocarditis may result in acute HF requiring advanced strategies to support the systemic circulation or may determine an irreversible persisting left ventricular failure with end-stage HF.
Collapse
Affiliation(s)
- Davide Stolfo
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata, Trieste, Italy
| | - Valentino Collini
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata, Trieste, Italy.
| |
Collapse
|
110
|
Capustin M, Frishman WH. Transthyretin Cardiac Amyloidosis and Novel Therapies to Treat This Not-so-rare Cause of Cardiomyopathy. Cardiol Rev 2021; 29:263-273. [PMID: 34397539 DOI: 10.1097/crd.0000000000000387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transthyretin cardiac amyloidosis (ATTR-CA) is typically a late-onset disease caused by the deposit of transthyretin amyloid fibrils throughout the heart. When this occurs, various cardiac sequelae can develop, including hypotension, conduction abnormalities, and valvular lesions. The cardiomyopathy caused by ATTR-CA (ATTR-CM) has proven difficult to treat. Until recently, symptomatic management was the only therapeutic option, and many therapies used to treat congestive heart failure were ineffective or even detrimental to patients with ATTR-CM. In addition, treatment was limited to heart and liver transplantation. As a result, prognosis was poor. Recently, a few drug therapies have come to light as potential treatment modalities for ATTR-CM, most notably tafamidis, sold under the brand names Vyndaqel and Vyndamax. After the phase III Transthyretin Amyloidosis Cardiomyopathy trial displayed the drug's efficacy, it was given breakthrough therapy designation and was approved by the Food and Drug Administration on May 6, 2019, for the treatment of ATTR-CA. This novel therapy, as well as various other therapies in the pipeline, such as inotersen and patisiran, provide hope where, until recently, there was little. Unfortunately, the exorbitant cost of these new therapies may present a barrier to long-term treatment for some patients. However, by further improving diagnostic algorithms and incorporating these new treatments into our existing therapeutic modalities, patients with ATTR-CA should be able to live far longer than previously expected. Finally, further research combining these novel treatment modalities must be done, as they may prove to be additive or even synergistic in their treatment of ATTR amyloidosis.
Collapse
Affiliation(s)
- Matthew Capustin
- From the Department of Medicine, Zucker School of Medicine/Northwell Northshore-Long Island Jewish Medical Center, Manhasset, NY
| | - William H Frishman
- Department of Medicine and Cardiology, New York Medicine and Westchester Medical Center, Valhalla, NY
| |
Collapse
|
111
|
Pagiatakis C, Di Mauro V. The Emerging Role of Epigenetics in Therapeutic Targeting of Cardiomyopathies. Int J Mol Sci 2021; 22:ijms22168721. [PMID: 34445422 PMCID: PMC8395924 DOI: 10.3390/ijms22168721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathies (CMPs) are a heterogeneous group of myocardial diseases accountable for the majority of cases of heart failure (HF) and/or sudden cardiac death (SCD) worldwide. With the recent advances in genomics, the original classification of CMPs on the basis of morphological and functional criteria (dilated (DCM), hypertrophic (HCM), restrictive (RCM), and arrhythmogenic ventricular cardiomyopathy (AVC)) was further refined into genetic (inherited or familial) and acquired (non-inherited or secondary) forms. Despite substantial progress in the identification of novel CMP-associated genetic variations, as well as improved clinical recognition diagnoses, the functional consequences of these mutations and the exact details of the signaling pathways leading to hypertrophy, dilation, and/or contractile impairment remain elusive. To date, global research has mainly focused on the genetic factors underlying CMP pathogenesis. However, growing evidence shows that alterations in molecular mediators associated with the diagnosis of CMPs are not always correlated with genetic mutations, suggesting that additional mechanisms, such as epigenetics, may play a role in the onset or progression of CMPs. This review summarizes published findings of inherited CMPs with a specific focus on the potential role of epigenetic mechanisms in regulating these cardiac disorders.
Collapse
Affiliation(s)
- Christina Pagiatakis
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Correspondence: (C.P.); (V.D.M.)
| | - Vittoria Di Mauro
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Via Fantoli 16/15, 20138 Milan, Italy
- Correspondence: (C.P.); (V.D.M.)
| |
Collapse
|
112
|
Shah MJ, Silka MJ, Silva JA, Balaji S, Beach C, Benjamin M, Berul C, Cannon B, Cecchin F, Cohen M, Dalal A, Dechert B, Foster A, Gebauer R, Gonzalez Corcia MC, Kannankeril P, Karpawich P, Kim J, Krishna MR, Kubuš P, Malloy-Walton L, LaPage M, Mah D, Miyazaki A, Motonaga K, Niu M, Olen M, Paul T, Rosenthal E, Saarel E, Silvetti MS, Stephenson E, Tan R, Triedman J, Von Bergen N, Wackel P. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients. Heart Rhythm 2021; 18:1888-1924. [PMID: 34363988 DOI: 10.1016/j.hrthm.2021.07.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023]
Abstract
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consenus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology, (ACC) and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate follow-up in pediatric patients.
Collapse
Affiliation(s)
- Maully J Shah
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| | - Michael J Silka
- University of Southern California Keck School of Medicine, Los Angeles, California.
| | | | | | - Cheyenne Beach
- Yale University School of Medicine, New Haven, Connecticut
| | - Monica Benjamin
- Hospital de Pediatría Juan P. Garrahan, Hospital El Cruce, Hospital Británico de Buenos Aires, Instituto Cardiovascular ICBA, Buenos Aires, Argentina
| | | | | | - Frank Cecchin
- New York Univeristy Grossman School of Medicine, New York, New York
| | | | - Aarti Dalal
- Washington University in St. Louis, St. Louis, Missouri
| | | | - Anne Foster
- Advocate Children's Heart Institute, Chicago, Illinois
| | - Roman Gebauer
- Heart Centre Leipzig, University of Leipzig, Leipzig, Germany
| | | | | | - Peter Karpawich
- University Pediatricians, Children's Hospital of Michigan, Detroit, Michigan
| | | | | | - Peter Kubuš
- Children's Heart Center, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | | | | | - Doug Mah
- Harvard Medical School, Boston, Massachussetts
| | - Aya Miyazaki
- Shizuoka General Hospital and Mt. Fuji Shizuoka Children's Hospital, Shizuoka, Japan
| | | | - Mary Niu
- University of Utah Health Sciences Center, Salt Lake City, Utah
| | | | - Thomas Paul
- Georg-August-University Medical Center, Göttingen, Germany
| | - Eric Rosenthal
- Evelina London Children's Hospital and St Thomas' Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | - Reina Tan
- New York University Langone Health, New York, New York
| | - John Triedman
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Nicholas Von Bergen
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | |
Collapse
|
113
|
Kim KH, Pereira NL. Genetics of Cardiomyopathy: Clinical and Mechanistic Implications for Heart Failure. Korean Circ J 2021; 51:797-836. [PMID: 34327881 PMCID: PMC8484993 DOI: 10.4070/kcj.2021.0154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022] Open
Abstract
Genetic cardiomyopathies are an important cause of sudden cardiac death across all age groups. Genetic testing in heart failure clinics is useful for family screening and providing individual prognostic insight. Obtaining a family history of at least three generations, including the creation of a pedigree, is recommended for all patients with primary cardiomyopathy. Additionally, when appropriate, consultation with a genetic counsellor can aid in the success of a genetic evaluation. Clinical screening should be performed on all first-degree relatives of patients with genetic cardiomyopathy. Genetics has played an important role in the understanding of different cardiomyopathies, and the field of heart failure (HF) genetics is progressing rapidly. Much research has also focused on distinguishing markers of risk in patients with cardiomyopathy using genetic testing. While these efforts currently remain incomplete, new genomic technologies and analytical strategies provide promising opportunities to further explore the genetic architecture of cardiomyopathies, afford insight into the early manifestations of cardiomyopathy, and help define the molecular pathophysiological basis for cardiac remodeling. Cardiovascular physicians should be fully aware of the utility and potential pitfalls of incorporating genetic test results into pre-emptive treatment strategies for patients in the preliminary stages of HF. Future work will need to be directed towards elucidating the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype-phenotype relationship. This future research should aim to further our ability to identify, diagnose, and treat disorders that cause HF and sudden cardiac death in young patients, as well as prioritize improving our ability to stratify the risk for these patients prior to the onset of the more severe consequences of their disease.
Collapse
Affiliation(s)
- Kyung Hee Kim
- Division of Cardiology, Incheon Sejong General Hospital, Incheon, Korea.
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
114
|
Kolluri N, Elwazir MY, Rosenbaum AN, Maklady FA, AbouEzzeddine OF, Kapa S, Blauwet LA, Chareonthaitawee P, McBane RD, Bois JP. Effect of Corticosteroid Therapy in Patients With Cardiac Sarcoidosis on Frequency of Venous Thromboembolism. Am J Cardiol 2021; 149:112-118. [PMID: 33757783 DOI: 10.1016/j.amjcard.2021.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 01/30/2023]
Abstract
Sarcoidosis is a multisystem inflammatory condition with occasional cardiac involvement (CS), which may be associated with risk of venous thromboembolism (VTE). As data on VTE in CS are sparse and corticosteroid therapy has not been previously examined, we aim to determine the association between CS, corticosteroid treatment for CS, and VTE. Patients referred to our institution with concern for sarcoidosis and underwent a positron emission tomography (PET) scan were retrospectively assessed. Chi-squared and multivariate regression analyses were conducted to determine the association between a diagnosis of sarcoidosis, CS, corticosteroid use, and VTE events. Six hundred and forty nine patients were split into 3 categories: 235 with no sarcoidosis (NS), 91 with extra-cardiac sarcoidosis only (ECS), and 323 with CS (isolated CS and/or CS with extra cardiac sarcoid). Thirty nine CS, 7 ECS, and 9 NS patients developed PE while 44 CS, 3 ECS, and 18 NS patients developed DVT. On multivariate regression, neither CS nor ECS was an independent risk factor for VTE (p >0.05) but corticosteroid use was independently associated with VTE (HR 3.06, p = 0.007 for PE, HR 6.21, p <0.0001 for DVT). On logistic regression analysis, corticosteroid dose was found to be independently associated with both PE (p = 0.001) and DVT (p = 0.007). Optimal threshold for defining VTE risk with corticosteroid therapy was a prednisone-equivalent dose of 17.5 mg. In conclusion, contrary to previous studies, this current study found that neither sarcoidosis nor CS is an independent risk factor for VTE. Rather, corticosteroid therapy was associated with an increased risk of VTE.
Collapse
|
115
|
Histopathological changes of myocytes in restrictive cardiomyopathy. Med Mol Morphol 2021; 54:289-295. [PMID: 34057638 DOI: 10.1007/s00795-021-00293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Restrictive cardiomyopathy (RCM) is a rare primary myocardial disease, and its pathological features are yet to be determined. Restrictive cardiomyopathy with MHY7 mutation was diagnosed in a 65-year-old Japanese woman. Electron microscopy of a myocardial biopsy revealed electron-dense materials resulting from focal myocyte degeneration and necrosis as well as tubular structures and pseudo-inclusion bodies in some nuclei. These features may be associated with the pathogenesis of RCM.
Collapse
|
116
|
Seguret M, Vermersch E, Jouve C, Hulot JS. Cardiac Organoids to Model and Heal Heart Failure and Cardiomyopathies. Biomedicines 2021; 9:563. [PMID: 34069816 PMCID: PMC8157277 DOI: 10.3390/biomedicines9050563] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiac tissue engineering aims at creating contractile structures that can optimally reproduce the features of human cardiac tissue. These constructs are becoming valuable tools to model some of the cardiac functions, to set preclinical platforms for drug testing, or to alternatively be used as therapies for cardiac repair approaches. Most of the recent developments in cardiac tissue engineering have been made possible by important advances regarding the efficient generation of cardiac cells from pluripotent stem cells and the use of novel biomaterials and microfabrication methods. Different combinations of cells, biomaterials, scaffolds, and geometries are however possible, which results in different types of structures with gradual complexities and abilities to mimic the native cardiac tissue. Here, we intend to cover key aspects of tissue engineering applied to cardiology and the consequent development of cardiac organoids. This review presents various facets of the construction of human cardiac 3D constructs, from the choice of the components to their patterning, the final geometry of generated tissues, and the subsequent readouts and applications to model and treat cardiac diseases.
Collapse
Affiliation(s)
- Magali Seguret
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Eva Vermersch
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Charlène Jouve
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Jean-Sébastien Hulot
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
- CIC1418 and DMU CARTE, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| |
Collapse
|
117
|
Bădilă E, Lungu II, Grumezescu AM, Scafa Udriște A. Diagnosis of Cardiac Abnormalities in Muscular Dystrophies. ACTA ACUST UNITED AC 2021; 57:medicina57050488. [PMID: 34066119 PMCID: PMC8151418 DOI: 10.3390/medicina57050488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023]
Abstract
Muscular disorders are mainly characterized by progressive skeletal muscle weakness. There are several aspects that can be monitored, which are used to differentiate between the types of muscular disorders, ranging from the targeted muscle up to the mutated gene. An aspect that holds critical importance when managing muscular dystrophies is that most of them exhibit cardiac abnormalities. Therefore, cardiac imaging is an essential part of muscular disorder monitoring and management. In the first section of the review, several cardiac abnormalities are introduced; afterward, different muscular dystrophies' pathogenesis is presented. Not all muscular dystrophies necessarily present cardiac involvement; however, the ones that do are linked with the cardiac abnormalities described in the first section. Moreover, studies from the last 3 years on muscular disorders are presented alongside imaging techniques used to determine cardiac abnormalities.
Collapse
Affiliation(s)
- Elisabeta Bădilă
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.B.); (A.S.U.)
- Internal Medicine Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Iulia Ioana Lungu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
- Correspondence: ; Tel.: +40-21-402-39-97
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Scafa Udriște
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.B.); (A.S.U.)
- Cardiology Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
118
|
Hypertrophic Cardiomyopathy and Primary Restrictive Cardiomyopathy: Similarities, Differences and Phenocopies. J Clin Med 2021; 10:jcm10091954. [PMID: 34062949 PMCID: PMC8125617 DOI: 10.3390/jcm10091954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) and primary restrictive cardiomyopathy (RCM) have a similar genetic background as they are both caused mainly by variants in sarcomeric genes. These “sarcomeric cardiomyopathies” also share diastolic dysfunction as the prevalent pathophysiological mechanism. Starting from the observation that patients with HCM and primary RCM may coexist in the same family, a characteristic pathophysiological profile of HCM with restrictive physiology has been recently described and supports the hypothesis that familiar forms of primary RCM may represent a part of the phenotypic spectrum of HCM rather than a different genetic cardiomyopathy. To further complicate this scenario some infiltrative (amyloidosis) and storage diseases (Fabry disease and glycogen storage diseases) may show either a hypertrophic or restrictive phenotype according to left ventricular wall thickness and filling pattern. Establishing a correct etiological diagnosis among HCM, primary RCM, and hypertrophic or restrictive phenocopies is of paramount importance for cascade family screening and therapy.
Collapse
|
119
|
Xu F, Chen Y, Tillman KA, Cui Y, Williams RW, Bhattacharya SK, Lu L, Sun Y. Characterizing modifier genes of cardiac fibrosis phenotype in hypertrophic cardiomyopathy. Int J Cardiol 2021; 330:135-141. [PMID: 33529666 PMCID: PMC8105878 DOI: 10.1016/j.ijcard.2021.01.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Clinical phenotypes of hypertrophic cardiomyopathy (HCM) vary greatly even among patients with the same gene mutations. This variability is largely regulated by unidentified modifier loci. The purpose of the study is to identify modifier genes for cardiac fibrosis-a major phenotype of HCM-using the BXD family, a murine cohort. METHODS The relative severity of cardiac fibrosis was estimated by quantitation of cardiac collagen volume fraction (CCVF) across 66 members of the BXD family. Quantitative trait locus (QTL) mapping for cardiac fibrosis was done using GeneNetwork. Candidate modifier loci and genes associated with fibrosis were prioritized based on an explicit scoring system. Networks of correlation between fibrosis and cardiac transcriptomes were evaluated to generate causal models of disease susceptibility. RESULTS CCVF levels varied greatly within this family. Interval mapping identified a significant CCVF-related QTL on chromosome (Chr) 2 in males, and a significant QTL on Chr 4 Mb in females. The scoring system highlighted two strong candidate genes in the Chr 2 locus-Nek6 and Nr6a1. Both genes are highly expressed in the heart. Cardiac Nek6 mRNA levels are significantly correlated with CCVF. Nipsnap3b and Fktn are lead candidate genes for the Chr 4 locus, and both are also highly expressed in heart. Cardiac Nipsnap3b gene expression correlates well with CCVF. CONCLUSION Our study demonstrated that candidate modifier genes of cardiac fibrosis phenotype in HCM are different in males and females. Nek6 and Nr6a1 are strong candidates in males, while Nipsnap3b and Fktn are top candidates in females.
Collapse
Affiliation(s)
- Fuyi Xu
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Yuanjian Chen
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Kaitlin A Tillman
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Yan Cui
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Robert W Williams
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Syamal K Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Lu Lu
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| | - Yao Sun
- Division of Cardiovascular Diseases, Department of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| |
Collapse
|
120
|
Tsuru H, Ishida H, Narita J, Ishii R, Suginobe H, Ishii Y, Wang R, Kogaki S, Taira M, Ueno T, Miyashita Y, Kioka H, Asano Y, Sawa Y, Ozono K. Cardiac Fibroblasts Play Pathogenic Roles in Idiopathic Restrictive Cardiomyopathy. Circ J 2021; 85:677-686. [PMID: 33583869 DOI: 10.1253/circj.cj-20-1008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Restrictive cardiomyopathy (RCM) is characterized by impaired ventricular relaxation. Although several mutations were reported in some patients, no mutations were identified in cardiomyocyte expressing genes of other patients, indicating that pathological mechanisms underlying RCM could not be determined by cardiomyocytes only. Cardiac fibroblasts (CFs) are a major cell population in the heart; however, the pathological roles of CFs in cardiomyopathy are not fully understood. METHODS AND RESULTS This study established 4 primary culture lines of CFs from RCM patients and analyzed their cellular physiology, the effects on the contraction and relaxation ability of healthy cardiomyocytes under co-culture with CFs, and RNA sequencing. Three of four patients hadTNNI3mutations. There were no significant alterations in cell proliferation, apoptosis, migration, activation, and attachment. However, when CFs from RCM patients were co-cultured with healthy cardiomyocytes, the relaxation velocity of cardiomyocytes was significantly impaired both under direct and indirect co-culture conditions. RNA sequencing revealed that gene expression profiles of CFs in RCM were clearly distinct from healthy CFs. The differential expression gene analysis identified that several extracellular matrix components and cytokine expressions were dysregulated in CFs from RCM patients. CONCLUSIONS The comprehensive gene expression patterns were altered in RCM-derived CFs, which deteriorated the relaxation ability of cardiomyocytes. The specific changes in extracellular matrix composition and cytokine secretion from CFs might affect pathological behavior of cardiomyocytes in RCM.
Collapse
Affiliation(s)
- Hirofumi Tsuru
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Hidekazu Ishida
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Jun Narita
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Ryo Ishii
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Hidehiro Suginobe
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Yoichiro Ishii
- Department of Pediatric Cardiology, Osaka Women's and Children's Hospital
| | - Renjie Wang
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Shigetoyo Kogaki
- Department of Pediatrics, Osaka University Graduate School of Medicine
- Department of Pediatrics and Neonatology, Osaka General Medical Center
| | - Masaki Taira
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Yohei Miyashita
- Department of Cardiology, Osaka University Graduate School of Medicine
| | - Hidetaka Kioka
- Department of Cardiology, Osaka University Graduate School of Medicine
| | - Yoshihiro Asano
- Department of Cardiology, Osaka University Graduate School of Medicine
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine
| |
Collapse
|
121
|
Steding-Ehrenborg K, Hedström E, Carlsson M, Maksuti E, Broomé M, Ugander M, Magnusson M, Smith JG, Arheden H. Hydraulic force is a novel mechanism of diastolic function that may contribute to decreased diastolic filling in HFpEF and facilitate filling in HFrEF. J Appl Physiol (1985) 2021; 130:993-1000. [PMID: 33539261 DOI: 10.1152/japplphysiol.00890.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A hydraulic force generated by blood moving the atrioventricular plane is a novel mechanism of diastolic function. The direction and magnitude of the force is dependent on the geometrical relationship between the left atrium and ventricle and is measured as the short-axis atrioventricular area difference (AVAD). In short, the net hydraulic force acts from a larger area toward a smaller one. It is currently unknown how cardiac remodeling affects this mechanism. The aim of the study was therefore to investigate this diastolic mechanism in patients with pathological or physiological remodeling. Seventy subjects [n = 11 heart failure with preserved ejection fraction (HFpEF), n = 10 heart failure with reduced ejection fraction (HFrEF), n = 7 signs of isolated diastolic dysfunction, n = 10 hypertrophic cardiomyopathy, n = 10 cardiac amyloidosis, n = 18 triathletes, and n = 14 controls] were included. Subjects underwent cardiac MR, and short-axis images of the left atrium and ventricle were delineated. AVAD was calculated as ventricular area minus atrial area and used as an indicator of net hydraulic force. At the onset of diastole, AVAD in HFpEF was -9.2 cm2 (median) versus -4.4 cm2 in controls, P = 0.02. The net hydraulic force was directed toward the ventricle for both but was larger in HFpEF. HFrEF was the only group with a positive median value (11.6 cm2), and net hydraulic force was throughout diastole directed toward the atrium. The net hydraulic force may impede cardiac filling throughout diastole in HFpEF, worsening diastolic dysfunction. In contrast, it may work favorably in patients with dilated ventricles and aid ventricular filling.NEW & NOTEWORTHY It is a previously unrecognized physiological mechanism of the heart that diastolic filling occurs with the help of hydraulics. In patients with heart failure with preserved ejection fraction, atrial dilatation may cause the net hydraulic force to work against cardiac filling, thus further augmenting diastolic dysfunction. In contrast, it may work favorably in patients with dilated ventricles, as in heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Katarina Steding-Ehrenborg
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Erik Hedström
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden.,Department of Radiology, Skåne University Hospital, Lund, Sweden
| | - Marcus Carlsson
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Elira Maksuti
- Department of Physiology and Pharmacology, Anaesthesiology and Intensive Care, Karolinska Institute, Stockholm, Sweden
| | - Michael Broomé
- Department of Physiology and Pharmacology, Anaesthesiology and Intensive Care, Karolinska Institute, Stockholm, Sweden
| | - Martin Ugander
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institute, Stockholm, Sweden.,Kolling Institute, Royal North Shore Hospital, and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Martin Magnusson
- Department of Clinical Sciences Malmö, Cardiology, Lund University, Lund, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - J Gustav Smith
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences Lund, Cardiology, Lund University and Skåne University Hospital, Lund, Sweden.,Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
122
|
Disease Modeling and Disease Gene Discovery in Cardiomyopathies: A Molecular Study of Induced Pluripotent Stem Cell Generated Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22073311. [PMID: 33805011 PMCID: PMC8037452 DOI: 10.3390/ijms22073311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
The in vitro modeling of cardiac development and cardiomyopathies in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) provides opportunities to aid the discovery of genetic, molecular, and developmental changes that are causal to, or influence, cardiomyopathies and related diseases. To better understand the functional and disease modeling potential of iPSC-differentiated CMs and to provide a proof of principle for large, epidemiological-scale disease gene discovery approaches into cardiomyopathies, well-characterized CMs, generated from validated iPSCs of 12 individuals who belong to four sibships, and one of whom reported a major adverse cardiac event (MACE), were analyzed by genome-wide mRNA sequencing. The generated CMs expressed CM-specific genes and were highly concordant in their total expressed transcriptome across the 12 samples (correlation coefficient at 95% CI =0.92 ± 0.02). The functional annotation and enrichment analysis of the 2116 genes that were significantly upregulated in CMs suggest that generated CMs have a transcriptomic and functional profile of immature atrial-like CMs; however, the CMs-upregulated transcriptome also showed high overlap and significant enrichment in primary cardiomyocyte (p-value = 4.36 × 10−9), primary heart tissue (p-value = 1.37 × 10−41) and cardiomyopathy (p-value = 1.13 × 10−21) associated gene sets. Modeling the effect of MACE in the generated CMs-upregulated transcriptome identified gene expression phenotypes consistent with the predisposition of the MACE-affected sibship to arrhythmia, prothrombotic, and atherosclerosis risk.
Collapse
|
123
|
Stege NM, de Boer RA, van den Berg MP, Silljé HHW. The Time Has Come to Explore Plasma Biomarkers in Genetic Cardiomyopathies. Int J Mol Sci 2021; 22:2955. [PMID: 33799487 PMCID: PMC7998409 DOI: 10.3390/ijms22062955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
For patients with hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) or arrhythmogenic cardiomyopathy (ACM), screening for pathogenic variants has become standard clinical practice. Genetic cascade screening also allows the identification of relatives that carry the same mutation as the proband, but disease onset and severity in mutation carriers often remains uncertain. Early detection of disease onset may allow timely treatment before irreversible changes are present. Although plasma biomarkers may aid in the prediction of disease onset, monitoring relies predominantly on identifying early clinical symptoms, on imaging techniques like echocardiography (Echo) and cardiac magnetic resonance imaging (CMR), and on (ambulatory) electrocardiography (electrocardiograms (ECGs)). In contrast to most other cardiac diseases, which are explained by a combination of risk factors and comorbidities, genetic cardiomyopathies have a clear primary genetically defined cardiac background. Cardiomyopathy cohorts could therefore have excellent value in biomarker studies and in distinguishing biomarkers related to the primary cardiac disease from those related to extracardiac, secondary organ dysfunction. Despite this advantage, biomarker investigations in cardiomyopathies are still limited, most likely due to the limited number of carriers in the past. Here, we discuss not only the potential use of established plasma biomarkers, including natriuretic peptides and troponins, but also the use of novel biomarkers, such as cardiac autoantibodies in genetic cardiomyopathy, and discuss how we can gauge biomarker studies in cardiomyopathy cohorts for heart failure at large.
Collapse
Affiliation(s)
| | | | | | - Herman H. W. Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, AB43, 9713 GZ Groningen, The Netherlands; (N.M.S.); (R.A.d.B.); (M.P.v.d.B.)
| |
Collapse
|
124
|
Abstract
Purpose of Review The purpose of this review is to summarize the application of cardiac magnetic resonance (CMR) in the diagnostic and prognostic evaluation of patients with heart failure (HF). Recent Findings CMR is an important non-invasive imaging modality in the assessment of ventricular volumes and function and in the analysis of myocardial tissue characteristics. The information derived from CMR provides a comprehensive evaluation of HF. Its unique ability of tissue characterization not only helps to reveal the underlying etiologies of HF but also offers incremental prognostic information. Summary CMR is a useful non-invasive tool for the diagnosis and assessment of prognosis in patients suffering from heart failure.
Collapse
Affiliation(s)
- Chuanfen Liu
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
| | - Victor A. Ferrari
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
| | - Yuchi Han
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
125
|
Pasqua T, Rocca C, Giglio A, Angelone T. Cardiometabolism as an Interlocking Puzzle between the Healthy and Diseased Heart: New Frontiers in Therapeutic Applications. J Clin Med 2021; 10:721. [PMID: 33673114 PMCID: PMC7918460 DOI: 10.3390/jcm10040721] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac metabolism represents a crucial and essential connecting bridge between the healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with regard to the energy substrate utilization, under physiological conditions mainly draws energy by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of the present review is to summarize the main metabolic changes detectable in the heart under acute and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis, cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and function of the heart; furthermore, it can be considered a promising goal for future pharmacological agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
| | - Anita Giglio
- Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
| |
Collapse
|
126
|
Aitken W, Tsang D, Chaparro S, Kir D. Cardiac sarcoidosis masquerading as ventricular tachycardia storm: a challenging diagnosis. BMJ Case Rep 2021; 14:14/2/e237530. [PMID: 33563689 PMCID: PMC7875304 DOI: 10.1136/bcr-2020-237530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 67-year-old African-American woman with remote history of complete heart block (s/p pacemaker 3 years ago) and recent onset of ventricular tachycardia (VT) (s/p VT ablation and cardiac resynchronisation therapy defibrillator upgrade 3 months ago) presented to the hospital with VT storm. Workup showed newly reduced left ventricular ejection fraction with global hypokinesis (20%) and restrictive physiology. Positive technetium pyrophosphate scan was suspicious for TTR amyloid while serological workup revealed a monoclonal gammopathy. Cardiac MRI was contraindicated given remote brain aneurysm clip. Given clinical suspicion for cardiac sarcoidosis and divergent non-invasive workup, endomyocardial biopsy was performed which showed non-necrotising granulomas consistent with cardiac sarcoidosis. She was started on steroids with clinical improvement. Cardiac sarcoidosis is a challenging clinical diagnosis, particularly in patients without extracardiac manifestations. This case highlights the importance of a detailed and thorough workup of non-ischaemic cardiomyopathy and being cognizant of infiltrative disease as it can change patient management and outcomes.
Collapse
Affiliation(s)
- William Aitken
- Department of Cardiology, Jackson Memorial Hospital/University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Darren Tsang
- Department of Cardiology, Jackson Memorial Hospital/University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sandra Chaparro
- Department of Cardiology, Jackson Memorial Hospital/University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Devika Kir
- Department of Cardiology, Jackson Memorial Hospital/University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
127
|
Sascău R, Anghel L, Clement A, Bostan M, Radu R, Stătescu C. The Importance of Multimodality Imaging in the Diagnosis and Management of Patients with Infiltrative Cardiomyopathies: An Update. Diagnostics (Basel) 2021; 11:diagnostics11020256. [PMID: 33562254 PMCID: PMC7915769 DOI: 10.3390/diagnostics11020256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Infiltrative cardiomyopathies (ICMs) comprise a broad spectrum of inherited and acquired conditions (mainly amyloidosis, sarcoidosis, and hemochromatosis), where the progressive buildup of abnormal substances within the myocardium results in left ventricular hypertrophy and manifests as restrictive physiology. Noninvasive multimodality imaging has gradually eliminated endomyocardial biopsy from the diagnostic workup of infiltrative cardiac deposition diseases. However, even with modern imaging techniques’ widespread availability, these pathologies persist in being largely under- or misdiagnosed. Considering the advent of novel, revolutionary pharmacotherapies for cardiac amyloidosis, the archetypal example of ICM, a standardized diagnostic approach is warranted. Therefore, this review aims to emphasize the importance of contemporary cardiac imaging in identifying specific ICM and improving outcomes via the prompt initiation of a targeted treatment.
Collapse
Affiliation(s)
- Radu Sascău
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (R.S.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iași, Romania
| | - Larisa Anghel
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (R.S.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iași, Romania
- Correspondence: (L.A.); (A.C.); (M.B.); Tel.: +40-0232-211834 (L.A.); +40-0232-211834 (A.C.); +40-0232-211834 (M.B.)
| | - Alexandra Clement
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iași, Romania
- Correspondence: (L.A.); (A.C.); (M.B.); Tel.: +40-0232-211834 (L.A.); +40-0232-211834 (A.C.); +40-0232-211834 (M.B.)
| | - Mădălina Bostan
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (R.S.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iași, Romania
- Correspondence: (L.A.); (A.C.); (M.B.); Tel.: +40-0232-211834 (L.A.); +40-0232-211834 (A.C.); +40-0232-211834 (M.B.)
| | - Rodica Radu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (R.S.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iași, Romania
| | - Cristian Stătescu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (R.S.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iași, Romania
| |
Collapse
|
128
|
Slomka PJ, Moody JB, Miller RJH, Renaud JM, Ficaro EP, Garcia EV. Quantitative clinical nuclear cardiology, part 2: Evolving/emerging applications. J Nucl Cardiol 2021; 28:115-127. [PMID: 33067750 DOI: 10.1007/s12350-020-02337-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Quantitative analysis has been applied extensively to image processing and interpretation in nuclear cardiology to improve disease diagnosis and risk stratification. This is Part 2 of a two-part continuing medical education article, which will review the potential clinical role for emerging quantitative analysis tools. The article will describe advanced methods for quantifying dyssynchrony, ventricular function and perfusion, and hybrid imaging analysis. This article discusses evolving methods to measure myocardial blood flow with positron emission tomography and single-photon emission computed tomography. Novel quantitative assessments of myocardial viability, microcalcification and in patients with cardiac sarcoidosis and cardiac amyloidosis will also be described. Lastly, we will review the potential role for artificial intelligence to improve image analysis, disease diagnosis, and risk prediction. The potential clinical role for all these novel techniques will be highlighted as well as methods to optimize their implementation.
Collapse
Affiliation(s)
- Piotr J Slomka
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | - Robert J H Miller
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| | | | - Edward P Ficaro
- INVIA Medical Imaging Solutions, Ann Arbor, MI, USA
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ernest V Garcia
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
129
|
Yogasundaram H, Alhumaid W, Dzwiniel T, Christian S, Oudit GY. Cardiomyopathies and Genetic Testing in Heart Failure: Role in Defining Phenotype-Targeted Approaches and Management. Can J Cardiol 2021; 37:547-559. [PMID: 33493662 DOI: 10.1016/j.cjca.2021.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiomyopathies represent an important cause of heart failure, often affecting young individuals, and have important implications for relatives. Genetic testing for cardiomyopathies is an established care pathway in contemporary cardiology practice. The primary cardiomyopathies where genetic testing is indicated are hypertrophic, dilated, arrhythmogenic, and restrictive cardiomyopathies, with left ventricular noncompaction as a variant phenotype. Early identification and initiation of therapies in patients with inherited cardiomyopathies allow for targeting asymptomatic and presymptomatic patients in stages A and B of the American College of Cardiology/American Heart Association classification of heart failure. The current approach for genetic testing uses gene panel-based testing with the ability to extend to whole-exome and whole-genome sequencing in rare instances. The central components of genetic testing include defining the genetic basis of the diagnosis, providing prognostic information, and the ability to screen and risk-stratify relatives. Genetic testing for cardiomyopathies should be coordinated by a multidisciplinary team including adult and pediatric cardiologists, genetic counsellors, and geneticists, with access to expertise in cardiac imaging and electrophysiology. A pragmatic approach for addressing genetic variants of uncertain significance is important. In this review, we highlight the indications for genetic testing in the various cardiomyopathies, the value of early diagnosis and treatment, family screening, and the care process involved in genetic counselling and testing.
Collapse
Affiliation(s)
- Haran Yogasundaram
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Waleed Alhumaid
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Tara Dzwiniel
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Christian
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
130
|
Fonseca AC, Almeida AG, Santos MO, Ferro JM. Neurological complications of cardiomyopathies. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:91-109. [PMID: 33632460 DOI: 10.1016/b978-0-12-819814-8.00001-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
There is a multifaceted relationship between the cardiomyopathies and a wide spectrum of neurological disorders. Severe acute neurological events, such as a status epilepticus and aneurysmal subarachnoid hemorrhage, may result in an acute cardiomyopathy the likes of Takotsubo cardiomyopathy. Conversely, the cardiomyopathies may result in a wide array of neurological disorders. Diagnosis of a cardiomyopathy may have already been established at the time of the index neurological event, or the neurological event may have prompted subsequent cardiac investigations, which ultimately lead to the diagnosis of a cardiomyopathy. The cardiomyopathies belong to one of the many phenotypes of complex genetic diseases or syndromes, which may also involve the central or peripheral nervous systems. A number of exogenous agents or risk factors such as diphtheria, alcohol, and several viruses may result in secondary cardiomyopathies accompanied by several neurological manifestations. A variety of neuromuscular disorders, such as myotonic dystrophy or amyloidosis, may demonstrate cardiac involvement during their clinical course. Furthermore, a number of genetic cardiomyopathies phenotypically incorporate during their clinical evolution, a gamut of neurological manifestations, usually neuromuscular in nature. Likewise, neurological complications may be the result of diagnostic procedures or medications for the cardiomyopathies and vice versa. Neurological manifestations of the cardiomyopathies are broad and include, among others, transient ischemic attacks, ischemic strokes, intracranial hemorrhages, syncope, muscle weakness and atrophy, myotonia, cramps, ataxia, seizures, intellectual developmental disorder, cognitive impairment, dementia, oculomotor palsies, deafness, retinal involvement, and headaches.
Collapse
Affiliation(s)
- Ana Catarina Fonseca
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana G Almeida
- Cardiology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel Oliveira Santos
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - José M Ferro
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
131
|
Postigo A, Martínez-Sellés M. Sex Influence on Heart Failure Prognosis. Front Cardiovasc Med 2020; 7:616273. [PMID: 33409293 PMCID: PMC7779486 DOI: 10.3389/fcvm.2020.616273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023] Open
Abstract
Heart failure (HF) affects 1-2% of the population in developed countries and ~50% of patients living with it are women. Compared to men, women are more likely to be older and suffer hypertension, valvular heart disease, and non-ischemic cardiomyopathy. Since the number of women included in prospective HF studies has been low, much information regarding HF in women has been inferred from clinical trials observations in men and data obtained from registries. Several relevant sex-related differences in HF patients have been described, including biological mechanisms, age, etiology, precipitating factors, comorbidities, left ventricular ejection fraction, treatment effects, and prognosis. Women have greater clinical severity of HF, with more symptoms and worse functional class. However, females with HF have better prognosis compared to males. This survival advantage is particularly impressive given that women are less likely to receive guideline-proven therapies for HF than men. The reasons for this better prognosis are unknown but prior pregnancies may play a role. In this review article we aim to describe sex-related differences in HF and how these differences might explain why women with HF can expect to survive longer than men.
Collapse
Affiliation(s)
- Andrea Postigo
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER-CV, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Manuel Martínez-Sellés
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER-CV, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea, Madrid, Spain
| |
Collapse
|
132
|
Sinagra G, Carriere C, Clemenza F, Minà C, Bandera F, Zaffalon D, Gugliandolo P, Merlo M, Guazzi M, Agostoni P. Risk stratification in cardiomyopathy. Eur J Prev Cardiol 2020; 27:52-58. [PMID: 33238741 PMCID: PMC7691630 DOI: 10.1177/2047487320961898] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/02/2020] [Indexed: 01/26/2023]
Abstract
Prognostic stratification of cardiomyopathies represents a cornerstone for the appropriate management of patients and is focused mainly on arrhythmic events and heart failure. Cardiopulmonary exercise testing provides additional prognostic information, particularly in the setting of heart failure. Cardiopulmonary exercise testing data, integrated in scores such as the Metabolism Exercise Cardiac Kidney Index score have been shown to improve the risk stratification of these patients. Cardiopulmonary exercise testing has been analysed as a potential supplier of prognostic parameters in the context of hypertrophic cardiomyopathy, for which it has been shown that a reduced oxygen consumption peak, an increased ventilation/carbon dioxide production slope and chronotropic incompetence correlate with a worse prognosis. To a lesser extent, in dilated cardiomyopathy, it has been shown that the percentage of oxygen consumption peak, not the pure value, and the ventilation/carbon dioxide production slope are associated with a greater cardiovascular risk. Few data are available about other cardiomyopathies (arrhythmogenic and restrictive). Cardiomyopathy patients should be early and routinely referred to heart failure advanced centres in order to perform a comprehensive risk stratification which should include a cardiopulmonary exercise test, with variables and cut-offs shown to improve their risk stratification.
Collapse
Affiliation(s)
- Gianfranco Sinagra
- Cardiothoracovascular Department of Trieste, University of
Trieste, Italy
| | - Cosimo Carriere
- Cardiothoracovascular Department of Trieste, University of
Trieste, Italy
| | - Francesco Clemenza
- Department for the Treatment and Study of Cardiothoracic
Diseases and Cardiothoracic Transplantation, IRCCS–ISMETT, Italy
| | - Chiara Minà
- Department for the Treatment and Study of Cardiothoracic
Diseases and Cardiothoracic Transplantation, IRCCS–ISMETT, Italy
| | | | - Denise Zaffalon
- Cardiothoracovascular Department of Trieste, University of
Trieste, Italy
| | | | - Marco Merlo
- Cardiothoracovascular Department of Trieste, University of
Trieste, Italy
| | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Italy
- Department of Clinical Sciences and Community Medicine,
University of Milan, Italy
| |
Collapse
|
133
|
Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, Lam CSP, Lancellotti P, Melenovsky V, Morris DA, Nagel E, Pieske-Kraigher E, Ponikowski P, Solomon SD, Vasan RS, Rutten FH, Voors AA, Ruschitzka F, Paulus WJ, Seferovic P, Filippatos G. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 2020; 40:3297-3317. [PMID: 31504452 DOI: 10.1093/eurheartj/ehz641] [Citation(s) in RCA: 976] [Impact Index Per Article: 195.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/30/2018] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Making a firm diagnosis of chronic heart failure with preserved ejection fraction (HFpEF) remains a challenge. We recommend a new stepwise diagnostic process, the 'HFA-PEFF diagnostic algorithm'. Step 1 (P=Pre-test assessment) is typically performed in the ambulatory setting and includes assessment for HF symptoms and signs, typical clinical demographics (obesity, hypertension, diabetes mellitus, elderly, atrial fibrillation), and diagnostic laboratory tests, electrocardiogram, and echocardiography. In the absence of overt non-cardiac causes of breathlessness, HFpEF can be suspected if there is a normal left ventricular ejection fraction, no significant heart valve disease or cardiac ischaemia, and at least one typical risk factor. Elevated natriuretic peptides support, but normal levels do not exclude a diagnosis of HFpEF. The second step (E: Echocardiography and Natriuretic Peptide Score) requires comprehensive echocardiography and is typically performed by a cardiologist. Measures include mitral annular early diastolic velocity (e'), left ventricular (LV) filling pressure estimated using E/e', left atrial volume index, LV mass index, LV relative wall thickness, tricuspid regurgitation velocity, LV global longitudinal systolic strain, and serum natriuretic peptide levels. Major (2 points) and Minor (1 point) criteria were defined from these measures. A score ≥5 points implies definite HFpEF; ≤1 point makes HFpEF unlikely. An intermediate score (2-4 points) implies diagnostic uncertainty, in which case Step 3 (F1: Functional testing) is recommended with echocardiographic or invasive haemodynamic exercise stress tests. Step 4 (F2: Final aetiology) is recommended to establish a possible specific cause of HFpEF or alternative explanations. Further research is needed for a better classification of HFpEF.
Collapse
Affiliation(s)
- Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Department of Internal Medicine and Cardiology, German Heart Institute, Berlin, Germany.,Berlin Institute of Health (BIH), Germany
| | - Carsten Tschöpe
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charite, Berlin, Germany
| | - Rudolf A de Boer
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands
| | | | - Stefan D Anker
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charite, Berlin, Germany.,Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), Germany
| | - Erwan Donal
- Cardiology and CIC, IT1414, CHU de Rennes LTSI, Université Rennes-1, INSERM 1099, Rennes, France
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany
| | - Michael Fu
- Section of Cardiology, Department of Medicine, Sahlgrenska University Hosptal/Ostra, Göteborg, Sweden
| | - Marco Guazzi
- Department of Biomedical Sciences for Health, University of Milan, IRCCS, Milan, Italy.,Department of Cardiology, IRCCS Policlinico, San Donato Milanese, Milan, Italy
| | - Carolyn S P Lam
- National Heart Centre, Singapore & Duke-National University of Singapore.,University Medical Centre Groningen, The Netherlands
| | - Patrizio Lancellotti
- Department of Cardiology, Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Vojtech Melenovsky
- Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Daniel A Morris
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt.,German Centre for Cardiovascular Research (DZHK), Partner Site Frankfurt, Germany
| | - Elisabeth Pieske-Kraigher
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum
| | | | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Frans H Rutten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adriaan A Voors
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Switzerland
| | - Walter J Paulus
- Department of Physiology and Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, The Netherlands
| | - Petar Seferovic
- University of Belgrade School of Medicine, Belgrade University Medical Center, Serbia
| | - Gerasimos Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens Medical School; University Hospital "Attikon", Athens, Greece.,University of Cyprus, School of Medicine, Nicosia, Cyprus
| |
Collapse
|
134
|
Ding Y, Bu H, Xu X. Modeling Inherited Cardiomyopathies in Adult Zebrafish for Precision Medicine. Front Physiol 2020; 11:599244. [PMID: 33329049 PMCID: PMC7717946 DOI: 10.3389/fphys.2020.599244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiomyopathies are a highly heterogeneous group of heart muscle disorders. More than 100 causative genes have been linked to various cardiomyopathies, which explain about half of familial cardiomyopathy cases. More than a dozen candidate therapeutic signaling pathways have been identified; however, precision medicine is not being used to treat the various types of cardiomyopathy because knowledge is lacking for how to tailor treatment plans for different genetic causes. Adult zebrafish (Danio rerio) have a higher throughout than rodents and are an emerging vertebrate model for studying cardiomyopathy. Herein, we review progress in the past decade that has proven the feasibility of this simple vertebrate for modeling inherited cardiomyopathies of distinct etiology, identifying effective therapeutic strategies for a particular type of cardiomyopathy, and discovering new cardiomyopathy genes or new therapeutic strategies via a forward genetic approach. On the basis of this progress, we discuss future research that would benefit from integrating this emerging model, including discovery of remaining causative genes and development of genotype-based therapies. Studies using this efficient vertebrate model are anticipated to significantly accelerate the implementation of precision medicine for inherited cardiomyopathies.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
135
|
A comprehensive guide to genetic variants and post-translational modifications of cardiac troponin C. J Muscle Res Cell Motil 2020; 42:323-342. [PMID: 33179204 DOI: 10.1007/s10974-020-09592-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Familial cardiomyopathy is an inherited disease that affects the structure and function of heart muscle and has an extreme range of phenotypes. Among the millions of affected individuals, patients with hypertrophic (HCM), dilated (DCM), or left ventricular non-compaction (LVNC) cardiomyopathy can experience morphologic changes of the heart which lead to sudden death in the most detrimental cases. TNNC1, the gene that codes for cardiac troponin C (cTnC), is a sarcomere gene associated with cardiomyopathies in which probands exhibit young age of presentation and high death, transplant or ventricular fibrillation events relative to TNNT2 and TNNI3 probands. Using GnomAD, ClinVar, UniProt and PhosphoSitePlus databases and published literature, an extensive list to date of identified genetic variants in TNNC1 and post-translational modifications (PTMs) in cTnC was compiled. Additionally, a recent cryo-EM structure of the cardiac thin filament regulatory unit was used to localize each functionally studied amino acid variant and each PTM (acetylation, glycation, s-nitrosylation, phosphorylation) in the structure of cTnC. TNNC1 has a large number of variants (> 100) relative to other genes of the same transcript size. Surprisingly, the mapped variant amino acids and PTMs are distributed throughout the cTnC structure. While many cardiomyopathy-associated variants are localized in α-helical regions of cTnC, this was not statistically significant χ2 (p = 0.72). Exploring the variants in TNNC1 and PTMs of cTnC in the contexts of cardiomyopathy association, physiological modulation and potential non-canonical roles provides insights into the normal function of cTnC along with the many facets of TNNC1 as a cardiomyopathic gene.
Collapse
|
136
|
Leiner T, Bogaert J, Friedrich MG, Mohiaddin R, Muthurangu V, Myerson S, Powell AJ, Raman SV, Pennell DJ. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020; 22:76. [PMID: 33161900 PMCID: PMC7649060 DOI: 10.1186/s12968-020-00682-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
The Society for Cardiovascular Magnetic Resonance (SCMR) last published its comprehensive expert panel report of clinical indications for CMR in 2004. This new Consensus Panel report brings those indications up to date for 2020 and includes the very substantial increase in scanning techniques, clinical applicability and adoption of CMR worldwide. We have used a nearly identical grading system for indications as in 2004 to ensure comparability with the previous report but have added the presence of randomized controlled trials as evidence for level 1 indications. In addition to the text, tables of the consensus indication levels are included for rapid assimilation and illustrative figures of some key techniques are provided.
Collapse
Affiliation(s)
- Tim Leiner
- Department of Radiology, E.01.132, Utrecht University Medical Center, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands.
| | - Jan Bogaert
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Catholic University Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Matthias G Friedrich
- Departments of Medicine and Diagnostic Radiology, McGill University, 1001 Decarie Blvd., Montreal, QC, H4A 3J1, Canada
| | - Raad Mohiaddin
- Department of Radiology, Royal Brompton Hospital, Sydney Street, Chelsea, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Vivek Muthurangu
- Centre for Cardiovascular Imaging, Science & Great Ormond Street Hospital for Children, UCL Institute of Cardiovascular, Great Ormond Street, London, WC1N 3JH, UK
| | - Saul Myerson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Farley, 2nd Floor, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Farley, 2nd Floor, Boston, MA, 02115, USA
| | - Subha V Raman
- Krannert Institute of Cardiology, Indiana University School of Medicine, 340 West 10th Street, Fairbanks Hall, Suite 6200, Indianapolis, IN, 46202-3082, USA
| | - Dudley J Pennell
- Royal Brompton Hospital, Sydney Street, Chelsea, London, SW3 6NP, UK
- Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
137
|
Masri SC, Bellumkonda L. Sarcoid Heart Disease: an Update on Diagnosis and Management. Curr Cardiol Rep 2020; 22:177. [PMID: 33119794 DOI: 10.1007/s11886-020-01429-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on cardiac sarcoidosis (CS) and to discuss the current recommendations and progress in diagnosis and management of this disease. Sarcoidosis is a multisystem granulomatous disease of unknown etiology. Cardiac involvement is seen in at least 25% and is associated with poor prognosis. Manifestations of cardiac sarcoidosis (CS) can vary from presence of silent myocardial granulomas, which may lead to sudden death, to symptomatic conduction abnormalities, ventricular arrhythmias, and heart failure. RECENT FINDINGS We discuss newer imaging modalities such as cardiac magnetic resonance imaging and positron emission tomography in conjunction with clinical criteria increasingly used for diagnosing and prognosticating patients with CS. Immunosuppression (primarily corticosteroids) is recommended for treatment of CS; however, its efficacy has never been proven in prospective randomized studies. The role of imaging to guide the use of immunotherapy is unknown. Cardiac sarcoidosis continues to challenge clinicians due to its protean presentations, lack of diagnostic standards, and data for risk stratification and treatment. There is a need for prospective, randomized controlled trials to understand how best to diagnose and treat cardiac sarcoidosis.
Collapse
Affiliation(s)
- Sofia Carolina Masri
- Division of Cardiology, Department of Medicine, University of Wisconsin, Madison, WI, USA.
| | - Lavanya Bellumkonda
- Division of Cardiology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
138
|
Hammersley DJ, Jones RE, Mach L, Halliday BP, Prasad SK. Cardiovascular Magnetic Resonance in Heritable Cardiomyopathies. Heart Fail Clin 2020; 17:25-39. [PMID: 33220885 DOI: 10.1016/j.hfc.2020.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cardiovascular magnetic resonance represents the imaging modality of choice for the investigation of patients with heritable cardiomyopathies. The combination of gold-standard volumetric analysis with tissue characterization can deliver precise phenotypic evaluation of both cardiac morphology and the underlying myocardial substrate. Cardiovascular magnetic resonance additionally has an established role in risk-stratifying patients with heritable cardiomyopathy and an emerging role in guiding therapies. This article explores the application and utility of cardiovascular magnetic resonance techniques with specific focus on the major heritable cardiomyopathies.
Collapse
Affiliation(s)
- Daniel J Hammersley
- National Heart & Lung Institute, Imperial College, London SW3 6LY, UK; CMR Unit, The Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Richard E Jones
- National Heart & Lung Institute, Imperial College, London SW3 6LY, UK; CMR Unit, The Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Lukas Mach
- National Heart & Lung Institute, Imperial College, London SW3 6LY, UK; CMR Unit, The Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Brian P Halliday
- National Heart & Lung Institute, Imperial College, London SW3 6LY, UK; CMR Unit, The Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Sanjay K Prasad
- National Heart & Lung Institute, Imperial College, London SW3 6LY, UK; CMR Unit, The Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK.
| |
Collapse
|
139
|
Wong SW, Fogaren T. Supportive Care for Patients with Systemic Light Chain Amyloidosis. Hematol Oncol Clin North Am 2020; 34:1177-1191. [PMID: 33099432 DOI: 10.1016/j.hoc.2020.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Light chain amyloidosis is a disease in which clonal plasma cells produce toxic immunoglobulin light chains that form amyloid fibrils with deposition in organs, most commonly the heart and kidneys, but also the nervous system, gastrointestinal tract, and soft tissues. Treatment directed at the clonal cells eliminates light chain production and further deposition and may enable organ improvement and decrease the risk of organ failure. Supportive care manages the symptoms of organ involvement and the side effects of treatment. Supportive care also addresses the psychological and social issues that may arise in patients with light chain amyloidosis.
Collapse
Affiliation(s)
- Sandy W Wong
- Hematology/Blood and Marrow Transplantation, Comprehensive Amyloid Program, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Teresa Fogaren
- Division of Hematology/Oncology, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
140
|
Abstract
PURPOSE OF REVIEW Cardiomyopathies are rare in the pediatric population, but significantly impact on morbidity and mortality. The present review aims to provide an overview of cardiomyopathies in children and some practical guidelines for their prognostic stratification and management. RECENT FINDINGS Pediatric cardiomyopathies may present as isolated cardiac muscle disease or in the context of complex clinical syndromes. The etiologic characterization represents an important step in the diagnosis and treatment of cardiomyopathies because of its impact on prognosis and on therapeutic measures. Indeed, replacement therapy is nowadays widely available and changes the natural history of the disease. More complex is the management of isolated cardiomyopathies, which lack specific therapies, mainly aimed at symptomatic relief. In this context, heart transplantation shows excellent outcomes in children, but wait-list mortality is still very high. Device therapy for sudden cardiac death prevention and the use of mechanical assist devices are becoming more common in the clinical practice and may help to reduce mortality. SUMMARY Providing insight into pediatric cardiomyopathies classification helps in the prognostication and management of such diseases. Recent years witnessed a significant improvement in mortality, but future research is still needed to improve quality of life and life expectations in the pediatric population.
Collapse
|
141
|
Slomka PJ, Moody JB, Miller RJH, Renaud JM, Ficaro EP, Garcia EV. Quantitative clinical nuclear cardiology, part 2: Evolving/emerging applications. J Nucl Med 2020; 62:168-176. [PMID: 33067339 DOI: 10.2967/jnumed.120.242537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/28/2020] [Indexed: 01/15/2023] Open
Abstract
Quantitative analysis has been applied extensively to image processing and interpretation in nuclear cardiology to improve disease diagnosis and risk stratification. This is Part 2 of a two-part continuing medical education article, which will review the potential clinical role for emerging quantitative analysis tools. The article will describe advanced methods for quantifying dyssynchrony, ventricular function and perfusion, and hybrid imaging analysis. This article discusses evolving methods to measure myocardial blood flow with positron emission tomography and single-photon emission computed tomography. Novel quantitative assessments of myocardial viability, microcalcification and in patients with cardiac sarcoidosis and cardiac amyloidosis will also be described. Lastly, we will review the potential role for artificial intelligence to improve image analysis, disease diagnosis, and risk prediction. The potential clinical role for all these novel techniques will be highlighted as well as methods to optimize their implementation. (J Nucl Cardiol 2020).
Collapse
Affiliation(s)
- Piotr J Slomka
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Robert J H Miller
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA.,Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| | | | - Edward P Ficaro
- INVIA Medical Imaging Solutions, Ann Arbor, MI.,Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; and
| | - Ernest V Garcia
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| |
Collapse
|
142
|
Cavigli L, Focardi M, Cameli M, Mandoli GE, Mondillo S, D'Ascenzi F. The right ventricle in “Left-sided” cardiomyopathies: The dark side of the moon. Trends Cardiovasc Med 2020; 31:476-484. [DOI: 10.1016/j.tcm.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
|
143
|
Yang EY, Shah DJ. Cardiac Magnetic Resonance in Nonischemic Cardiomyopathies. Methodist Debakey Cardiovasc J 2020; 16:97-105. [PMID: 32670469 DOI: 10.14797/mdcj-16-2-97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) has emerged as a key modality to assess nonischemic cardiomyopathies. Its ability to detect cardiac morphology and function with fast cine imaging, myocardial edema with T2-based techniques, and fibrosis with late gadolinium enhancement techniques has enabled noninvasive characterization of cardiac tissue, thus helping clinicians assess cardiovascular risk and determine the most effective management strategy. Active investigations into parametric imaging techniques will further expand the potential clinical applications of CMR for cardiac tissue characterization. This review discusses the use of CMR techniques in characterizing the major morphofunctional phenotypes of nonischemic cardiomyopathies.
Collapse
Affiliation(s)
- Eric Y Yang
- HOUSTON METHODIST HEART & VASCULAR CENTER, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS
| | - Dipan J Shah
- HOUSTON METHODIST HEART & VASCULAR CENTER, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS
| |
Collapse
|
144
|
Abstract
In the absence of contemporary, population-based epidemiological studies, estimates of the incidence and prevalence of the inherited cardiomyopathies have been derived from screening studies, most often of young adult populations, to assess cardiovascular risk or to detect the presence of disease in athletes or military recruits. The global estimates for hypertrophic cardiomyopathy (1/500 individuals), dilated cardiomyopathy (1/250) and arrhythmogenic right ventricular cardiomyopathy (1/5,000) are probably conservative given that only individuals who fulfil diagnostic criteria would have been included. This caveat is highly relevant because a substantial minority or even a majority of individuals who carry disease-causing genetic variants and are at risk of disease complications have incomplete and/or late-onset disease expression. The genetic literature on cardiomyopathy, which is often focused on the identification of genetic variants, has been biased in favour of pedigrees with higher penetrance. In clinical practice, an abnormal electrocardiogram with normal or non-diagnostic imaging results is a common finding for the sarcomere variants that cause hypertrophic cardiomyopathy, the titin and sarcomere variants that cause dilated cardiomyopathy and the desmosomal variants that cause either arrhythmogenic right ventricular cardiomyopathy or dilated cardiomyopathy. Therefore, defining the genetic epidemiology is also challenging given the overlapping phenotypes, incomplete and age-related expression, and highly variable penetrance even within individual families carrying the same genetic variant.
Collapse
Affiliation(s)
- William J McKenna
- Institute of Cardiovascular Science, University College London, London, UK. .,Heart Hospital, Hamad Medical Corporation, Doha, Qatar.
| | - Daniel P Judge
- Section of Advanced HF & Transplant Cardiology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
145
|
Pecorari I, Mestroni L, Sbaizero O. Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies. Int J Mol Sci 2020; 21:E5865. [PMID: 32824180 PMCID: PMC7461563 DOI: 10.3390/ijms21165865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
146
|
Heliö T, Elliott P, Koskenvuo JW, Gimeno JR, Tavazzi L, Tendera M, Kaski JP, Mansencal N, Bilińska Z, Carr-White G, Damy T, Frustaci A, Kindermann I, Ripoll-Vera T, Čelutkienė J, Axelsson A, Lorenzini M, Saad A, Maggioni AP, Laroche C, Caforio ALP, Charron P. ESC EORP Cardiomyopathy Registry: real-life practice of genetic counselling and testing in adult cardiomyopathy patients. ESC Heart Fail 2020; 7:3013-3021. [PMID: 32767651 PMCID: PMC7524128 DOI: 10.1002/ehf2.12925] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 01/14/2023] Open
Abstract
Aims Cardiomyopathies comprise a heterogeneous group of diseases, often of genetic origin. We assessed the current practice of genetic counselling and testing in the prospective European Society of Cardiology EURObservational Research Programme Cardiomyopathy Registry. Methods and results A total of 3208 adult patients from 69 centres in 18 countries were enrolled. Genetic counselling was performed in 60.8% of all patients [75.4% in hypertrophic cardiomyopathy (HCM), 39.2% in dilated cardiomyopathy (DCM), 70.8% in arrhythmogenic right ventricular cardiomyopathy (ARVC), and 49.2% in restrictive cardiomyopathy (RCM), P < 0.001]. Comparing European geographical areas, genetic counselling was performed from 42.4% to 83.3% (P < 0.001). It was provided by a cardiologist (85.3%), geneticist (15.1%), genetic counsellor (11.3%), or a nurse (7.5%) (P < 0.001). Genetic testing was performed in 37.3% of all patients (48.8% in HCM, 18.6% in DCM, 55.6% in ARVC, and 43.6% in RCM, P < 0.001). Index patients with genetic testing were younger at diagnosis and had more familial disease, family history of sudden cardiac death, or implanted cardioverter defibrillators but less co‐morbidities than those not tested (P < 0.001 for each comparison). At least one disease‐causing variant was found in 41.7% of index patients with genetic testing (43.3% in HCM, 33.3% in DCM, 51.4% in ARVC, and 42.9% in RCM, P = 0.13). Conclusions This is the first detailed report on the real‐life practice of genetic counselling and testing in cardiomyopathies in Europe. Genetic counselling and testing were performed in a substantial proportion of patients but less often than recommended by European guidelines and much less in DCM than in HCM and ARVC, despite evidence for genetic background.
Collapse
Affiliation(s)
- Tiina Heliö
- Department of Cardiology, University of Helsinki, Helsinki, University Hospital, Helsinki, Finland
| | - Perry Elliott
- University College London, St. Bartholomew's Hospital, London, UK
| | - Juha W Koskenvuo
- Blueprint Genetics, Helsinki, Finland.,Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Juan R Gimeno
- Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Luigi Tavazzi
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Michal Tendera
- Department of Cardiology and Structural Heart Disease, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Juan Pablo Kaski
- Cardiology Department, Great Ormond Street Hospital for Children, London, UK
| | - Nicolas Mansencal
- Hôpital Ambroise Paré, Centre de Référence des Cardiomyopathies, Assistance Publique-Hôpitaux de Paris, Inserm U1018, CESP, UVSQ, Boulogne-Billancourt, France
| | - Zofia Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | | | | | | | - Ingrid Kindermann
- Department of Internal Medicine III, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Tomas Ripoll-Vera
- Hospital Universitario Son Llatzer, IdISBa, Palma de Mallorca, Spain
| | - Jelena Čelutkienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Anna Axelsson
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Aly Saad
- Zagazig University, Zagazig, Egypt
| | - Aldo P Maggioni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy.,EURObservational Research Programme, European Society of Cardiology, Sophia-Antipolis, France
| | - Cécile Laroche
- EURObservational Research Programme, European Society of Cardiology, Sophia-Antipolis, France
| | - Alida L P Caforio
- Department of Cardiological, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Philippe Charron
- Centre de Référence des Maladies Cardiaques Héréditaires, Assistance Publique-Hôpitaux de Paris, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | | |
Collapse
|
147
|
Morris RI, Sobotka PA, Balmforth PK, Stöhr EJ, McDonnell BJ, Spencer D, O'Sullivan GJ, Black SA. Iliocaval Venous Obstruction, Cardiac Preload Reserve and Exercise Limitation. J Cardiovasc Transl Res 2020; 13:531-539. [PMID: 32040765 PMCID: PMC7423854 DOI: 10.1007/s12265-020-09963-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/22/2020] [Indexed: 12/16/2022]
Abstract
Cardiac output during exercise increases by as much as fivefold in the untrained man, and by as much as eightfold in the elite athlete. Increasing venous return is a critical but much overlooked component of the physiological response to exercise. Cardiac disorders such as constrictive pericarditis, restrictive cardiomyopathy and pulmonary hypertension are recognised to impair preload and cause exercise limitation; however, the effects of peripheral venous obstruction on cardiac function have not been well described. This manuscript will discuss how obstruction of the iliocaval venous outflow can lead to impairment in exercise tolerance, how such obstructions may be diagnosed, the potential implications of chronic obstructions on sympathetic nervous system activation, and relevance of venous compression syndromes in heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Rachael I Morris
- School of Cardiovascular Medicine and Sciences, King's College London, London, UK.
| | - Paul A Sobotka
- The Ohio State University, Columbus, OH, USA
- V-Flow Medical Inc., Saint Paul, CA, USA
| | | | - Eric J Stöhr
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Centre, New York City, USA
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Barry J McDonnell
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | | | - Stephen A Black
- School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| |
Collapse
|
148
|
Abstract
Cardiovascular genetic counselors provide guidance to people facing the reality or prospect of inherited cardiovascular conditions. Key activities in this role include discussing clinical cardiac screening for at-risk family members and offering genetic testing. Psychological factors often influence whether patients choose to have genetic testing and how they understand and communicate the results to at-risk relatives, so psychological counseling increases the impact of genetic education and medical recommendations. This work reviews the literature on the factors that influence patient decisions about cardiovascular genetic testing and the psychological impact of results on people who opt to test. It also models use of a psychological framework to apply themes from the literature to routine cardiovascular genetic counseling practice. Modifications of the framework are provided to show how it can be adapted to serve the needs of both new and experienced genetic counselors.
Collapse
Affiliation(s)
- Julia Platt
- Stanford Center for Inherited Cardiovascular Disease, Falk Cardiovascular Research Center, Stanford, California 94305, USA
| |
Collapse
|
149
|
Chen Y, Xu F, Munkhsaikhan U, Boyle C, Borcky T, Zhao W, Purevjav E, Towbin JA, Liao F, Williams RW, Bhattacharya SK, Lu L, Sun Y. Identifying modifier genes for hypertrophic cardiomyopathy. J Mol Cell Cardiol 2020; 144:119-126. [PMID: 32470469 PMCID: PMC9768851 DOI: 10.1016/j.yjmcc.2020.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) severity greatly varies among patients even with the same HCM gene mutations. This variation is largely regulated by modifier gene(s), which, however, remain largely unknown. The current study is aimed to identify modifier genes using BXD strains, a large murine genetic reference population (GRP) derived from crosses between C57BL/6 J (B6) and D2 DBA/2 J (D2) mice. D2 mice natualy carrythe genetic basis and phenotypes of HCM. METHODS Myocardial hypertrophy, the major phenotype of HCM, was determined by cardiomyocyte size on cardiac sections in 30 BXD strains, and their parental B6 and D2 strains and morphometric analysis was performed. Quantitative Trait Locus (QTL) mapping for cardiomyocyte sizes was conducted with WebQTL in GeneNetwork. Correlation of cardiomyocyte size and cardiac gene expression in BXDs accessed from GeneNetwork were evaluated. QTL candidate genes associated with cardiomyocyte sizes were prioritized based on the score system. RESULTS Cardiomyocyte size varied significantly among BXD strains. Interval mapping on cardiomyocyte size data showed a significant QTL on chromosome (Chr) 2 at 66- 73.5 Mb and a suggestive QTL on Chr 5 at 20.9-39.7 Mb. Further score system revealed a high QTL score for Xirp2 in Chr 2. Xirp2 encodes xin actin-binding repeat containing 2, which is highly expressed in cardiac tissue and associate with cardiomyopathy and heart failure. In Chr5 QTL, Nos3, encoding nitric oxide synthase 3, received the highest score, which is significantly correlated with cardiomyocyte size. CONCLUSION These results indicate that Xirp2 and Nos3 serve as novel candidate modifier genes for myocardial hypertrophy in HCM. These candidate genes will be validated in our future studies.
Collapse
Affiliation(s)
- Yuanjian Chen
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Undral Munkhsaikhan
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Charlie Boyle
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Theresa Borcky
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Wenyuan Zhao
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jeffrey A Towbin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Fang Liao
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Syamal K Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| | - Yao Sun
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| |
Collapse
|
150
|
Parrotta EI, Lucchino V, Scaramuzzino L, Scalise S, Cuda G. Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. Int J Mol Sci 2020; 21:E4354. [PMID: 32575374 PMCID: PMC7352327 DOI: 10.3390/ijms21124354] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a class of disorders affecting the heart or blood vessels. Despite progress in clinical research and therapy, CVDs still represent the leading cause of mortality and morbidity worldwide. The hallmarks of cardiac diseases include heart dysfunction and cardiomyocyte death, inflammation, fibrosis, scar tissue, hyperplasia, hypertrophy, and abnormal ventricular remodeling. The loss of cardiomyocytes is an irreversible process that leads to fibrosis and scar formation, which, in turn, induce heart failure with progressive and dramatic consequences. Both genetic and environmental factors pathologically contribute to the development of CVDs, but the precise causes that trigger cardiac diseases and their progression are still largely unknown. The lack of reliable human model systems for such diseases has hampered the unraveling of the underlying molecular mechanisms and cellular processes involved in heart diseases at their initial stage and during their progression. Over the past decade, significant scientific advances in the field of stem cell biology have literally revolutionized the study of human disease in vitro. Remarkably, the possibility to generate disease-relevant cell types from induced pluripotent stem cells (iPSCs) has developed into an unprecedented and powerful opportunity to achieve the long-standing ambition to investigate human diseases at a cellular level, uncovering their molecular mechanisms, and finally to translate bench discoveries into potential new therapeutic strategies. This review provides an update on previous and current research in the field of iPSC-driven cardiovascular disease modeling, with the aim of underlining the potential of stem-cell biology-based approaches in the elucidation of the pathophysiology of these life-threatening diseases.
Collapse
|