101
|
Yu H, Lu K, Zhu J, Wang J. Stem cell therapy for ischemic heart diseases. Br Med Bull 2017; 121:135-154. [PMID: 28164211 DOI: 10.1093/bmb/ldw059] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Ischemic heart diseases, especially the myocardial infarction, is a major hazard problem to human health. Despite substantial advances in control of risk factors and therapies with drugs and interventions including bypass surgery and stent placement, the ischemic heart diseases usually result in heart failure (HF), which could aggravate social burden and increase the mortality rate. The current therapeutic methods to treat HF stay at delaying the disease progression without repair and regeneration of the damaged myocardium. While heart transplantation is the only effective therapy for end-stage patients, limited supply of donor heart makes it impossible to meet the substantial demand from patients with HF. Stem cell-based transplantation is one of the most promising treatment for the damaged myocardial tissue. SOURCES OF DATA Key recent published literatures and ClinicalTrials.gov. AREAS OF AGREEMENT Stem cell-based therapy is a promising strategy for the damaged myocardial tissue. Different kinds of stem cells have their advantages for treatment of Ischemic heart diseases. AREAS OF CONTROVERSY The efficacy and potency of cell therapies vary significantly from trial to trial; some clinical trials did not show benefit. Diverged effects of cell therapy could be affected by cell types, sources, delivery methods, dose and their mechanisms by which delivered cells exert their effects. GROWING POINTS Understanding the origin of the regenerated cardiomyocytes, exploring the therapeutic effects of stem cell-derived exosomes and using the cell reprogram technology to improve the efficacy of cell therapy for cardiovascular diseases. AREAS TIMELY FOR DEVELOPING RESEARCH Recently, stem cell-derived exosomes emerge as a critical player in paracrine mechanism of stem cell-based therapy. It is promising to exploit exosomes-based cell-free therapy for ischemic heart diseases in the future.
Collapse
Affiliation(s)
- Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| | - Kai Lu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China.,Department of Cardiology, The First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, Zhejiang Province, 313000, P.R. China
| | - Jinyun Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| |
Collapse
|
102
|
Templin C, Volkmann J, Emmert MY, Mocharla P, Müller M, Kraenkel N, Ghadri JR, Meyer M, Styp-Rekowska B, Briand S, Klingenberg R, Jaguszewski M, Matter CM, Djonov V, Mach F, Windecker S, Hoerstrup SP, Thum T, Lüscher TF, Landmesser U. Increased Proangiogenic Activity of Mobilized CD34+ Progenitor Cells of Patients With Acute ST-Segment-Elevation Myocardial Infarction: Role of Differential MicroRNA-378 Expression. Arterioscler Thromb Vasc Biol 2016; 37:341-349. [PMID: 28062497 DOI: 10.1161/atvbaha.116.308695] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Proangiogenic effects of mobilized bone marrow-derived stem/progenitor cells are essential for cardiac repair after myocardial infarction. MicroRNAs (miRNA/miR) are key regulators of angiogenesis. We investigated the differential regulation of angio-miRs, that is, miRNAs regulating neovascularization, in mobilized CD34+ progenitor cells obtained from patients with an acute ST-segment-elevation myocardial infarction (STEMI) as compared with those with stable coronary artery disease or healthy subjects. APPROACH AND RESULTS CD34+ progenitor cells were isolated from patients with STEMI (on day 0 and day 5), stable coronary artery disease, and healthy subjects (n=27). CD34+ progenitor cells of patients with STEMI exhibited increased proangiogenic activity as compared with CD34+ cells from the other groups. Using a polymerase chain reaction-based miRNA-array and real-time polymerase chain reaction validation, we identified a profound upregulation of 2 known angio-miRs, that are, miR-378 and let-7b, in CD34+ cells of patients with STEMI. Especially, we demonstrate that miR-378 is a critical regulator of the proangiogenic capacity of CD34+ progenitor cells and its stimulatory effects on endothelial cells in vitro and in vivo, whereas let-7b upregulation in CD34+ cells failed to proof its effect on endothelial cells in vivo. CONCLUSIONS The present study demonstrates a significant upregulation of the angio-miRs miR-378 and let-7b in mobilized CD34+ progenitor cells of patients with STEMI. The increased proangiogenic activity of these cells in patients with STEMI and the observation that in particular miR-378 regulates the angiogenic capacity of CD34+ progenitor cells in vivo suggest that this unique miRNA expression pattern represents a novel endogenous repair mechanism activated in acute myocardial infarction.
Collapse
Affiliation(s)
- Christian Templin
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.).
| | - Julia Volkmann
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Maximilian Y Emmert
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Pavani Mocharla
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Maja Müller
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Nicolle Kraenkel
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Jelena-R Ghadri
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Martin Meyer
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Beata Styp-Rekowska
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Sylvie Briand
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Roland Klingenberg
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Milosz Jaguszewski
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Christian M Matter
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Valentin Djonov
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Francois Mach
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Stephan Windecker
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Simon P Hoerstrup
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Thomas Thum
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Thomas F Lüscher
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Ulf Landmesser
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| |
Collapse
|
103
|
Abstract
Improvements in the care of patients with ischemic cardiovascular disease have led to improved survival but also a burgeoning population of patients with advanced ischemic heart disease. Cell therapies offer a novel approach toward cardiac "rejuvenation" via stimulation of new blood vessel growth, enhancing tissue perfusion, and via preservation or even regeneration of myocardial tissue, leading to improvements in cardiac performance after myocardial infarction and in patients with advanced heart failure. Here, we summarize and offer some thoughts on the state of the field of cell therapy for ischemic heart disease, targeting three separate conditions that have been the subject of significant clinical research: enhancing left ventricular recovery after MI, improving outcomes and symptoms in patients with congestive heart failure (CHF), and treatment of patients with refractory angina, despite maximal medical therapy.
Collapse
Affiliation(s)
- Thomas J Povsic
- Duke Clinical Research Institute and Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA.
| |
Collapse
|
104
|
Hammadah M, Al Mheid I, Wilmot K, Ramadan R, Abdelhadi N, Alkhoder A, Obideen M, Pimple PM, Levantsevych O, Kelli HM, Shah A, Sun YV, Pearce B, Kutner M, Long Q, Ward L, Ko YA, Hosny Mohammed K, Lin J, Zhao J, Bremner JD, Kim J, Waller EK, Raggi P, Sheps D, Quyyumi AA, Vaccarino V. Telomere Shortening, Regenerative Capacity, and Cardiovascular Outcomes. Circ Res 2016; 120:1130-1138. [PMID: 27956416 PMCID: PMC5376244 DOI: 10.1161/circresaha.116.309421] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 01/04/2023]
Abstract
RATIONALE Leukocyte telomere length (LTL) is a biological marker of aging, and shorter LTL is associated with adverse cardiovascular outcomes. Reduced regenerative capacity has been proposed as a mechanism. Bone marrow-derived circulating progenitor cells are involved in tissue repair and regeneration. OBJECTIVE Main objective of this study was to examine the relationship between LTL and progenitor cells and their impact on adverse cardiovascular outcomes. METHODS AND RESULTS We measured LTL by quantitative polymerase chain reaction in 566 outpatients (age: 63±9 years; 76% men) with coronary artery disease. Circulating progenitor cells were enumerated by flow cytometry. After adjustment for age, sex, race, body mass index, smoking status, and previous myocardial infarction, a shorter LTL was associated with a lower CD34+ cell count: for each 10% shorter LTL, CD34+ levels were 5.2% lower (P<0.001). After adjustment for the aforementioned factors, both short LTL (<Q1) and low CD34+ levels (<Q1) predicted adverse cardiovascular outcomes (death, myocardial infarction, coronary revascularization, or cerebrovascular events) independently of each other, with a hazard ratio of 1.8 and 95% confidence interval of 1.1 to 2.0, and a hazard ratio of 2.1 and 95% confidence interval of 1.3 to 3.0, respectively, comparing Q1 to Q2-4. Patients who had both short LTL (<Q1) and low CD34+ cell count (<Q1) had the greatest risk of adverse outcomes (hazard ratio =3.5; 95% confidence interval, 1.7-7.1). CONCLUSIONS Although shorter LTL is associated with decreased regenerative capacity, both LTL and circulating progenitor cell levels are independent and additive predictors of adverse cardiovascular outcomes in coronary artery disease patients. Our results suggest that both biological aging and reduced regenerative capacity contribute to cardiovascular events, independent of conventional risk factors.
Collapse
Affiliation(s)
- Muhammad Hammadah
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Ibhar Al Mheid
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Kobina Wilmot
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Ronnie Ramadan
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Naser Abdelhadi
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Ayman Alkhoder
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Malik Obideen
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Pratik M Pimple
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Oleksiy Levantsevych
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Heval M Kelli
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Amit Shah
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Yan V Sun
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Brad Pearce
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Michael Kutner
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Qi Long
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Laura Ward
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Yi-An Ko
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Kareem Hosny Mohammed
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Jue Lin
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Jinying Zhao
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - J Douglas Bremner
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Jinhee Kim
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Edmund K Waller
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Paolo Raggi
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - David Sheps
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Arshed A Quyyumi
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.)
| | - Viola Vaccarino
- From the Division of Cardiology, Department of Medicine (M.H., I.A.M., K.W., R.R., N.A., A.A., M.O., H.M.K., A.S., K.H.M., A.A.Q., V.V.) and Department of Psychiatry and Behavioral Sciences (J.D.B.), Emory University School of Medicine, Atlanta, GA; Department of Epidemiology, Rollins School of Public Health (P.M.P., O.L., A.S., Y.V.S., B.P., V.V.), Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Y.V.S., M.K., Q.L., L.W., Y.-A.K.), and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA; Department of Biochemistry and Biophysics, University of California, San Francisco (J.L.); Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA (J.Z.); Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (P.R.); and Department of Epidemiology, University of Florida, Gainesville (D.S.).
| |
Collapse
|
105
|
Bhatnagar A, Bolli R, Johnstone BH, Traverse JH, Henry TD, Pepine CJ, Willerson JT, Perin EC, Ellis SG, Zhao DXM, Yang PC, Cooke JP, Schutt RC, Trachtenberg BH, Orozco A, Resende M, Ebert RF, Sayre SL, Simari RD, Moyé L, Cogle CR, Taylor DA. Bone marrow cell characteristics associated with patient profile and cardiac performance outcomes in the LateTIME-Cardiovascular Cell Therapy Research Network (CCTRN) trial. Am Heart J 2016; 179:142-50. [PMID: 27595689 PMCID: PMC5014395 DOI: 10.1016/j.ahj.2016.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/25/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Although several preclinical studies have shown that bone marrow cell (BMC) transplantation promotes cardiac recovery after myocardial infarction, clinical trials with unfractionated bone marrow have shown variable improvements in cardiac function. METHODS To determine whether in a population of post-myocardial infarction patients, functional recovery after BM transplant is associated with specific BMC subpopulation, we examined the association between BMCs with left ventricular (LV) function in the LateTIME-CCTRN trial. RESULTS In this population, we found that older individuals had higher numbers of BM CD133(+) and CD3(+) cells. Bone marrow from individuals with high body mass index had lower CD45(dim)/CD11b(dim) levels, whereas those with hypertension and higher C-reactive protein levels had higher numbers of CD133(+) cells. Smoking was associated with higher levels of CD133(+)/CD34(+)/VEGFR2(+) cells and lower levels of CD3(+) cells. Adjusted multivariate analysis indicated that CD11b(dim) cells were negatively associated with changes in LV ejection fraction and wall motion in both the infarct and border zones. Change in LV ejection fraction was positively associated with CD133(+), CD34(+), and CD45(+)/CXCR4(dim) cells as well as faster BMC growth rates in endothelial colony forming assays. CONCLUSIONS In the LateTIME population, BM composition varied with patient characteristics and treatment. Irrespective of cell therapy, recovery of LV function was greater in patients with greater BM abundance of CD133(+) and CD34(+) cells and worse in those with higher levels of CD11b(dim) cells. Bone marrow phenotype might predict clinical response before BMC therapy and administration of selected BM constituents could potentially improve outcomes of other future clinical trials.
Collapse
Affiliation(s)
| | | | | | - Jay H Traverse
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis, MN
| | | | - Carl J Pepine
- University of Florida College of Medicine, Gainesville, FL
| | - James T Willerson
- Texas Heart Institute, CHI St. Luke's Health Baylor College of Medicine Medical Center, Houston, TX
| | - Emerson C Perin
- Texas Heart Institute, CHI St. Luke's Health Baylor College of Medicine Medical Center, Houston, TX
| | | | | | | | - John P Cooke
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX
| | - Robert C Schutt
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX
| | | | - Aaron Orozco
- Texas Heart Institute, CHI St. Luke's Health Baylor College of Medicine Medical Center, Houston, TX
| | - Micheline Resende
- Texas Heart Institute, CHI St. Luke's Health Baylor College of Medicine Medical Center, Houston, TX
| | - Ray F Ebert
- National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Shelly L Sayre
- University of Texas School of Public Health, Houston, TX
| | | | - Lem Moyé
- University of Texas School of Public Health, Houston, TX.
| | | | - Doris A Taylor
- Texas Heart Institute, CHI St. Luke's Health Baylor College of Medicine Medical Center, Houston, TX
| |
Collapse
|
106
|
Madaric J, Klepanec A, Valachovicova M, Mistrik M, Bucova M, Olejarova I, Necpal R, Madaricova T, Paulis L, Vulev I. Characteristics of responders to autologous bone marrow cell therapy for no-option critical limb ischemia. Stem Cell Res Ther 2016; 7:116. [PMID: 27530339 PMCID: PMC4987968 DOI: 10.1186/s13287-016-0379-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/16/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The present study investigated factors associated with therapeutic benefits after autologous bone marrow cell (BMC) therapy in patients with "no-option" critical limb ischemia (CLI). METHODS AND RESULTS Sixty-two patients with advanced CLI (Rutherford category 5 or 6) not eligible for revascularization were randomized to treatment with 40 ml of autologous BMCs (SmartPreP2) by local intramuscular (n = 32) or intra-arterial (n = 30) application. The primary endpoint was limb salvage and wound healing at 12 months. Seven patients (11 %) died during the follow-up from reasons unrelated to stem cell therapy. The BMC product of patients with limb salvage and wound healing (33/55) was characterized by a higher CD34(+) cell count (p = 0.001), as well as a higher number of total bone marrow mononuclear cells (BM-MNCs) (p = 0.032), than that of nonresponders (22/55). Patients with limb salvage and wound healing were younger (p = 0.028), had lower C-reactive protein levels (p = 0.038), and had higher transcutaneous oxygen pressure (tcpO2) (p = 0.003) before cell application than nonresponders. All patients with major tissue loss at baseline (Rutherford 6 stage of CLI, n = 5) showed progression of limb ischemia and required major limb amputation. In the multiple binary logistic regression model, the number of applied CD34(+) cells (p = 0.046) and baseline tcpO2 (p = 0.031) were independent predictors of limb salvage and wound healing. The number of administrated BM-MNCs strongly correlated with decreased peripheral leukocyte count after 6 months in surviving patients with limb salvage (p = 0.0008). CONCLUSION Patients who benefited from autologous BMC therapy for "no-option" CLI were treated with high doses of CD34(+) cells. The absolute number of applied BM-MNCs correlated with the improvement of inflammation. We hypothesize that the therapeutic benefit of cell therapy for peripheral artery disease is the result of synergistic effects mediated by a mixture of active cells with regenerative potential. Patients at the most advanced stage of CLI do not appear to be suitable candidates for cell therapy. TRIAL REGISTRATION The study was approved and registered by the ISRCTN registry. TRIAL REGISTRATION ISRCTN16096154 . Registered: 26 July 2016.
Collapse
Affiliation(s)
- Juraj Madaric
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia. .,Slovak Medical University, Bratislava, Slovakia.
| | - Andrej Klepanec
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | | | - Martin Mistrik
- Clinic of Haematology and Transfusiology, Faculty Hospital, Bratislava, Slovakia
| | - Maria Bucova
- Institute of Imunology, Faculty of Medicine Comenius University, Bratislava, Slovakia
| | - Ingrid Olejarova
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | - Roman Necpal
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | - Terezia Madaricova
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine Comenius University, Bratislava, Slovakia
| | - Ivan Vulev
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia.,Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|
107
|
Chantzichristos VG, Agouridis AP, Moutzouri E, Stellos K, Elisaf MS, Tselepis AD. Effect of rosuvastatin or its combination with omega-3 fatty acids on circulating CD34 + progenitor cells and on endothelial colony formation in patients with mixed dyslipidaemia. Atherosclerosis 2016; 251:240-247. [DOI: 10.1016/j.atherosclerosis.2016.06.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 11/29/2022]
|
108
|
Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul Pharmacol 2016; 83:10-6. [DOI: 10.1016/j.vph.2015.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/27/2015] [Accepted: 07/11/2015] [Indexed: 11/23/2022]
|
109
|
Florea V, Balkan W, Schulman IH, Hare JM. Cell Therapy Augments Myocardial Perfusion and Improves Quality of Life in Patients With Refractory Angina. Circ Res 2016; 118:911-5. [PMID: 26987911 DOI: 10.1161/circresaha.116.308409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Victoria Florea
- From The Interdisciplinary Stem Cell Institute (V.F., W.B., I.H.S., J.M.H.) and Department of Medicine (W.B., I.H.S., J.M.H.), University of Miami, Miller School of Medicine, FL
| | - Wayne Balkan
- From The Interdisciplinary Stem Cell Institute (V.F., W.B., I.H.S., J.M.H.) and Department of Medicine (W.B., I.H.S., J.M.H.), University of Miami, Miller School of Medicine, FL
| | - Ivonne Hernandez Schulman
- From The Interdisciplinary Stem Cell Institute (V.F., W.B., I.H.S., J.M.H.) and Department of Medicine (W.B., I.H.S., J.M.H.), University of Miami, Miller School of Medicine, FL
| | - Joshua M Hare
- From The Interdisciplinary Stem Cell Institute (V.F., W.B., I.H.S., J.M.H.) and Department of Medicine (W.B., I.H.S., J.M.H.), University of Miami, Miller School of Medicine, FL.
| |
Collapse
|
110
|
Al Mheid I, Hayek SS, Ko YA, Akbik F, Li Q, Ghasemzadeh N, Martin GS, Long Q, Hammadah M, Maziar Zafari A, Vaccarino V, Waller EK, Quyyumi AA. Age and Human Regenerative Capacity Impact of Cardiovascular Risk Factors. Circ Res 2016; 119:801-9. [PMID: 27436845 DOI: 10.1161/circresaha.116.308461] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/19/2016] [Indexed: 01/11/2023]
Abstract
RATIONALE We investigated aging of human endogenous reparative capacity and aimed to clarify whether it is affected by presence of cardiovascular disease or its risk factors (RFs). OBJECTIVE Circulating progenitor cell (PC) levels reflect endogenous regenerative potential. The effect on PC of healthy aging compared with aging with RFs or cardiovascular disease (CVD) is unknown. We examined whether exposure to RF and CVD leads to an accelerated decline in circulating PC with increasing age. METHODS AND RESULTS In 2792 adult subjects, 498 were free of RFs (smoking, diabetes mellitus, hypertension, or hyperlipidemia), 1036 subjects had 1 to 2 RF, and 1253 had ≥3 RFs or CVD. PC were enumerated by flow cytometry as CD45(med+) mononuclear cells expressing CD34 and subsets coexpressing CD133, CXCR4, and vascular endothelial growth factor receptor-2 epitopes. Younger age, male sex, and larger body size correlated with higher PC counts (P<0.01). After multivariable adjustment, both age and RF categories were independently associated with PC counts (P<0.05), with lower PC counts in older subjects and those with higher RF burden or CVD. PC counts remained unchanged with increasing age in healthy individuals. There were significant interactions between age and RF categories (P≤0.005), such that for younger subjects (<40 years), RFs were associated with increased PC counts, whereas for older subjects (>60 years), RFs and CVD were associated with lower PC counts. CONCLUSIONS Circulating PC levels do not decline with healthy aging; RF exposure at a younger age stimulates PC mobilization, whereas continued exposure is associated with lower PC levels in later life. Over the lifespan, exposure to RFs and CVD is associated with an initial stimulation and subsequent decline in circulating PC levels, which reflect endogenous regenerative capacity.
Collapse
Affiliation(s)
- Ibhar Al Mheid
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA
| | - Salim S Hayek
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA
| | - Yi-An Ko
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA
| | - Faysal Akbik
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA
| | - Qunna Li
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA
| | - Nima Ghasemzadeh
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA
| | - Greg S Martin
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA
| | - Qi Long
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA
| | - Muhammad Hammadah
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA
| | - A Maziar Zafari
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA
| | - Viola Vaccarino
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA
| | - Edmund K Waller
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA
| | - Arshed A Quyyumi
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory-Georgia Tech, Predictive Health Institute, Atlanta, GA.
| |
Collapse
|
111
|
Siavashi V, Sariri R, Nassiri SM, Esmaeilivand M, Asadian S, Cheraghi H, Barekati-Mowahed M, Rahbarghazi R. Angiogenic activity of endothelial progenitor cells through angiopoietin-1 and angiopoietin-2. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1189961] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
112
|
Povsic TJ, Losordo DW. Getting Back to Normal: Can Enhanced Regeneration Maintain Health? Circ Res 2016; 118:1863-5. [PMID: 27283528 DOI: 10.1161/circresaha.116.308936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas J Povsic
- From the Duke Clinical Research Institute (DCRI) and Department of Medicine, Duke Medicine, Durham, NC (T.J.P.); Caladrius Biosciences, Basking Ridge, NJ (D.W.L.); Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (D.W.L.); and New York University School of Medicine, NY (D.W.L.).
| | - Douglas W Losordo
- From the Duke Clinical Research Institute (DCRI) and Department of Medicine, Duke Medicine, Durham, NC (T.J.P.); Caladrius Biosciences, Basking Ridge, NJ (D.W.L.); Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (D.W.L.); and New York University School of Medicine, NY (D.W.L.).
| |
Collapse
|
113
|
Hayek SS, MacNamara J, Tahhan AS, Awad M, Yadalam A, Ko YA, Healy S, Hesaroieh I, Ahmed H, Gray B, Sher SS, Ghasemzadeh N, Patel R, Kim J, Waller EK, Quyyumi AA. Circulating Progenitor Cells Identify Peripheral Arterial Disease in Patients With Coronary Artery Disease. Circ Res 2016; 119:564-71. [PMID: 27267067 DOI: 10.1161/circresaha.116.308802] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023]
Abstract
RATIONALE Peripheral arterial disease (PAD) is a clinical manifestation of extracoronary atherosclerosis. Despite sharing the same risk factors, only 20% to 30% of patients with coronary artery disease (CAD) develop PAD. Decline in the number of bone marrow-derived circulating progenitor cells (PCs) is thought to contribute to the pathogenesis of atherosclerosis. Whether specific changes in PCs differentiate patients with both PAD and CAD from those with CAD alone is unknown. OBJECTIVE Determine whether differences exist in PCs counts of CAD patients with and without known PAD. METHODS AND RESULTS 1497 patients (mean age: 65 years; 62% men) with known CAD were identified in the Emory Cardiovascular Biobank. Presence of PAD (n=308) was determined by history, review of medical records, or imaging and was classified as carotid (53%), lower extremity (41%), upper extremity (3%), and aortic disease (33%). Circulating PCs were enumerated by flow cytometry. Patients with CAD and PAD had significantly lower PC counts compared with those with only CAD. In multivariable analysis, a 50% decrease in cluster of differentiation 34 (CD34+) or CD34+/vascular endothelial growth factor receptor-2 (VEGFR2+) counts was associated with a 31% (P=0.032) and 183% (P=0.002) increase in the odds of having PAD, respectively. CD34+ and CD34+/VEGFR2+ counts significantly improved risk prediction metrics for prevalent PAD. Low CD34+/VEGFR2+ counts were associated with a 1.40-fold (95% confidence interval, 1.03-1.91) and a 1.64-fold (95% confidence interval, 1.07-2.50) increases in the risk of mortality and PAD-related events, respectively. CONCLUSIONS PAD is associated with low CD34+ and CD34+/VEGFR2+ PC counts. Whether low PC counts are useful in screening for PAD needs to be investigated.
Collapse
Affiliation(s)
- Salim S Hayek
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - James MacNamara
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Ayman S Tahhan
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Mosaab Awad
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Adithya Yadalam
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Yi-An Ko
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Sean Healy
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Iraj Hesaroieh
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Hina Ahmed
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Brandon Gray
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Salman S Sher
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Nima Ghasemzadeh
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Riyaz Patel
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Jinhee Kim
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Edmund K Waller
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Arshed A Quyyumi
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA.
| |
Collapse
|
114
|
Lee PSS, Ye L, Khoo EYH, Yeo TC, Tan HC, Richards AM, Poh KK. Impairment in the number and function of CD34+/KDR+ circulating cells in diabetes and obesity with functional improvement after thymosin β4 treatment. Cardiovasc Endocrinol 2016. [DOI: 10.1097/xce.0000000000000076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
115
|
Henry TD, Schaer GL, Traverse JH, Povsic TJ, Davidson C, Lee JS, Costa MA, Bass T, Mendelsohn F, Fortuin FD, Pepine CJ, Patel AN, Riedel N, Junge C, Hunt A, Kereiakes DJ, White C, Harrington RA, Schatz RA, Losordo DW. Autologous CD34 + Cell Therapy for Refractory Angina: 2-Year Outcomes From the ACT34-CMI Study. Cell Transplant 2016; 25:1701-1711. [PMID: 27151378 DOI: 10.3727/096368916x691484] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An increasing number of patients have refractory angina despite optimal medical therapy and are without further revascularization options. Preclinical studies indicate that human CD34+ stem cells can stimulate new blood vessel formation in ischemic myocardium, improving perfusion and function. In ACT34-CMI (N = 167), patients treated with autologous CD34+ stem cells had improvements in angina and exercise time at 6 and 12 months compared to placebo; however, the longer-term effects of this treatment are unknown. ACT34 was a phase II randomized, double-blind, placebo-controlled clinical trial comparing placebo, low dose (1 × 105 CD34/kg body weight), and high dose (5 × 105 CD34/kg) using intramyocardial delivery into the ischemic zone following NOGA® mapping. To obtain longer-term safety and efficacy in these patients, we compiled data of major adverse cardiac events (MACE; death, myocardial infarction, acute coronary syndrome, or heart failure hospitalization) up to 24 months as well as angina and quality of life assessments in patients who consented for 24-month follow-up. A total of 167 patients with class III-IV refractory angina were randomized and completed the injection procedure. The low-dose-treated patients had a significant reduction in angina frequency (p = 0.02, 0.035) and improvements in exercise tolerance testing (ETT) time (p = 0.014, 0.017) compared to the placebo group at 6 and 12 months. At 24 months, patients treated with both low-and high-dose CD34+ cells had significant reduction in angina frequency (p = 0.03). At 24 months, there were a total of seven deaths (12.5%) in the control group versus one (1.8%) in the low-dose and two (3.6%) in the high-dose (p = 0.08) groups. At 2 years, MACE occurred at a rate of 33.9%, 21.8%, and 16.2% in control, low-, and high-dose patients, respectively (p = 0.08). Autologous CD34+ cell therapy was associated with persistent improvement in angina at 2 years and a trend for reduction in mortality in no-option patients with refractory angina.
Collapse
|
116
|
Osteikoetxea X, Németh A, Sódar BW, Vukman KV, Buzás EI. Extracellular vesicles in cardiovascular disease: are they Jedi or Sith? J Physiol 2016; 594:2881-94. [PMID: 26872404 DOI: 10.1113/jp271336] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
In the recent past, extracellular vesicles have become recognized as important players in cell biology and biomedicine. Extracellular vesicles, including exosomes, microvesicles and apoptotic bodies, are phospholipid bilayer-enclosed structures found to be secreted by most if not all cells. Extracellular vesicle secretion represents a universal and highly conserved active cellular function. Importantly, increasing evidence supports that extracellular vesicles may serve as biomarkers and therapeutic targets or tools in human diseases. Cardiovascular disease undoubtedly represents one of the most intensely studied and rapidly growing areas of the extracellular vesicle field. However, in different studies related to cardiovascular disease, extracellular vesicles have been shown to exert diverse and sometimes discordant biological effects. Therefore, it might seem a puzzle whether these vesicles are in fact beneficial or detrimental to cardiovascular health. In this review we provide a general introduction to extracellular vesicles and an overview of their biological roles in cardiovascular diseases. Furthermore, we aim to untangle the various reasons for the observed discrepancy in biological effects of extracellular vesicles in cardiovascular diseases. To this end, we provide several examples that demonstrate that the observed functional diversity is in fact due to inherent differences among various types of extracellular vesicles.
Collapse
Affiliation(s)
- Xabier Osteikoetxea
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Andrea Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Barbara W Sódar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Krisztina V Vukman
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit Irén Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
117
|
Shalaby SM, El-Shal AS, Zidan HE, Mazen NF, Abd El-Haleem MR, Abd El Motteleb DM. Comparing the effects of MSCs and CD34+ cell therapy in a rat model of myocardial infarction. IUBMB Life 2016; 68:343-54. [DOI: 10.1002/iub.1487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Sally M. Shalaby
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Amal S. El-Shal
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Haidy E. Zidan
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Nehad F. Mazen
- Histology and Cell Biology Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Manal R. Abd El-Haleem
- Histology and Cell Biology Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | | |
Collapse
|
118
|
Di Santo S, Fuchs AL, Periasamy R, Seiler S, Widmer HR. The Cytoprotective Effects of Human Endothelial Progenitor Cell-Conditioned Medium Against an Ischemic Insult Are Not Dependent on VEGF and IL-8. Cell Transplant 2016; 25:735-47. [PMID: 26776768 DOI: 10.3727/096368916x690458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endothelial progenitor cells (EPCs) promote revascularization and tissue repair mainly by paracrine actions. In the present study, we investigated whether EPC-secreted factors in the form of conditioned medium (EPC-CM) can protect cultured brain microvascular endothelial cells against an ischemic insult. Furthermore, we addressed the type of factors that are involved in the EPC-CM-mediated functions. For that purpose, rat brain-derived endothelial cells (rBCEC4 cell line) were exposed to EPC-CM pretreated with proteolytic digestion, heat inactivation, and lipid extraction. Moreover, the involvement of VEGF and IL-8, as canonical angiogenic factors, was investigated by means of neutralizing antibodies. We demonstrated that EPC-CM significantly protected the rBCEC4 cells against an ischemic insult mimicked by induced oxygen-glucose deprivation followed by reoxygenation. The cytoprotective effect was displayed by higher viable cell numbers and reduced caspase 3/7 activity. Heat inactivation, proteolytic digestion, and lipid extraction resulted in a significantly reduced EPC-CM-dependent increase in rBCEC4 viability, tube formation, and survival following the ischemic challenge. Notably, VEGF and IL-8 neutralization did not affect the actions of EPC-CM on rBCEC4 under both standard and ischemic conditions. In summary, our findings show that paracrine factors released by EPCs activate an angiogenic and cytoprotective response on brain microvascular cells and that the activity of EPC-CM relies on the concerted action of nonproteinaceous and proteinaceous factors but do not directly involve VEGF and IL-8.
Collapse
Affiliation(s)
- Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, Bern, Switzerland
| | | | | | | | | |
Collapse
|
119
|
Khan AR, Farid TA, Pathan A, Tripathi A, Ghafghazi S, Wysoczynski M, Bolli R. Impact of Cell Therapy on Myocardial Perfusion and Cardiovascular Outcomes in Patients With Angina Refractory to Medical Therapy: A Systematic Review and Meta-Analysis. Circ Res 2016; 118:984-93. [PMID: 26838794 DOI: 10.1161/circresaha.115.308056] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022]
Abstract
RATIONALE The effect of stem/progenitor cells on myocardial perfusion and clinical outcomes in patients with refractory angina remains unclear because studies published to date have been small phase I-II trials. OBJECTIVE We performed a meta-analysis of randomized controlled trials to evaluate the effect of cell-based therapy in patients with refractory angina who were ineligible for coronary revascularization. METHODS AND RESULTS Several data sources were searched from inception to September 2015, which yielded 6 studies. The outcomes pooled were indices of angina (anginal episodes, Canadian Cardiovascular Society angina class, exercise tolerance, and antianginal medications), myocardial perfusion, and clinical end points. We combined the reported clinical outcomes (myocardial infarction, cardiac-related hospitalization, and mortality) into a composite end point (major adverse cardiac events). Mean difference (MD), standardized mean differences, or odds ratio were calculated to assess relevant outcomes. Our analysis shows an improvement in anginal episodes (MD, -7.81; 95% confidence interval [CI], -15.22 to -0.41), use of antianginal medications (standardized MD, -0.59; 95% CI, -1.03 to -0.14), Canadian Cardiovascular Society class (MD, -0.58; 95% CI, -1.00 to -0.16), exercise tolerance (standardized MD, 0.331; 95% CI, 0.08 to 0.55), and myocardial perfusion (standardized MD, -0.49; 95% CI, -0.76 to -0.21) and a decreased risk of major adverse cardiac events (odds ratio, 0.49; 95% CI, 0.25 to 0.98) and arrhythmias (odds ratio, 0.25; 95% CI, 0.06 to 0.98) in cell-treated patients when compared with patients on maximal medical therapy. CONCLUSIONS The present meta-analysis indicates that cell-based therapies are not only safe but also lead to an improvement in indices of angina, relevant clinical outcomes, and myocardial perfusion in patients with refractory angina. These encouraging results suggest that larger, phase III randomized controlled trials are in order to conclusively determine the effect of stem/progenitor cells in refractory angina.
Collapse
Affiliation(s)
- Abdur Rahman Khan
- From the Institute of Molecular Cardiology, University of Louisville, KY
| | - Talha A Farid
- From the Institute of Molecular Cardiology, University of Louisville, KY
| | - Asif Pathan
- From the Institute of Molecular Cardiology, University of Louisville, KY
| | - Avnish Tripathi
- From the Institute of Molecular Cardiology, University of Louisville, KY
| | - Shahab Ghafghazi
- From the Institute of Molecular Cardiology, University of Louisville, KY
| | - Marcin Wysoczynski
- From the Institute of Molecular Cardiology, University of Louisville, KY
| | - Roberto Bolli
- From the Institute of Molecular Cardiology, University of Louisville, KY.
| |
Collapse
|
120
|
Functional and Biological Role of Endothelial Precursor Cells in Tumour Progression: A New Potential Therapeutic Target in Haematological Malignancies. Stem Cells Int 2015; 2016:7954580. [PMID: 26788072 PMCID: PMC4691637 DOI: 10.1155/2016/7954580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/19/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
It was believed that vasculogenesis occurred only during embryo life and that postnatal formation of vessels arose from angiogenesis. Recent findings demonstrate the existence of Endothelial Precursor Cells (EPCs), which take partin postnatal vasculogenesis. EPCs are recruited from the bone marrow under the stimulation of growth factors and cytokines and reach the sites of neovascularization in both physiological and pathological conditions such as malignancies where they contribute to the “angiogenic switch” and tumor progression. An implementation of circulating EPCs in the bloodstream of patients with haematological malignancies has been demonstrated. This increase is strictly related to the bone marrow microvessel density and correlated with a poor prognosis. The EPCs characterization is a very complex process and still under investigation. This literature review aims to provide an overview of the functional and biological role of EPCs in haematological malignancies and to investigate their potential as a new cancer therapeutic target.
Collapse
|
121
|
Elbuken G, Tanriverdi F, Karaca Z, Eser B, Hasdiraz L, Unluhizarci K, Gokoglu A, Cetin A, Selcuklu A, Kelestimur F. Evaluation of peripheral blood CD34+ cell count in the acute phase of traumatic brain injury and chest trauma. Brain Inj 2015; 30:179-83. [PMID: 26649467 DOI: 10.3109/02699052.2015.1090015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM To determine the impact of traumatic brain injury (TBI) and chest trauma (CT) on the number of peripheral blood (PB) stem cells in affected patients in comparison to normal controls. Additionally, the aim was to determine the relationship between CD34+ cell counts and TBI-induced hypothalamus-pituitary-adrenal axis dysfunction in the acute phase of trauma. PATIENTS AND METHOD Thirty patients with TBI, 12 patients with CT and 53 healthy subjects were included in the study. RESULTS CD34+ cell counts within the first 24-48 hours of TBI were found to be lower than those obtained on the 7(th) day of TBI and those in the healthy controls. CD34+ cell counts obtained on the 2(nd) day of CT were lower than those in the healthy group, but did not differ from those measured on the 7(th) day of CT. There was no correlation between CD34+ cell counts and serum total cortisol (STC) levels on the 2(nd) and 7(th) days in the TBI or CT groups. CONCLUSION An increase in CD34+ cell counts as observed on the 7(th) day in both TBI and CT groups suggested that CD34 changes were not specific to TBI. Moreover, this study showed for the first time that CD34 response was not affected by changes in cortisol levels induced by TBI and severity of TBI.
Collapse
Affiliation(s)
- Gulsah Elbuken
- a Department of Endocrinology and Metabolism , Erciyes University Medical School , Kayseri , Turkey
| | - Fatih Tanriverdi
- a Department of Endocrinology and Metabolism , Erciyes University Medical School , Kayseri , Turkey
| | - Zuleyha Karaca
- a Department of Endocrinology and Metabolism , Erciyes University Medical School , Kayseri , Turkey
| | - Bulent Eser
- b Department of Hematology , Erciyes University Medical School , Kayseri , Turkey
| | - Leyla Hasdiraz
- c Department of Chest Surgery , Erciyes University Medical School , Kayseri , Turkey
| | - Kursad Unluhizarci
- a Department of Endocrinology and Metabolism , Erciyes University Medical School , Kayseri , Turkey
| | - Abdulkerim Gokoglu
- d Department of Neurosurgery , Erciyes University Medical School , Kayseri , Turkey
| | - Aysun Cetin
- e Department of Biochemistry , Erciyes University Medical School , Kayseri , Turkey
| | - Ahmet Selcuklu
- d Department of Neurosurgery , Erciyes University Medical School , Kayseri , Turkey
| | - Fahrettin Kelestimur
- a Department of Endocrinology and Metabolism , Erciyes University Medical School , Kayseri , Turkey
| |
Collapse
|
122
|
Lysophosphatidic acid enhances survival of human CD34(+) cells in ischemic conditions. Sci Rep 2015; 5:16406. [PMID: 26553339 PMCID: PMC4639756 DOI: 10.1038/srep16406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 09/07/2015] [Indexed: 01/05/2023] Open
Abstract
Several clinical trials are exploring therapeutic effect of human CD34+ cells in ischemic diseases, including myocardial infarction. Unfortunately, most of the cells die few days after delivery. Herein we show that lysophosphatidic acid (LPA)-treated human umbilical cord blood-derived CD34+ cells cultured under hypoxic and serum-deprived conditions present 2.2-fold and 1.3-fold higher survival relatively to non-treated cells and prostaglandin E2-treated cells, respectively. The pro-survival effect of LPA is concentration- and time-dependent and it is mediated by the activation of peroxisome proliferator-activator receptor γ (PPARγ) and downstream, by the activation of pro-survival ERK and Akt signaling pathways and the inhibition of mitochondrial apoptotic pathway. In hypoxia and serum-deprived culture conditions, LPA induces CD34+ cell proliferation without maintaining the their undifferentiating state, and enhances IL-8, IL-6 and G-CSF secretion during the first 12 h compared to non-treated cells. LPA-treated CD34+ cells delivered in fibrin gels have enhanced survival and improved cardiac fractional shortening at 2 weeks on rat infarcted hearts as compared to hearts treated with placebo. We have developed a new platform to enhance the survival of CD34+ cells using a natural and cost-effective ligand and demonstrated its utility in the preservation of the functionality of the heart after infarction.
Collapse
|
123
|
Stemming Anginal Pain, Waiting for the Magic Cells. Crit Care Med 2015; 43:2256-7. [PMID: 26376253 DOI: 10.1097/ccm.0000000000001218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
124
|
Webber MJ, Tongers J, Renault MA, Roncalli JG, Losordo DW, Stupp SI. Reprint of: Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater 2015; 23 Suppl:S42-51. [PMID: 26235345 DOI: 10.1016/j.actbio.2015.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/25/2009] [Accepted: 07/21/2009] [Indexed: 12/19/2022]
Abstract
There is great clinical interest in cell-based therapies for ischemic tissue repair in cardiovascular disease. However, the regenerative potential of these therapies is limited due to poor cell viability and minimal retention following application. We report here the development of bioactive peptide amphiphile nanofibers displaying the fibronectin-derived RGDS cell adhesion epitope as a scaffold for therapeutic delivery of bone marrow derived stem and progenitor cells. When grown on flat substrates, a binary peptide amphiphile system consisting of 10 wt.% RGDS-containing molecules and 90 wt.% negatively charged diluent molecules was found to promote optimal cell adhesion. This binary system enhanced adhesion 1.4-fold relative to substrates composed of only the non-bioactive diluent. Additionally, no enhancement was found upon scrambling the epitope and adhesion was no longer enhanced upon adding soluble RGDS to the cell media, indicating RGDS-specific adhesion. When encapsulated within self-assembled scaffolds of the binary RGDS nanofibers in vitro, cells were found to be viable and proliferative, increasing in number by 5.5 times after only 5 days, an effect again lost upon adding soluble RGDS. Cells encapsulated within a non-bioactive scaffold and those within a binary scaffold with scrambled epitope showed minimal viability and no proliferation. Cells encapsulated within this RGDS nanofiber gel also increase in endothelial character, evident by a decrease in the expression of CD34 paired with an increase in the expression of endothelial-specific markers VE-Cadherin, VEGFR2 and eNOS after 5days. In an in vivo study, nanofibers and luciferase-expressing cells were co-injected subcutaneously in a mouse model. The binary RGDS material supported these cells in vivo, evident by a 3.2-fold increase in bioluminescent signal attributable to viable cells; this suggests the material has an anti-apoptotic and/or proliferative effect on the transplanted bone marrow cells. We conclude that the binary RGDS-presenting nanofibers developed here demonstrate enhanced viability, proliferation and adhesion of associated bone marrow derived stem and progenitor cells. This study suggests potential for this material as a scaffold to overcome current limitations of stem cell therapies for ischemic diseases.
Collapse
Affiliation(s)
- Matthew J Webber
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA; Feinberg School of Medicine, Institute for Bionanotechnology in Medicine, Chicago, IL 60611, USA
| | - Jörn Tongers
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Marie-Ange Renault
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Jerome G Roncalli
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Douglas W Losordo
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Samuel I Stupp
- Feinberg School of Medicine, Institute for Bionanotechnology in Medicine, Chicago, IL 60611, USA; Department of Materials Science and Engineering, Evanston, IL 60208, USA; Department of Chemistry, Evanston, IL 60208, USA.
| |
Collapse
|
125
|
Liu Z, Benard O, Syeda MM, Schuster VL, Chi Y. Inhibition of Prostaglandin Transporter (PGT) Promotes Perfusion and Vascularization and Accelerates Wound Healing in Non-Diabetic and Diabetic Rats. PLoS One 2015; 10:e0133615. [PMID: 26230411 PMCID: PMC4521828 DOI: 10.1371/journal.pone.0133615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/29/2015] [Indexed: 01/29/2023] Open
Abstract
Peripheral ischemia, resulting from diminished arterial flow and defective local vascularization, is one of the main causes of impaired wound healing in diabetes. Vasodilatory prostaglandins (PGs), including PGE2 and PGI2, regulate blood flow in peripheral tissues. PGs also stimulate angiogenesis by inducing vascular endothelial growth factor. However, PG levels are reduced in diabetes mainly due to enhanced degradation. We hypothesized that inhibition of the prostaglandin transporter (PGT) (SLCO2A1), which mediates the degradation of PGs, would increase blood flow and stimulate vascularization, thereby mitigating peripheral ischemia and accelerating wound healing in diabetes. Here we report that inhibiting PGT with intravenously injected PGT inhibitor, T26A, increased blood flow in ischemic hind limbs created in non-diabetic rats and streptozotocin induced diabetic rats. Systemic, or combined with topical, T26A accelerated closure of cutaneous wounds. Immunohistochemical examination revealed that inhibition of PGT enhanced vascularization (marked by larger numbers of vessels formed by CD34+ cells), and accelerated re-epithelialization of cutaneous wounds. In cultured primary human bone marrow CD34+ cells and human epidermal keratinocytes (HEKs) either inhibiting or silencing PGT increased migration in both cell lines. Thus PGT directly regulates mobilization of endothelial progenitor cells (EPCs) and HEKs, which could contribute to PGT-mediated vascularization and re-epithelialization. At the molecular level, systemic inhibition of PGT raised circulating PGE2. Taken together, our data demonstrate that PGT modulates arterial blood flow, mobilization of EPCs and HEKs, and vascularization and epithelialization in wound healing by regulating vasodilatory and pro-angiogenic PGs.
Collapse
Affiliation(s)
- Zhongbo Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, United States of America
| | - Outhiriaradjou Benard
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, United States of America
| | - Mahrukh M. Syeda
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, United States of America
| | - Victor L. Schuster
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, United States of America
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, NY, United States of America
| | - Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
126
|
Smith GA, Fearnley GW, Harrison MA, Tomlinson DC, Wheatcroft SB, Ponnambalam S. Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease. J Inherit Metab Dis 2015; 38:753-63. [PMID: 25868665 DOI: 10.1007/s10545-015-9838-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
Vascular endothelial growth factors (VEGFs) bind to VEGF receptor tyrosine kinases (VEGFRs). The VEGF and VEGFR gene products regulate diverse regulatory pathways in mammalian development, health and disease. The interaction between a particular VEGF and its cognate VEGFR activates multiple signal transduction pathways which regulate different cellular responses including metabolism, gene expression, proliferation, migration, and survival. The family of VEGF isoforms regulate vascular physiology and promote tissue homeostasis. VEGF dysfunction is implicated in major chronic disease states including atherosclerosis, diabetes, and cancer. More recent studies implicate a strong link between response to VEGF and regulation of vascular metabolism. Understanding how this family of multitasking cytokines regulates cell and animal function has implications for treating many different diseases.
Collapse
Affiliation(s)
- Gina A Smith
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
127
|
Fukui T, Mifune Y, Matsumoto T, Shoji T, Kawakami Y, Kawamoto A, Ii M, Akimaru H, Kuroda T, Horii M, Yokoyama A, Alev C, Kuroda R, Kurosaka M, Asahara T. Superior Potential of CD34-Positive Cells Compared to Total Mononuclear Cells for Healing of Nonunion following Bone Fracture. Cell Transplant 2015; 24:1379-93. [DOI: 10.3727/096368914x681586] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We recently demonstrated that the local transplantation of human peripheral blood (PB) CD34+ cells, an endothelial/hematopoietic progenitor cell-rich population, contributes to fracture repair via vasculogenesis/angiogenesis and osteogenesis. Human PB mononuclear cells (MNCs) are also considered a potential cell fraction for neovascularization. We have previously shown the feasibility of human PB MNCs to enhance fracture healing. However, there is no report directly comparing the efficacy for fracture repair between CD34+ cells and MNCs. In addition, an unhealing fracture model, which does not accurately resemble a clinical setting, was used in our previous studies. To overcome these issues, we compared the capacity of human granulocyte colony-stimulating factor-mobilized PB (GM-PB) CD34+ cells and human GM-PB MNCs in a nonunion model, which more closely resembles a clinical setting. First, the effect of local transplantation of 1 × 105 GM-PB CD34+ cells (CD34+ group), 1 × 107 GM-PB MNCs (containing approximately 1 × 105 GM-PB CD34+ cells) (MNC group), and phosphate-buffered saline (PBS) (PBS group) on nonunion healing was compared. Similar augmentation of blood flow recovery at perinonunion sites was observed in the CD34+ and MNC groups. Meanwhile, a superior effect on nonunion repair was revealed by radiological, histological, and functional assessment in the CD34+ group compared with the other groups. Moreover, through in vivo and in vitro experiments, excessive inflammation induced by GM-PB MNCs was confirmed and believed to be one of the mechanisms underlying this potency difference. These results strongly suggest that local transplantation of GM-PB CD34+ cells is a practical and effective strategy for treatment of nonunion after fracture.
Collapse
Affiliation(s)
- Tomoaki Fukui
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yutaka Mifune
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Taro Shoji
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yohei Kawakami
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Atsuhiko Kawamoto
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Masaaki Ii
- Group of Translational Stem Cell Research, Department of Pharmacology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hiroshi Akimaru
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Tomoya Kuroda
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Miki Horii
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Ayumi Yokoyama
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Cantas Alev
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takayuki Asahara
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
128
|
Stempien-Otero A, Helterline D, Plummer T, Farris S, Prouse A, Polissar N, Stanford D, Mokadam NA. Mechanisms of bone marrow-derived cell therapy in ischemic cardiomyopathy with left ventricular assist device bridge to transplant. J Am Coll Cardiol 2015; 65:1424-34. [PMID: 25857908 DOI: 10.1016/j.jacc.2015.01.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/22/2014] [Accepted: 01/27/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Clinical trials report improvements in function and perfusion with direct injection of bone marrow cells into the hearts of patients with ischemic cardiomyopathy. Preclinical data suggest these cells improve vascular density, which would be expected to decrease fibrosis and inflammation. OBJECTIVES The goal of this study was to test the hypothesis that bone marrow stem cells (CD34+) will improve histological measurements of vascularity, fibrosis, and inflammation in human subjects undergoing left ventricular assist device (LVAD) placement as a bridge to cardiac transplantation. METHODS Subjects with ischemic cardiomyopathy who were scheduled for placement of an LVAD as a bridge to transplantation underwent bone marrow aspiration the day before surgery; the bone marrow was processed into cell fractions (bone marrow mononuclear cells, CD34+, and CD34-). At LVAD implantation, all fractions and a saline control were injected epicardially into predetermined areas and each injection site marked. At the time of transplantation, injected areas were collected. Data were analyzed by paired Student t test comparing the effect of cell fractions injected within each subject. RESULTS Six subjects completed the study. There were no statistically significant differences in complications with the procedure versus control subjects. Histological analysis indicated that myocardium injected with CD34+ cells had decreased density of endothelial cells compared to saline-injected myocardium. There were no significant differences in fibrosis or inflammation between groups; however, density of activated fibroblasts was decreased in both CD34+ and CD34- injected areas. CONCLUSIONS Tissue analysis does not support the hypothesis that bone marrow-derived CD34+ cells promote increased vascular tissue in humans with ischemic cardiomyopathy via direct injection.
Collapse
Affiliation(s)
- April Stempien-Otero
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington.
| | - Deri Helterline
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Tabitha Plummer
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Stephen Farris
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Andrew Prouse
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Nayak Polissar
- The Mountain-Whisper-Light Statistics, Seattle, Washington
| | - Derek Stanford
- The Mountain-Whisper-Light Statistics, Seattle, Washington
| | - Nahush A Mokadam
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
129
|
Cooke JP, Losordo DW. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res 2015; 116:1561-78. [PMID: 25908729 PMCID: PMC4869986 DOI: 10.1161/circresaha.115.303565] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022]
Abstract
The age-adjusted prevalence of peripheral arterial disease in the US population has been estimated to approach 12%. The clinical consequences of occlusive peripheral arterial disease include pain on walking (claudication), pain at rest, and loss of tissue integrity in the distal limbs; the latter may ultimately lead to amputation of a portion of the lower extremity. Surgical bypass techniques and percutaneous catheter-based interventions may successfully reperfuse the limbs of certain patients with peripheral arterial disease. In many patients, however, the anatomic extent and distribution of arterial occlusion is too severe to permit relief of pain and healing of ischemic ulcers. No effective medical therapy is available for the treatment of such patients, for many of whom amputation represents the only hope for alleviation of symptoms. The ultimate failure of medical treatment and procedural revascularization in significant numbers of patients has led to attempts to develop alternative therapies for ischemic disease. These strategies include administration of angiogenic cytokines, either as recombinant protein or as gene therapy, and more recently, to investigations of stem/progenitor cell therapy. The purpose of this review is to provide an outline of the preclinical basis for angiogenic and stem cell therapies, review the clinical research that has been done, summarize the lessons learned, identify gaps in knowledge, and suggest a course toward successfully addressing an unmet medical need in a large and growing patient population.
Collapse
Affiliation(s)
- John P Cooke
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (J.P.C.); and NeoStem Inc, New York, NY (D.W.L.).
| | - Douglas W Losordo
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (J.P.C.); and NeoStem Inc, New York, NY (D.W.L.).
| |
Collapse
|
130
|
Of mice and men: the best laid scheme? J Am Coll Cardiol 2015; 65:1435-7. [PMID: 25857909 DOI: 10.1016/j.jacc.2015.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 11/21/2022]
|
131
|
Ascione R, Rowlinson J, Avolio E, Katare R, Meloni M, Spencer HL, Mangialardi G, Norris C, Kränkel N, Spinetti G, Emanueli C, Madeddu P. Migration towards SDF-1 selects angiogenin-expressing bone marrow monocytes endowed with cardiac reparative activity in patients with previous myocardial infarction. Stem Cell Res Ther 2015; 6:53. [PMID: 25889213 PMCID: PMC4440500 DOI: 10.1186/s13287-015-0028-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/04/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Chemokine-directed migration is crucial for homing of regenerative cells to the infarcted heart and correlates with outcomes of cell therapy trials. Hence, transplantation of chemokine-responsive bone marrow cells may be ideal for treatment of myocardial ischemia. To verify the therapeutic activity of bone marrow mononuclear cells (BM-MNCs) selected by in vitro migration towards the chemokine stromal cell-derived factor-1 (SDF-1) in a mouse model of myocardial infarction (MI), we used BM-MNCs from patients with previous large MI recruited in the TransACT-1&2 cell therapy trials. METHODS Unfractioned BM-MNCs, SDF-1-responsive, and SDF-1-nonresponsive BM-MNCs isolated by patients recruited in the TransACT-1&2 cell therapy trials were tested in Matrigel assay to evaluate angiogenic potential. Secretome and antigenic profile were characterized by flow cytometry. Angiogenin expression was measured by RT-PCR. Cells groups were also intramyocardially injected in an in vivo model of MI (8-week-old immune deficient CD1-FOXN1(nu/nu) mice). Echocardiography and hemodynamic measurements were performed before and at 14 days post-MI. Arterioles and capillaries density, infiltration of inflammatory cells, interstitial fibrosis, and cardiomyocyte proliferation and apoptosis were assessed by immunohistochemistry. RESULTS In vitro migration enriched for monocytes, while CD34(+) and CD133(+) cells and T lymphocytes remained mainly confined in the non-migrated fraction. Unfractioned total BM-MNCs promoted angiogenesis on Matrigel more efficiently than migrated or non-migrated cells. In mice with induced MI, intramyocardial injection of unfractionated or migrated BM-MNCs was more effective in preserving cardiac contractility and pressure indexes than vehicle or non-migrated BM-MNCs. Moreover, unfractioned BM-MNCs enhanced neovascularization, whereas the migrated fraction was unique in reducing the infarct size and interstitial fibrosis. In vitro studies on isolated cardiomyocytes suggest participation of angiogenin, a secreted ribonuclease that inhibits protein translation under stress conditions, in promotion of cardiomyocyte survival by migrated BM-MNCs. CONCLUSIONS Transplantation of bone marrow cells helps post-MI healing through distinct actions on vascular cells and cardiomyocytes. In addition, the SDF-1-responsive fraction is enriched with angiogenin-expressing monocytes, which may improve cardiac recovery through activation of cardiomyocyte response to stress. Identification of factors linking migratory and therapeutic outcomes could help refine regenerative approaches.
Collapse
Affiliation(s)
- Raimondo Ascione
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Jonathan Rowlinson
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Elisa Avolio
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Rajesh Katare
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Marco Meloni
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Helen L Spencer
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Giuseppe Mangialardi
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Caroline Norris
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | | | | | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Paolo Madeddu
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| |
Collapse
|
132
|
Yuan MM, Xu YY, Chen L, Li XY, Qin J, Shen Y. TLR3 expression correlates with apoptosis, proliferation and angiogenesis in hepatocellular carcinoma and predicts prognosis. BMC Cancer 2015; 15:245. [PMID: 25884709 PMCID: PMC4435918 DOI: 10.1186/s12885-015-1262-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/25/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Toll-like receptor 3 (TLR3) plays a key role in innate immunity. In the present study, we analyzed tissues of patients with human hepatocellular carcinoma (HCC) to determine the significance of the relationship between TLR3 expression and cell proliferation, apoptosis, hepatitis B virus infections, angiogenesis and prognosis. METHODS We collected paraffin-embedded tissues from 85 patients with HCC who had complete histories and were followed for >5 years. The expression and intracellular localization of TLR3 and downstream proteins (TRIF, NF-κB, and IRF3) were detected using immunohistochemistry. Further, we determined the expression of proteins that mediate cell proliferation (Ki67, cyclin D1), apoptosis (survivin, bcl-2, caspases 3, 8, and 9), and angiogenesis (CD34, MMP-2) as well as the HBV proteins HBsAg and HBcAg. Apoptosis in HCC tissues was detected using TUNEL. We conducted dual-labeling immunohistochemical analyses of TLR3 expression and TUNEL activity. RESULTS TLR3 expression was significantly lower in HCC tissues compared with adjacent tissues. TRIF, NF-κB, and IRF3 correlated positively with TLR3 expression. Survivin and Bcl-2 expression correlated negatively with TLR3. The frequencies of caspases 3, 8, and 9 expression correlated positively with TLR3 signaling proteins. Cytoplasmic TLR3 and serum levels of HBsAg correlated positively. The apoptotic index determined using the TUNEL method and correlated positively with TLR3 expression. TLR3 expression in the cytoplasm correlated positively with TUNEL-positive cells and HBsAg. Ki67 and cyclin D1 correlated negatively with TLR3 expression. MMP-2 expression, microvessel density (CD34(+)) and endothelial progenitor cells (EPCs) correlated negatively with TLR3 expression. Kaplan-Meier survival analysis shows that TLR3 expression correlated with longer survival. CONCLUSIONS The expression of TLR3 in HCC tissues may exert a synergistic effect on apoptosis and inhibit the proliferation of HCC cells, MMP-2 expression, generation of EPCs, and angiogenesis. Moreover, TLR3 expression may serve as a prognostic marker of HCC.
Collapse
Affiliation(s)
- Ming-Ming Yuan
- Department of Pathological Anatomy, Nantong University, Qixiu Road 19, Nantong City, Jiangsu, 226001, China. .,Department of Pathology, Nantong Rich Hospital, Jiangsu, China.
| | - Yu-Yin Xu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Li Chen
- Department of Pathological Anatomy, Nantong University, Qixiu Road 19, Nantong City, Jiangsu, 226001, China.
| | - Xing-Yu Li
- Department of Pathological Anatomy, Nantong University, Qixiu Road 19, Nantong City, Jiangsu, 226001, China.
| | - Jing Qin
- Department of Pathological Anatomy, Nantong University, Qixiu Road 19, Nantong City, Jiangsu, 226001, China.
| | - Ying Shen
- Department of Pathological Anatomy, Nantong University, Qixiu Road 19, Nantong City, Jiangsu, 226001, China.
| |
Collapse
|
133
|
Abstract
Well into the second decade since its conception, cell transplantation continues to undergo intensive evaluation for the treatment of myocardial infarction. At a mechanistic level, its objectives remain to replace lost cardiac cell mass with new functioning cardiomyocytes and vascular cells, thereby minimizing infarct size and scar formation, and improving clinical outcomes by preventing adverse left ventricular remodeling and recurrent ischemic events. Many different cell types, including pluripotent stem cells and various adult-derived progenitor cells, have been shown to have therapeutic potential in preclinical studies, while early phase human trial experience has provided divergent outcomes and fundamental lessons, emphasizing that there remain key issues to address and challenges to overcome before cell therapy can be applied to wider clinical practice. The purpose of this review is to provide a balanced update on recent seminal developments in this exciting field and look to the next important steps to ensure its forward progression.
Collapse
|
134
|
Abstract
This review article discusses the mechanisms of cardiomyogenesis in the adult heart. They include the re-entry of cardiomyocytes into the cell cycle; dedifferentiation of pre-existing cardiomyocytes, which assume an immature replicating cell phenotype; transdifferentiation of hematopoietic stem cells into cardiomyocytes; and cardiomyocytes derived from activation and lineage specification of resident cardiac stem cells. The recognition of the origin of cardiomyocytes is of critical importance for the development of strategies capable of enhancing the growth response of the myocardium; in fact, cell therapy for the decompensated heart has to be based on the acquisition of this fundamental biological knowledge.
Collapse
Affiliation(s)
- Annarosa Leri
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Marcello Rota
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francesco S Pasqualini
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Polina Goichberg
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Piero Anversa
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
135
|
Porat Y, Abraham E, Karnieli O, Nahum S, Woda J, Zylberberg C. Critical elements in the development of cell therapy potency assays for ischemic conditions. Cytotherapy 2015; 17:817-31. [PMID: 25728414 DOI: 10.1016/j.jcyt.2014.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 12/28/2022]
Abstract
A successful potency assay for a cell therapy product (CTP) used in the treatment of ischemic conditions should quantitatively measure relevant biological properties that predict therapeutic activity. This is especially challenging because of numerous degrees of complexity stemming from factors that include a multifactorial complex mechanism of action, cell source, inherent cell characteristics, culture method, administration mode and the in vivo conditions to which the cells are exposed. The expected biological function of a CTP encompasses complex interactions that range from a biochemical, metabolic or immunological activity to structural replacement of damaged tissue or organ. Therefore, the requirements for full characterization of the active substance with respect to biological function could be taxing. Moreover, the specific mechanism of action is often difficult to pinpoint to a specific molecular entity; rather, it is more dependent on the functionality of the cellular components acting in a in a multifactorial fashion. In the case of ischemic conditions, the cell therapy mechanism of action can vary from angiogenesis, vasculogenesis and arteriogenesis that may activate different pathways and clinical outcomes. The CTP cellular attributes with relation to the suggested mechanism of action can be used for the development of quantitative and reproducible analytical potency assays. CTPs selected and released on the basis of such potency assays should have the highest probability of providing meaningful clinical benefit for patients. This White Paper will discuss and give examples for key elements in the development of a potency assay for treatment of ischemic disorders treated by the use of CTPs.
Collapse
Affiliation(s)
- Yael Porat
- BioGenCell Ltd, Hematology BGC Stem Cell Research, Sanz Medical Center Laniado Hospital, Netanya, Israel
| | | | | | | | | | | |
Collapse
|
136
|
Cheng M, Huang K, Zhou J, Yan D, Tang YL, Zhao TC, Miller RJ, Kishore R, Losordo DW, Qin G. A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart. J Mol Cell Cardiol 2015; 81:49-53. [PMID: 25655934 DOI: 10.1016/j.yjmcc.2015.01.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 11/17/2022]
Abstract
The G protein-coupled receptor CXCR4 and its ligand stromal-cell derived factor 1 (SDF-1) play a crucial role in directing progenitor cell (PC) homing to ischemic tissue. The Src family protein kinases (SFK) can be activated by, and serve as effectors of, G proteins. In this study we sought to determine whether SFK play a role in SDF-1/CXCR4-mediated PC homing. First, we investigated whether SDF-1/CXCR4 signaling activates SFK. Bone-marrow mononuclear cells (BM MNCs) were isolated from WT and BM-specific CXCR4-KO mice and treated with SDF-1 and/or CXCR4 antagonist AMD3100. SDF-1 treatment rapidly induced phosphorylation (activation) of hematopoietic Src (i.e., Lyn, Fgr, and Hck) in WT cells but not in AMD3100-treated cells or CXCR4-KO cells. Then, we investigated whether SFK are involved in SDF-1/CXCR4-mediated PC chemotaxis. In a combined chemotaxis and endothelial-progenitor-cell (EPC) colony assay, Src inhibitor SU6656 dose-dependently inhibited the SDF-1-induced migration of colony-forming EPCs. Next, we investigated whether SFK play a role in SDF-1/CXCR4-mediated BM PC homing to the ischemic heart. BM MNCs from CXCR4BAC:eGFP reporter mice were i.v. injected into WT and SDF-1BAC:SDF1-RFP transgenic mice following surgically-induced myocardial infarction (MI). eGFP(+) MNCs and eGFP(+)c-kit(+) PCs that were recruited in the infarct border zone in SDF-1BAC:SDF1-RFP recipients were significantly more than that in WT recipients. Treatments of mice with SU6656 significantly reduced eGFP(+) and eGFP(+)c-kit(+) cell recruitment in both WT and SDF-1BAC:RFP recipients and abrogated the difference between the two groups. Remarkably, PCs isolated from BM-specific C-terminal Src kinase (CSK)-KO (Src activated) mice were recruited more efficiently than PCs from WT PCs in the WT recipients. In conclusion, SFK are activated by SDF-1/CXCR4 signaling and play an essential role in SDF-1/CXCR4-mediated BM PC chemotactic response and ischemic cardiac recruitment.
Collapse
Affiliation(s)
- Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Junlan Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dewen Yan
- Department of Endocrinology, The 2nd Renmin Hospital, Shenzhen, PR China
| | - Yao-Liang Tang
- Vascular Biology Center, Department of Medicine, Medical College of Georgia/Georgia Regents University, Augusta, GA, USA
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI, USA
| | - Richard J Miller
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Raj Kishore
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Douglas W Losordo
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
137
|
Guerin CL, Loyer X, Vilar J, Cras A, Mirault T, Gaussem P, Silvestre JS, Smadja DM. Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential. Thromb Haemost 2015; 113:1084-94. [PMID: 25608764 DOI: 10.1160/th14-09-0748] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/07/2014] [Indexed: 12/21/2022]
Abstract
Very small embryonic-like stem cells (VSELs) are multipotent stem cells localised in adult bone marrow (BM) that may be mobilised into peripheral blood (PB) in response to tissue injury. We aimed to quantify VSELs in BM and PB of patients with critical limb ischaemia (CLI) and to test their angiogenic potential in vitro as well as their therapeutic capacity in mouse model of CLI. We isolated BM VSELs from patients with CLI and studied their potential to differentiate into vascular lineages. Flow and imaging cytometry showed that VSEL counts were lower in BM (p< 0.001) and higher (p< 0.001) in PB from CLI patients compared to healthy controls, suggesting that ischaemia may trigger VSELs mobilisation in this patient population. Sorted BM-VSELs cultured in angiogenic media acquired a mesenchymal phenotype (CD90+, Thy-1 gene positive expression). VSEL-derived cells had a pattern of secretion similar to that of endothelial progenitor cells, as they released low levels of VEGF-A and inflammatory cytokines. Noteworthy, VSELs triggered post-ischaemic revascularisation in immunodeficient mice (p< 0.05 vs PBS treatment), and acquired an endothelial phenotype either in vitro when cultured in the presence of VEGF-B (Cdh-5 gene positive expression), or in vivo in Matrigel implants (human CD31+ staining in neo-vessels from plug sections). In conclusion, VSELs are a potential new source of therapeutic cells that may give rise to cells of the endothelial lineage in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David M Smadja
- Prof. David Smadja, European Georges Pompidou Hospital, Hematology Department, 20 rue Leblanc, 75015 Paris, France, Tel.: +31 56093933, Fax: +31 56093393, E-mail:
| |
Collapse
|
138
|
Wang Y, Chen Q, Zhang Z, Jiang F, Meng X, Yan H. Interleukin-10 overexpression improves the function of endothelial progenitor cells stimulated with TNF-α through the activation of the STAT3 signaling pathway. Int J Mol Med 2014; 35:471-7. [PMID: 25504316 DOI: 10.3892/ijmm.2014.2034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/04/2014] [Indexed: 11/06/2022] Open
Abstract
Lentivirus vector-interleukin-10 green fluorescent protein (LV-IL-10-GFP) was transfected into endothelial progenitor cells (EPCs) in the present study. The aim was to detect the function of IL‑10‑modified EPCs and analyze the molecular mechanism. EPCs were cultured and identified by fluorescent labeling with the von Willebrand factor antibody, vascular endothelial growth factor (VEGF) receptor, Ulex europaeus agglutinin-1 and acetylated low‑density lipoprotein. Subsequently, EPCs were transfected with LV-IL-10-GFP and lentivirus vector‑noncontain‑GFP as the control group. Enzyme‑linked immunosorbent assay (ELISA) was used to detect the concentrations of cytokines in the supernatant with or without tumor necrosis factor‑α (TNF‑α). All types of cells were assessed by a tube formation assay, adhesion assay and migration assay induced with or without TNF‑α. Cell cycle was assessed by flow cytometry. Western blot analysis was applied to detect the expression of proteins in the cells. ELISA analysis showed that the levels of TNF‑α and IL‑8 in the supernatant without TNF‑α significantly decreased in EPC‑LV‑IL‑10‑GFP (P<0.05 for all). By contrast, the levels of IL‑10 and VEGF were contrasting in association with these. The concentrations of cytokines in the supernatant with TNF‑α were consistent to the supernatant without TNF‑α. There was no statistically significant difference in the average number of EPCs undergoing migration, adhesion, total length and cell growth among the EPC, EPC‑LV‑IL‑10‑GFP and EPC‑LV‑NC‑GFP groups without TNF‑α. Further study showed that EPC‑LV‑IL‑10‑GFP with TNF‑α significantly enhanced EPC migration, adhesion and promoted tube formation (P<0.05 for all). Western blot analysis revealed that the expression of VEGF, matrix metallopeptidase‑9 and phosphorylated‑signal transducer and activator of transcription 3 (p‑STAT3) significantly increased in the EPC‑LV‑IL‑10‑GFP group. Conversely, STAT‑3 expression decreased in the EPC‑LV‑IL‑10‑GFP group. The present study suggested that overexpression of IL‑10 had no effect on migration, adhesion, tubule formation and cell growth of EPCs without TNF‑α. Furthermore, in EPCs stimulated with TNF‑α, the overexpression of IL‑10 improved EPC function, including migration, adhesion and tubule formation by activating the STAT3 signal pathway.
Collapse
Affiliation(s)
- Ying Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qingzhong Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhuhong Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiangda Meng
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
139
|
Lezaic L, Socan A, Poglajen G, Peitl PK, Sever M, Cukjati M, Cernelc P, Wu JC, Haddad F, Vrtovec B. Intracoronary transplantation of CD34(+) cells is associated with improved myocardial perfusion in patients with nonischemic dilated cardiomyopathy. J Card Fail 2014; 21:145-52. [PMID: 25459687 DOI: 10.1016/j.cardfail.2014.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND We investigated the effects of intracoronary transplantation of CD34(+) cells on myocardial perfusion in patients with nonischemic dilated cardiomyopathy (DCM). METHODS AND RESULTS We enrolled 21 patients with DCM (left ventricular ejection fraction [LVEF] <40%, New York Heart Association functional class III) who underwent peripheral stem cell mobilization with granulocyte-colony stimulating factor (G-CSF). CD34(+) cells were collected by means of apheresis. Patients underwent myocardial perfusion imaging, and CD34(+) cells were injected in the coronary artery supplying viable segments with reduced myocardial perfusion and regional dysfunction. Myocardial perfusion imaging was repeated 6 months later. Clinical response to stem cell therapy was predefined as a change in LVEF >5%. The majority of patients were men (81%) with an overall mean age 53 ± 9 years, LVEF 25 ± 5%, and 6-minute walking distance 354 ± 71 m. Myocardial perfusion defects at rest were observed in 86% of patients and were more common in the left anterior descending territory (50%). At 6 months' follow-up, there was a significant improvement in rest myocardial perfusion scores (6.3 ± 5.8 vs 3.1 ± 4.3; P < .001), LVEF (25 ± 7% vs 29 ± 8%; P = .005), and 6-minute walking distance (354 ± 71 m vs 404 ± 91 m; P < .001). Responders to stem cell therapy had lower summed rest perfusion score at both baseline (3.2 ± 3.0 vs 9.1 ± 6.3; P = .015) and follow-up (1.0 ± 1.5 vs 5.0 ± 5.1; P = .028). CONCLUSIONS CD34(+) cell transplantation may lead to improved myocardial perfusion in patients with nonischemic DCM. Patients with less severe myocardial perfusion defects at baseline may have an increased likelihood to respond to intracoronary CD34(+) cell transplantation.
Collapse
Affiliation(s)
- Luka Lezaic
- Department for Nuclear Medicine, University Medical Centre (UMC), Ljubljana, Slovenia
| | - Aljaz Socan
- Department for Nuclear Medicine, University Medical Centre (UMC), Ljubljana, Slovenia
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Centre, Department of Cardiology, UMC Ljubljana, Ljubljana, Slovenia
| | - Petra Kolenc Peitl
- Department for Nuclear Medicine, University Medical Centre (UMC), Ljubljana, Slovenia
| | - Matjaz Sever
- Department of Hematology, UMC Ljubljana, Ljubljana, Slovenia
| | - Marko Cukjati
- National Blood Transfusion Institute, Ljubljana, Slovenia
| | - Peter Cernelc
- Department of Hematology, UMC Ljubljana, Ljubljana, Slovenia
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - François Haddad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Bojan Vrtovec
- Department for Nuclear Medicine, University Medical Centre (UMC), Ljubljana, Slovenia; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
140
|
Liu B, Duan CY, Luo CF, Ou CW, Sun K, Wu ZY, Huang H, Cheng CF, Li YP, Chen MS. Effectiveness and safety of selected bone marrow stem cells on left ventricular function in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Int J Cardiol 2014; 177:764-70. [PMID: 25465825 DOI: 10.1016/j.ijcard.2014.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/09/2014] [Accepted: 11/01/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Concerns regarding the use of selected bone marrow stem cells (BMSCs) in the field of cardiac repair after acute ischemic events have been raised. The current meta-analysis aimed to assess the efficacy and safety of selected BMSC transplantation in patients with acute myocardial infarction (AMI) based on published randomized controlled trials (RCTs). METHODS A systematic literature search of PubMed, Ovid LWW, BIOSIS Previews, and the Cochrane library from 1990 to 2014 was conducted. Results from RCTs involving subjects with AMI receiving selected BMSC therapy and followed up for at least 6 months were pooled. RESULTS Eight trials with a total of 262 participants were included. Data were analyzed using a random effects model. Overall, selected BMSC therapy improved left ventricular ejection fraction (LVEF) by 3.17% (95% confidence interval [CI] 0.57-5.76, P=0.02), compared with the controls. There were trends toward reduced left ventricular end-systolic volume (LVESV) and fewer major adverse cardiac events (MACEs). Subgroup analysis revealed a significant difference in LVEF in favor of selected BMSC therapy with bone marrow mesenchymal stem cells (BMMSCs) as the cell type. CONCLUSIONS Transplantation of selected BMSCs for patients with AMI is safe and induces a significant increase in LVEF with a limited impact on left ventricular remodeling.
Collapse
Affiliation(s)
- Bei Liu
- Department of Cardiovascular Medicine, Zhu Jiang Hospital, Southern Medical University, China; Southern Medical University, China
| | - Chong-Yang Duan
- Department of Biostatistics, Southern Medical University, China
| | - Cheng-Feng Luo
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou Medical University, China
| | | | - Kan Sun
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - Zhi-Ye Wu
- Department of Cardiovascular Medicine, Zhu Jiang Hospital, Southern Medical University, China
| | - He Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou Medical University, China
| | - Chuan-Fang Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou Medical University, China
| | - Yun-Peng Li
- Department of Cardiovascular Medicine, Zhu Jiang Hospital, Southern Medical University, China
| | - Min-Sheng Chen
- Department of Cardiovascular Medicine, Zhu Jiang Hospital, Southern Medical University, China; Southern Medical University, China.
| |
Collapse
|
141
|
Roncalli J. An update on primary findings and new designs in biotherapy studies for acute myocardial infarction. Future Cardiol 2014; 10:781-8. [DOI: 10.2217/fca.14.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
ABSTRACT Treatment of acute myocardial infarction in the future should focus not only on improving acute treatment, as it has been done over the past decades, but also on secondary prevention of left ventricular dysfunction and/or progression to heart failure by preserving left ventricular shape, avoiding left ventricular remodeling and stimulating cardiac regeneration. Biotherapies with adult stem cells and bone marrow-derived endothelial cell progenitors, combined or not with biomaterials, and new drugs are under investigation and will probably be part of routine clinical practice for patients suffering from myocardial infarction in the near future.
Collapse
|
142
|
Perin EC, Murphy M, Cooke JP, Moyé L, Henry TD, Bettencourt J, Gahremanpour A, Leeper N, Anderson RD, Hiatt WR, Lima JA, Venkatesh B, Sayre SL, Vojvodic RW, Taylor DA, Ebert RF, Hirsch AT. Rationale and design for PACE: patients with intermittent claudication injected with ALDH bright cells. Am Heart J 2014; 168:667-73. [PMID: 25440794 PMCID: PMC4254580 DOI: 10.1016/j.ahj.2014.07.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/18/2014] [Indexed: 12/13/2022]
Abstract
Peripheral artery disease (PAD) is recognized as a public health issue because of its prevalence, functional limitations, and increased risk of systemic ischemic events. Current treatments for claudication, the primary symptom in patients with PAD, have limitations. Cells identified using cytosolic enzyme aldehyde dehydrogenase (ALDH) may benefit patients with severe PAD but has not been studied in patients with claudication. PACE is a randomized, double-blind, placebo-controlled clinical trial conducted by the Cardiovascular Cell Therapy Research Network to assess the safety and efficacy of autologous bone marrow-derived ALDH(br) cells delivered by direct intramuscular injections in 80 patients with symptom-limiting intermittent claudication. Eligible patients will have a significant stenosis or occlusion of infrainguinal arteries and a resting ankle-brachial index less than 0.90 and will be randomized 1:1 to cell or placebo treatment with a 1-year follow-up. The primary end points are the change in peak walking time and leg collateral arterial anatomy, calf muscle blood flow, and tissue perfusion as determined by magnetic resonance imaging at 6 months compared with baseline. The latter 3 measurements are new physiologic lower extremity tissue perfusion and PAD imaging-based end points that may help to quantify the biologic and mechanistic effects of cell therapy. This trial will collect important mechanistic and clinical information on the safety and efficacy of ALDH(br) cells in patients with claudication and provide valuable insight into the utility of advanced magnetic resonance imaging end points.
Collapse
Affiliation(s)
| | | | - John P Cooke
- Houston Methodist Research Institute, Houston, TX
| | - Lem Moyé
- The University of Texas Health Science Center School of Public Health, Houston, TX.
| | | | - Judy Bettencourt
- The University of Texas Health Science Center School of Public Health, Houston, TX
| | | | | | | | | | | | | | - Shelly L Sayre
- The University of Texas Health Science Center School of Public Health, Houston, TX
| | - Rachel W Vojvodic
- The University of Texas Health Science Center School of Public Health, Houston, TX
| | | | - Ray F Ebert
- National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Alan T Hirsch
- Lillehei Heart Institute, Cardiovascular Division, University of Minnesota School of Medicine, Minneapolis, MN
| |
Collapse
|
143
|
Patel RS, Li Q, Ghasemzadeh N, Eapen DJ, Moss LD, Janjua AU, Manocha P, Kassem HA, Veledar E, Samady H, Taylor WR, Zafari AM, Sperling L, Vaccarino V, Waller EK, Quyyumi AA. Circulating CD34+ progenitor cells and risk of mortality in a population with coronary artery disease. Circ Res 2014; 116:289-297. [PMID: 25323857 DOI: 10.1161/circresaha.116.304187] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RATIONALE Low circulating progenitor cell numbers and activity may reflect impaired intrinsic regenerative/reparative potential, but it remains uncertain whether this translates into a worse prognosis. OBJECTIVES To investigate whether low numbers of progenitor cells associate with a greater risk of mortality in a population at high cardiovascular risk. METHODS AND RESULTS Patients undergoing coronary angiography were recruited into 2 cohorts (1, n=502 and 2, n=403) over separate time periods. Progenitor cells were enumerated by flow cytometry as CD45(med+) blood mononuclear cells expressing CD34, with additional quantification of subsets coexpressing CD133, vascular endothelial growth factor receptor 2, and chemokine (C-X-C motif) receptor 4. Coefficient of variation for CD34 cells was 2.9% and 4.8%, 21.6% and 6.5% for the respective subsets. Each cohort was followed for a mean of 2.7 and 1.2 years, respectively, for the primary end point of all-cause death. There was an inverse association between CD34(+) and CD34(+)/CD133(+) cell counts and risk of death in cohort 1 (β=-0.92, P=0.043 and β=-1.64, P=0.019, respectively) that was confirmed in cohort 2 (β=-1.25, P=0.020 and β=-1.81, P=0.015, respectively). Covariate-adjusted hazard ratios in the pooled cohort (n=905) were 3.54 (1.67-7.50) and 2.46 (1.18-5.13), respectively. CD34(+)/CD133(+) cell counts improved risk prediction metrics beyond standard risk factors. CONCLUSIONS Reduced circulating progenitor cell counts, identified primarily as CD34(+) mononuclear cells or its subset expressing CD133, are associated with risk of death in individuals with coronary artery disease, suggesting that impaired endogenous regenerative capacity is associated with increased mortality. These findings have implications for biological understanding, risk prediction, and cell selection for cell-based therapies.
Collapse
Affiliation(s)
- Riyaz S Patel
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Institute of Cardiovascular Sciences, University College London, London, UK
| | - Qunna Li
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nima Ghasemzadeh
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Danny J Eapen
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lauren D Moss
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - A Umair Janjua
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Pankaj Manocha
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hatem Al Kassem
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Emir Veledar
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Dept of Medicine, Baptist Health South Florida, Florida, USA
| | - Habib Samady
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - W Robert Taylor
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - A Maziar Zafari
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Dept of Medicine, Baptist Health South Florida, Florida, USA.,Dept. of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Laurence Sperling
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Dept. of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Edmund K Waller
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Dept. of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
144
|
Lee S, Yoon YS. Revisiting cardiovascular regeneration with bone marrow-derived angiogenic and vasculogenic cells. Br J Pharmacol 2014; 169:290-303. [PMID: 22250888 DOI: 10.1111/j.1476-5381.2012.01857.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell-based therapy has emerged as a promising therapy for cardiovascular disease. Particularly, bone marrow (BM)-derived cells have been most extensively investigated and have shown encouraging results in preclinical studies. Clinical trials, however, have demonstrated split results in post-myocardial infarction cardiac repair. Mechanistically, transdifferentiation of BM-derived cells into cardiovascular tissue demonstrated by earlier studies is now known to play a minor role in functional recovery, and humoral and paracrine effects turned out to be main mechanisms responsible for tissue regeneration and functional recovery. With this advancement in the mechanistic insight of BM-derived cells, new efforts have been made to identify cell population, which can be readily isolated and obtained in sufficient quantity without mobilization and have higher therapeutic potential. Recently, haematopoietic CD31(+) cells, which are more prevalent in bone marrow and peripheral blood, have been revealed to have angiogenic and vasculogenic activities and strong potential for therapeutic neovascularization in ischaemic tissues. This article will cover the recent advances in BM-derived cell-based therapy and implication of CD31(+) cells.
Collapse
Affiliation(s)
- Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
145
|
Kamata S, Miyagawa S, Fukushima S, Nakatani S, Kawamoto A, Saito A, Harada A, Shimizu T, Daimon T, Okano T, Asahara T, Sawa Y. Improvement of Cardiac Stem Cell Sheet Therapy for Chronic Ischemic Injury by Adding Endothelial Progenitor Cell Transplantation: Analysis of Layer-Specific Regional Cardiac Function. Cell Transplant 2014; 23:1305-19. [DOI: 10.3727/096368913x665602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The transplantation of cardiac stem cell sheets (CSC sheets) is a promising therapeutic strategy for ischemic cardiomyopathy, although potential ischemia in the transplanted area remains a problem. Injected endothelial progenitor cells (EPCs) can reportedly induce angiogenesis in the injected area. We hypothesized that concomitant CSC sheet transplantation and EPC injection might show better therapeutic effects for chronic ischemic injury model than the transplantation of CSC sheets alone. Scaffold-free CSC sheets were generated from human c-kit-positive heart-derived cells. A porcine chronic ischemic injury model was generated by placing an ameroid constrictor around the left coronary artery for 4 weeks. The animals then underwent a sham operation, epicardial transplantation of CSC sheet over the ischemic area, intramyocardial injection of EPCs into the ischemic and peri-ischemic area, or CSC sheet transplantation plus EPC injection. The efficacy of each treatment was then assessed for 2 months. Speckle-tracking echocardiography was used to dissect the layer-specific regional systolic function by measuring the radial strain (RS). The epicardial RS in the ischemic area was similarly greater after treatment with the CSC-derived cell sheets alone (19 ± 5%) or in combination with EPC injection (20 ± 5%) compared with the EPC only (9 ± 4%) or sham (7 ± 1%) treatment. The endocardial RS in the ischemic area was greatest after the combined treatment (14 ± 1%), followed by EPC only (12 ± 1%), compared to the CSC only (11 ± 1%) and sham (9 ± 1%) treatments. Consistently, either epicardial CSC sheet implantation or intramyocardial EPC injection yielded increased capillary number and reduced cardiac fibrosis in the ischemic epicardium or endocardium, respectively. Concomitant EPC injection induced the migration of transplanted CSCs into the host myocardium, leading to further neovascularization and reduced fibrosis in the ischemic endocardium, compared to the CSC sole therapy. Transplantation of CSC sheets induced significant functional recovery of the ischemic epicardium, and concomitant EPC transplantation elicited transmural improvement in chronic ischemic injury.
Collapse
Affiliation(s)
- Sokichi Kamata
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Nakatani
- Division of Functional Diagnostics, Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsuhiko Kawamoto
- Division of Vascular Regeneration Therapy, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Atsuhiro Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Daimon
- Department of Biostatistics, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Takayuki Asahara
- Division of Vascular Regeneration Therapy, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
146
|
Jang IH, Heo SC, Kwon YW, Choi EJ, Kim JH. Role of formyl peptide receptor 2 in homing of endothelial progenitor cells and therapeutic angiogenesis. Adv Biol Regul 2014; 57:162-72. [PMID: 25304660 DOI: 10.1016/j.jbior.2014.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 12/30/2022]
Abstract
Endothelial progenitor cells (EPCs) hold a great promise as a therapeutic mediator in treatment of ischemic disease conditions. The discovery of EPCs in adult blood has been a cause of significant enthusiasm in the field of endothelial cell research and numerous clinical trials have been expedited. After more than a decade of research in basic science and clinical applications, limitations and new strategies of EPC therapeutics have emerged. With various phenotypes, vague definitions, and uncertain distinction from hematopoietic cells, understanding EPC biology remains challenging. However, EPCs, still hold great hope for treatment of critical ischemic injury as low concern regarding safety can accelerate the clinical applications from basic findings. This review provides an introduction to EPC as cellular therapeutics, which highlights a recent finding that EPC homing was promoted through FPR2 signaling.
Collapse
Affiliation(s)
- Il Ho Jang
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Soon Chul Heo
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Yang Woo Kwon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Eun Jung Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea; Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 626-770, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
147
|
Poglajen G, Sever M, Cukjati M, Cernelc P, Knezevic I, Zemljic G, Haddad F, Wu JC, Vrtovec B. Effects of transendocardial CD34+ cell transplantation in patients with ischemic cardiomyopathy. Circ Cardiovasc Interv 2014; 7:552-9. [PMID: 25097199 DOI: 10.1161/circinterventions.114.001436] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/16/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND We investigated the effects of transendocardial CD34(+) cell transplantation in patients with ischemic cardiomyopathy. METHODS AND RESULTS In a prospective crossover study, we enrolled 33 patients with ischemic cardiomyopathy with New York Heart Association class III and left ventricular ejection fraction <40%. In phase 1, patients were treated with medical therapy for 6 months. Thereafter, all patients underwent transendocardial CD34(+) cell transplantation. Peripheral blood CD34(+) cells were mobilized by granulocyte colony stimulating factor, collected via apheresis, and injected transendocardially in the areas of hibernating myocardium. Patients were followed up for 6 months after the procedure (phase 2). Two patients died during phase 1 and none during phase 2. The remaining 31 patients were 85% men, aged 57±6 years. In phase 1, we found no change in left ventricular ejection fraction (from 25.2±6.2% to 27.1±6.6%; P=0.23), N-terminal pro B-type natriuretic peptide (from 3322±3411 to 3672±5165 pg/mL; P=0.75) or 6-minute walk distance (from 373±68 to 411±116 m; P=0.17). In contrast, in phase 2 there was an improvement in left ventricular ejection fraction (from 27.1±6.6% to 34.9±10.9%; P=0.001), increase in 6-minute walk distance (from 411±116 to 496±113 m; P=0.001), and a decrease in N-terminal pro B-type natriuretic peptide (from 3672±5165 to 1488±1847 pg/mL; P=0.04). The average number of injected CD34(+) cells was 90.6±7.5×10(6). Higher doses of CD34(+) cells and a more diffuse distribution of transendocardial cell injections were associated with better clinical response. CONCLUSIONS Transendocardial CD34(+) cell transplantation may be associated with improved left ventricular function, decreased N-terminal pro B-type natriuretic peptide levels, and better exercise capacity in patients with ischemic cardiomyopathy. These effects seem to be particularly pronounced in patients receiving diffusely distributed cell injections and high-dose cell therapy. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT01350310.
Collapse
Affiliation(s)
- Gregor Poglajen
- From the Department of Cardiology, Advanced Heart Failure and Transplantation Center (G.P., G.Z., B.V.), Department of Hematology (M.S., P.C.), and Department of Cardiovascular Surgery (I.K.), University Medical Center Ljubljana, Ljubljana, Slovenia; National Blood Transfusion Institute, Ljubljana, Slovenia (M.C.); and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA (F.H., J.C.W., B.V.)
| | - Matjaz Sever
- From the Department of Cardiology, Advanced Heart Failure and Transplantation Center (G.P., G.Z., B.V.), Department of Hematology (M.S., P.C.), and Department of Cardiovascular Surgery (I.K.), University Medical Center Ljubljana, Ljubljana, Slovenia; National Blood Transfusion Institute, Ljubljana, Slovenia (M.C.); and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA (F.H., J.C.W., B.V.)
| | - Marko Cukjati
- From the Department of Cardiology, Advanced Heart Failure and Transplantation Center (G.P., G.Z., B.V.), Department of Hematology (M.S., P.C.), and Department of Cardiovascular Surgery (I.K.), University Medical Center Ljubljana, Ljubljana, Slovenia; National Blood Transfusion Institute, Ljubljana, Slovenia (M.C.); and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA (F.H., J.C.W., B.V.)
| | - Peter Cernelc
- From the Department of Cardiology, Advanced Heart Failure and Transplantation Center (G.P., G.Z., B.V.), Department of Hematology (M.S., P.C.), and Department of Cardiovascular Surgery (I.K.), University Medical Center Ljubljana, Ljubljana, Slovenia; National Blood Transfusion Institute, Ljubljana, Slovenia (M.C.); and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA (F.H., J.C.W., B.V.)
| | - Ivan Knezevic
- From the Department of Cardiology, Advanced Heart Failure and Transplantation Center (G.P., G.Z., B.V.), Department of Hematology (M.S., P.C.), and Department of Cardiovascular Surgery (I.K.), University Medical Center Ljubljana, Ljubljana, Slovenia; National Blood Transfusion Institute, Ljubljana, Slovenia (M.C.); and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA (F.H., J.C.W., B.V.)
| | - Gregor Zemljic
- From the Department of Cardiology, Advanced Heart Failure and Transplantation Center (G.P., G.Z., B.V.), Department of Hematology (M.S., P.C.), and Department of Cardiovascular Surgery (I.K.), University Medical Center Ljubljana, Ljubljana, Slovenia; National Blood Transfusion Institute, Ljubljana, Slovenia (M.C.); and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA (F.H., J.C.W., B.V.)
| | - François Haddad
- From the Department of Cardiology, Advanced Heart Failure and Transplantation Center (G.P., G.Z., B.V.), Department of Hematology (M.S., P.C.), and Department of Cardiovascular Surgery (I.K.), University Medical Center Ljubljana, Ljubljana, Slovenia; National Blood Transfusion Institute, Ljubljana, Slovenia (M.C.); and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA (F.H., J.C.W., B.V.)
| | - Joseph C Wu
- From the Department of Cardiology, Advanced Heart Failure and Transplantation Center (G.P., G.Z., B.V.), Department of Hematology (M.S., P.C.), and Department of Cardiovascular Surgery (I.K.), University Medical Center Ljubljana, Ljubljana, Slovenia; National Blood Transfusion Institute, Ljubljana, Slovenia (M.C.); and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA (F.H., J.C.W., B.V.)
| | - Bojan Vrtovec
- From the Department of Cardiology, Advanced Heart Failure and Transplantation Center (G.P., G.Z., B.V.), Department of Hematology (M.S., P.C.), and Department of Cardiovascular Surgery (I.K.), University Medical Center Ljubljana, Ljubljana, Slovenia; National Blood Transfusion Institute, Ljubljana, Slovenia (M.C.); and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA (F.H., J.C.W., B.V.).
| |
Collapse
|
148
|
Ritz U, Spies V, Mehling I, Gruszka D, Rommens PM, Hofmann A. Mobilization of CD34+-progenitor cells in patients with severe trauma. PLoS One 2014; 9:e97369. [PMID: 24826895 PMCID: PMC4020858 DOI: 10.1371/journal.pone.0097369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/17/2014] [Indexed: 01/31/2023] Open
Abstract
Circulating CD34+ progenitor cells () gained importance in the field of regenerative medicine due to their potential to home in on injury sites and differentiate into cells of both endothelial and osteogenic lineages. In this study, we analyzed the mobilization kinetics and the numbers of CD34+, CD31+, CD45+, and CD133+ cells in twenty polytrauma patients (n = 13 male, n = 7 female, mean age 46.5±17.2 years, mean injury severity score (ISS) 35.8±12.5 points). In addition, the endothelial differentiation capacity of enriched CD34+cells was assessed by analyzing DiI-ac-LDL/lectin uptake, the expression of endothelial markers, and the morphological characteristics of these cells in Matrigel and spheroid cultures. We found that on days 1, 3, and 7 after a major trauma, the number of CD34+cells increased from 6- up to 12-fold (p<0.0001) over the number of CD34+cells from a control population of healthy, age-matched volunteers. The numbers of CD31+ cells were consistently higher on days 1 (1.4-fold, p<0.01) and 7 (1.3-fold, p<0.01), whereas the numbers of CD133+ cell did not change during the time course of investigation. Expression of endothelial marker molecules in CD34+cells was significantly induced in the polytrauma patients. In addition, we show that the CD34+ cell levels in severely injured patients were not correlated with clinical parameters, such as the ISS score, the acute physiology and chronic health evaluation II score (APACHE II), as well as the sequential organ failure assessment score (SOFA-2). Our results clearly indicate that pro-angiogenic cells are systemically mobilized after polytrauma and that their numbers are sufficient for the development of novel therapeutic models in regenerative medicine.
Collapse
Affiliation(s)
- Ulrike Ritz
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Volker Spies
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Isabella Mehling
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Dominik Gruszka
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Pol Maria Rommens
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Alexander Hofmann
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
- * E-mail:
| |
Collapse
|
149
|
Emmert MY, Hitchcock RW, Hoerstrup SP. Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliv Rev 2014; 69-70:254-69. [PMID: 24378579 DOI: 10.1016/j.addr.2013.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/06/2013] [Accepted: 12/17/2013] [Indexed: 01/02/2023]
Abstract
Ischemic Heart Disease (IHD) still represents the "Number One Killer" worldwide accounting for the death of numerous patients. However the capacity for self-regeneration of the adult heart is very limited and the loss of cardiomyocytes in the infarcted heart leads to continuous adverse cardiac-remodeling which often leads to heart-failure (HF). The concept of regenerative medicine comprising cell-based therapies, bio-engineering technologies and hybrid solutions has been proposed as a promising next-generation approach to address IHD and HF. Numerous strategies are under investigation evaluating the potential of regenerative medicine on the failing myocardium including classical cell-therapy concepts, three-dimensional culture techniques and tissue-engineering approaches. While most of these regenerative strategies have shown great potential in experimental studies, the translation into a clinical setting has either been limited or too rapid leaving many key questions unanswered. This review summarizes the current state-of-the-art, important challenges and future research directions as to regenerative approaches addressing IHD and resulting HF.
Collapse
|
150
|
Effects of intravenous administration of umbilical cord blood CD34(+) cells in a mouse model of neonatal stroke. Neuroscience 2014; 263:148-58. [PMID: 24444827 DOI: 10.1016/j.neuroscience.2014.01.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 12/16/2022]
Abstract
Neonatal stroke occurs in approximately 1/4000 live births and results in life-long neurological impairments: e.g., cerebral palsy. Currently, there is no evidence-based specific treatment for neonates with stroke. Several studies have reported the benefits of umbilical cord blood (UCB) cell treatment in rodent models of neonatal brain injury. However, all of the studies examined the effects of administering either the UCB mononuclear cell fraction or UCB-derived mesenchymal stem cells in neonatal rat models. The objective of this study was to examine the effects of human UCB CD34(+) cells (hematopoietic stem cell/endothelial progenitor cells) in a mouse model of neonatal stroke, which we recently developed. On postnatal day 12, immunocompromized (SCID) mice underwent permanent occlusion of the left middle cerebral artery (MCAO). Forty-eight hours after MCAO, human UCB CD34(+) cells (1×10(5)cells) were injected intravenously into the mice. The area in which cerebral blood flow (CBF) was maintained was temporarily larger in the cell-treated group than in the phosphate-buffered saline (PBS)-treated group at 24h after treatment. With cell treatment, the percent loss of ipsilateral hemispheric volume was significantly ameliorated (21.5±1.9%) compared with the PBS group (25.6±5.1%) when assessed at 7weeks after MCAO. The cell-treated group did not exhibit significant differences from the PBS group in either rotarod (238±46s in the sham-surgery group, 175±49s in the PBS group, 203±54s in the cell-treated group) or open-field tests. The intravenous administration of human UCB CD34(+) cells modestly reduced histological ischemic brain damage after neonatal stroke in mice, with a transient augmentation of CBF in the peri-infarct area.
Collapse
|