101
|
Long-term prognostic implications of hemodynamic and plaque assessment using coronary CT angiography. Atherosclerosis 2023; 373:58-65. [PMID: 36872186 DOI: 10.1016/j.atherosclerosis.2023.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND AND AIMS Hemodynamic and plaque characteristics can be analyzed using coronary CT angiography (CTA). We aimed to explore long-term prognostic implications of hemodynamic and plaque characteristics using coronary CT angiography (CTA). METHODS Invasive fractional flow reserve (FFR) and CTA-derived FFR (FFRCT) were undertaken for 136 lesions in 78 vessels and followed-up to 10 years until December 2020. FFRCT, wall shear stress (WSS), change in FFRCT across the lesion (ΔFFRCT), total plaque volume (TPV), percent atheroma volume (PAV), and low-attenuation plaque volume (LAPV) for target lesions [L] and vessels [V] were obtained by independent core laboratories. Their collective influence was evaluated for the clinical endpoints of target vessel failure (TVF) and target lesion failure (TLF). RESULTS During a median follow-up of 10.1 years, PAV[V] (per 10% increase, HR 2.32 [95% CI 1.11-4.86], p = 0.025), and FFRCT[V] (per 0.1 increase, HR 0.56 [95% CI 0.37-0.84], p = 0.006) were independent predictors of TVF for the per-vessel analysis, and WSS[L] (per 100 dyne/cm2 increase, HR 1.43 [1.09-1.88], p = 0.010), LAPV[L] (per 10 mm3 increase, HR 3.81 [1.16-12.5], p = 0.028), and ΔFFRCT[L] (per 0.1 increase, HR 1.39 [1.02-1.90], p = 0.040) were independent predictors of TLF for the per-lesion analysis after adjustment for clinical and lesion characteristics. The addition of both plaque and hemodynamic predictors improved the predictability for 10-year TVF and TLF of clinical and lesion characteristics (all p < 0.05). CONCLUSIONS Vessel- and lesion-level hemodynamic characteristics, and vessel-level plaque quantity, and lesion-level plaque compositional characteristics assessed by CTA offer independent and additive long-term prognostic value.
Collapse
|
102
|
A spatiotemporal analysis of the left coronary artery biomechanics using fluid-structure interaction models. Med Biol Eng Comput 2023; 61:1533-1548. [PMID: 36790640 DOI: 10.1007/s11517-023-02791-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023]
Abstract
Biomechanics plays a critical role in coronary artery disease development. FSI simulation is commonly used to understand the hemodynamics and mechanical environment associated with atherosclerosis pathology. To provide a comprehensive characterization of patient-specific coronary biomechanics, an analysis of FSI simulation in the spatial and temporal domains was performed. In the current study, a three-dimensional FSI model of the LAD coronary artery was built based on a patient-specific geometry using COMSOL Multiphysics. The effect of myocardial bridging was simulated. Wall shear stress and its derivatives including time-averaged wall shear stress, wall shear stress gradient, and OSI were calculated across the cardiac cycle in multiple locations. Arterial wall strain (radial, circumferential, and longitudinal) and von Mises stress were calculated. To assess perfusion, vFFR was calculated. The results demonstrated the FSI model could identify regional and transient differences in biomechanical parameters within the coronary artery. The addition of myocardial bridging caused a notable change in von Mises stress and an increase in arterial strain during systole. The analysis performed in this manner takes greater advantage of the information provided in the space and time domains and can potentially assist clinical evaluation.
Collapse
|
103
|
Tian X, Fang H, Lan L, Ip HL, Abrigo J, Liu H, Zheng L, Fan FSY, Ma SH, Ip B, Song B, Xu Y, Li J, Zhang B, Xu Y, Soo YOY, Mok V, Wong KS, Leung TW, Leng X. Risk stratification in symptomatic intracranial atherosclerotic disease with conventional vascular risk factors and cerebral haemodynamics. Stroke Vasc Neurol 2023; 8:77-85. [PMID: 36104090 PMCID: PMC9985805 DOI: 10.1136/svn-2022-001606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND AND PURPOSE Symptomatic intracranial atherosclerotic stenosis (sICAS) is associated with a considerable risk of recurrent stroke despite contemporarily optimal medical treatment. Severity of luminal stenosis in sICAS and its haemodynamic significance quantified with computational fluid dynamics (CFD) models were associated with the risk of stroke recurrence. We aimed to develop and compare stroke risk prediction nomograms in sICAS, based on vascular risk factors and these metrics. METHODS Patients with 50%-99% sICAS confirmed in CT angiography (CTA) were enrolled. Conventional vascular risk factors were collected. Severity of luminal stenosis in sICAS was dichotomised as moderate (50%-69%) and severe (70%-99%). Translesional pressure ratio (PR) and wall shear stress ratio (WSSR) were quantified via CTA-based CFD modelling; the haemodynamic status of sICAS was classified as normal (normal PR&WSSR), intermediate (otherwise) and abnormal (abnormal PR&WSSR). All patients received guideline-recommended medical treatment. We developed and compared performance of nomograms composed of these variables and independent predictors identified in multivariate logistic regression, in predicting the primary outcome, recurrent ischaemic stroke in the same territory (SIT) within 1 year. RESULTS Among 245 sICAS patients, 20 (8.2%) had SIT. The D2H2A nomogram, incorporating diabetes, dyslipidaemia, haemodynamic status of sICAS, hypertension and age ≥50 years, showed good calibration (P for Hosmer-Lemeshow test=0.560) and discrimination (C-statistic 0.73, 95% CI 0.60 to 0.85). It also had better performance in risk reclassification and provided larger net benefits in decision curve analysis, compared with nomograms composed of conventional vascular risk factors only, and plus the severity of luminal stenosis in sICAS. Sensitivity analysis in patients with anterior-circulation sICAS showed similar results. CONCLUSIONS The D2H2A nomogram, incorporating conventional vascular risk factors and the haemodynamic significance of sICAS as assessed in CFD models, could be a useful tool to stratify sICAS patients for the risk of recurrent stroke under contemporarily optimal medical treatment.
Collapse
Affiliation(s)
- Xuan Tian
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Hui Fang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linfang Lan
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China.,Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hing Lung Ip
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Jill Abrigo
- Department of Imaging and Interventional, The Chinese University, Hong Kong, China
| | - Haipeng Liu
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China.,Research Centre of Intelligent Healthcare, Faculty of Health and Life Science, Coventry University, Coventry, UK
| | - Lina Zheng
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Florence S Y Fan
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Sze Ho Ma
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Bonaventure Ip
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingwei Li
- Department of Neurology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Bing Zhang
- Department of Radiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yun Xu
- Department of Neurology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yannie O Y Soo
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Vincent Mok
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Ka Sing Wong
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Thomas W Leung
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Xinyi Leng
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| |
Collapse
|
104
|
Stone PH, Libby P, Boden WE. Fundamental Pathobiology of Coronary Atherosclerosis and Clinical Implications for Chronic Ischemic Heart Disease Management-The Plaque Hypothesis: A Narrative Review. JAMA Cardiol 2023; 8:192-201. [PMID: 36515941 PMCID: PMC11016334 DOI: 10.1001/jamacardio.2022.3926] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Recent clinical and imaging studies underscore that major adverse cardiac events (MACE) outcomes are associated not solely with severe coronary obstructions (ischemia hypothesis or stenosis hypothesis), but with the plaque burden along the entire coronary tree. New research clarifies the pathobiologic mechanisms responsible for plaque development/progression/destabilization leading to MACE (plaque hypothesis), but the translation of these insights to clinical management strategies has lagged. This narrative review elaborates the plaque hypothesis and explicates the current understanding of underlying pathobiologic mechanisms, the provocative destabilizing influences, the diagnostic and therapeutic implications, and their actionable clinical management approaches to optimize the management of patients with chronic coronary disease. Observations Clinical trials of management strategies for patients with chronic coronary artery disease demonstrate that while MACE rate increases progressively with the anatomic extent of coronary disease, revascularization of the ischemia-producing obstruction does not forestall MACE. Most severely obstructive coronary lesions often remain quiescent and seldom destabilize to cause a MACE. Coronary lesions that later provoke acute myocardial infarction often do not narrow the lumen critically. Invasive and noninvasive imaging can identify the plaque anatomic characteristics (plaque burden, plaque topography, lipid content) and local hemodynamic/biomechanical characteristics (endothelial shear stress, plaque structural stress, axial plaque stress) that can indicate the propensity of individual plaques to provoke a MACE. Conclusions and Relevance The pathobiologic construct concerning the culprit region of a plaque most likely to cause a MACE (plaque hypothesis), which incorporates multiple convergent plaque features, informs the evolution of a new management strategy capable of identifying the high-risk portion of plaque wherever it is located along the course of the coronary artery. Ongoing investigations of high-risk plaque features, coupled with technical advances to enable prognostic characterization in real time and at the point of care, will soon enable evaluation of the entire length of the atheromatous coronary artery and broaden the target(s) of our therapeutic intervention to include all regions of the plaque (both flow limiting and nonflow limiting).
Collapse
Affiliation(s)
- Peter H Stone
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Heart and Vascular Center, Harvard Medical School, Boston, Massachusetts
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Heart and Vascular Center, Harvard Medical School, Boston, Massachusetts
| | - William E Boden
- VA Boston Healthcare System, Massachusetts Veterans Epidemiology, Research, and Informatics Center, and Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
105
|
Computational Study of Hemodynamic Field of an Occluded Artery Model with Anastomosis. Bioengineering (Basel) 2023; 10:bioengineering10020146. [PMID: 36829640 PMCID: PMC9952429 DOI: 10.3390/bioengineering10020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
In this research work, the hemodynamic field of an occluded artery with anastomosis by means of computational simulation has been studied. The main objective of the current study is the investigation of 3D flow field phenomena in the by-pass region and the effect of the bypass graft to stenosis volume flow ratio on their formation. The anastomosis type was end-to-side with a 45° angle, while stenosis imposed a 75% area blockage of the aorta vessel and the total volume flow was 220 lt/h. The computational study of the flow field was utilized via a laminar flow model and three turbulence models (k-ε RNG, standard k-ω, and k-ω SST). Numerical results were compared qualitatively with experimental visualizations carried out under four different flow conditions, varying according to the flow ratio between the stenosis and the anastomotic graft. Comparison between computational results and experimental visualization findings exhibited a good agreement. Results showed that SST k-ω turbulence models reproduce better visually obtained flow patterns. Furthermore, cross-sectional velocity distributions demonstrated two distinct flow patterns down the bypass graft, depending on the flow ratio. Low values of flow ratio are characterized by fluid rolling up, whereas for high values fluid volume twisting was observed. Finally, areas with low wall shear stresses were mapped, as these are more prone to postoperative degradation of the bypass graft due to the development of subendothelial hyperplasia.
Collapse
|
106
|
Han N, Ma Y, Li Y, Zheng Y, Wu C, Gan T, Li M, Ma L, Zhang J. Imaging and Hemodynamic Characteristics of Vulnerable Carotid Plaques and Artificial Intelligence Applications in Plaque Classification and Segmentation. Brain Sci 2023; 13:brainsci13010143. [PMID: 36672124 PMCID: PMC9856903 DOI: 10.3390/brainsci13010143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Stroke is a massive public health problem. The rupture of vulnerable carotid atherosclerotic plaques is the most common cause of acute ischemic stroke (AIS) across the world. Currently, vessel wall high-resolution magnetic resonance imaging (VW-HRMRI) is the most appropriate and cost-effective imaging technique to characterize carotid plaque vulnerability and plays an important role in promoting early diagnosis and guiding aggressive clinical therapy to reduce the risk of plaque rupture and AIS. In recent years, great progress has been made in imaging research on vulnerable carotid plaques. This review summarizes developments in the imaging and hemodynamic characteristics of vulnerable carotid plaques on the basis of VW-HRMRI and four-dimensional (4D) flow MRI, and it discusses the relationship between these characteristics and ischemic stroke. In addition, the applications of artificial intelligence in plaque classification and segmentation are reviewed.
Collapse
Affiliation(s)
- Na Han
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
| | - Yurong Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yan Li
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730030, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
| | - Chuang Wu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Tiejun Gan
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Min Li
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Laiyang Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-139-1999-2479
| |
Collapse
|
107
|
Lv R, Wang L, Maehara A, Matsumura M, Guo X, Samady H, Giddens DP, Zheng J, Mintz GS, Tang D. Combining IVUS + OCT Data, Biomechanical Models and Machine Learning Method for Accurate Coronary Plaque Morphology Quantification and Cap Thickness and Stress/Strain Index Predictions. J Funct Biomater 2023; 14:jfb14010041. [PMID: 36662088 PMCID: PMC9864708 DOI: 10.3390/jfb14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Assessment and prediction of vulnerable plaque progression and rupture risk are of utmost importance for diagnosis, management and treatment of cardiovascular diseases and possible prevention of acute cardiovascular events such as heart attack and stroke. However, accurate assessment of plaque vulnerability assessment and prediction of its future changes require accurate plaque cap thickness, tissue component and structure quantifications and mechanical stress/strain calculations. Multi-modality intravascular ultrasound (IVUS), optical coherence tomography (OCT) and angiography image data with follow-up were acquired from ten patients to obtain accurate and reliable plaque morphology for model construction. Three-dimensional thin-slice finite element models were constructed for 228 matched IVUS + OCT slices to obtain plaque stress/strain data for analysis. Quantitative plaque cap thickness and stress/strain indices were introduced as substitute quantitative plaque vulnerability indices (PVIs) and a machine learning method (random forest) was employed to predict PVI changes with actual patient IVUS + OCT follow-up data as the gold standard. Our prediction results showed that optimal prediction accuracies for changes in cap-PVI (C-PVI), mean cap stress PVI (meanS-PVI) and mean cap strain PVI (meanSn-PVI) were 90.3% (AUC = 0.877), 85.6% (AUC = 0.867) and 83.3% (AUC = 0.809), respectively. The improvements in prediction accuracy by the best combination predictor over the best single predictor were 6.6% for C-PVI, 10.0% for mean S-PVI and 8.0% for mean Sn-PVI. Our results demonstrated the potential using multi-modality IVUS + OCT image to accurately and efficiently predict plaque cap thickness and stress/strain index changes. Combining mechanical and morphological predictors may lead to better prediction accuracies.
Collapse
Affiliation(s)
- Rui Lv
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Correspondence: (L.W.); (D.T.); Tel.: +1-508-831-5332 (D.T.)
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, NY 10019, USA
| | - Mitsuaki Matsumura
- The Cardiovascular Research Foundation, Columbia University, New York, NY 10019, USA
| | - Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Don P. Giddens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Gary S. Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, NY 10019, USA
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Correspondence: (L.W.); (D.T.); Tel.: +1-508-831-5332 (D.T.)
| |
Collapse
|
108
|
Potential relationship between high wall shear stress and plaque rupture causing acute coronary syndrome. Heart Vessels 2023; 38:634-644. [PMID: 36617625 DOI: 10.1007/s00380-022-02224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
The relationship between high wall shear stress (WSS) and plaque rupture (PR) in longitudinal and circumferential locations remains uncertain. Overall, 100 acute coronary syndrome patients whose culprit lesions had PR, documented by optical coherence tomography (OCT), were enrolled. Lesion-specific three-dimensional coronary artery models were created using OCT data. WSS was computed with computational fluid dynamics analysis. PR was classified into upstream-PR, minimum lumen area-PR, and downstream-PR according to the PR's longitudinal location, and into central-PR and lateral-PR according to the disrupted fibrous cap circumferential location. In the longitudinal 3-mm segmental analysis, multivariate analysis demonstrated that higher WSS in the upstream segment was independently associated with upstream-PR, and thinner fibrous cap was independently associated with downstream-PR. In the PR cross-sections, the PR region had a significantly higher average WSS than non-PR region. In the cross-sectional analysis, the in-lesion peak WSS was frequently observed in the lateral (66.7%) and central regions (70%) in lateral-PR and central-PR, respectively. Multivariate analysis demonstrated that the presence of in-lesion peak WSS at the lateral region, thinner broken fibrous cap, and larger lumen area were independently associated with lateral-PR, while the presence of in-lesion peak WSS at the central region and thicker broken fibrous cap were independently associated with central-PR. In conclusion, OCT-based WSS simulation revealed that high WSS might be related to the longitudinal and circumferential locations of PR.
Collapse
|
109
|
Saito K, Saito Y, Kitahara H, Kobayashi Y. Impact of myocardial bridge on non-culprit vessel lumen changes in patients with acute coronary syndrome. Heart Vessels 2023; 38:32-39. [PMID: 35802184 DOI: 10.1007/s00380-022-02130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/23/2022] [Indexed: 01/06/2023]
Abstract
This study aims to clarify the impact of myocardial bridge (MB) on the presence and progression of atherosclerosis in left descending coronary artery (LAD) in patients with acute coronary syndrome (ACS). Ninety-eight patients who underwent percutaneous coronary intervention with the diagnosis of ACS and follow-up coronary angiography but had no significant stenosis in the LAD were included. MB was defined based on coronary angiography. Quantitative coronary angiography was performed to determine the segments where MB was present and proximal to the MB (proximal segment) in patients with MB. In patients without MB, a corresponding region was quantitatively analyzed. The primary endpoint was changes in minimum lumen diameter (MLD) and percentage of diameter stenosis (%DS) in the proximal segment from baseline to follow-up angiography, namely ΔMLD and Δ%DS. MB was identified in 29 (29.6%) patients. Patients with MB had larger MLD and smaller %DS in the proximal segment than their counterpart. During the mean follow-up period of 12.9 ± 5.7 months, MLD and %DS in the proximal segment did not change significantly from baseline to follow-up in patients with and without MB. No significant between-group differences were observed in ΔMLD and Δ%DS. Baseline MLD was identified as the only factor associated with ΔMLD in the proximal segment. ACS patients who had MB but no significant stenosis in the LAD had larger MLD and smaller %DS at the segment proximal to MB compared to those without. In this selected population, serial lumen changes assessed by ΔMLD were not associated with the presence of MB in the LAD.
Collapse
Affiliation(s)
- Kan Saito
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan.
| | - Yuichi Saito
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Hideki Kitahara
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| |
Collapse
|
110
|
Mei J, Ding W, Yu H, Zhao X, Xu H, Wang K, Jia Z, Li B. Different hemodynamic factors cause the occurrence of superior mesenteric atherosclerotic stenosis and superior mesenteric artery dissection. Front Cardiovasc Med 2023; 10:1121224. [PMID: 37144058 PMCID: PMC10151904 DOI: 10.3389/fcvm.2023.1121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Objective To compare the hemodynamic factors involved in the occurrence of superior mesenteric atherosclerotic stenosis (SMAS) and superior mesenteric artery (SMA) dissection (SMAD). Methods Hospital records were searched to identify consecutive patients who were diagnosed with SMAS or SMAD between January 2015 and December 2021. A computational fluid dynamics (CFD) simulation method was used to assess the hemodynamic factors of the SMA in these patients. Histologic analysis was also performed on SMA specimens obtained from 10 cadavers, and scanning electron microscopy was used to evaluate collagen microstructure. Results A total of 124 patients with SMAS and 61 patients with SMAD were included. Most SMASs were circumferentially distributed at the SMA root, whereas the origin of most SMADs was located on the anterior wall of the curved segment of the SMA. Vortex, higher turbulent kinetic energy (TKE), and lower wall shear stress (WSS) were observed near plaques; higher TKE and WSS were seen near dissection origins. The intima in the SMA root (388.5 ± 202.3 µm) was thicker than in the curved (243.8 ± 100.5 µm; p = .007) and distal (183.7 ± 88.0 µm; p < .001) segments. The media in the anterior wall (353.1 ± 37.6 µm) was thinner than that in the posterior wall (473.7 ± 142.8 µm; p = .02) in the curved segment of the SMA. The gaps in the lamellar structure in the SMA root were larger than in the curved and distal segments. The collagen microstructure was more substantially disturbed in the anterior wall than in the posterior wall in the curved segment of the SMA. Conclusion Different hemodynamic factors in different portions of the SMA are related to local pathological changes in the SMA wall and may lead to the occurrence of SMAS or SMAD.
Collapse
Affiliation(s)
- Junhao Mei
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Wei Ding
- Department of Interventional Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxin, China
| | - Haiyang Yu
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xi Zhao
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Haoran Xu
- Department of Pathology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Kai Wang
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Zhongzhi Jia
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Correspondence: Zhongzhi Jia Benling Li
| | - Benling Li
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Correspondence: Zhongzhi Jia Benling Li
| |
Collapse
|
111
|
Ouyang Z, Zhong J, Shen J, Zeng Y. The cell origins of foam cell and lipid metabolism regulated by mechanical stress in atherosclerosis. Front Physiol 2023; 14:1179828. [PMID: 37123258 PMCID: PMC10133704 DOI: 10.3389/fphys.2023.1179828] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Atherosclerosis is an inflammatory disease initiated by endothelial activation, in which lipoprotein, cholesterol, extracellular matrix, and various types of immune and non-immune cells are accumulated and formed into plaques on the arterial wall suffering from disturbed flow, characterized by low and oscillating shear stress. Foam cells are a major cellular component in atherosclerotic plaques, which play an indispensable role in the occurrence, development and rupture of atherosclerotic plaques. It was previously believed that foam cells were derived from macrophages or smooth muscle cells, but recent studies have suggested that there are other sources of foam cells. Many studies have found that the distribution of atherosclerotic plaques is not random but distributed at the bend and bifurcation of the arterial tree. The development and rupture of atherosclerotic plaque are affected by mechanical stress. In this review, we reviewed the advances in foam cell formation in atherosclerosis and the regulation of atherosclerotic plaque and lipid metabolism by mechanical forces. These findings provide new clues for investigating the mechanisms of atherosclerotic plaque formation and progression.
Collapse
|
112
|
Sahni J, Arshad M, Schake MA, Brooks JR, Yang R, Weinberg PD, Pedrigi RM. Characterizing nuclear morphology and expression of eNOS in vascular endothelial cells subjected to a continuous range of wall shear stress magnitudes and directionality. J Mech Behav Biomed Mater 2023; 137:105545. [PMID: 36368188 PMCID: PMC10371053 DOI: 10.1016/j.jmbbm.2022.105545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Complex patterns of hemodynamic wall shear stress occur in regions of arterial branching and curvature. Areas within these regions can be highly susceptible to atherosclerosis. Although many studies have characterized the response of vascular endothelial cells to shear stress in a categorical manner, our study herein addresses the need of characterizing endothelial behaviors over a continuous range of shear stress conditions that reflect the extensive variations seen in the vasculature. We evaluated the response of human umbilical vein endothelial cell monolayers to orbital flow at 120, 250, and 350 revolutions per minute (RPM) for 24 and 72 h. The orbital shaker model uniquely provides a continuous range of shear stress conditions from low and multidirectional at the center of each well of a culture plate to high and unidirectional at the periphery. We found distinct patterns of endothelial nuclear area, nuclear major and minor diameters, nuclear aspect ratio, and expression of endothelial nitric oxide synthase over this range of shear conditions and relationships were fit with linear and, where appropriate, power functions. Nuclear area was particularly sensitive with increases in the low and multidirectional WSS region that incrementally decreased as WSS became higher in magnitude and more unidirectional over the radius of the cell layers. The patterns of all endothelial behaviors exhibited high correlations (positive and negative) with metrics of shear stress magnitude and directionality that have been shown to strongly associate with atherosclerosis. Our findings demonstrate the exquisite sensitivity of these endothelial behaviors to incremental changes in shear stress magnitude and directionality, and provide critical quantitation of these relationships for predicting the susceptibility of an arterial segment to diseases such as atherosclerosis, particularly within complex flow environments in the vasculature such as around bifurcations.
Collapse
Affiliation(s)
- Jaideep Sahni
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA
| | - Mehwish Arshad
- Department of Bioengineering, Imperial College London, UK
| | - Morgan A Schake
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA
| | - Justin R Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA
| | | | - Ryan M Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA.
| |
Collapse
|
113
|
Schultz J, van den Hoogen IJ, Kuneman JH, de Graaf MA, Kamperidis V, Broersen A, Jukema JW, Sakellarios A, Nikopoulos S, Tsarapatsani K, Naka K, Michalis L, Fotiadis DI, Maaniitty T, Saraste A, Bax JJ, Knuuti J. Coronary computed tomography angiography-based endothelial wall shear stress in normal coronary arteries. Int J Cardiovasc Imaging 2023; 39:441-450. [PMID: 36255544 PMCID: PMC9870961 DOI: 10.1007/s10554-022-02739-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/27/2022] [Indexed: 01/27/2023]
Abstract
Endothelial wall shear stress (ESS) is a biomechanical force which plays a role in the formation and evolution of atherosclerotic lesions. The purpose of this study is to evaluate coronary computed tomography angiography (CCTA)-based ESS in coronary arteries without atherosclerosis, and to assess factors affecting ESS values. CCTA images from patients with suspected coronary artery disease were analyzed to identify coronary arteries without atherosclerosis. Minimal and maximal ESS values were calculated for 3-mm segments. Factors potentially affecting ESS values were examined, including sex, lumen diameter and distance from the ostium. Segments were categorized according to lumen diameter tertiles into small (< 2.6 mm), intermediate (2.6-3.2 mm) or large (≥ 3.2 mm) segments. A total of 349 normal vessels from 168 patients (mean age 59 ± 9 years, 39% men) were included. ESS was highest in the left anterior descending artery compared to the left circumflex artery and right coronary artery (minimal ESS 2.3 Pa vs. 1.9 Pa vs. 1.6 Pa, p < 0.001 and maximal ESS 3.7 Pa vs. 3.0 Pa vs. 2.5 Pa, p < 0.001). Men had lower ESS values than women, also after adjusting for lumen diameter (p < 0.001). ESS values were highest in small segments compared to intermediate or large segments (minimal ESS 3.8 Pa vs. 1.7 Pa vs. 1.2 Pa, p < 0.001 and maximal ESS 6.0 Pa vs. 2.6 Pa vs. 2.0 Pa, p < 0.001). A weak to strong correlation was found between ESS and distance from the ostium (ρ = 0.22-0.62, p < 0.001). CCTA-based ESS values increase rapidly and become widely scattered with decreasing lumen diameter. This needs to be taken into account when assessing the added value of ESS beyond lumen diameter in highly stenotic lesions.
Collapse
Affiliation(s)
- Jussi Schultz
- grid.410552.70000 0004 0628 215XTurku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Inge J. van den Hoogen
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jurrien H. Kuneman
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel A. de Graaf
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vasileios Kamperidis
- Department of Cardiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexander Broersen
- grid.10419.3d0000000089452978Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
| | - J. Wouter Jukema
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.411737.7Netherlands Heart Institute, Utrecht, The Netherlands
| | - Antonis Sakellarios
- Department of Biomedical Research, FORTH-IMBB, Ioannina, Greece ,grid.9594.10000 0001 2108 7481Department of Materials Science and Engineering, Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | - Sotirios Nikopoulos
- grid.9594.10000 0001 2108 7481Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Konstantina Tsarapatsani
- Department of Biomedical Research, FORTH-IMBB, Ioannina, Greece ,grid.9594.10000 0001 2108 7481Department of Materials Science and Engineering, Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | - Katerina Naka
- grid.9594.10000 0001 2108 7481Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Lampros Michalis
- grid.9594.10000 0001 2108 7481Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Dimitrios I. Fotiadis
- Department of Biomedical Research, FORTH-IMBB, Ioannina, Greece ,grid.9594.10000 0001 2108 7481Department of Materials Science and Engineering, Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | - Teemu Maaniitty
- grid.410552.70000 0004 0628 215XTurku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Antti Saraste
- grid.410552.70000 0004 0628 215XTurku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland ,grid.410552.70000 0004 0628 215XHeart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Jeroen J. Bax
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.410552.70000 0004 0628 215XHeart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Juhani Knuuti
- grid.410552.70000 0004 0628 215XTurku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland ,grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
114
|
Russo G, Pedicino D, Chiastra C, Vinci R, Lodi Rizzini M, Genuardi L, Sarraf M, d'Aiello A, Bologna M, Aurigemma C, Bonanni A, Bellantoni A, D'Ascenzo F, Ciampi P, Zambrano A, Mainardi L, Ponzo M, Severino A, Trani C, Massetti M, Gallo D, Migliavacca F, Maisano F, Lerman A, Morbiducci U, Burzotta F, Crea F, Liuzzo G. Coronary artery plaque rupture and erosion: Role of wall shear stress profiling and biological patterns in acute coronary syndromes. Int J Cardiol 2023; 370:356-365. [PMID: 36343795 DOI: 10.1016/j.ijcard.2022.10.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
AIMS Wall shear stress (WSS) is involved in coronary artery plaque pathological mechanisms and modulation of gene expression. This study aims to provide a comprehensive haemodynamic and biological description of unstable (intact-fibrous-cap, IFC, and ruptured-fibrous-cap, RFC) and stable (chronic coronary syndrome, CCS) plaques and investigate any correlation between WSS and molecular pathways. METHODS AND RESULTS We enrolled 24 CCS and 25 Non-ST Elevation Myocardial Infarction-ACS patients with IFC (n = 11) and RFC (n = 14) culprit lesions according to optical coherence tomography analysis. A real-time PCR primer array was performed on peripheral blood mononuclear cells for 17 different molecules whose expression is linked to WSS. Computational fluid dynamics simulations were performed in high-fidelity 3D-coronary artery anatomical models for three patients per group. A total of nine genes were significantly overexpressed in the unstable patients as compared to CCS patients, with no differences between IFC and RFC groups (GPX1, MMP1, MMP9, NOS3, PLA2G7, PI16, SOD1, TIMP1, and TFRC) while four displayed different levels between IFC and RFC groups (TNFα, ADAMTS13, EDN1, and LGALS8). A significantly higher WSS was observed in the RFC group (p < 0.001) compared to the two other groups. A significant correlation was observed between TNFα (p < 0.001), EDN1 (p = 0.036), and MMP9 (p = 0.005) and WSS values in the RFC group. CONCLUSIONS Our data demonstrate that IFC and RFC plaques are subject to different WSS conditions and gene expressions, suggesting that WSS profiling may play an essential role in the plaque instability characterization with relevant diagnostic and therapeutic implications in the era of precision medicine.
Collapse
Affiliation(s)
- Giulio Russo
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy; University of Zurich, Zurich, Switzerland
| | - Daniela Pedicino
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Claudio Chiastra
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Ramona Vinci
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maurizio Lodi Rizzini
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Lorenzo Genuardi
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Mohammad Sarraf
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| | - Alessia d'Aiello
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Marco Bologna
- Biosignals, Bioimaging and Bioinformatics Laboratory (B3-Lab), Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Cristina Aurigemma
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alice Bonanni
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Antonio Bellantoni
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Fabrizio D'Ascenzo
- Hemodynamic Laboratory, Dept. of Medical Sciences, University of Turin, Turin, Italy
| | - Pellegrino Ciampi
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Luca Mainardi
- Biosignals, Bioimaging and Bioinformatics Laboratory (B3-Lab), Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Myriana Ponzo
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Carlo Trani
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Massimo Massetti
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Diego Gallo
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Francesco Maisano
- University of Zurich, Zurich, Switzerland; University Hospital San Raffaele, Milan, Italy
| | - Amir Lerman
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| | - Umberto Morbiducci
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Francesco Burzotta
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Filippo Crea
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giovanna Liuzzo
- Fondazione Policlinico Universitario A Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy.
| |
Collapse
|
115
|
Hartman EMJ, De Nisco G, Kok AM, Tomaniak M, Nous FMA, Korteland SA, Gijsen FJH, den Dekker WK, Diletti R, van Mieghem NMDA, Wilschut JM, Zijlstra F, van der Steen AFW, Budde RPJ, Daemen J, Wentzel JJ. Wall shear stress-related plaque growth of lipid-rich plaques in human coronary arteries: an near-infrared spectroscopy and optical coherence tomography study. Cardiovasc Res 2022; 119:1021-1029. [PMID: 36575921 PMCID: PMC10153640 DOI: 10.1093/cvr/cvac178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 12/29/2022] Open
Abstract
AIMS Low wall shear stress (WSS) is acknowledged to play a role in plaque development through its influence on local endothelial function. Also, lipid-rich plaques (LRPs) are associated with endothelial dysfunction. However, little is known about the interplay between WSS and the presence of lipids with respect to plaque progression. Therefore, we aimed to study the differences in WSS-related plaque progression between LRPs, non-LRPs, or plaque-free regions in human coronary arteries. METHODS AND RESULTS In the present single-centre, prospective study, 40 patients who presented with an acute coronary syndrome successfully underwent near-infrared spectroscopy intravascular ultrasound (NIRS-IVUS) and optical coherence tomography (OCT) of at least one non-culprit vessel at baseline and completed a 1-year follow-up. WSS was computed applying computational fluid dynamics to a three-dimensional reconstruction of the coronary artery based on the fusion of the IVUS-segmented lumen with a CT-derived centreline, using invasive flow measurements as boundary conditions. For data analysis, each artery was divided into 1.5 mm/45° sectors. Plaque growth based on IVUS-derived percentage atheroma volume change was compared between LRPs, non-LRPs, and plaque-free wall segments, as assessed by both OCT and NIRS. Both NIRS- and OCT-detected lipid-rich sectors showed a significantly higher plaque progression than non-LRPs or plaque-free regions. Exposure to low WSS was associated with a higher plaque progression than exposure to mid or high WSS, even in the regions classified as a plaque-free wall. Furthermore, low WSS and the presence of lipids had a synergistic effect on plaque growth, resulting in the highest plaque progression in lipid-rich regions exposed to low shear stress. CONCLUSION This study demonstrates that NIRS- and OCT-detected lipid-rich regions exposed to low WSS are subject to enhanced plaque growth over a 1-year follow-up. The presence of lipids and low WSS proves to have a synergistic effect on plaque growth.
Collapse
Affiliation(s)
- Eline M J Hartman
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Giuseppe De Nisco
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Annette M Kok
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Mariusz Tomaniak
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.,First Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Fay M A Nous
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, ErasmusMC, 3000 CA Rotterdam, The Netherlands
| | - Suze-Anne Korteland
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Frank J H Gijsen
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Wijnand K den Dekker
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Roberto Diletti
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Nicolas M D A van Mieghem
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jeroen M Wilschut
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Felix Zijlstra
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Anton F W van der Steen
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Ricardo P J Budde
- Department of Radiology and Nuclear Medicine, ErasmusMC, 3000 CA Rotterdam, The Netherlands
| | - Joost Daemen
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jolanda J Wentzel
- Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
116
|
Khodaei S, Garber L, Bauer J, Emadi A, Keshavarz-Motamed Z. Long-term prognostic impact of paravalvular leakage on coronary artery disease requires patient-specific quantification of hemodynamics. Sci Rep 2022; 12:21357. [PMID: 36494362 PMCID: PMC9734172 DOI: 10.1038/s41598-022-21104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022] Open
Abstract
Transcatheter aortic valve replacement (TAVR) is a frequently used minimally invasive intervention for patient with aortic stenosis across a broad risk spectrum. While coronary artery disease (CAD) is present in approximately half of TAVR candidates, correlation of post-TAVR complications such as paravalvular leakage (PVL) or misalignment with CAD are not fully understood. For this purpose, we developed a multiscale computational framework based on a patient-specific lumped-parameter algorithm and a 3-D strongly-coupled fluid-structure interaction model to quantify metrics of global circulatory function, metrics of global cardiac function and local cardiac fluid dynamics in 6 patients. Based on our findings, PVL limits the benefits of TAVR and restricts coronary perfusion due to the lack of sufficient coronary blood flow during diastole phase (e.g., maximum coronary flow rate reduced by 21.73%, 21.43% and 21.43% in the left anterior descending (LAD), left circumflex (LCX) and right coronary artery (RCA) respectively (N = 6)). Moreover, PVL may increase the LV load (e.g., LV load increased by 17.57% (N = 6)) and decrease the coronary wall shear stress (e.g., maximum wall shear stress reduced by 20.62%, 21.92%, 22.28% and 25.66% in the left main coronary artery (LMCA), left anterior descending (LAD), left circumflex (LCX) and right coronary artery (RCA) respectively (N = 6)), which could promote atherosclerosis development through loss of the physiological flow-oriented alignment of endothelial cells. This study demonstrated that a rigorously developed personalized image-based computational framework can provide vital insights into underlying mechanics of TAVR and CAD interactions and assist in treatment planning and patient risk stratification in patients.
Collapse
Affiliation(s)
- Seyedvahid Khodaei
- Department of Mechanical Engineering (Mail to JHE-310), McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Louis Garber
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Julia Bauer
- Department of Mechanical Engineering (Mail to JHE-310), McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Ali Emadi
- Department of Mechanical Engineering (Mail to JHE-310), McMaster University, Hamilton, ON, L8S 4L7, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Zahra Keshavarz-Motamed
- Department of Mechanical Engineering (Mail to JHE-310), McMaster University, Hamilton, ON, L8S 4L7, Canada.
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.
- School of Computational Science and Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
117
|
Warren JL, Yoo JE, Meyer CA, Molony DS, Samady H, Hayenga HN. Automated finite element approach to generate anatomical patient-specific biomechanical models of atherosclerotic arteries from virtual histology-intravascular ultrasound. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:1008540. [PMID: 36523426 PMCID: PMC9745200 DOI: 10.3389/fmedt.2022.1008540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2023] Open
Abstract
Despite advancements in early detection and treatment, atherosclerosis remains the leading cause of death across all cardiovascular diseases (CVD). Biomechanical analysis of atherosclerotic lesions has the potential to reveal biomechanically instable or rupture-prone regions. Treatment decisions rarely consider the biomechanics of the stenosed lesion due in-part to difficulties in obtaining this information in a clinical setting. Previous 3D FEA approaches have incompletely incorporated the complex curvature of arterial geometry, material heterogeneity, and use of patient-specific data. To address these limitations and clinical need, herein we present a user-friendly fully automated program to reconstruct and simulate the wall mechanics of patient-specific atherosclerotic coronary arteries. The program enables 3D reconstruction from patient-specific data with heterogenous tissue assignment and complex arterial curvature. Eleven arteries with coronary artery disease (CAD) underwent baseline and 6-month follow-up angiographic and virtual histology-intravascular ultrasound (VH-IVUS) imaging. VH-IVUS images were processed to remove background noise, extract VH plaque material data, and luminal and outer contours. Angiography data was used to orient the artery profiles along the 3D centerlines. The resulting surface mesh is then resampled for uniformity and tetrahedralized to generate the volumetric mesh using TetGen. A mesh convergence study revealed edge lengths between 0.04 mm and 0.2 mm produced constituent volumes that were largely unchanged, hence, to save computational resources, a value of 0.2 mm was used throughout. Materials are assigned and finite element analysis (FEA) is then performed to determine stresses and strains across the artery wall. In a representative artery, the highest average effective stress was in calcium elements with 235 kPa while necrotic elements had the lowest average stress, reaching as low as 0.79 kPa. After applying nodal smoothening, the maximum effective stress across 11 arteries remained below 288 kPa, implying biomechanically stable plaques. Indeed, all atherosclerotic plaques remained unruptured at the 6-month longitudinal follow up diagnosis. These results suggest our automated analysis may facilitate assessment of atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Jeremy L. Warren
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - John E. Yoo
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Clark A. Meyer
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - David S. Molony
- Northeast Georgia Health System, Georgia Heart Institute, Gainesville, GA, United States
| | - Habib Samady
- Northeast Georgia Health System, Georgia Heart Institute, Gainesville, GA, United States
| | - Heather N. Hayenga
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
118
|
Albadawi M, Abuouf Y, Elsagheer S, Sekiguchi H, Ookawara S, Ahmed M. Influence of Rigid-Elastic Artery Wall of Carotid and Coronary Stenosis on Hemodynamics. Bioengineering (Basel) 2022; 9:708. [PMID: 36421109 PMCID: PMC9687628 DOI: 10.3390/bioengineering9110708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/18/2023] Open
Abstract
Cardiovascular system abnormalities can result in serious health complications. By using the fluid-structure interaction (FSI) procedure, a comprehensive realistic approach can be employed to accurately investigate blood flow coupled with arterial wall response. The hemodynamics was investigated in both the coronary and carotid arteries based on the arterial wall response. The hemodynamics was estimated based on the numerical simulation of a comprehensive three-dimensional non-Newtonian blood flow model in elastic and rigid arteries. For stenotic right coronary artery (RCA), it was found that the maximum value of wall shear stress (WSS) for the FSI case is higher than the rigid wall. On the other hand, for the stenotic carotid artery (CA), it was found that the maximum value of WSS for the FSI case is lower than the rigid wall. Moreover, at the peak systole of the cardiac cycle (0.38 s), the maximum percentage of arterial wall deformation was found to be 1.9%. On the other hand, for the stenotic carotid artery, the maximum percentage of arterial wall deformation was found to be 0.46%. A comparison between FSI results and those obtained by rigid wall arteries is carried out. Findings indicate slight differences in results for large-diameter arteries such as the carotid artery. Accordingly, the rigid wall assumption is plausible in flow modeling for relatively large diameters such as the carotid artery. Additionally, the FSI approach is essential in flow modeling in small diameters.
Collapse
Affiliation(s)
- Muhamed Albadawi
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan
- Engineering Mathematics and Physics Department, Faculty of Engineering, Alexandria University, Alexandria 5424041, Egypt
| | - Yasser Abuouf
- Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 5424041, Egypt
| | - Samir Elsagheer
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Faculty of Engineering, Aswan University, Aswan 81528, Egypt
| | - Hidetoshi Sekiguchi
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shinichi Ookawara
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mahmoud Ahmed
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Mechanical Engineering Department, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
119
|
Won KB, Lee BK, Lin FY, Hadamitzky M, Kim YJ, Sung JM, Conte E, Andreini D, Pontone G, Budoff MJ, Gottlieb I, Chun EJ, Cademartiri F, Maffei E, Marques H, de Araújo Gonçalves P, Leipsic JA, Lee SE, Shin S, Choi JH, Virmani R, Samady H, Chinnaiyan K, Berman DS, Narula J, Shaw LJ, Bax JJ, Min JK, Chang HJ. Glycemic control is independently associated with rapid progression of coronary atherosclerosis in the absence of a baseline coronary plaque burden: a retrospective case-control study from the PARADIGM registry. Cardiovasc Diabetol 2022; 21:239. [PMID: 36371222 PMCID: PMC9655903 DOI: 10.1186/s12933-022-01656-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The baseline coronary plaque burden is the most important factor for rapid plaque progression (RPP) in the coronary artery. However, data on the independent predictors of RPP in the absence of a baseline coronary plaque burden are limited. Thus, this study aimed to investigate the predictors for RPP in patients without coronary plaques on baseline coronary computed tomography angiography (CCTA) images. METHODS A total of 402 patients (mean age: 57.6 ± 10.0 years, 49.3% men) without coronary plaques at baseline who underwent serial coronary CCTA were identified from the Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging (PARADIGM) registry and included in this retrospective study. RPP was defined as an annual change of ≥ 1.0%/year in the percentage atheroma volume (PAV). RESULTS During a median inter-scan period of 3.6 years (interquartile range: 2.7-5.0 years), newly developed coronary plaques and RPP were observed in 35.6% and 4.2% of the patients, respectively. The baseline traditional risk factors, i.e., advanced age (≥ 60 years), male sex, hypertension, diabetes mellitus, hyperlipidemia, obesity, and current smoking status, were not significantly associated with the risk of RPP. Multivariate linear regression analysis showed that the serum hemoglobin A1c level (per 1% increase) measured at follow-up CCTA was independently associated with the annual change in the PAV (β: 0.098, 95% confidence interval [CI]: 0.048-0.149; P < 0.001). The multiple logistic regression models showed that the serum hemoglobin A1c level had an independent and positive association with the risk of RPP. The optimal predictive cut-off value of the hemoglobin A1c level for RPP was 7.05% (sensitivity: 80.0%, specificity: 86.7%; area under curve: 0.816 [95% CI: 0.574-0.999]; P = 0.017). CONCLUSION In this retrospective case-control study, the glycemic control status was strongly associated with the risk of RPP in patients without a baseline coronary plaque burden. This suggests that regular monitoring of the glycemic control status might be helpful for preventing the rapid progression of coronary atherosclerosis irrespective of the baseline risk factors. Further randomized investigations are necessary to confirm the results of our study. TRIAL REGISTRATION ClinicalTrials.gov NCT02803411.
Collapse
Affiliation(s)
- Ki-Bum Won
- grid.470090.a0000 0004 1792 3864Department of Cardiology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, South Korea ,grid.15444.300000 0004 0470 5454Department of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Byoung Kwon Lee
- grid.15444.300000 0004 0470 5454Department of Cardiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Fay Y. Lin
- grid.5386.8000000041936877XDepartment of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY USA
| | - Martin Hadamitzky
- grid.472754.70000 0001 0695 783XDepartment of Radiology and Nuclear Medicine, German Heart Center Munich, Munich, Germany
| | - Yong-Jin Kim
- grid.412484.f0000 0001 0302 820XDepartment of Cardiology, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Ji Min Sung
- grid.15444.300000 0004 0470 5454Department of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Edoardo Conte
- grid.4708.b0000 0004 1757 2822Ospedale Galeazzi-Sant Ambrogio IRCCS, University of Milan, Milan, Italy
| | - Daniele Andreini
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Gianluca Pontone
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Matthew J. Budoff
- grid.239844.00000 0001 0157 6501Department of Medicine, Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA USA
| | - Ilan Gottlieb
- Department of Radiology, Casa de Saude São Jose, Rio de Janeiro, Brazil
| | - Eun Ju Chun
- grid.412480.b0000 0004 0647 3378Seoul National University Bundang Hospital, Sungnam, South Korea
| | | | - Erica Maffei
- Department of Radiology, Fondazione Monasterio/CNR, Pisa/Massa, Italy
| | - Hugo Marques
- grid.414429.e0000 0001 0163 5700UNICA, Unit of Cardiovascular Imaging, Hospital da Luz, Lisboa, Portugal
| | - Pedro de Araújo Gonçalves
- grid.414429.e0000 0001 0163 5700UNICA, Unit of Cardiovascular Imaging, Hospital da Luz, Lisboa, Portugal ,grid.10772.330000000121511713Nova Medical School, Lisbon, Portugal
| | - Jonathon A. Leipsic
- grid.17091.3e0000 0001 2288 9830Department of Medicine and Radiology, University of British Columbia, Vancouver, BC Canada
| | - Sang-Eun Lee
- grid.255649.90000 0001 2171 7754Department of Cardiology, Ewha Womans University Seoul Hospital, Seoul, Seoul Korea
| | - Sanghoon Shin
- grid.255649.90000 0001 2171 7754Department of Cardiology, Ewha Womans University Seoul Hospital, Seoul, Seoul Korea
| | - Jung Hyun Choi
- grid.412588.20000 0000 8611 7824Department of Cardiology, Pusan University Hospital, Busan, South Korea
| | - Renu Virmani
- grid.417701.40000 0004 0465 0326Department of Pathology, CVPath Institute, Gaithersburg, MD USA
| | - Habib Samady
- grid.189967.80000 0001 0941 6502Department of Cardiology, Emory University School of Medicine, Atlanta, GA USA
| | - Kavitha Chinnaiyan
- grid.417118.a0000 0004 0435 1924Department of Cardiology, William Beaumont Hospital, Royal Oak, MI USA
| | - Daniel S. Berman
- grid.50956.3f0000 0001 2152 9905Department of Imaging and Medicine, Cedars Sinai Medical Center, Los Angeles, CA USA
| | - Jagat Narula
- grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Leslee J. Shaw
- grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Jeroen J. Bax
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - James K. Min
- grid.5386.8000000041936877XDepartment of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY USA
| | - Hyuk-Jae Chang
- grid.15444.300000 0004 0470 5454Department of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Department of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, 03722 Seoul, South Korea
| |
Collapse
|
120
|
Sadid SR, Kabir MS, Mahmud ST, Islam MS, Islam AHMW, Arafat MT. Segmenting 3D geometry of left coronary artery from coronary CT angiography using deep learning for hemodynamic evaluation. Biomed Phys Eng Express 2022; 8. [DOI: 10.1088/2057-1976/ac9e03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Abstract
While coronary CT angiography (CCTA) is crucial for detecting several coronary artery diseases, it fails to provide essential hemodynamic parameters for early detection and treatment. These parameters can be easily obtained by performing computational fluid dynamic (CFD) analysis on the 3D artery geometry generated by CCTA image segmentation. As the coronary artery is small in size, manually segmenting the left coronary artery from CCTA scans is a laborious, time-intensive, error-prone, and complicated task which also requires a high level of expertise. Academics recently proposed various automated segmentation techniques for combatting these issues. To further aid in this process, we present CoronarySegNet, a deep learning-based framework, for autonomous and accurate segmentation as well as generation of 3D geometry of the left coronary artery. The design is based on the original U-net topology and includes channel-aware attention blocks as well as deep residual blocks with spatial dropout that contribute to feature map independence by eliminating 2D feature maps rather than individual components. We trained, tested, and statistically evaluated our model using CCTA images acquired from various medical centers across Bangladesh and the Rotterdam Coronary Artery Algorithm Evaluation challenge dataset to improve generality. In empirical assessment, CoronarySegNet outperforms several other cutting-edge segmentation algorithms, attaining dice similarity coefficient of 0.78 on an average while being highly significant (p < 0.05). Additionally, both the 3D geometries generated by machine learning and semi-automatic method were statistically similar. Moreover, hemodynamic evaluation performed on these 3D geometries showed comparable results.
Collapse
|
121
|
Jiang M, Ding H, Huang Y, Wang L. Shear Stress and Metabolic Disorders-Two Sides of the Same Plaque. Antioxid Redox Signal 2022; 37:820-841. [PMID: 34148374 DOI: 10.1089/ars.2021.0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Shear stress and metabolic disorder are the two sides of the same atherosclerotic coin. Atherosclerotic lesions are prone to develop at branches and curvatures of arteries, which are exposed to oscillatory and low shear stress exerted by blood flow. Meanwhile, metabolic disorders are pivotal contributors to the formation and advancement of atherosclerotic plaques. Recent Advances: Accumulated evidence has provided insight into the impact and mechanisms of biomechanical forces and metabolic disorder on atherogenesis, in association with mechanotransduction, epigenetic regulation, and so on. Moreover, recent studies have shed light on the cross talk between the two drivers of atherosclerosis. Critical Issues: There are extensive cross talk and interactions between shear stress and metabolic disorder during the pathogenesis of atherosclerosis. The communications may amplify the proatherogenic effects through increasing oxidative stress and inflammation. Nonetheless, the precise mechanisms underlying such interactions remain to be fully elucidated as the cross talk network is considerably complex. Future Directions: A better understanding of the cross talk network may confer benefits for a more comprehensive clinical management of atherosclerosis. Critical mediators of the cross talk may serve as promising therapeutic targets for atherosclerotic vascular diseases, as they can inhibit effects from both sides of the plaque. Hence, further in-depth investigations with advanced omics approaches are required to develop novel and effective therapeutic strategies against atherosclerosis. Antioxid. Redox Signal. 37, 820-841.
Collapse
Affiliation(s)
- Minchun Jiang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huanyu Ding
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Wang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
122
|
Gharleghi R, Sowmya A, Beier S. Transient wall shear stress estimation in coronary bifurcations using convolutional neural networks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107013. [PMID: 35901629 DOI: 10.1016/j.cmpb.2022.107013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Haemodynamic metrics, such as blood flow induced shear stresses at the inner vessel lumen, are associated with the development and progression of coronary artery disease. Understanding these metrics may therefore improve the assessment of an individual's coronary disease risk. However, the calculation of such luminal Wall Shear Stress (WSS) using traditional Computational Fluid Dynamics (CFD) methods is relatively slow and computationally expensive. As a result, CFD based haemodynamic computation is not suitable for integrated and large-scale use in clinical settings. METHODS In this work, deep learning techniques are proposed as an alternative method to CFD, whereby luminal WSS magnitude can be predicted in coronary bifurcations throughout the cardiac cycle based on the steady state solution (which takes <120 seconds to calculate including preprocessing), vessel geometry and additional global features. The deep learning model is trained on a dataset of 101 patient-specific and 2626 synthetic left main bifurcation models with 26 separate patient-specific cases used as the test set. RESULTS The model showed high fidelity predictions with <5% (normalised against mean WSS magnitude) deviation to CFD derived values as the gold-standard method, while being orders of magnitude faster with on average <2 minutes versus 3 hours computation for transient CFD. CONCLUSIONS This method therefore offers a new approach to substantially reduce the computational cost involved in, for example, large-scale population studies of coronary haemodynamic metrics, and may therefore open the pathway for future clinical integration.
Collapse
Affiliation(s)
- Ramtin Gharleghi
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, NSW 2052, Australia.
| | - Arcot Sowmya
- School of Computer Science and Engineering, UNSW, Sydney, NSW 2052, Australia; Tyree Foundation Institute of Health Engineering (Tyree IHealthE), Sydney, Australia
| | - Susann Beier
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
123
|
Khan MO, Nishi T, Imura S, Seo J, Wang H, Honda Y, Nieman K, Rogers IS, Tremmel JA, Boyd J, Schnittger I, Marsden A. Colocalization of Coronary Plaque with Wall Shear Stress in Myocardial Bridge Patients. Cardiovasc Eng Technol 2022; 13:797-807. [PMID: 35296987 DOI: 10.1007/s13239-022-00616-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/25/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE Patients with myocardial bridges (MBs) have a higher prevalence of atherosclerosis. Wall shear stress (WSS) has previously been correlated with plaque in coronary artery disease patients, but such correlations have not been investigated in symptomatic MB patients. The aim of this paper was to use a multi-scale computational fluid dynamics (CFD) framework to simulate hemodynamics in MB patient, and investigate the co-localization of WSS and plaque. METHODS We identified N = 10 patients from a previously reported cohort of 50 symptomatic MB patients, all of whom had plaque in the proximal vessel. Dynamic 3D models were reconstructed from coronary computed tomography angiography (CCTA), intravascular ultrasound (IVUS) and catheter angiograms. CFD simulations were performed to compute WSS proximal to, within and distal to the MB. Plaque was quantified from IVUS images in 2 mm segments and registered to CFD model. Plaque area was compared to absolute and patient-normalized WSS. RESULTS WSS was lower in the proximal segment compared to the bridge segment (6.1 ± 2.9 vs. 16.0 ± 7.1 dynes/cm2, p value < 0.01). Plaque area and plaque burden measured from IVUS peaked at 1-3 cm proximal to the MB entrance, coinciding with the first diagonal branch. Normalized WSS showed a statistically significant moderate correlation with plaque area (r = 0.41, p < 0.01). CONCLUSION WSS may be obtained non-invasively in MB patients and provides a surrogate marker of plaque area. Using CFD, it may be possible to non-invasively assess the extent of plaque area, and identify patients who could benefit from frequent monitoring or medical management.
Collapse
Affiliation(s)
- Muhammad Owais Khan
- Department of Pediatrics, Stanford University School of Medicine, 318 Campus Drive, Clark Center E100b, Stanford, CA, 94305-5428, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Takeshi Nishi
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Shinji Imura
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Jongmin Seo
- Department of Pediatrics, Stanford University School of Medicine, 318 Campus Drive, Clark Center E100b, Stanford, CA, 94305-5428, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasuhiro Honda
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Koen Nieman
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ian S Rogers
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Jennifer A Tremmel
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Jack Boyd
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ingela Schnittger
- Division of Cardiovascular Medicine, Stanford University School of Medicine and Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Alison Marsden
- Department of Pediatrics, Stanford University School of Medicine, 318 Campus Drive, Clark Center E100b, Stanford, CA, 94305-5428, USA. .,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA. .,Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
124
|
Li X, Liu X, Deng X, Fan Y. Interplay between Artificial Intelligence and Biomechanics Modeling in the Cardiovascular Disease Prediction. Biomedicines 2022; 10:2157. [PMID: 36140258 PMCID: PMC9495955 DOI: 10.3390/biomedicines10092157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the most common cause of morbidity and mortality worldwide, and early accurate diagnosis is the key point for improving and optimizing the prognosis of CVD. Recent progress in artificial intelligence (AI), especially machine learning (ML) technology, makes it possible to predict CVD. In this review, we first briefly introduced the overview development of artificial intelligence. Then we summarized some ML applications in cardiovascular diseases, including ML-based models to directly predict CVD based on risk factors or medical imaging findings and the ML-based hemodynamics with vascular geometries, equations, and methods for indirect assessment of CVD. We also discussed case studies where ML could be used as the surrogate for computational fluid dynamics in data-driven models and physics-driven models. ML models could be a surrogate for computational fluid dynamics, accelerate the process of disease prediction, and reduce manual intervention. Lastly, we briefly summarized the research difficulties and prospected the future development of AI technology in cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoyin Li
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiao Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaoyan Deng
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
125
|
Extra-coronary Calcification and Cardiovascular Events: What Do We Know and Where Are We Heading? Curr Atheroscler Rep 2022; 24:755-766. [PMID: 36040566 DOI: 10.1007/s11883-022-01051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW The coronary artery calcium score is a guideline-endorsed aid for further risk stratification in the primary prevention of atherosclerotic cardiovascular disease. The non-contrast scan performed for detection of coronary artery calcium also gives an opportunity to visualize calcifications in the thoracic aorta and in the heart valves, at no additional cost or radiation exposure. The purpose of this review was to discuss the potential clinical value of measuring thoracic aortic calcification, aortic valve calcification, and mitral annulus calcification. RECENT FINDINGS After two decades of active research, all three calcifications have been extensively evaluated, across various cohorts. We discuss classic and recent studies, current knowledge gaps, and future directions in this space. The added value of these measurements has traditionally been considered modest at best, and they are not currently discussed in relevant primary prevention guidelines in North America and Europe. However, recent studies evaluating high thoracic calcification thresholds and younger populations have further enriched this space. Specifically, some studies suggest that detection of severe thoracic aortic calcification may be helpful in further risk assessment and that detection of aortic valve calcifications may have important prognostic implications in younger individuals. Although more research is needed, particularly in larger young-to-middle-aged cohorts, future guidelines might consider including these features as risk-enhancing factors.
Collapse
|
126
|
Biglarian M, Seyedhossein SS, Firoozabadi B, MomeniLarimi M. Numerical study of the effect of hemodynamic variables on LDL concentration through the single layer of the Left Anterior Descending coronary artery (LAD) under the heart pulse. Proc Inst Mech Eng H 2022; 236:994-1008. [DOI: 10.1177/09544119221095920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart attack is one of the most common causes of death in the world. Coronary artery disease is the most recognized cause of heart attack whose onset and progression have been attributed to low-density lipoprotein (LDL) passing through the wall of the artery. In this paper, hemodynamic variables as well as the concentration of LDL through the coronary porous artery at the Left Anterior Descending coronary artery (LAD), and its first diagonal branch (D1) under the heart motion investigated using computational simulation. The geometry that has been studied in this paper is the first bifurcation of Left Anterior Descending (LAD) that has been placed on a perimeter of hypothetical sphere representative of the heart geometry. Sinusoidal variations of sphere radii, simulated pulsating movement of the heart. Blood has been considered as a Newtonian and incompressible flow with pulsatile flow rate and real physiological profile. The plasma filtration boundary condition used over the walls in order to simulate the concentration of LDL to a one-layer artery wall. Variations in the concentration of LDL on the artery wall and its relation to oscillation on shear stress on the artery wall under different conditions are presented. Moreover, the effects of the pulsating inlet flow and dynamic movement of the artery are explored. The results declared that minimum shear stress and maximum LDL concentration take place at the bifurcation and on the myocardial wall which is in complete agreement with clinical studies. Furthermore, it has been shown that the heart pulse has a slight effect on the average time of concentration (0.1% increase); however, by analyzing all time steps, one could observe that the maximum concentration rises in some time steps; where this increases the possibility of LDL presence and helps them diffuse inside the artery wall.
Collapse
Affiliation(s)
- Mohit Biglarian
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Bahar Firoozabadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Morsal MomeniLarimi
- Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
127
|
Li D, Zeng X, Wang J, Yuan D, Zheng T. Effects of different bypass surgeries on LSA revascularization in patients with left subclavian occlusion. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3636. [PMID: 35778375 DOI: 10.1002/cnm.3636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023]
Abstract
INTRO Left subclavian artery bypass surgery is mainly carried out for patients with severe left subclavian occlusion. This paper aimed to evaluate the hemodynamic effects of different surgical bypass modes on left subclavian artery revascularization. METHODS Three-dimensional models of the aorta were reconstructed from CTA images of a patient with left subclavian artery occlusion, a patient with type B aortic dissection with left subclavian artery coverage during thoracic endovascular aortic repair, and a healthy 74 year-old man, resulting in six modes for each person: healthy left subclavian artery mode, left subclavian artery occlusion mode and four bypass modes. Hemodynamic parameters, including flow field, flow distribution, pressure gradient, and wall shear stress, were calculated using computational fluid dynamics. RESULTS After left subclavian artery bypass surgery, distal left subclavian artery blood flow resulting from left common carotid artery to distal left subclavian artery bypass was 100% of that in the healthy mode, while the other modes yielded flows at least 91%. Moreover, reversed flow only completely disappeared with left common carotid artery to distal left subclavian artery bypass, whereas reverse flow was observed in the other three modes in early systole. CONCLUSION Left common carotid artery to distal left subclavian artery bypass can effectively reduce reverse blood flow in the left vertebral artery, and it is a feasible, effective, and safe option for left subclavian artery revascularization in patients with left subclavian occlusion.
Collapse
Affiliation(s)
- Da Li
- Department of Applied Mechanics, Sichuan University, Chengdu, China.,Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, China
| | - Xiangguo Zeng
- Department of Applied Mechanics, Sichuan University, Chengdu, China
| | - Jiarong Wang
- Department vascular surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Ding Yuan
- Department vascular surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Tinghui Zheng
- Department of Applied Mechanics, Sichuan University, Chengdu, China.,Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, China
| |
Collapse
|
128
|
The MRI enhancement ratio and plaque steepness may be more accurate for predicting recurrent ischemic cerebrovascular events in patients with intracranial atherosclerosis. Eur Radiol 2022; 32:7004-7013. [PMID: 35771249 DOI: 10.1007/s00330-022-08893-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To assess the complementary value of high-resolution multi-contrast MRI (hrMRI) in identifying symptomatic patients with intracranial atherosclerosis (ICAS) who are likely to experience recurrent ischemic cerebrovascular events. METHODS In this retrospective cohort study, eighty patients with acute ischemic events attributed to ICAS who underwent hrMRI examination between January 2015 and January 2019 were included. Median follow-up for all patients was 30 months (range: 1 to 52 months) and recurrent ischemic cerebrovascular events were recorded. Cox regression analysis and time-dependent ROC were performed to quantify the association between the plaque characteristics and recurrent events. RESULTS During the follow-up, 14 patients experienced recurrent ischemic cerebrovascular events. Young males and those with diabetes and poor medication persistence were more likely to experience recurrent events. ICAS in patients with recurrence had significantly higher enhancement ratio and steepness which is defined as the ratio between the plaque height and length than those without (p < 0.001 and p = 0.015, respectively). After adjustment of clinical factors, enhancement ratio (HR, 13.13 [95% CI, 3.58-48.20], p < 0.001) and plaque steepness (HR, 110.27 [95% CI, 4.75-2560.91], p = 0.003) were independent imaging biomarkers associated with recurrent events. Time-dependent ROC indicated that integrated high enhancement ratio and steepness into clinical risk factors improved discrimination power with the ROC increased from 0.79 to 0.94 (p = 0.008). CONCLUSIONS The enhancement ratio and plaque steepness improved the accuracy over traditional clinical risk factors in predicting recurrent ischemic cerebrovascular events for patients with ICAS. KEY POINTS • High-resolution magnetic resonance imaging helps clinicians to evaluate high-risk Intracranial plaque. • The higher enhancement ratio and plaque steepness (= height/length) were the primary biomarkers associated with future ischemic cerebrovascular events. • High-resolution magnetic resonance imaging combined with clinical characteristics showed a higher accuracy for the prediction of recurrent events in patients with intracranial atherosclerosis.
Collapse
|
129
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
130
|
Shishikura D, Octavia Y, Hayat U, Thondapu V, Barlis P. Atherogenesis and Inflammation. Interv Cardiol 2022. [DOI: 10.1002/9781119697367.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
131
|
Lodi Rizzini M, Candreva A, Chiastra C, Gallinoro E, Calò K, D'Ascenzo F, De Bruyne B, Mizukami T, Collet C, Gallo D, Morbiducci U. Modelling coronary flows: impact of differently measured inflow boundary conditions on vessel-specific computational hemodynamic profiles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106882. [PMID: 35597205 DOI: 10.1016/j.cmpb.2022.106882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES The translation of hemodynamic quantities based on wall shear stress (WSS) or intravascular helical flow into clinical biomarkers of coronary atherosclerotic disease is still hampered by the assumptions/idealizations required by the computational fluid dynamics (CFD) simulations of the coronary hemodynamics. In the resulting budget of uncertainty, inflow boundary conditions (BCs) play a primary role. Accordingly, in this study we investigated the impact of the approach adopted for in vivo coronary artery blood flow rate assessment on personalized CFD simulations where blood flow rate is used as inflow BC. METHODS CFD simulations were carried out on coronary angiograms by applying personalized inflow BCs derived from four different techniques assessing in vivo surrogates of flow rate: continuous thermodilution, intravascular Doppler, frame count-based 3D contrast velocity, and diameter-based scaling law. The impact of inflow BCs on coronary hemodynamics was evaluated in terms of WSS- and helicity-based quantities. RESULTS As main findings, we report that: (i) coronary flow rate values may differ based on the applied flow derivation technique, as continuous thermodilution provided higher flow rate values than intravascular Doppler and diameter-based scaling law (p = 0.0014 and p = 0.0023, respectively); (ii) such intrasubject differences in flow rate values lead to different surface-averaged values of WSS magnitude and helical blood flow intensity (p<0.0020); (iii) luminal surface areas exposed to low WSS and helical flow topological features showed robustness to the flow rate values. CONCLUSIONS Although the absence of a clinically applicable gold standard approach prevents a general recommendation for one coronary blood flow rate derivation technique, our findings indicate that the inflow BC may impact computational hemodynamic results, suggesting that a standardization would be desirable to provide comparable results among personalized CFD simulations of the coronary hemodynamics.
Collapse
Affiliation(s)
- Maurizio Lodi Rizzini
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Alessandro Candreva
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy; Department of Cardiology, Zurich University Hospital, Zurich, Switzerland
| | - Claudio Chiastra
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | | | - Karol Calò
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Fabrizio D'Ascenzo
- Hemodynamic Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Carlos Collet
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Diego Gallo
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy.
| | - Umberto Morbiducci
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
132
|
Vesterbekkmo EK, Madssen E, Aamot Aksetøy I, Follestad T, Nilsen HO, Hegbom K, Wisløff U, Wiseth R. CENIT (Impact of Cardiac Exercise Training on Lipid Content in Coronary Atheromatous Plaques Evaluated by Near‐Infrared Spectroscopy): A Randomized Trial. J Am Heart Assoc 2022; 11:e024705. [PMID: 35574968 PMCID: PMC9238565 DOI: 10.1161/jaha.121.024705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background The effect of physical exercise on lipid content of coronary artery plaques is unknown. With near infrared spectroscopy we measured the effect of high intensity interval training (HIIT) on lipid content in coronary plaques in patients with stable coronary artery disease following percutaneous coronary intervention. Methods and Results In CENIT (Impact of Cardiac Exercise Training on Lipid Content in Coronary Atheromatous Plaques Evaluated by Near‐Infrared Spectroscopy) 60 patients were randomized to 6 months supervised HIIT or to a control group. The primary end point was change in lipid content measured as maximum lipid core burden index at 4 mm (maxLCBI4mm). A predefined cutoff of maxLCBI4mm >100 was required for inclusion in the analysis. Forty‐nine patients (HIIT=20, usual care=29) had maxLCBI4mm >100 at baseline. Change in maxLCBI4mm did not differ between groups (−1.2, 95% CI, −65.8 to 63.4, P=0.97). The estimated reduction in maxLCBI4mm was −47.7 (95% CI, −100.3 to 5.0, P=0.075) and −46.5 (95% CI, −87.5 to −5.4, P=0.027) after HIIT and in controls, respectively. A negative correlation was observed between change in peak oxygen uptake (VO2peak) and change in lipid content (Spearman’s correlation −0.44, P=0.009). With an increase in VO2peak above 1 metabolic equivalent task, maxLCBI4mm was on average reduced by 142 (−8 to −262), whereas the change was −3.2 (154 to −255) with increased VO2peak below 1 metabolic equivalent task. Conclusions Six months of HIIT following percutaneous coronary intervention did not reduce lipid content in coronary plaques compared with usual care. A moderate negative correlation between increase in VO2peak and change in lipid content generates the hypothesis that exercise with a subsequent increase in fitness may reduce lipid content in coronary atheromatous plaques. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02494947.
Collapse
Affiliation(s)
- Elisabeth Kleivhaug Vesterbekkmo
- Clinic of Cardiology St. Olavs University Hospital Trondheim Norway
- Department of Circulation and Medical Imaging Norwegian University of Science and Technology Trondheim Norway
- National Advisory Unit on Exercise Training as Medicine for Cardiopulmonary Conditions Trondheim Norway
| | - Erik Madssen
- Clinic of Cardiology St. Olavs University Hospital Trondheim Norway
- Department of Circulation and Medical Imaging Norwegian University of Science and Technology Trondheim Norway
| | - Inger‐Lise Aamot Aksetøy
- Clinic of Cardiology St. Olavs University Hospital Trondheim Norway
- Department of Circulation and Medical Imaging Norwegian University of Science and Technology Trondheim Norway
- National Advisory Unit on Exercise Training as Medicine for Cardiopulmonary Conditions Trondheim Norway
| | - Turid Follestad
- Department of Clinical and Molecular Medicine Norwegian University of Science and Technology Trondheim Norway
| | - Hans Olav Nilsen
- Clinic of Cardiology St. Olavs University Hospital Trondheim Norway
- Department of Circulation and Medical Imaging Norwegian University of Science and Technology Trondheim Norway
| | - Knut Hegbom
- Clinic of Cardiology St. Olavs University Hospital Trondheim Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging Norwegian University of Science and Technology Trondheim Norway
- School of Human Movement and Nutrition Science University of Queensland Australia
| | - Rune Wiseth
- Clinic of Cardiology St. Olavs University Hospital Trondheim Norway
- Department of Circulation and Medical Imaging Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
133
|
Kwiecinski J, Tzolos E, Fletcher AJ, Nash J, Meah MN, Cadet S, Adamson PD, Grodecki K, Joshi N, Williams MC, van Beek EJR, Lai C, Tavares AAS, MacAskill MG, Dey D, Baker AH, Leipsic J, Berman DS, Sellers SL, Newby DE, Dweck MR, Slomka PJ. Bypass Grafting and Native Coronary Artery Disease Activity. JACC Cardiovasc Imaging 2022; 15:875-887. [PMID: 35216930 PMCID: PMC9246289 DOI: 10.1016/j.jcmg.2021.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The aim of this study was to describe the potential of 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) to identify graft vasculopathy and to investigate the influence of coronary artery bypass graft (CABG) surgery on native coronary artery disease activity and progression. BACKGROUND As well as developing graft vasculopathy, CABGs have been proposed to accelerate native coronary atherosclerosis. METHODS Patients with established coronary artery disease underwent baseline 18F-NaF PET, coronary artery calcium scoring, coronary computed tomographic angiography, and 1-year repeat coronary artery calcium scoring. Whole-vessel coronary microcalcification activity (CMA) on 18F-NaF PET and change in calcium scores were quantified in patients with and without CABG surgery. RESULTS Among 293 participants (mean age 65 ± 9 years, 84% men), 48 (16%) underwent CABG surgery 2.7 years [IQR: 1.4-10.4 years] previously. Although all arterial and the majority (120 of 128 [94%]) of vein grafts showed no 18F-NaF uptake, 8 saphenous vein grafts in 7 subjects had detectable CMA. Bypassed native coronary arteries had 3 times higher CMA values (2.1 [IQR: 0.4-7.5] vs 0.6 [IQR: 0-2.7]; P < 0.001) and greater progression of 1-year calcium scores (118 Agatston unit [IQR: 48-194 Agatston unit] vs 69 [IQR: 21-142 Agatston unit]; P = 0.01) compared with patients who had not undergone CABG, an effect confined largely to native coronary plaques proximal to the graft anastomosis. In sensitivity analysis, bypassed native coronary arteries had higher CMA (2.0 [IQR: 0.4-7.5] vs 0.8 [IQR: 0.3-3.2]; P < 0.001) and faster disease progression (24% [IQR: 16%-43%] vs 8% [IQR: 0%-24%]; P = 0.002) than matched patients (n = 48) with comparable burdens of coronary artery disease and cardiovascular comorbidities in the absence of bypass grafting. CONCLUSIONS Native coronary arteries that have been bypassed demonstrate increased disease activity and more rapid disease progression than nonbypassed arteries, an observation that appears independent of baseline atherosclerotic plaque burden. Microcalcification activity is not a dominant feature of graft vasculopathy.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Evangelos Tzolos
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA; BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander J Fletcher
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Nash
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Mohammed N Meah
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Sebastien Cadet
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Philip D Adamson
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Kajetan Grodecki
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nikhil Joshi
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Edwin J R van Beek
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Chi Lai
- Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adriana A S Tavares
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark G MacAskill
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Damini Dey
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Jonathon Leipsic
- Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel S Berman
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephanie L Sellers
- Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Piotr J Slomka
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
134
|
He Y, Northrup H, Le H, Cheung AK, Berceli SA, Shiu YT. Medical Image-Based Computational Fluid Dynamics and Fluid-Structure Interaction Analysis in Vascular Diseases. Front Bioeng Biotechnol 2022; 10:855791. [PMID: 35573253 PMCID: PMC9091352 DOI: 10.3389/fbioe.2022.855791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/08/2022] [Indexed: 01/17/2023] Open
Abstract
Hemodynamic factors, induced by pulsatile blood flow, play a crucial role in vascular health and diseases, such as the initiation and progression of atherosclerosis. Computational fluid dynamics, finite element analysis, and fluid-structure interaction simulations have been widely used to quantify detailed hemodynamic forces based on vascular images commonly obtained from computed tomography angiography, magnetic resonance imaging, ultrasound, and optical coherence tomography. In this review, we focus on methods for obtaining accurate hemodynamic factors that regulate the structure and function of vascular endothelial and smooth muscle cells. We describe the multiple steps and recent advances in a typical patient-specific simulation pipeline, including medical imaging, image processing, spatial discretization to generate computational mesh, setting up boundary conditions and solver parameters, visualization and extraction of hemodynamic factors, and statistical analysis. These steps have not been standardized and thus have unavoidable uncertainties that should be thoroughly evaluated. We also discuss the recent development of combining patient-specific models with machine-learning methods to obtain hemodynamic factors faster and cheaper than conventional methods. These critical advances widen the use of biomechanical simulation tools in the research and potential personalized care of vascular diseases.
Collapse
Affiliation(s)
- Yong He
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
| | - Hannah Northrup
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Ha Le
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
- Vascular Surgery Section, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, United States
| | - Yan Tin Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
- *Correspondence: Yan Tin Shiu,
| |
Collapse
|
135
|
Milewski M, Ng CKJ, Gąsior P, Lian SS, Qian SX, Lu S, Foin N, Kedhi E, Wojakowski W, Ang HY. Polymer Coating Integrity, Thrombogenicity and Computational Fluid Dynamics Analysis of Provisional Stenting Technique in the Left Main Bifurcation Setting: Insights from an In-Vitro Model. Polymers (Basel) 2022; 14:polym14091715. [PMID: 35566886 PMCID: PMC9099851 DOI: 10.3390/polym14091715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Currently, the provisional stenting technique is the gold standard in revascularization of lesions located in the left main (LM) bifurcation. The benefit of the routine kissing balloon technique (KBI) in bifurcation lesions is still debated, particularly following the single stent treatment. We compared the latest-generation drug-eluting stent (DES) with no side branch (SB) dilatation “keep it open” technique (KIO) vs. KBI technique vs. bifurcation dedicated drug-eluting stent (BD-DES) implantation. In vitro testing was performed under a static condition in bifurcation silicone vessel models. All the devices were implanted in accordance with the manufacturers’ recommendations. As a result, computational fluid dynamics (CFD) analysis demonstrated a statistically higher area of high shear rate in the KIO group when compared to KBI. Likewise, the maximal shear rate was higher in number in the KIO group. Floating strut count based on the OCT imaging was significantly higher in KIO than in KBI and BD-DES. Furthermore, according to OTC analysis, the thrombus area was numerically higher in both KIO and KBI than in the BD-DES. Scanning electron microscopy (SEM) analysis shows the highest degree of strut coating damage in the KBI group. This model demonstrated significant differences in CFD analysis at SB ostia with and without KBI optimization in the LM setting. The adoption of KBI was related to a meaningful reduction of flow disturbances in conventional DES and achieved results similar to BD-DES.
Collapse
Affiliation(s)
- Marek Milewski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (M.M.); (P.G.); (E.K.); (W.W.)
| | - Chen Koon Jaryl Ng
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore; (C.K.J.N.); (S.L.); (N.F.)
| | - Pawel Gąsior
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (M.M.); (P.G.); (E.K.); (W.W.)
| | - Shaoliang Shawn Lian
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore;
| | - Su Xiao Qian
- Division of Chemical and Biomolecular Engineering, Nanyang Technological University, Singapore 637459, Singapore;
| | - Shengjie Lu
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore; (C.K.J.N.); (S.L.); (N.F.)
| | - Nicolas Foin
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore; (C.K.J.N.); (S.L.); (N.F.)
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Elvin Kedhi
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (M.M.); (P.G.); (E.K.); (W.W.)
- Erasmus Hospital, Université libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (M.M.); (P.G.); (E.K.); (W.W.)
| | - Hui Ying Ang
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore; (C.K.J.N.); (S.L.); (N.F.)
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore;
- Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence: ; Tel.: +65-6704-2343; Fax: +65-6704-2210
| |
Collapse
|
136
|
Awuah A, Moore JS, Nesbit MA, Ruddock MW, Brennan PF, Mailey JA, McNeil AJ, Jing M, Finlay DD, Trucco E, Kurth MJ, Watt J, Lamont JV, Fitzgerald P, Spence MS, McLaughlin JAD, Moore TCB. A novel algorithm for cardiovascular screening using conjunctival microcirculatory parameters and blood biomarkers. Sci Rep 2022; 12:6545. [PMID: 35449196 PMCID: PMC9023476 DOI: 10.1038/s41598-022-10491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
Microvascular haemodynamic alterations are associated with coronary artery disease (CAD). The conjunctival microcirculation can easily be assessed non-invasively. However, the microcirculation of the conjunctiva has not been previously explored in clinical algorithms aimed at identifying patients with CAD. This case–control study involved 66 patients with post-myocardial infarction and 66 gender-matched healthy controls. Haemodynamic properties of the conjunctival microcirculation were assessed with a validated iPhone and slit lamp-based imaging tool. Haemodynamic properties were extracted with semi-automated software and compared between groups. Biomarkers implicated in the development of CAD were assessed in combination with conjunctival microcirculatory parameters. The conjunctival blood vessel parameters and biomarkers were used to derive an algorithm to aid in the screening of patients for CAD. Conjunctival blood velocity measured in combination with the blood biomarkers (N-terminal pro-brain natriuretic peptide and adiponectin) had an area under receiver operator characteristic curve (AUROC) of 0.967, sensitivity 93.0%, specificity 91.5% for CAD. This study demonstrated that the novel algorithm which included a combination of conjunctival blood vessel haemodynamic properties, and blood-based biomarkers could be used as a potential screening tool for CAD and should be validated for potential utility in asymptomatic individuals.
Collapse
Affiliation(s)
- Agnes Awuah
- Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, BT52 1SA, UK
| | - Julie S Moore
- Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, BT52 1SA, UK
| | - M Andrew Nesbit
- Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, BT52 1SA, UK
| | - Mark W Ruddock
- Clinical Studies Group, Randox Laboratories Ltd, 55 Diamond Road, Crumlin, BT29 4QY, UK
| | - Paul F Brennan
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, 274 Grosvenor Road, Belfast, BT12 6BA, UK
| | - Jonathan A Mailey
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, 274 Grosvenor Road, Belfast, BT12 6BA, UK
| | - Andrew J McNeil
- VAMPIRE Project, Computing (SSEN), University of Dundee, Dundee, DD1 4HN, UK
| | - Min Jing
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Jordanstown, BT37 0QB, UK
| | - Dewar D Finlay
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Jordanstown, BT37 0QB, UK
| | - Emanuele Trucco
- VAMPIRE Project, Computing (SSEN), University of Dundee, Dundee, DD1 4HN, UK
| | - Mary Jo Kurth
- Clinical Studies Group, Randox Laboratories Ltd, 55 Diamond Road, Crumlin, BT29 4QY, UK
| | - Joanne Watt
- Clinical Studies Group, Randox Laboratories Ltd, 55 Diamond Road, Crumlin, BT29 4QY, UK
| | - John V Lamont
- Clinical Studies Group, Randox Laboratories Ltd, 55 Diamond Road, Crumlin, BT29 4QY, UK
| | - Peter Fitzgerald
- Clinical Studies Group, Randox Laboratories Ltd, 55 Diamond Road, Crumlin, BT29 4QY, UK
| | - Mark S Spence
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, 274 Grosvenor Road, Belfast, BT12 6BA, UK
| | - James A D McLaughlin
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Jordanstown, BT37 0QB, UK
| | - Tara C B Moore
- Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, BT52 1SA, UK.
| |
Collapse
|
137
|
Thondapu V, Shishikura D, Dijkstra J, Zhu SJ, Revalor E, Serruys PW, van Gaal WJ, Poon EKW, Ooi A, Barlis P. Non-Newtonian Endothelial Shear Stress Simulation: Does It Matter? Front Cardiovasc Med 2022; 9:835270. [PMID: 35497989 PMCID: PMC9046559 DOI: 10.3389/fcvm.2022.835270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/09/2022] [Indexed: 12/05/2022] Open
Abstract
Patient-specific coronary endothelial shear stress (ESS) calculations using Newtonian and non-Newtonian rheological models were performed to assess whether the common assumption of Newtonian blood behavior offers similar results to a more realistic but computationally expensive non-Newtonian model. 16 coronary arteries (from 16 patients) were reconstructed from optical coherence tomographic (OCT) imaging. Pulsatile CFD simulations using Newtonian and the Quemada non-Newtonian model were performed. Endothelial shear stress (ESS) and other indices were compared. Exploratory indices including local blood viscosity (LBV) were calculated from non-Newtonian simulation data. Compared to the Newtonian results, the non-Newtonian model estimates significantly higher time-averaged ESS (1.69 (IQR 1.36)Pa versus 1.28 (1.16)Pa, p < 0.001) and ESS gradient (0.90 (1.20)Pa/mm versus 0.74 (1.03)Pa/mm, p < 0.001) throughout the cardiac cycle, under-estimating the low ESS (<1Pa) area (37.20 ± 13.57% versus 50.43 ± 14.16%, 95% CI 11.28-15.18, p < 0.001). Similar results were also found in the idealized artery simulations with non-Newtonian median ESS being higher than the Newtonian median ESS (healthy segments: 0.8238Pa versus 0.6618Pa, p < 0.001 proximal; 0.8179Pa versus 0.6610Pa, p < 0.001 distal; stenotic segments: 0.8196Pa versus 0.6611Pa, p < 0.001 proximal; 0.2546Pa versus 0.2245Pa, p < 0.001 distal) On average, the non-Newtonian model has a LBV of 1.45 times above the Newtonian model with an average peak LBV of 40-fold. Non-Newtonian blood model estimates higher quantitative ESS values than the Newtonian model. Incorporation of non-Newtonian blood behavior may improve the accuracy of ESS measurements. The non-Newtonian model also allows calculation of exploratory viscosity-based hemodynamic indices, such as local blood viscosity, which may offer additional information to detect underlying atherosclerosis.
Collapse
Affiliation(s)
- Vikas Thondapu
- Department of Medicine, Faculty of Medicine, Melbourne Medical School, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Mechanical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC, Australia
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Daisuke Shishikura
- Department of Cardiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Jouke Dijkstra
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, Netherlands
| | - Shuang J. Zhu
- Department of Mechanical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Eve Revalor
- Department of Medicine, Faculty of Medicine, Melbourne Medical School, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Patrick W. Serruys
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - William J. van Gaal
- Department of Medicine, Faculty of Medicine, Melbourne Medical School, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Cardiology, Northern Hospital, Epping, NSW, Australia
| | - Eric K. W. Poon
- Department of Medicine, Faculty of Medicine, Melbourne Medical School, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Peter Barlis
- Department of Medicine, Faculty of Medicine, Melbourne Medical School, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
138
|
The Effects of the Mechanical Properties of Vascular Grafts and an Anisotropic Hyperelastic Aortic Model on Local Hemodynamics during Modified Blalock-Taussig Shunt Operation, Assessed Using FSI Simulation. MATERIALS 2022; 15:ma15082719. [PMID: 35454414 PMCID: PMC9026531 DOI: 10.3390/ma15082719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022]
Abstract
Cardiovascular surgery requires the use of state-of-the-art artificial materials. For example, microporous polytetrafluoroethylene grafts manufactured by Gore-Tex® are used for the treatment of cyanotic heart defects (i.e., modified Blalock–Taussig shunt). Significant mortality during this palliative operation has led surgeons to adopt mathematical models to eliminate complications by performing fluid–solid interaction (FSI) simulations. To proceed with FSI modeling, it is necessary to know either the mechanical properties of the aorta and graft or the rheological properties of blood. The properties of the aorta and blood can be found in the literature, but there are no data about the mechanical properties of Gore-Tex® grafts. Experimental studies were carried out on the mechanical properties vascular grafts adopted for modified pediatric Blalock–Taussig shunts. Parameters of two models (the five-parameter Mooney–Rivlin model and the three-parameter Yeoh model) were determined by uniaxial experimental curve fitting. The obtained data were used for patient-specific FSI modeling of local blood flow in the “aorta-modified Blalock–Taussig shunt–pulmonary artery” system in three different shunt locations: central, right, and left. The anisotropic model of the aortic material showed higher stress values at the peak moment of systole, which may be a key factor determining the strength characteristics of the aorta and pulmonary artery. Additionally, this mechanical parameter is important when installing a central shunt, since it is in the area of the central anastomosis that an increase in stress on the aortic wall is observed. According to computations, the anisotropic model shows smaller values for the displacements of both the aorta and the shunt, which in turn may affect the success of preoperative predictions. Thus, it can be concluded that the anisotropic properties of the aorta play an important role in preoperative modeling.
Collapse
|
139
|
Takami Y, Norikane T, Yamamoto Y, Fujimoto K, Mitamura K, Okauchi M, Kawanishi M, Nishiyama Y. A preliminary study of relationship among the degree of internal carotid artery stenosis, wall shear stress on MR angiography and 18F-FDG uptake on PET/CT. J Nucl Cardiol 2022; 29:569-577. [PMID: 32743752 DOI: 10.1007/s12350-020-02300-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/18/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND This preliminary study was undertaken to evaluate relationship among the degree of internal carotid artery (ICA) stenosis, wall shear stress (WSS) by computational fluid dynamics (CFD) on magnetic resonance angiography (MRA) and 18F-FDG uptake of ICA on PET/CT. METHODS A total of 40 carotid arteries in 20 patients with carotid atherosclerotic disease were examined with MRA and 18F-FDG PET/CT. Atherosclerotic risk factors were assessed in all patients. Degree of ICA stenosis was calculated according to NASCET method. CFD analysis was performed and maximum WSS (WSSmax) was measured. 18F-FDG uptake in ICA was quantified using maximum target-to-blood pool ratio (TBRmax). RESULTS Atherosclerotic risk factors did not affect imaging findings. There were significant correlations between WSSmax and degree of ICA stenosis (ρ = .81, P < .001), WSSmax and TBRmax (ρ = .64, P < .001), and TBRmax and degree of ICA stenosis (ρ = .50, P = .001). CONCLUSIONS These preliminary results indicate that there may be significant correlations among the degree of ICA stenosis, WSSmax and TBRmax in patients with carotid artery stenosis.
Collapse
Affiliation(s)
- Yasukage Takami
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Takashi Norikane
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kengo Fujimoto
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Katsuya Mitamura
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Masanobu Okauchi
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masahiko Kawanishi
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
140
|
Zhang J, Han R, Shao G, Lv B, Sun K. Artificial Intelligence in Cardiovascular Atherosclerosis Imaging. J Pers Med 2022; 12:420. [PMID: 35330420 PMCID: PMC8952318 DOI: 10.3390/jpm12030420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
At present, artificial intelligence (AI) has already been applied in cardiovascular imaging (e.g., image segmentation, automated measurements, and eventually, automated diagnosis) and it has been propelled to the forefront of cardiovascular medical imaging research. In this review, we presented the current status of artificial intelligence applied to image analysis of coronary atherosclerotic plaques, covering multiple areas from plaque component analysis (e.g., identification of plaque properties, identification of vulnerable plaque, detection of myocardial function, and risk prediction) to risk prediction. Additionally, we discuss the current evidence, strengths, limitations, and future directions for AI in cardiac imaging of atherosclerotic plaques, as well as lessons that can be learned from other areas. The continuous development of computer science and technology may further promote the development of this field.
Collapse
Affiliation(s)
- Jia Zhang
- Hohhot Health Committee, Hohhot 010000, China;
| | - Ruijuan Han
- The People’s Hospital of Longgang District, Shenzhen 518172, China;
| | - Guo Shao
- The Third People’s Hospital of Longgang District, Shenzhen 518100, China;
| | - Bin Lv
- Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing 100037, China;
| | - Kai Sun
- The Third People’s Hospital of Longgang District, Shenzhen 518100, China;
| |
Collapse
|
141
|
Peng C, Liu J, He W, Qin W, Yuan T, Kan Y, Wang K, Wang S, Shi Y. Numerical simulation in the abdominal aorta and the visceral arteries with or without stenosis based on 2D PCMRI. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3569. [PMID: 34967124 DOI: 10.1002/cnm.3569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
It is important to obtain accurate boundary conditions (BCs) in hemodynamic simulations. This article aimed to improve the accuracy of BCs in computational fluid dynamics (CFD) simulation and analyze the differences in hemodynamics between healthy volunteers and patients with visceral arterial stenosis (VAS). The geometric models of seven cases were reconstructed using the magnetic resonance angiogram (MRA) or computed tomography angiogram (CTA) imaging data. The physiological flow waveforms obtained from 2D Phase Contrast Magnetic Resonance Imaging (PCMRI) were imposed on the aortic inlet and the visceral arteries' outlets. The individualized RCR values of the three-element Windkessel model were imposed on the aortic outlet. CFD simulations were run in the open-source software: svSolver. Two specific time points were selected to compare the hemodynamics of healthy volunteers and patients with VAS. The results suggested that blood in the stenotic visceral arteries flowed at high speed throughout the cardiac cycle. The low pressure is distributed at stenotic lesions. The wall shear stress (WSS) reached 4 Pa near stenotic locations. The low time average wall shear stress (TAWSS), high oscillatory shear index (OSI), and high relative residence time (RRT) concentrated in the abdominal aorta. Besides, the ratios of the areas with low TAWSS, high OSI, and high RRT to the computational domain were higher in patients with VAS than which in the healthy volunteers. The individualized BCs were used for hemodynamic simulations and results suggest that patients with stenosis have a higher risk of blood retention and atherosclerosis formation in the abdominal aorta.
Collapse
Affiliation(s)
- Chen Peng
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Junzhen Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei He
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wang Qin
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Tong Yuan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanqing Kan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Keqiang Wang
- Institute of Panvascular Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
- Institute of Biomedical Engineering Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
142
|
Plasma ApoB/AI: An effective indicator for intracranial vascular positive remodeling. J Neurol Sci 2022; 436:120226. [DOI: 10.1016/j.jns.2022.120226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/22/2022]
|
143
|
Starodumov IO, Sokolov SY, Alexandrov DV, Zubarev AY, Bessonov IS, Chestukhin VV, Blyakhman FA. Modelling of hemodynamics in bifurcation lesions of coronary arteries before and after myocardial revascularization. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200303. [PMID: 34974725 DOI: 10.1098/rsta.2020.0303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/16/2021] [Indexed: 06/14/2023]
Abstract
Modelling of patient-specific hemodynamics for a clinical case of severe coronary artery disease with the bifurcation stenosis was carried out with allowance for standard angiographic data obtained before and after successfully performed myocardial revascularization by stenting of two arteries. Based on a non-Newtonian fluid model and an original algorithm for fluid dynamics computation operated with a limited amount of initial data, key characteristics of blood flow were determined to analyse the features of coronary disease and the consequences of its treatment. The results of hemodynamic modelling near bifurcation sites are presented with an emphasis on physical, physiological and clinical phenomena to demonstrate the feasibility of the proposed approach. The main limitations and ways to minimize them are the subjects of discussion as well. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.
Collapse
Affiliation(s)
- Ilya O Starodumov
- Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg 620000, Russian Federation
- Ural State Medical University, Ekaterinburg 620028, Russian Federation
| | - Sergey Yu Sokolov
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620000, Russian Federation
- Ural State Medical University, Ekaterinburg 620028, Russian Federation
| | - Dmitri V Alexandrov
- Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg 620000, Russian Federation
| | - Andrey Yu Zubarev
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620000, Russian Federation
| | - Ivan S Bessonov
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 625026, Russian Federation
| | - Vasily V Chestukhin
- Sklifosovsky Research Institute of Emergency Care, Moscow 129090, Russian Federation
| | - Felix A Blyakhman
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620000, Russian Federation
- Ural State Medical University, Ekaterinburg 620028, Russian Federation
| |
Collapse
|
144
|
Lv R, Wang L, Maehara A, Guo X, Zheng J, Samady H, Giddens DP, Mintz GS, Stone GW, Tang D. Image-based biomechanical modeling for coronary atherosclerotic plaque progression and vulnerability prediction. Int J Cardiol 2022; 352:1-8. [PMID: 35149139 DOI: 10.1016/j.ijcard.2022.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/01/2023]
Abstract
Atherosclerotic plaque progression and rupture play an important role in cardiovascular disease development and the final drastic events such as heart attack and stroke. Medical imaging and image-based computational modeling methods advanced considerably in recent years to quantify plaque morphology and biomechanical conditions and gain a better understanding of plaque evolution and rupture process. This article first briefly reviewed clinical imaging techniques for coronary thin-cap fibroatheroma (TCFA) plaques used in image-based computational modeling. This was followed by a summary of different types of biomechanical models for coronary plaques. Plaque progression and vulnerability prediction studies based on image-based computational modeling were reviewed and compared. Much progress has been made and a reasonable high prediction accuracy has been achieved. However, there are still some inconsistencies in existing literature on the impact of biomechanical and morphological factors on future plaque behavior, and it is very difficult to perform direct comparison analysis as differences like image modality, biomechanical factors selection, predictive models, and progression/vulnerability measures exist among these studies. Encouraging data and model sharing across the research community would partially resolve these differences, and possibly lead to clearer assertive conclusions. In vivo image-based computational modeling could be used as a powerful tool for quantitative assessment of coronary plaque vulnerability for potential clinical applications.
Collapse
Affiliation(s)
- Rui Lv
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Liang Wang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, USA.
| | - Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA.
| | - Habib Samady
- School of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Don P Giddens
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Gary S Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, USA
| | - Gregg W Stone
- The Cardiovascular Research Foundation, Columbia University, New York, USA; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, NY, New York, USA.
| | - Dalin Tang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China; Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, USA.
| |
Collapse
|
145
|
Xu K, Li B, Liu J, Chen M, Zhang L, Mao B, Xi X, Sun H, Zhang Z, Liu Y. Model-based evaluation of local hemodynamic effects of enhanced external counterpulsation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106540. [PMID: 34848079 DOI: 10.1016/j.cmpb.2021.106540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVES The treatment benefits of enhanced external counterpulsation (EECP) heavily depends on hemodynamics. Global hemodynamics of EECP can cause blood flow redistribution in the circulatory system whereas local hemodynamic effects act on vascular endothelial cells (VECs). Local hemodynamic effects of EECP on VECs are important in the treatment of atherosclerosis, but currently cannot be not evaluated. Herein we aim to establish evaluation models of local hemodynamic effects based on the global hemodynamic indicators. METHODS We established 0D/3D geometric multi-scale hemodynamic models of the coronary and cerebral artery of two healthy individuals to calculate the global hemodynamic indicators and the local hemodynamic effects. Clinical EECP trials were performed to verify the accuracy of the multi-scale hemodynamic model. The global hemodynamic indicators included diastolic blood pressure/systolic blood pressure (Q = D/S), mean arterial pressure (MAP), internal carotid artery flow (ICAF) and cerebral blood flow (CBF), whereas local hemodynamic effects focused on time-averaged wall shear stress (TAWSS). The correlation between these indicators was analyzed via Pearson correlation coefficient. Significantly related indicators were selected for curve-fitting to establish evaluation models of the coronary and cerebral artery. Moreover, clinical data of a coronary heart disease patient and a cerebral ischemic stroke patient were collected to verify the effectiveness of the application of the established evaluation models to real patients. RESULTS For coronary artery, TAWSS was correlated to Q = D/S and ICAF (P < 0.05), whereas for cerebral artery, TAWSS was correlated to MAP and CBF (P < 0.05). The mean square error (MSE) between the evaluated values using evaluation model and the calculated values using 0D/3D model of TAWSS of the coronary and cerebral artery were 5.4% and 1.0%, respectively. The MSE of evaluation model applied to real patients was greater than that applied to healthy individuals, but within an acceptable range. CONCLUSIONS The presented error demonstrated validity and accuracy of the evaluation models in clinical patients. Based on the evaluation models, global hemodynamic indicators could be used to evaluate the local hemodynamic effects under the current counterpulsation mode. With TAWSS range of 4-7 Pa as the target range, EECP strategies can further be optimized.
Collapse
Affiliation(s)
- Ke Xu
- Department of Biomedical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Bao Li
- Department of Biomedical Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jincheng Liu
- Department of Biomedical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Mingyan Chen
- Department of Biomedical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liyuan Zhang
- Department of Biomedical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Boyan Mao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaolu Xi
- Department of Biomedical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hao Sun
- Department of Biomedical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhe Zhang
- Peking University Third Hospital, Beijing 100080, China
| | - Youjun Liu
- Department of Biomedical Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
146
|
Mechanical writing of electrical polarization in poly (L-lactic) acid. Acta Biomater 2022; 139:249-258. [PMID: 34111519 DOI: 10.1016/j.actbio.2021.05.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 01/21/2023]
Abstract
Stimuli responsive materials are found in a broad range of applications, from energy harvesters to biomolecular sensors. Here, we report the production of poly (L-lactic acid) (PLLA) thin films that exhibit a mechanical stress responsive behaviour. By simply applying a mechanical stress through an AFM tip, a local electrical polarization was generated and measured by Kelvin Probe Force Microscopy. We showed that the magnitude of the stress generated electrical polarization can be manipulated by varying the thickness or crystallization state of the PLLA thin films. Besides exhibiting a mechanical stress-response behaviour with potential for energy harvesting and sensor applications, we show by AFM that these platforms react to mechanical forces with physiological relevance: interaction forces as low as a cell sheet migrating over a substrate or larger ones as the fluid induced stresses in bone tissue. In living tissues, as most mechanical stimuli are transduced as strain gradients for the anatomical structures, these mechanically responsive substrates can be used as ex vivo platforms to study the protein and cells response over a large range of electrical stimuli amplitude. As a proof of concept, selective adsorption of a human fibronectin was demonstrated by local patterning of the stimuli responsive PLLA films. STATEMENT OF SIGNIFICANCE: Bioelectricity is inherent to the formation and repair of living tissues and electrical stimulation has been recognized for promoting regeneration. Given the proven beneficial effects of electric fields and the absence of a suitable method of stimulation, there is a clinical need for smart substrates, which can generate a polarization (charges) to promote tissue regeneration without the need of external devices. In this work, we report the fabrication of poly(L-lactic) acid platforms that exhibit a mechanical stress responsive behaviour when subjected to physiologically relevant forces. This behaviour can be tailored by varying the thickness or crystallization state of the PLLA films. We further demonstrate the biofunctionality of such platforms by exploiting the mechanically-induced charge for adhesion protein adsorption.
Collapse
|
147
|
Wentzel JJ, Papafaklis MI, Antoniadis AP, Takahashi S, Cefalo NV, Cormier M, Saito S, Coskun AU, Stone PH. Sex-related differences in plaque characteristics and endothelial shear stress related plaque-progression in human coronary arteries. Atherosclerosis 2022; 342:9-18. [PMID: 34999306 DOI: 10.1016/j.atherosclerosis.2021.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Clinical atherosclerosis manifestations are different in women compared to men. Since endothelial shear stress (ESS) is known to play a critical role in coronary atherosclerosis development, we investigated differences in anatomical characteristics and endothelial shear stress (ESS)-related plaque growth in human coronary arteries in men compared to women. METHODS 1183 coronary arteries (male/female: 944/239) from the PREDICTION study were studied for differences in artery/plaque and ESS characteristics, and ESS-related plaque progression (6-10 months follow-up) among men and women and after stratification for age. All characteristics were derived from IVUS-based vascular profiling and reported per 3 mm-segments (13,030 3-mm-segments (male/female: 10,465/2,565)). RESULTS Coronary arteries and plaques were significantly smaller in females compared to males; but no important differences were observed in plaque burden, ESS and rate of plaque progression. Change in plaque burden was inversely related to ESS (p<0.001) with no difference between women versus men (β: -0.62 ± 0.13 vs -0.68 ± 0.05, p=0.62). However, stratification for age demonstrated that ESS-related plaque growth was more marked in young women compared to men (<55 years, β: -2.02 ± 0.61 vs -0.33 ± 0.10, p=0.007), reducing in magnitude over the age-categories up till 75 years. CONCLUSIONS Coronary artery and plaque size are smaller in women compared to men, but ESS and ESS- related plaque progression were similar. Sex-related differences in ESS-related plaque growth were evident after stratification for age. These observations suggest that although the fundamental processes of atherosclerosis progression are similar in men versus women, plaque progression may be influenced by age within gender.
Collapse
Affiliation(s)
- Jolanda J Wentzel
- Biomedical Engineering, Department of Cardiology, ErasmusMC, University Medical Center Rotterdam, the Netherlands.
| | | | - Antonios P Antoniadis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Saeko Takahashi
- Department of Cardiology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Nicholas V Cefalo
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle Cormier
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shigeru Saito
- Department of Cardiology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Ahmet U Coskun
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Peter H Stone
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
148
|
Chidyagwai SG, Vardhan M, Kaplan M, Chamberlain R, Barker P, Randles A. Characterization of hemodynamics in anomalous aortic origin of coronary arteries using patient-specific modeling. J Biomech 2022; 132:110919. [PMID: 35063831 PMCID: PMC10712838 DOI: 10.1016/j.jbiomech.2021.110919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
The anomalous aortic origin of coronary arteries (AAOCA) is a congenital disease that can lead to sudden cardiac death (SCD) during strenuous physical activity. Despite AAOCA being the second leading cause of SCD among young athletes, the mechanism behind sudden cardiac death remains mostly unknown. Computational fluid dynamics provides a powerful tool for studying how pathologic anatomy can affect different hemodynamic states. The present study investigates the effect of AAOCA on patient hemodynamics. We performed patient-specific hemodynamic simulations of interarterial AAOCA at baseline and in the exercise state using our massively parallel flow solver. Additionally, we investigate how surgical correction via coronary unroofing impacts patient blood flow. Results show that patient-specific AAOCA models exhibited higher interarterial time-averaged wall shear stress (TAWSS) values compared to the control patients. The oscillatory shear index had no impact on AAOCA. Finally, the coronary unroofing procedure normalized the elevated TAWSS by decreasing TAWSS in the postoperative patient. The present study provides a proof of concept for the potential hemodynamic factors underlying coronary ischemia in AAOCA during exercise state.
Collapse
Affiliation(s)
- Simbarashe G Chidyagwai
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America.
| | - Madhurima Vardhan
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America.
| | - Michael Kaplan
- Duke University School of Medicine, Duke University, Durham, NC, United States of America.
| | - Reid Chamberlain
- Department of Medicine, Duke University, Durham, NC, United States of America; Department of Pediatrics, Duke University, Durham, NC, United States of America.
| | - Piers Barker
- Department of Medicine, Duke University, Durham, NC, United States of America; Department of Pediatrics, Duke University, Durham, NC, United States of America.
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America.
| |
Collapse
|
149
|
Moerman AM, Korteland S, Dilba K, van Gaalen K, Poot DHJ, van Der Lugt A, Verhagen HJM, Wentzel JJ, van Der Steen AFW, Gijsen FJH, Van der Heiden K. The Correlation Between Wall Shear Stress and Plaque Composition in Advanced Human Carotid Atherosclerosis. Front Bioeng Biotechnol 2022; 9:828577. [PMID: 35155418 PMCID: PMC8831262 DOI: 10.3389/fbioe.2021.828577] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The role of wall shear stress (WSS) in atherosclerotic plaque development is evident, but the relation between WSS and plaque composition in advanced atherosclerosis, potentially resulting in plaque destabilization, is a topic of discussion. Using our previously developed image registration pipeline, we investigated the relation between two WSS metrics, time-averaged WSS (TAWSS) and the oscillatory shear index (OSI), and the local histologically determined plaque composition in a set of advanced human carotid plaques. Our dataset of 11 carotid endarterectomy samples yielded 87 histological cross-sections, which yielded 511 radial bins for analysis. Both TAWSS and OSI values were subdivided into patient-specific low, mid, and high tertiles. This cross-sectional study shows that necrotic core (NC) size and macrophage area are significantly larger in areas exposed to high TAWSS or low OSI. Local TAWSS and OSI tertile values were generally inversely related, as described in the literature, but other combinations were also found. Investigating the relation between plaque vulnerability features and different combinations of TAWSS and OSI tertile values revealed a significantly larger cap thickness in areas exposed to both low TAWSS and low OSI. In conclusion, our study confirmed previous findings, correlating high TAWSS to larger macrophage areas and necrotic core sizes. In addition, our study demonstrated new relations, correlating low OSI to larger macrophage areas, and a combination of low TAWSS and low OSI to larger cap thickness.
Collapse
Affiliation(s)
- A. M. Moerman
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
| | - S. Korteland
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
| | - K. Dilba
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
| | - K. van Gaalen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
| | - D. H. J. Poot
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - A. van Der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | | | - J. J. Wentzel
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
| | | | - F. J. H. Gijsen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
- Department of Biomedical Engineering, Delft University of Technology, Delft, Netherlands
| | - K. Van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: K. Van der Heiden,
| |
Collapse
|
150
|
Wong CCY, Javadzadegan A, Ada C, Lau JK, Bhindi R, Fearon WF, Kritharides L, Ng MKC, Yong ASC. Fractional Flow Reserve and Instantaneous Wave-Free Ratio Predict Pathological Wall Shear Stress in Coronary Arteries: Implications for Understanding the Pathophysiological Impact of Functionally Significant Coronary Stenoses. J Am Heart Assoc 2022; 11:e023502. [PMID: 35043698 PMCID: PMC9238496 DOI: 10.1161/jaha.121.023502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background The pathophysiological mechanism behind adverse outcomes associated with ischemia‐inducing epicardial coronary stenoses and microcirculatory dysfunction remains unclear. Wall shear stress (WSS) plays an important role in atherosclerotic plaque progression and vulnerability. We aimed to evaluate the relationship between WSS, functionally significant epicardial coronary stenoses, and microcirculatory dysfunction. Methods and Results Patients undergoing invasive coronary physiology testing were included. Fractional flow reserve, instantaneous wave‐free ratio, and the index of microcirculatory resistance were measured. Quantitative coronary angiography was used to obtain the lesion percentage diameter stenosis. Computational fluid dynamics analysis was performed to calculate WSS parameters. Multiple regression analysis was performed to calculate the standardized regression coefficient (β) for the coronary physiology indices. A total of 107 vessels from 88 patients were included. Fractional flow reserve independently predicted the total area of low WSS (β=−0.44; 95% CI, −0.62 to −0.25; P<0.001) and maximum lesion WSS (β=−0.53; 95% CI, −0.70 to −0.36; P<0.001) after adjusting for percentage diameter stenosis and index of microcirculatory resistance. Similarly, instantaneous wave‐free ratio also independently predicted the total area of low WSS (β=−0.45; 95% CI, −0.62 to −0.28; P<0.001) and maximum lesion WSS (β=−0.58; 95% CI, −0.73 to −0.43; P<0.001). The index of microcirculatory resistance did not predict either low or high WSS. Conclusions Fractional flow reserve and instantaneous wave‐free ratio independently predicted the total burden of low WSS and maximum lesion WSS in coronary arteries. No relationship was found between microcirculatory dysfunction and WSS.
Collapse
Affiliation(s)
| | - Ashkan Javadzadegan
- Department of Cardiology Concord HospitalUniversity of Sydney Australia.,Faculty of Medicine and Health Sciences Macquarie University Sydney Australia
| | - Cuneyt Ada
- Department of Cardiology Concord HospitalUniversity of Sydney Australia
| | - Jerrett K Lau
- Department of Cardiology Royal Adelaide HospitalUniversity of Adelaide Australia
| | - Ravinay Bhindi
- Department of Cardiology Royal North Shore HospitalUniversity of Sydney Australia
| | - William F Fearon
- Division of Cardiovascular Medicine Stanford University Stanford CA
| | | | - Martin K C Ng
- Department of Cardiology Royal Prince Alfred HospitalUniversity of Sydney Australia
| | - Andy S C Yong
- Department of Cardiology Concord HospitalUniversity of Sydney Australia.,Faculty of Medicine and Health Sciences Macquarie University Sydney Australia
| |
Collapse
|