101
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
102
|
Abstract
The immune system is fundamental to tissue homeostasis and is the first line of defense following infection, injury or disease. In the damaged heart, large numbers of immune cells are recruited to the site of injury. These cells play an integral part in both repair by scar formation and the initiation of tissue regeneration. They initially assume inflammatory phenotypes, releasing pro-inflammatory cytokines and removing dead and dying tissue, before entering a reparative stage, replacing dead muscle tissue with a non-contractile scar. In this Review, we present an overview of the innate and adaptive immune response to heart injury. We explore the kinetics of immune cell mobilization following cardiac injury and how the different innate and adaptive immune cells interact with one another and with the damaged tissue. We draw on key findings from regenerative models, providing insight into how to support a robust immune response permissible for cardiac regeneration. Finally, we consider how the latest technological developments can offer opportunities for a deeper and unbiased functional understanding of the immune response to heart disease, highlighting the importance of such knowledge as the basis for promoting regeneration following cardiac injury in human patients.
Collapse
Affiliation(s)
- Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford,Oxford, OxfordshireOX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
| | - Paul R. Riley
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OxfordshireOX1 3PT, UK
| |
Collapse
|
103
|
Vasques‐Nóvoa F, Angélico‐Gonçalves A, Alvarenga JM, Nobrega J, Cerqueira RJ, Mancio J, Leite‐Moreira AF, Roncon‐Albuquerque R. Myocardial oedema: pathophysiological basis and implications for the failing heart. ESC Heart Fail 2022; 9:958-976. [PMID: 35150087 PMCID: PMC8934951 DOI: 10.1002/ehf2.13775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 12/04/2022] Open
Abstract
Myocardial fluid homeostasis relies on a complex interplay between microvascular filtration, interstitial hydration, cardiomyocyte water uptake and lymphatic removal. Dysregulation of one or more of these mechanisms may result in myocardial oedema. Interstitial and intracellular fluid accumulation disrupts myocardial architecture, intercellular communication, and metabolic pathways, decreasing contractility and increasing myocardial stiffness. The widespread use of cardiac magnetic resonance enabled the identification of myocardial oedema as a clinically relevant imaging finding with prognostic implications in several types of heart failure. Furthermore, growing experimental evidence has contributed to a better understanding of the physical and molecular interactions in the microvascular barrier, myocardial interstitium and lymphatics and how they might be disrupted in heart failure. In this review, we summarize current knowledge on the factors controlling myocardial water balance in the healthy and failing heart and pinpoint the new potential therapeutic avenues.
Collapse
Affiliation(s)
- Francisco Vasques‐Nóvoa
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - António Angélico‐Gonçalves
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - José M.G. Alvarenga
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - João Nobrega
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Rui J. Cerqueira
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Jennifer Mancio
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Adelino F. Leite‐Moreira
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Roberto Roncon‐Albuquerque
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| |
Collapse
|
104
|
Olate-Briones A, Escalona E, Salazar C, Herrada MJ, Liu C, Herrada AA, Escobedo N. The meningeal lymphatic vasculature in neuroinflammation. FASEB J 2022; 36:e22276. [PMID: 35344212 DOI: 10.1096/fj.202101574rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The lymphatic vasculature is a unidirectional network of lymphatic endothelial cells, whose main role is to maintain fluid homeostasis along with the absorption of dietary fat in the gastrointestinal organs and management and coordination of immune cell trafficking into lymph nodes during homeostasis and under inflammatory conditions. In homeostatic conditions, immune cells, such as dendritic cells, macrophages, or T cells can enter into the lymphatic vasculature and move easily through the lymph reaching secondary lymph nodes where immune cell activation or peripheral tolerance can be modulated. However, under inflammatory conditions such as pathogen infection, increased permeabilization of lymphatic vessels allows faster immune cell migration into inflamed tissues following a chemokine gradient, facilitating pathogen clearance and the resolution of inflammation. Interestingly, since the re-discovery of lymphatic vasculature in the central nervous system, known as the meningeal lymphatic vasculature, the role of these lymphatics as a key player in several neurological disorders has been described, with emphasis on the neurodegenerative process. Alternatively, less has been discussed about meningeal lymphatics and its role in neuroinflammation. In this review, we discuss current knowledge about the anatomy and function of the meningeal lymphatic vasculature and specifically analyze its contribution to different neuroinflammatory processes, highlighting the potential therapeutic target of meningeal lymphatic vasculature in these pathological conditions.
Collapse
Affiliation(s)
- Alexandra Olate-Briones
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Emilia Escalona
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Celia Salazar
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | | | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andrés A Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
105
|
Yin Z, Zou Y, Wang D, Huang X, Xiong S, Cao L, Zhang Y, Sun Y, Zhang N. Regulation of the Tec family of non-receptor tyrosine kinases in cardiovascular disease. Cell Death Discov 2022; 8:119. [PMID: 35296647 PMCID: PMC8927484 DOI: 10.1038/s41420-022-00927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Tyrosine phosphorylation by protein tyrosine kinases (PTKs) is a type of post-translational modification. Tec kinases, which are a subfamily of non-receptor PTKs, were originally discovered in the hematopoietic system and include five members: Tec, Btk, Itk/Emt/Tsk, Etk/Bmx, and Txk/Rlk. With the progression of modern research, certain members of the Tec family of kinases have been found to be expressed outside the hematopoietic system and are involved in the development and progression of a variety of diseases. The role of Tec family kinases in cardiovascular disease is receiving increasing attention. Tec kinases are involved in the occurrence and progression of ischemic heart disease, atherosclerosis, cardiac dysfunction associated with sepsis, atrial fibrillation, myocardial hypertrophy, coronary atherosclerotic heart disease, and myocardial infarction and post-myocardial. However, no reviews have comprehensively clarified the role of Tec kinases in the cardiovascular system. Therefore, this review summarizes research on the role of Tec kinases in cardiovascular disease, providing new insights into the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Zeyu Yin
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dong Wang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyue Huang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shengjun Xiong
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
106
|
Cardiac lymphatics: state of the art. Curr Opin Hematol 2022; 29:156-165. [PMID: 35220321 DOI: 10.1097/moh.0000000000000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The beneficial role of cardiac lymphatics in health and disease has begun to be recognized, with both preclinical and clinical evidence demonstrating that lymphangiogenesis is activated in cardiovascular diseases. This review aims to summarize our current understanding of the regulation and impact of cardiac lymphatic remodeling during development and in adult life, highlighting emerging concepts regarding distinguishing traits of cardiac lymphatic endothelial cells (LEC). RECENT FINDINGS Genetic lineage-tracing and clonal analyses have revealed that a proportion of cardiac LECs originate from nonvenous sources. Further, these sources may vary between different regions of the heart, and could translate to differences in LEC sensitivity to molecular regulators. Several therapeutic approaches have been applied to investigate how lymphatics contribute to resolution of myocardial edema and inflammation in cardiovascular diseases. From these studies have emerged novel insights, notably concerning the cross-talk between lymphatics and cardiac interstitial cells, especially immune cells. SUMMARY Recent years have witnessed a significant expansion in our knowledge of the molecular characteristics and regulation of cardiac lymphatics. The current body of work is in support of critical contributions of cardiac lymphatics to maintain both fluid and immune homeostasis in the heart.
Collapse
|
107
|
Angiotensin II Induces Cardiac Edema and Hypertrophic Remodeling through Lymphatic-Dependent Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5044046. [PMID: 35222798 PMCID: PMC8881141 DOI: 10.1155/2022/5044046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/17/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Cardiac lymphatic vessel growth (lymphangiogenesis) and integrity play an essential role in maintaining tissue fluid balance. Inhibition of lymphatic lymphangiogenesis is involved in cardiac edema and cardiac remodeling after ischemic injury or pressure overload. However, whether lymphatic vessel integrity is disrupted during angiotensin II- (Ang II-) induced cardiac remodeling remains to be investigated. In this study, cardiac remodeling models were established by Ang II (1000 ng/kg/min) in VEGFR-3 knockdown (Lyve-1Cre VEGFR-3f/−) and wild-type (VEGFR-3f/f) littermates. Our results indicated that Ang II infusion not only induced cardiac lymphangiogenesis and upregulation of VEGF-C and VEGFR-3 expression in the time-dependent manner but also enhanced proteasome activity, MKP5 and VE-cadherin degradation, p38 MAPK activation, and lymphatic vessel hyperpermeability. Moreover, VEGFR-3 knockdown significantly inhibited cardiac lymphangiogenesis in mice, resulting in exacerbation of tissue edema, hypertrophy, fibrosis superoxide production, inflammation, and heart failure (HF). Conversely, administration of epoxomicin (a selective proteasome inhibitor) markedly mitigated Ang II-induced cardiac edema, remodeling, and dysfunction; upregulated MKP5 and VE-cadherin expression; inactivated p38 MAPK; and reduced lymphatic vessel hyperpermeability in WT mice, indicating that inhibition of proteasome activity is required to maintain lymphatic endothelial cell (LEC) integrity. Our results show that both cardiac lymphangiogenesis and lymphatic barrier hyperpermeability are implicated in Ang II-induced adaptive hypertrophic remodeling and dysfunction. Proteasome-mediated hyperpermeability of LEC junctions plays a predominant role in the development of cardiac remodeling. Selective stimulation of lymphangiogenesis or inhibition of proteasome activity may be a potential therapeutic option for treating hypertension-induced cardiac remodeling.
Collapse
|
108
|
Wu W, Chai Q, Zhang Z. Inhibition of SGLT1 Alleviates the Glycemic Variability-Induced Cardiac Fibrosis via Inhibition of Activation of Macrophage and Cardiac Fibroblasts. Mol Cell Biol 2022; 42:e0028221. [PMID: 34842443 PMCID: PMC8852709 DOI: 10.1128/mcb.00282-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/30/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022] Open
Abstract
Glycemic variability has been considered one of the predictors of diabetes complications in patients with diabetes mellitus (DM). In this work, we evaluated whether glycemic variability induces cardiac fibrosis through regulating cardiac fibroblast activation and macrophage polarization. Moreover, we determined whether glucose transporter sodium-glucose cotransporter 1 (SGLT1) plays an important role in this process. Glycemic variability-induced mice were established using DM mice (GVDM mice), and intermittent high-glucose (IHG) treatment was used to simulate glycemic variability in RAW264.7 macrophages and cardiac fibroblasts. The short hairpin RNA for SGLT1 was used to knock down SGLT1. The results showed that glycemic variability aggravated the cardiac fibrosis in GVDM mice. Additionally, glycemic variability promoted the expression of fibrogenic cytokine and the extracellular matrix proteins in left ventricular tissues and cardiac fibroblasts. GVDM mice showed a higher incidence of macrophage infiltration and M1 polarization in left ventricular tissues. Moreover, IHG-promoted RAW264.7 macrophages tended to differentiate to M1 phenotype. SGLT1 knockdown alleviated cardiac fibrosis in GVDM mice and inhibited activations of cardiac fibroblast and macrophage M1 polarization. Our results indicated that glycemic variability aggravates cardiac fibrosis through activating cardiac fibroblast and macrophage M1 polarization, which could be partially inhibited by SGLT1 knockdown.
Collapse
Affiliation(s)
- Weihua Wu
- Department of Endocrinology, Third Affiliated Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Qian Chai
- Department of General Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ziying Zhang
- Department of General Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
109
|
Klaourakis K, Riley PR, Vieira JM. Quantitative Three-Dimensional Analysis of the Lymphatic Vasculature in the Postnatal Mouse Heart. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:171-181. [PMID: 35099736 DOI: 10.1007/978-1-0716-2059-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The development and maturation of the lymphatic vasculature are essential for organ function with disruption leading to severe phenotypes. For example, malfunction of cardiac lymphatics results in myocardial oedema, persistent inflammation and reduced cardiac output. Thus, it is important to study the process of cardiac lymphatic formation and growth from the early stages of fetal development to adulthood. In the murine heart the lymphatics continue to develop and expand postnatally with extensive growth and patterning occurring up to at least 2 weeks after birth. Here, we describe a protocol for whole-mount, multi-view imaging and quantification of lymphatic vessel parameters, including vessel junction number (i.e., branching density), vessel length, and number of vessel end points in the murine postnatal heart. This protocol is based on the use of reliable antibodies against key markers of lymphatic endothelial cells (LECs), specifically the glycoprotein lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), the vascular endothelial growth factor receptor 3 (VEGFR3; also known as Fms-related receptor tyrosine kinase 4, FLT4), the mucin-type protein podoplanin (PDPN), and the co-receptor neuropilin 2 (NRP2). For imaging and quantitative analysis of the sub-epicardial network in neonatal hearts, VEGFR3 was selected given its exclusive expression in the lymphatic endothelium. In addition to LECs, LYVE1 expression was detected in tissue-resident macrophages, PDPN in the epicardium, and NRP2 in the autonomic nervous system of the heart. Overall, we characterized the expression patterns of commonly used lymphatic markers in the context of the neonatal heart and provide an image analysis pipeline that can be adapted to study other organs and systems (e.g., blood vasculature and nerve system).
Collapse
Affiliation(s)
- Konstantinos Klaourakis
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, and British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK
| | - Paul R Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, and British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, and British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| |
Collapse
|
110
|
Nakashima BJ, Hong YK. VE-Cadherin: A Critical Sticking Point for Lymphatic System Maintenance: Role of VE-Cadherin in Lymphatic Maintenance. Circ Res 2022; 130:24-26. [PMID: 34995134 PMCID: PMC8979571 DOI: 10.1161/circresaha.121.320497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Brandon J Nakashima
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Young-Kwon Hong
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
111
|
Harris NR, Nielsen NR, Pawlak JB, Aghajanian A, Rangarajan K, Serafin DS, Farber G, Dy DM, Nelson-Maney NP, Xu W, Ratra D, Hurr SH, Qian L, Scallan JP, Caron KM. VE-Cadherin Is Required for Cardiac Lymphatic Maintenance and Signaling. Circ Res 2022; 130:5-23. [PMID: 34789016 PMCID: PMC8756423 DOI: 10.1161/circresaha.121.318852] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The adherens protein VE-cadherin (vascular endothelial cadherin) has diverse roles in organ-specific lymphatic vessels. However, its physiological role in cardiac lymphatics and its interaction with lymphangiogenic factors has not been fully explored. We sought to determine the spatiotemporal functions of VE-cadherin in cardiac lymphatics and mechanistically elucidate how VE-cadherin loss influences prolymphangiogenic signaling pathways, such as adrenomedullin and VEGF (vascular endothelial growth factor)-C/VEGFR3 (vascular endothelial growth factor receptor 3) signaling. METHODS Cdh5flox/flox;Prox1CreERT2 mice were used to delete VE-cadherin in lymphatic endothelial cells across life stages, including embryonic, postnatal, and adult. Lymphatic architecture and function was characterized using immunostaining and functional lymphangiography. To evaluate the impact of temporal and functional regression of cardiac lymphatics in Cdh5flox/flox;Prox1CreERT2 mice, left anterior descending artery ligation was performed and cardiac function and repair after myocardial infarction was evaluated by echocardiography and histology. Cellular effects of VE-cadherin deletion on lymphatic signaling pathways were assessed by knockdown of VE-cadherin in cultured lymphatic endothelial cells. RESULTS Embryonic deletion of VE-cadherin produced edematous embryos with dilated cardiac lymphatics with significantly altered vessel tip morphology. Postnatal deletion of VE-cadherin caused complete disassembly of cardiac lymphatics. Adult deletion caused a temporal regression of the quiescent epicardial lymphatic network which correlated with significant dermal and cardiac lymphatic dysfunction, as measured by fluorescent and quantum dot lymphangiography, respectively. Surprisingly, despite regression of cardiac lymphatics, Cdh5flox/flox;Prox1CreERT2 mice exhibited preserved cardiac function, both at baseline and following myocardial infarction, compared with control mice. Mechanistically, loss of VE-cadherin leads to aberrant cellular internalization of VEGFR3, precluding the ability of VEGFR3 to be either canonically activated by VEGF-C or noncanonically transactivated by adrenomedullin signaling, impairing downstream processes such as cellular proliferation. CONCLUSIONS VE-cadherin is an essential scaffolding protein to maintain prolymphangiogenic signaling nodes at the plasma membrane, which are required for the development and adult maintenance of cardiac lymphatics, but not for cardiac function basally or after injury.
Collapse
Affiliation(s)
- Natalie R. Harris
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Natalie R. Nielsen
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - John B. Pawlak
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Amir Aghajanian
- Department of Medicine Division of Cardiology, University
of North Carolina at Chapel Hill; 160 Dental Circle, Chapel Hill, North Carolina,
USA 27599
| | - Krsna Rangarajan
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - D. Stephen Serafin
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Gregory Farber
- Department of Pathology and Laboratory Medicine, University
of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina,
USA 27599,McAllister Heart Institute, University of North Carolina,
Chapel Hill, North Carolina, USA 27599
| | - Danielle M. Dy
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Nathan P. Nelson-Maney
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Wenjing Xu
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Disha Ratra
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Sophia H. Hurr
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University
of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina,
USA 27599
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology,
University of South Florida, Tampa, Florida, USA 33612
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| |
Collapse
|
112
|
Fiedler LR, Riley PR, Patient R. Three-Dimensional Visualization of Blood and Lymphatic Vessels in the Adult Zebrafish Heart by Chemical Clearing. Methods Mol Biol 2022; 2475:313-323. [PMID: 35451768 DOI: 10.1007/978-1-0716-2217-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Unlike humans, the zebrafish can repair and regenerate its heart following injury. Understanding the molecular and physiological mechanisms of heart regeneration is critical in developing pro-regenerative strategies for clinical application. The cardiac lymphatic and non-lymphatic vasculature both respond to injury in zebrafish and are instrumental in driving optimal repair and regeneration. However, progress has been impeded by an inability to obtain high resolution images to clearly visualize and thus to fully understand the vascular responses in the injured heart and how this might intersect with successful repair and regeneration in humans.In this chapter, we describe a chemical clearing approach using Clear Unobstructed Brain/Body Imaging Cocktails and Computational analysis (CUBIC), for obtaining high resolution images of the adult zebrafish heart. This approach permits three-dimensional reconstruction of cardiac vasculature throughout the entire organ. By applying CUBIC methodology to tissues from transgenic zebrafish reporter lines or in conjunction with immunofluorescent staining, optical slices can be be generated, negating the need for standard tissue processing and sectioning procedures and yielding higher resolution images. The resultant images enable a holistic view of the coronary blood and lymphatic vasculature during heart injury and regeneration. Herein, we describe our protocol for visualizing vessels in the adult zebrafish heart using these approaches.
Collapse
Affiliation(s)
- Lorna R Fiedler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire, UK.
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | - Roger Patient
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
113
|
Machino T, Sato A, Murakoshi N, Ieda M. Phase I investigator-initiated study of the safety of MTC001 in patients with chronic ischemic heart failure. Medicine (Baltimore) 2021; 100:e28372. [PMID: 34941159 PMCID: PMC8702272 DOI: 10.1097/md.0000000000028372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND : Heart failure (HF) is a global pandemic most commonly caused by coronary artery disease. Despite coronary revascularization, the infarcted myocardium can develop into an irreversible scar toward chronic ischemic HF. This is due to the limited regenerative capacity of the adult human heart. Recently, the vascular cell adhesion molecule 1 positive cardiac fibroblast (VCF) has been shown to directly improve cardiac contractility in addition to promoting myocardial growth in preclinical studies. This clinical trial aims to explore the safety and, in part, the efficacy of autologous VCF therapy for chronic ischemic HF. METHODS : This first-in-human trial is an open-label, single-arm, phase 1 study conducted at a single center. This study will include 6 patients with chronic ischemic HF in stage C and NYHA class II or III despite receiving the standard of care, including coronary revascularization. Participants will undergo cardiac biopsy to manufacture autologous VCFs expressing CD90 and CD106. Under electro-anatomical mapping guidance, participants will receive a transendocardial injection of VCF in a modified 3 + 3 design. The first 3 patients will receive a standard dose (2 × 107 cells) of VCF with a 4-week interval for safety assessment before subsequent enrollment. In the absence of safety issues, the final 3 patients will receive the standard dose of VCF without a 4-week interval. In the presence of safety issues, the final 3 patients will receive a reduced dose (1.5 × 107 cells) of VCF with the 4-week interval. DISCUSSION This is the first clinical study of cardiac regeneration using VCFs for the treatment of chronic ischemic HF. The study results will contribute to the development of a minimally invasive cell therapy for patients with HF failed by the standard of care. TRIAL REGISTRATION This study was registered with the Japan Registry of Clinical Trials (jRCT2033210078).
Collapse
Affiliation(s)
- Takeshi Machino
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Sato
- Department of Cardiology, University of Yamanashi, Yamanashi, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
114
|
Abstract
Cardiac lymphangiogenesis plays an important physiological role in the regulation of interstitial fluid homeostasis, inflammatory, and immune responses. Impaired or excessive cardiac lymphatic remodeling and insufficient lymph drainage have been implicated in several cardiovascular diseases including atherosclerosis and myocardial infarction (MI). Although the molecular mechanisms underlying the regulation of functional lymphatics are not fully understood, the interplay between lymphangiogenesis and immune regulation has recently been explored in relation to the initiation and development of these diseases. In this field, experimental therapeutic strategies targeting lymphangiogenesis have shown promise by reducing myocardial inflammation, edema and fibrosis, and improving cardiac function. On the other hand, however, whether lymphangiogenesis is beneficial or detrimental to cardiac transplant survival remains controversial. In the light of recent evidence, cardiac lymphangiogenesis, a thriving and challenging field has been summarized and discussed, which may improve our knowledge in the pathogenesis of cardiovascular diseases and transplant biology.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita, 870-1192, Japan.
| |
Collapse
|
115
|
Isolating and characterizing lymphatic endothelial progenitor cells for potential therapeutic lymphangiogenic applications. Acta Biomater 2021; 135:191-202. [PMID: 34384911 DOI: 10.1016/j.actbio.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Lymphatic dysfunction is associated with the progression of several vascular disorders, though currently, there are limited strategies to promote new lymphatic vasculature (i.e., lymphangiogenesis) to restore lost lymphatic function. One promising approach to stimulate lymphangiogenesis involves delivering endothelial progenitor cells (EPCs), which are naturally involved in de novo blood vessel formation and have recently been identified to include a lymphatic subpopulation. However, the contribution of lymphatic EPCs in lymphangiogenesis is not clear and challenges with maintaining the activity of transplanted EPCs remain. Thus, the objective of this study was to isolate lymphatic EPCs from human umbilical cord blood and characterize their role in the initial stages of blood or lymphatic vasculature formation. Furthermore, this study also tested the applicability of alginate hydrogels to deliver lymphatic EPCs for a possible therapeutic application. We postulated and confirmed that blood and lymphatic EPC colonies could be isolated from human umbilical cord blood. Additionally, EPC populations responded to either angiogenic or lymphangiogenic growth factors and could stimulate their respective mature endothelial cells in vasculature models in vitro. Finally, lymphatic EPCs maintained their ability to promote lymphatic sprouts after prolonged interactions with the alginate hydrogel microenvironment. These results suggest EPCs have both a blood and a lymphatic population that have specific roles in promoting revascularization and highlight the potential of alginate hydrogels for the delivery of lymphatic EPCs. STATEMENT OF SIGNIFICANCE: Despite the potential therapeutic benefit of promoting lymphatic vasculature, lymphangiogenesis remains understudied. One appealing strategy for promoting lymphangiogenesis involves delivering lymphatic endothelial progenitor cells (EPCs), which are a subpopulation of EPCs involved in de novo vessel formation. Here, we investigate the role of isolated blood and lymphatic EPC subpopulations in promoting the early stages of vascularization and the utility of alginate hydrogels to deliver lymphatic EPCs. We determined that EPCs had two populations that expressed either blood or lymphatic markers, could stimulate their respective mature vasculature in tissue constructs and that alginate hydrogels maintained the therapeutic potential of lymphatic EPCs. We anticipate this work could support promising biomaterial applications of EPCs to promote revascularization, which could have many therapeutic applications.
Collapse
|
116
|
Abstract
Cardiac lymphatics have emerged as a therapeutic target in cardiovascular diseases to limit myocardial edema and inflammation, notably after myocardial infarction (MI). While most experimental therapeutic approaches have focused on vascular endothelial growth factor C (VEGF-C) delivery, it remains uncertain to what degree the beneficial cardiac effects are related to lymphatic expansion in the heart. In this issue of the JCI, Keller, Lim, et al. reexamined the acute functional impact of endogenous cardiac lymphangiogenesis in the infarct zone after MI in mice. Their data, obtained by elegant comparisons of several complementary genetic mouse models, indicate that infarct expansion and left ventricular dilation and function after MI are unaffected by infarct lymphangiogenesis. This Commentary places the results into the context of previous findings. We believe these data will help further advance the research field of cardiac lymphatics to guide better clinical translation and benefit patients with ischemic heart disease.
Collapse
Affiliation(s)
- Ebba Bråkenhielm
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - Yuguo Chen
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
117
|
Ravaud C, Ved N, Jackson DG, Vieira JM, Riley PR. Lymphatic Clearance of Immune Cells in Cardiovascular Disease. Cells 2021; 10:cells10102594. [PMID: 34685572 PMCID: PMC8533855 DOI: 10.3390/cells10102594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Recent advances in our understanding of the lymphatic system, its function, development, and role in pathophysiology have changed our views on its importance. Historically thought to be solely involved in the transport of tissue fluid, lipids, and immune cells, the lymphatic system displays great heterogeneity and plasticity and is actively involved in immune cell regulation. Interference in any of these processes can be deleterious, both at the developmental and adult level. Preclinical studies into the cardiac lymphatic system have shown that invoking lymphangiogenesis and enhancing immune cell trafficking in ischaemic hearts can reduce myocardial oedema, reduce inflammation, and improve cardiac outcome. Understanding how immune cells and the lymphatic endothelium interact is also vital to understanding how the lymphatic vascular network can be manipulated to improve immune cell clearance. In this Review, we examine the different types of immune cells involved in fibrotic repair following myocardial infarction. We also discuss the development and function of the cardiac lymphatic vasculature and how some immune cells interact with the lymphatic endothelium in the heart. Finally, we establish how promoting lymphangiogenesis is now a prime therapeutic target for reducing immune cell persistence, inflammation, and oedema to restore heart function in ischaemic heart disease.
Collapse
Affiliation(s)
- Christophe Ravaud
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
| | - Nikita Ved
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
| | - David G. Jackson
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK;
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
| | - Paul R. Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
- Correspondence:
| |
Collapse
|
118
|
Rockson SG. Comorbidity and Lymphatic Disease: The Lymphatic Continuum Re-Examined. Lymphat Res Biol 2021; 19:17-19. [PMID: 33625889 DOI: 10.1089/lrb.2021.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has now been ∼20 years since the original Lymphatic Continuum conference was convened, and this continuum has transitioned from a compelling concept to a reality. The explosive growth in our comprehension of lymphatic genetics, development, and function has expanded and modified our traditional views regarding what is, and is not, lymphatic disease. Groundbreaking investigations over the past decade have now defined a large and growing list of pathological conditions in which morphological or function lymphatic alterations can be identified. This list includes atherosclerosis and dyslipidemia, hypertension and other cardiovascular diseases, inflammation and inflammatory bowel disease, obesity, narrow angle glaucoma, and, most recently and compellingly, neurodegenerative disease. The sometimes overlapping but largely disparate nature of these various aforementioned disease categories suggests that the presence, or absence, of structural or functional lymphatic derangements may represent a previously unrecognized unifying influence in the maintenance of health and the promotion of disease. Future investigation of lymphatic mechanisms in disease will likely continue to elucidate the influences of lymphatic dysfunction, perhaps subtle, that can invest other, seemingly unrelated, diseases. In future, such discoveries will provide mechanistic insights and may potentiate the development of a new lymphatic-based approach to human disease diagnosis and therapeutics.
Collapse
Affiliation(s)
- Stanley G Rockson
- Department of Cardiovascular Medicine, Stanford Center for Lymphatic and Venous Disorders, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
119
|
Korpela H, Järveläinen N, Siimes S, Lampela J, Airaksinen J, Valli K, Turunen M, Pajula J, Nurro J, Ylä-Herttuala S. Gene therapy for ischaemic heart disease and heart failure. J Intern Med 2021; 290:567-582. [PMID: 34033164 DOI: 10.1111/joim.13308] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
Gene therapy has been expected to become a novel treatment method since the structure of DNA was discovered in 1953. The morbidity from cardiovascular diseases remains remarkable despite the improvement of percutaneous interventions and pharmacological treatment, underlining the need for novel therapeutics. Gene therapy-mediated therapeutic angiogenesis could help those who have not gained sufficient symptom relief with traditional treatment methods. Especially patients with severe coronary artery disease and heart failure could benefit from gene therapy. Some clinical trials have reported improved myocardial perfusion and symptom relief in CAD patients, but few trials have come up with disappointing negative results. Translating preclinical success into clinical applications has encountered difficulties in successful transduction, study design, endpoint selection, and patient selection and recruitment. However, promising new methods for transducing the cells, such as retrograde delivery and cardiac-specific AAV vectors, hold great promise for myocardial gene therapy. This review introduces gene therapy for ischaemic heart disease and heart failure and discusses the current status and future developments in this field.
Collapse
Affiliation(s)
- H Korpela
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N Järveläinen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Siimes
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Lampela
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Airaksinen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - K Valli
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Turunen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Pajula
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Nurro
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Ylä-Herttuala
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
120
|
Rame JE, Müller J. Myocardial Edema Revisited in a New Paradigm of Cardiac Electrical Microcurrent Application in Heart Failure. Bioelectricity 2021; 3:171-175. [PMID: 34729463 PMCID: PMC8558069 DOI: 10.1089/bioe.2021.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Undisturbed bioelectricity is a prerequisite for normal organ function. This is especially true for organs with high electrical activity such as the heart and the nervous system. Under clinical conditions, however, this can hardly be determined in patients with disturbed organ function and is therefore largely ignored. Here, based on clinical data, we will discuss whether the direct application of an external electric current (in the physiological μA range) together with an electrical field to hearts with impaired pump function can explain the functional improvement of the hearts by edema reduction triggered by electro-osmosis.
Collapse
Affiliation(s)
- Jesus Eduardo Rame
- Department of Medicine, Jefferson Heart Institute, Philadelphia, Pennsylvania, USA
| | - Johannes Müller
- Department of Bioelectricity and Medical Research, Berlin Heals, Berlin, Germany
| |
Collapse
|
121
|
Bizou M, Itier R, Majdoubi M, Abbadi D, Pichery E, Dutaur M, Marsal D, Calise D, Garmy-Susini B, Douin-Echinard V, Roncalli J, Parini A, Pizzinat N. Cardiac macrophage subsets differentially regulate lymphatic network remodeling during pressure overload. Sci Rep 2021; 11:16801. [PMID: 34413352 PMCID: PMC8376913 DOI: 10.1038/s41598-021-95723-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022] Open
Abstract
The lymphatic network of mammalian heart is an important regulator of interstitial fluid compartment and immune cell trafficking. We observed a remodeling of the cardiac lymphatic vessels and a reduced lymphatic efficiency during heart hypertrophy and failure induced by transverse aortic constriction. The lymphatic endothelial cell number of the failing hearts was positively correlated with cardiac function and with a subset of cardiac macrophages. This macrophage population distinguished by LYVE-1 (Lymphatic vessel endothelial hyaluronic acid receptor-1) and by resident macrophage gene expression signature, appeared not replenished by CCR2 mediated monocyte infiltration during pressure overload. Isolation of macrophage subpopulations showed that the LYVE-1 positive subset sustained in vitro and in vivo lymphangiogenesis through the expression of pro-lymphangiogenic factors. In contrast, the LYVE-1 negative macrophage subset strongly expressed MMP12 and decreased the endothelial LYVE-1 receptors in lymphatic endothelial cells, a feature of cardiac lymphatic remodeling in failing hearts. The treatment of mice with a CCR2 antagonist during pressure overload modified the proportion of macrophage subsets within the pathological heart and preserved lymphatic network from remodeling. This study reports unknown and differential functions of macrophage subpopulations in the regulation of cardiac lymphatic during pathological hypertrophy and may constitute a key mechanism underlying the progression of heart failure.
Collapse
Affiliation(s)
- Mathilde Bizou
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Romain Itier
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- Department of Cardiology, INSERM U1048-I2MC, CARDIOMET, University Hospital of Toulouse, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Mina Majdoubi
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Dounia Abbadi
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Estelle Pichery
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Marianne Dutaur
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Dimitri Marsal
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | | | - Barbara Garmy-Susini
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Victorine Douin-Echinard
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Jérome Roncalli
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- Department of Cardiology, INSERM U1048-I2MC, CARDIOMET, University Hospital of Toulouse, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Angelo Parini
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France
| | - Nathalie Pizzinat
- I2MC, Toulouse University, Inserm, Université Paul Sabatier, Toulouse, France.
- INSERM UMR-1048, Institut de Médecine Moléculaire de Rangueil, Bât L3, CHU Rangueil 1, Av. J. Poulhès, 31403, Toulouse Cedex 4, France.
| |
Collapse
|
122
|
Keller Iv TCS, Lim L, Shewale SV, McDaid K, Marti-Pamies I, Tang AT, Wittig C, Guerrero AA, Sterling S, Leu NA, Scherrer-Crosbie M, Gimotty PA, Kahn ML. Genetic blockade of lymphangiogenesis does not impair cardiac function after myocardial infarction. J Clin Invest 2021; 131:e147070. [PMID: 34403369 DOI: 10.1172/jci147070] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
In recent decades, treatments for myocardial infarction (MI), such as stem and progenitor cell therapy, have attracted considerable scientific and clinical attention but failed to improve patient outcomes. These efforts indicate that more rigorous mechanistic and functional testing of potential MI therapies is required. Recent studies have suggested that augmenting post-MI lymphatic growth via VEGF-C administration improves cardiac function. However, the mechanisms underlying this proposed therapeutic approach remain vague and untested. To more rigorously test the role of lymphatic vessel growth after MI, we examined the post-MI cardiac function of mice in which lymphangiogenesis had been blocked genetically by pan-endothelial or lymphatic endothelial loss of the lymphangiogenic receptor VEGFR3 or global loss of the VEGF-C and VEGF-D ligands. The results obtained using all three genetic approaches were highly concordant and demonstrated that loss of lymphatic vessel growth did not impair left ventricular ejection fraction two weeks after MI in mice. We observed a trend toward excess fluid in the infarcted region of the left ventricle, but immune cell infiltration and clearance were unchanged with loss of expanded lymphatics. These studies refute the hypothesis that lymphangiogenesis contributes significantly to cardiac function after MI, and suggest that any effect of exogenous VEGF-C is likely to be mediated by non-lymphangiogenic mechanisms.
Collapse
Affiliation(s)
- T C Stevenson Keller Iv
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Lillian Lim
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Swapnil V Shewale
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Kendra McDaid
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Ingrid Marti-Pamies
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Carl Wittig
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Andrea A Guerrero
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Stephanie Sterling
- Department of Biomedical Sciences and Mouse Transgenic Core, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - N Adrian Leu
- Department of Biomedical Sciences and Mouse Transgenic Core, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Marielle Scherrer-Crosbie
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
123
|
Johnson LA, Jackson DG. Hyaluronan and Its Receptors: Key Mediators of Immune Cell Entry and Trafficking in the Lymphatic System. Cells 2021; 10:cells10082061. [PMID: 34440831 PMCID: PMC8393520 DOI: 10.3390/cells10082061] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
Entry to the afferent lymphatics marks the first committed step for immune cell migration from tissues to draining lymph nodes both for the generation of immune responses and for timely resolution of tissue inflammation. This critical process occurs primarily at specialised discontinuous junctions in initial lymphatic capillaries, directed by chemokines released from lymphatic endothelium and orchestrated by adhesion between lymphatic receptors and their immune cell ligands. Prominent amongst the latter is the large glycosaminoglycan hyaluronan (HA) that can form a bulky glycocalyx on the surface of certain tissue-migrating leucocytes and whose engagement with its key lymphatic receptor LYVE-1 mediates docking and entry of dendritic cells to afferent lymphatics. Here we outline the latest insights into the molecular mechanisms by which the HA glycocalyx together with LYVE-1 and the related leucocyte receptor CD44 co-operate in immune cell entry, and how the process is facilitated by the unusual character of LYVE-1 • HA-binding interactions. In addition, we describe how pro-inflammatory breakdown products of HA may also contribute to lymphatic entry by transducing signals through LYVE-1 for lymphangiogenesis and increased junctional permeability. Lastly, we outline some future perspectives and highlight the LYVE-1 • HA axis as a potential target for immunotherapy.
Collapse
|
124
|
Fudim M, Salah HM, Sathananthan J, Bernier M, Pabon-Ramos W, Schwartz RS, Rodés-Cabau J, Côté F, Khalifa A, Virani SA, Patel MR. Lymphatic Dysregulation in Patients With Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol 2021; 78:66-76. [PMID: 34210416 DOI: 10.1016/j.jacc.2021.04.090] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the volume homeostasis of the human body. The complex anatomy and physiology paired with a lack of simple diagnostic tools to study the lymphatic system have led to an underappreciation of the contribution of the lymphatic system to acute and chronic heart failure (HF). Herein, we discuss the physiological role of the lymphatic system in volume management and the evidence demonstrating the dysregulation of the lymphatic system in HF. Further, we discuss the opportunity to target the lymphatic system in the management of HF and different potential approaches to accessing the lymphatic system.
Collapse
Affiliation(s)
- Marat Fudim
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA; Duke Clinical Research Institute, Durham, North Carolina, USA.
| | - Husam M Salah
- Department of Medicine, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Janarthanan Sathananthan
- Centre for Cardiovascular Innovation and Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathieu Bernier
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - Waleska Pabon-Ramos
- Department of Radiology, Division of Interventional Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Josep Rodés-Cabau
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada; Hospital Clinic of Barcelona, Barcelona, Spain
| | - François Côté
- Interventional Radiology Department, CHU de Quebec, Laval University, Quebec City, Quebec, Canada
| | - Abubaker Khalifa
- Department of Medicine, Joseph Brant Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Sean A Virani
- Centre for Cardiovascular Innovation and Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manesh R Patel
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA; Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
125
|
Tessier N, Moawad F, Amri N, Brambilla D, Martel C. Focus on the Lymphatic Route to Optimize Drug Delivery in Cardiovascular Medicine. Pharmaceutics 2021; 13:1200. [PMID: 34452161 PMCID: PMC8398144 DOI: 10.3390/pharmaceutics13081200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
While oral agents have been the gold standard for cardiovascular disease therapy, the new generation of treatments is switching to other administration options that offer reduced dosing frequency and more efficacy. The lymphatic network is a unidirectional and low-pressure vascular system that is responsible for the absorption of interstitial fluids, molecules, and cells from the peripheral tissue, including the skin and the intestines. Targeting the lymphatic route for drug delivery employing traditional or new technologies and drug formulations is exponentially gaining attention in the quest to avoid the hepatic first-pass effect. The present review will give an overview of the current knowledge on the involvement of the lymphatic vessels in drug delivery in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| | - Fatma Moawad
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nada Amri
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| |
Collapse
|
126
|
Hemalatha T, Aarthy M, Pandurangan S, Kamini NR, Ayyadurai N. A deep dive into the darning effects of biomaterials in infarct myocardium: current advances and future perspectives. Heart Fail Rev 2021; 27:1443-1467. [PMID: 34342769 DOI: 10.1007/s10741-021-10144-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) occurs due to the obstruction of coronary arteries, a major crux that restricts blood flow and thereby oxygen to the distal part of the myocardium, leading to loss of cardiomyocytes and eventually, if left untreated, leads to heart failure. MI, a potent cardiovascular disorder, requires intense therapeutic interventions and thereby presents towering challenges. Despite the concerted efforts, the treatment strategies for MI are still demanding, which has paved the way for the genesis of biomaterial applications. Biomaterials exhibit immense potentials for cardiac repair and regeneration, wherein they act as extracellular matrix replacing scaffolds or as delivery vehicles for stem cells, protein, plasmids, etc. This review concentrates on natural, synthetic, and hybrid biomaterials; their function; and interaction with the body, mechanisms of repair by which they are able to improve cardiac function in a MI milieu. We also provide focus on future perspectives that need attention. The cognizance provided by the research results certainly indicates that biomaterials could revolutionize the treatment paradigms for MI with a positive impact on clinical translation.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India.
| |
Collapse
|
127
|
Stritt S, Koltowska K, Mäkinen T. Homeostatic maintenance of the lymphatic vasculature. Trends Mol Med 2021; 27:955-970. [PMID: 34332911 DOI: 10.1016/j.molmed.2021.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
The lymphatic vasculature is emerging as a multifaceted regulator of tissue homeostasis and regeneration. Lymphatic vessels drain fluid, macromolecules, and immune cells from peripheral tissues to lymph nodes (LNs) and the systemic circulation. Their recently uncovered functions extend beyond drainage and include direct modulation of adaptive immunity and paracrine regulation of organ growth. The developmental mechanisms controlling lymphatic vessel growth have been described with increasing precision. It is less clear how the essential functional features of lymphatic vessels are established and maintained. We discuss the mechanisms that maintain lymphatic vessel integrity in adult tissues and control vessel repair and regeneration. This knowledge is crucial for understanding the pathological vessel changes that contribute to disease, and provides an opportunity for therapy development.
Collapse
Affiliation(s)
- Simon Stritt
- Uppsala University, Department of Immunology, Genetics, and Pathology, 751 85 Uppsala, Sweden
| | - Katarzyna Koltowska
- Uppsala University, Department of Immunology, Genetics, and Pathology, 751 85 Uppsala, Sweden
| | - Taija Mäkinen
- Uppsala University, Department of Immunology, Genetics, and Pathology, 751 85 Uppsala, Sweden.
| |
Collapse
|
128
|
Regulation of VEGFR Signalling in Lymphatic Vascular Development and Disease: An Update. Int J Mol Sci 2021; 22:ijms22147760. [PMID: 34299378 PMCID: PMC8306507 DOI: 10.3390/ijms22147760] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The importance of lymphatic vessels in a myriad of human diseases is rapidly gaining recognition; lymphatic vessel dysfunction is a feature of disorders including congenital lymphatic anomalies, primary lymphoedema and obesity, while improved lymphatic vessel function increases the efficacy of immunotherapy for cancer and neurological disease and promotes cardiac repair following myocardial infarction. Understanding how the growth and function of lymphatic vessels is precisely regulated therefore stands to inform the development of novel therapeutics applicable to a wide range of human diseases. Lymphatic vascular development is initiated during embryogenesis following establishment of the major blood vessels and the onset of blood flow. Lymphatic endothelial progenitor cells arise from a combination of venous and non-venous sources to generate the initial lymphatic vascular structures in the vertebrate embryo, which are then further ramified and remodelled to elaborate an extensive lymphatic vascular network. Signalling mediated via vascular endothelial growth factor (VEGF) family members and vascular endothelial growth factor receptor (VEGFR) tyrosine kinases is crucial for development of both the blood and lymphatic vascular networks, though distinct components are utilised to different degrees in each vascular compartment. Although much is known about the regulation of VEGFA/VEGFR2 signalling in the blood vasculature, less is understood regarding the mechanisms by which VEGFC/VEGFD/VEGFR3 signalling is regulated during lymphatic vascular development. This review will focus on recent advances in our understanding of the cellular and molecular mechanisms regulating VEGFA-, VEGFC- and VEGFD-mediated signalling via VEGFRs which are important for driving the construction of lymphatic vessels during development and disease.
Collapse
|
129
|
Targeting local lymphatics to ameliorate heterotopic ossification via FGFR3-BMPR1a pathway. Nat Commun 2021; 12:4391. [PMID: 34282140 PMCID: PMC8289847 DOI: 10.1038/s41467-021-24643-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Acquired heterotopic ossification (HO) is the extraskeletal bone formation after trauma. Various mesenchymal progenitors are reported to participate in ectopic bone formation. Here we induce acquired HO in mice by Achilles tenotomy and observe that conditional knockout (cKO) of fibroblast growth factor receptor 3 (FGFR3) in Col2+ cells promote acquired HO development. Lineage tracing studies reveal that Col2+ cells adopt fate of lymphatic endothelial cells (LECs) instead of chondrocytes or osteoblasts during HO development. FGFR3 cKO in Prox1+ LECs causes even more aggravated HO formation. We further demonstrate that FGFR3 deficiency in LECs leads to decreased local lymphatic formation in a BMPR1a-pSmad1/5-dependent manner, which exacerbates inflammatory levels in the repaired tendon. Local administration of FGF9 in Matrigel inhibits heterotopic bone formation, which is dependent on FGFR3 expression in LECs. Here we uncover Col2+ lineage cells as an origin of lymphatic endothelium, which regulates local inflammatory microenvironment after trauma and thus influences HO development via FGFR3-BMPR1a pathway. Activation of FGFR3 in LECs may be a therapeutic strategy to inhibit acquired HO formation via increasing local lymphangiogenesis. Different types of mesenchymal progenitors participate in ectopic bone formation. Here, the authors show Col2+ lineage cells adopt a lymphatic endothelium cell fate, which regulates local inflammatory microenvironment after trauma, thus influencing heterotopic ossification (HO) development via a FGFR3-BMPR1a pathway.
Collapse
|
130
|
Passaro F, Tocchetti CG, Spinetti G, Paudice F, Ambrosone L, Costagliola C, Cacciatore F, Abete P, Testa G. Targeting fibrosis in the failing heart with nanoparticles. Adv Drug Deliv Rev 2021; 174:461-481. [PMID: 33984409 DOI: 10.1016/j.addr.2021.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a clinical syndrome characterized by typical symptoms and signs caused by a structural and/or functional cardiac abnormality, resulting in a reduced cardiac output and/or elevated intracardiac pressures at rest or during stress. Due to increasing incidence, prevalence and, most importantly mortality, HF is a healthcare burden worldwide, despite the improvement of treatment options and effectiveness. Acute and chronic cardiac injuries trigger the activation of neurohormonal, inflammatory, and mechanical pathways ultimately leading to fibrosis, which plays a key role in the development of cardiac dysfunction and HF. The use of nanoparticles for targeted drug delivery would greatly improve therapeutic options to identify, prevent and treat cardiac fibrosis. In this review we will highlight the mechanisms of cardiac fibrosis development to depict the pathophysiological features for passive and active targeting of acute and chronic cardiac fibrosis with nanoparticles. Then we will discuss how cardiomyocytes, immune and inflammatory cells, fibroblasts and extracellular matrix can be targeted with nanoparticles to prevent or restore cardiac dysfunction and to improve the molecular imaging of cardiac fibrosis.
Collapse
|
131
|
Zhang C, Li N, Suo M, Zhang C, Liu J, Liu L, Qi Y, Zheng X, Xie L, Hu Y, Bu P. Sirtuin 3 deficiency aggravates angiotensin II-induced hypertensive cardiac injury by the impairment of lymphangiogenesis. J Cell Mol Med 2021; 25:7760-7771. [PMID: 34180125 PMCID: PMC8358873 DOI: 10.1111/jcmm.16661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Lymphangiogenesis is possibly capable of attenuating hypertension‐induced cardiac injury. Sirtuin 3 (SIRT3) is an effective mitochondrial deacetylase that has the potential to modulate this process; however, its role in hypertension‐induced cardiac lymphangiogenesis to date has not been investigated. Our experiments were performed on 8‐week‐old wild‐type (WT), SIRT3 knockout (SIRT3‐KO) and SIRT3 overexpression (SIRT3‐LV) mice infused with angiotensin II (Ang II) (1000 ng/kg per minute) or saline for 28 days. After Ang II infusion, SIRT3‐KO mice developed a more severe cardiac remodelling, less lymphatic capillaries and lower expression of lymphatic marker when compared to wild‐type mice. In comparison, SIRT3‐LV restored lymphangiogenesis and attenuated cardiac injury. Furthermore, lymphatic endothelial cells (LECs) exposed to Ang II in vitro exhibited decreased migration and proliferation. Silencing SIRT3 induced functional decrease in LECs, while SIRT3 overexpression LECs facilitated. Moreover, SIRT3 may up‐regulate lymphangiogenesis by affecting vascular endothelial growth factor receptor 3 (VEGFR3) and ERK pathway. These findings suggest that SIRT3 could promote lymphangiogenesis and attenuate hypertensive cardiac injury.
Collapse
Affiliation(s)
- Chen Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Mengying Suo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Chunmei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jing Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Lingxin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Yan Qi
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xuehui Zheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Lin Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Hu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
132
|
Ji N, Qi Z, Wang Y, Yang X, Yan Z, Li M, Ge Q, Zhang J. Pyroptosis: A New Regulating Mechanism in Cardiovascular Disease. J Inflamm Res 2021; 14:2647-2666. [PMID: 34188515 PMCID: PMC8235951 DOI: 10.2147/jir.s308177] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Pyroptosis is a kind of pro-inflammatory cell death. Compared with autophagy and apoptosis, pyroptosis has unique characteristics in morphology and mechanism. Specifically, pyroptosis is a kind of cell lysis mediated by the Gasdermin family, releases inflammatory cytokines IL-1β and IL-18. There are three different forms of mechanism, which are caspase-1-mediated, caspase-4/5/11-mediated and caspase-3-mediated. A large number of studies have proved that pyroptosis is closely related to cardiovascular disease. This paper reviewed the recent progress in the related research on pyroptosis and myocardial infarction, ischemia-reperfusion, atherosclerosis, diabetic cardiomyopathy, arrhythmia, heart failure hypertension and Kawasaki disease. Therefore, we believe that pyroptosis may be a new therapeutic target in the cardiovascular field.
Collapse
Affiliation(s)
- Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Zhongwen Qi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Qihui Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| |
Collapse
|
133
|
Davidson SM, Padró T, Bollini S, Vilahur G, Duncker DJ, Evans PC, Guzik T, Hoefer IE, Waltenberger J, Wojta J, Weber C. Progress in cardiac research - from rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovasc Res 2021; 117:2161-2174. [PMID: 34114614 PMCID: PMC8344830 DOI: 10.1093/cvr/cvab200] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
We review some of the important discoveries and advances made in basic and translational cardiac research in 2020. For example, in the field of myocardial infarction (MI), new aspects of autophagy and the importance of eosinophils were described. Novel approaches such as a glycocalyx mimetic were used to improve cardiac recovery following MI. The strategy of 3D bio-printing was shown to allow the fabrication of a chambered cardiac organoid. The benefit of combining tissue engineering with paracrine therapy to heal injured myocardium is discussed. We highlight the importance of cell-to cell communication, in particular the relevance of extracellular vesicles such as exosomes, which transport proteins, lipids, non-coding RNAs and mRNAs and actively contribute to angiogenesis and myocardial regeneration. In this rapidly growing field, new strategies were developed to stimulate the release of reparative exosomes in ischaemic myocardium. Single-cell sequencing technology is causing a revolution in the study of transcriptional expression at cellular resolution, revealing unanticipated heterogeneity within cardiomyocytes, pericytes and fibroblasts, and revealing a unique subpopulation of cardiac fibroblasts. Several studies demonstrated that exosome- and non-coding RNA-mediated approaches can enhance human induced pluripotent stem cell (iPSC) viability and differentiation into mature cardiomyocytes. Important details of the mitochondrial Ca2+ uniporter and its relevance were elucidated. Novel aspects of cancer therapeutic-induced cardiotoxicity were described, such as the novel circular RNA circITCH, which may lead to novel treatments. Finally, we provide some insights into the effects of SARS-CoV-2 on the heart.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London WC1E 6HX, United Kingdom
| | - Teresa Padró
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute, University of Sheffield, UK
| | - Tomasz Guzik
- British Heart Foundation Centre for Cardiovascular Research, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Imo E Hoefer
- Central Diagnostic Laboratory, University Medical Center Utrecht, Netherlands
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, Medical Faculty, University of Muenster, Muenster, Germany
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|
134
|
Abstract
Lymphedema is a common, complex, and inexplicably underappreciated human disease. Despite a history of relative neglect by health care providers and by governmental health care agencies, the last decade has seen an explosive growth of insights into, and approaches to, the problem of human lymphedema. The current review highlights the significant advances that have occurred in the investigative and clinical approaches to lymphedema, particularly over the last decade. This review summarizes the progress that has been attained in the realms of genetics, lymphatic imaging, and lymphatic surgery. Newer molecular insights are explored, along with their relationship to future molecular therapeutics. Growing insights into the relationships among lymphedema, obesity, and other comorbidities are important to consider in current and future responses to patients with lymphedema.
Collapse
Affiliation(s)
- Stanley G Rockson
- Allan and Tina Neill Professor of Lymphatic Research and Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
135
|
Qin L, Min J, Chen C, Zhu L, Gu S, Zhou M, Yang W, Yan F. Incremental Values of T1 Mapping in the Prediction of Sudden Cardiac Death Risk in Hypertrophic Cardiomyopathy: A Comparison With Two Guidelines. Front Cardiovasc Med 2021; 8:661673. [PMID: 34169099 PMCID: PMC8217449 DOI: 10.3389/fcvm.2021.661673] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/28/2021] [Indexed: 12/02/2022] Open
Abstract
Background: MRI native T1 mapping and extracellular volume fraction (ECV) are quantitative values that could reflect various myocardial tissue characterization. The role of these parameters in predicting the risk of sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM) is still poorly understood. Aim: This study aims to investigate the ability of native T1 mapping and ECV values to predict major adverse cardiovascular events (MACE) in HCM, and its incremental values over the 2014 European Society of Cardiology (ESC) and enhanced American College of Cardiology/American Heart Association (ACC/AHA) guidelines. Methods: Between July 2016 and October 2020, HCM patients and healthy individuals with sex and age matched who underwent cardiac MRI were prospectively enrolled. The native T1 and ECV parameters were measured. The SCD risk was evaluated by the 2014 ESC guidelines and enhanced ACC/AHA guidelines. MACE included cardiac death, transplantation, heart failure admission, and implantable cardioverter-defibrillator implantation. Results: A total of 203 HCM patients (54.2 ± 14.9 years) and 101 healthy individuals (53.2 ± 14.7 years) were evaluated. During a median follow-up of 15 months, 25 patients (12.3%) had MACE. In multivariate Cox regression analysis, global native T1 mapping (hazard ratio (HR): 1.446; 95% confidence interval (CI): 1.195–1.749; P < 0.001) and non-sustained ventricular tachycardia (NSVT) (HR: 4.949; 95% CI, 2.033–12.047; P < 0.001) were independently associated with MACE. Ten of 86 patients (11.6%) with low SCD risk assessed by the two guidelines had MACE. In this subgroup of patients, multivariate Cox regression analysis showed that global native T1 mapping was independently associated with MACE (HR: 1.532; 95% CI: 1.221–1.922; P < 0.001). In 85 patients with conflicting results assessed by the two guidelines, end-stage systolic dysfunction was independently associated with MACE (HR: 7.942, 95% CI: 1.322–47.707, P = 0.023). In 32 patients with high SCD risk assessed by the two guidelines, NSVT was independently associated with MACE (HR: 9.779, 95% CI: 1.953–48.964, P = 0.006). Conclusion: The global native T1 mapping could provide incremental values and serve as potential supplements to the current guidelines in the prediction of MACE.
Collapse
Affiliation(s)
- Le Qin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiehua Min
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chihua Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Zhu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengjia Gu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Zhou
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
136
|
Szőke D, Kovács G, Kemecsei É, Bálint L, Szoták-Ajtay K, Aradi P, Styevkóné Dinnyés A, Mui BL, Tam YK, Madden TD, Karikó K, Kataru RP, Hope MJ, Weissman D, Mehrara BJ, Pardi N, Jakus Z. Nucleoside-modified VEGFC mRNA induces organ-specific lymphatic growth and reverses experimental lymphedema. Nat Commun 2021; 12:3460. [PMID: 34103491 PMCID: PMC8187400 DOI: 10.1038/s41467-021-23546-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/30/2021] [Indexed: 12/01/2022] Open
Abstract
Lack or dysfunction of the lymphatics leads to secondary lymphedema formation that seriously reduces the function of the affected organs and results in degradation of quality of life. Currently, there is no definitive treatment option for lymphedema. Here, we utilized nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNPs) encoding murine Vascular Endothelial Growth Factor C (VEGFC) to stimulate lymphatic growth and function and reduce experimental lymphedema in mouse models. We demonstrated that administration of a single low-dose of VEGFC mRNA-LNPs induced durable, organ-specific lymphatic growth and formation of a functional lymphatic network. Importantly, VEGFC mRNA-LNP treatment reversed experimental lymphedema by restoring lymphatic function without inducing any obvious adverse events. Collectively, we present a novel application of the nucleoside-modified mRNA-LNP platform, describe a model for identifying the organ-specific physiological and pathophysiological roles of the lymphatics, and propose an efficient and safe treatment option that may serve as a novel therapeutic tool to reduce lymphedema.
Collapse
Affiliation(s)
- Dániel Szőke
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Gábor Kovács
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Éva Kemecsei
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - László Bálint
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Kitti Szoták-Ajtay
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Petra Aradi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Andrea Styevkóné Dinnyés
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | | | | | - Raghu P Kataru
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Drew Weissman
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Babak J Mehrara
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Norbert Pardi
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.
- MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary.
| |
Collapse
|
137
|
Borrelli MA, Turnquist HR, Little SR. Biologics and their delivery systems: Trends in myocardial infarction. Adv Drug Deliv Rev 2021; 173:181-215. [PMID: 33775706 PMCID: PMC8178247 DOI: 10.1016/j.addr.2021.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is the leading cause of death around the world, in which myocardial infarction (MI) is a precipitating event. However, current therapies do not adequately address the multiple dysregulated systems following MI. Consequently, recent studies have developed novel biologic delivery systems to more effectively address these maladies. This review utilizes a scientometric summary of the recent literature to identify trends among biologic delivery systems designed to treat MI. Emphasis is placed on sustained or targeted release of biologics (e.g. growth factors, nucleic acids, stem cells, chemokines) from common delivery systems (e.g. microparticles, nanocarriers, injectable hydrogels, implantable patches). We also evaluate biologic delivery system trends in the entire regenerative medicine field to identify emerging approaches that may translate to the treatment of MI. Future developments include immune system targeting through soluble factor or chemokine delivery, and the development of advanced delivery systems that facilitate the synergistic delivery of biologics.
Collapse
Affiliation(s)
- Matthew A Borrelli
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA.
| | - Heth R Turnquist
- Starzl Transplantation Institute, 200 Darragh St, Pittsburgh, PA 15213, USA; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
138
|
Lymphatic Connexins and Pannexins in Health and Disease. Int J Mol Sci 2021; 22:ijms22115734. [PMID: 34072103 PMCID: PMC8199429 DOI: 10.3390/ijms22115734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022] Open
Abstract
This review highlights current knowledge on the expression and function of connexins and pannexins, transmembrane channel proteins that play an important role in intercellular communication, in both the developing and mature lymphatic vasculature. A particular focus is given to the involvement of these proteins in functions of the healthy lymphatic system. We describe their influence on the maintenance of extracellular fluid homeostasis, immune cell trafficking to draining lymph nodes and dietary nutrient absorption by intestinal villi. Moreover, new insights into connexin mutations in primary and secondary lymphedema as well as on the implication of lymphatic connexins and pannexins in acquired cardiovascular diseases are discussed, allowing for a better understanding of the role of these proteins in pathologies linked to dysfunctions in the lymphatic system.
Collapse
|
139
|
Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol 2021; 18:368-379. [PMID: 33462421 PMCID: PMC7812989 DOI: 10.1038/s41569-020-00489-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The lymphatic vasculature has an essential role in maintaining normal fluid balance in tissues and modulating the inflammatory response to injury or pathogens. Disruption of normal development or function of lymphatic vessels can have severe consequences. In the heart, reduced lymphatic function can lead to myocardial oedema and persistent inflammation. Macrophages, which are phagocytic cells of the innate immune system, contribute to cardiac development and to fibrotic repair and regeneration of cardiac tissue after myocardial infarction. In this Review, we discuss the cardiac lymphatic vasculature with a focus on developments over the past 5 years arising from the study of mammalian and zebrafish model organisms. In addition, we examine the interplay between the cardiac lymphatics and macrophages during fibrotic repair and regeneration after myocardial infarction. Finally, we discuss the therapeutic potential of targeting the cardiac lymphatic network to regulate immune cell content and alleviate inflammation in patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Konstantinos Klaourakis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| |
Collapse
|
140
|
Greenspan LJ, Weinstein BM. To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis 2021; 24:251-269. [PMID: 33449300 PMCID: PMC8205957 DOI: 10.1007/s10456-020-09761-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Endothelial cells display an extraordinary plasticity both during development and throughout adult life. During early development, endothelial cells assume arterial, venous, or lymphatic identity, while selected endothelial cells undergo additional fate changes to become hematopoietic progenitor, cardiac valve, and other cell types. Adult endothelial cells are some of the longest-lived cells in the body and their participation as stable components of the vascular wall is critical for the proper function of both the circulatory and lymphatic systems, yet these cells also display a remarkable capacity to undergo changes in their differentiated identity during injury, disease, and even normal physiological changes in the vasculature. Here, we discuss how endothelial cells become specified during development as arterial, venous, or lymphatic endothelial cells or convert into hematopoietic stem and progenitor cells or cardiac valve cells. We compare findings from in vitro and in vivo studies with a focus on the zebrafish as a valuable model for exploring the signaling pathways and environmental cues that drive these transitions. We also discuss how endothelial plasticity can aid in revascularization and repair of tissue after damage- but may have detrimental consequences under disease conditions. By better understanding endothelial plasticity and the mechanisms underlying endothelial fate transitions, we can begin to explore new therapeutic avenues.
Collapse
Affiliation(s)
- Leah J Greenspan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
141
|
Lowe V, Wisniewski L, Pellet-Many C. The Zebrafish Cardiac Endothelial Cell-Roles in Development and Regeneration. J Cardiovasc Dev Dis 2021; 8:jcdd8050049. [PMID: 34062899 PMCID: PMC8147271 DOI: 10.3390/jcdd8050049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 01/22/2023] Open
Abstract
In zebrafish, the spatiotemporal development of the vascular system is well described due to its stereotypical nature. However, the cellular and molecular mechanisms orchestrating post-embryonic vascular development, the maintenance of vascular homeostasis, or how coronary vessels integrate into the growing heart are less well studied. In the context of cardiac regeneration, the central cellular mechanism by which the heart regenerates a fully functional myocardium relies on the proliferation of pre-existing cardiomyocytes; the epicardium and the endocardium are also known to play key roles in the regenerative process. Remarkably, revascularisation of the injured tissue occurs within a few hours after cardiac damage, thus generating a vascular network acting as a scaffold for the regenerating myocardium. The activation of the endocardium leads to the secretion of cytokines, further supporting the proliferation of the cardiomyocytes. Although epicardium, endocardium, and myocardium interact with each other to orchestrate heart development and regeneration, in this review, we focus on recent advances in the understanding of the development of the endocardium and the coronary vasculature in zebrafish as well as their pivotal roles in the heart regeneration process.
Collapse
Affiliation(s)
- Vanessa Lowe
- Heart Centre, Barts & The London School of Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Laura Wisniewski
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Caroline Pellet-Many
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London NW1 0TU, UK
- Correspondence:
| |
Collapse
|
142
|
Cimini M, Kishore R. Role of Podoplanin-Positive Cells in Cardiac Fibrosis and Angiogenesis After Ischemia. Front Physiol 2021; 12:667278. [PMID: 33912076 PMCID: PMC8072458 DOI: 10.3389/fphys.2021.667278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023] Open
Abstract
New insights into the cellular and extra-cellular composition of scar tissue after myocardial infarction (MI) have been identified. Recently, a heterogeneous podoplanin-expressing cell population has been associated with fibrogenic and inflammatory responses and lymphatic vessel growth during scar formation. Podoplanin is a mucin-like transmembrane glycoprotein that plays an important role in heart development, cell motility, tumorigenesis, and metastasis. In the adult mouse heart, podoplanin is expressed only by cardiac lymphatic endothelial cells; after MI, it is acquired with an unexpected heterogeneity by PDGFRα-, PDGFRβ-, and CD34-positive cells. Podoplanin may therefore represent a sign of activation of a cohort of progenitor cells during different phases of post-ischemic myocardial wound repair. Podoplanin binds to C-type lectin-like receptor 2 (CLEC-2) which is exclusively expressed by platelets and a variety of immune cells. CLEC-2 is upregulated in CD11bhigh cells, including monocytes and macrophages, following inflammatory stimuli. We recently published that inhibition of the interaction between podoplanin-expressing cells and podoplanin-binding cells using podoplanin-neutralizing antibodies reduces but does not fully suppress inflammation post-MI while improving heart function and scar composition after ischemic injury. These data support an emerging and alternative mechanism of interactome in the heart that, when neutralized, leads to altered inflammatory response and preservation of cardiac function and structure. The overarching objective of this review is to assimilate and discuss the available evidence on the functional role of podoplanin-positive cells on cardiac fibrosis and remodeling. A detailed characterization of cell-to-cell interactions and paracrine signals between podoplanin-expressing cells and the other type of cells that compose the heart tissue is needed to open a new line of investigation extending beyond the known function of these cells. This review attempts to discuss the role and biology of podoplanin-positive cells in the context of cardiac injury, repair, and remodeling.
Collapse
Affiliation(s)
- Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
143
|
Maruyama K, Naemura K, Arima Y, Uchijima Y, Nagao H, Yoshihara K, Singh MK, Uemura A, Matsuzaki F, Yoshida Y, Kurihara Y, Miyagawa-Tomita S, Kurihara H. Semaphorin3E-PlexinD1 signaling in coronary artery and lymphatic vessel development with clinical implications in myocardial recovery. iScience 2021; 24:102305. [PMID: 33870127 PMCID: PMC8041864 DOI: 10.1016/j.isci.2021.102305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 01/15/2023] Open
Abstract
Blood and lymphatic vessels surrounding the heart develop through orchestrated processes from cells of different origins. In particular, cells around the outflow tract which constitute a primordial transient vasculature, referred to as aortic subepicardial vessels, are crucial for the establishment of coronary artery stems and cardiac lymphatic vessels. Here, we revealed that the epicardium and pericardium-derived Semaphorin 3E (Sema3E) and its receptor, PlexinD1, play a role in the development of the coronary stem, as well as cardiac lymphatic vessels. In vitro analyses demonstrated that Sema3E may demarcate areas to repel PlexinD1-expressing lymphatic endothelial cells, resulting in proper coronary and lymphatic vessel formation. Furthermore, inactivation of Sema3E-PlexinD1 signaling improved the recovery of cardiac function by increasing reactive lymphangiogenesis in an adult mouse model of myocardial infarction. These findings may lead to therapeutic strategies that target Sema3E-PlexinD1 signaling in coronary artery diseases.
Collapse
Affiliation(s)
- Kazuaki Maruyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kazuaki Naemura
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuichiro Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, 2-2-1 Honjo, Kumamoto, Kumamoto 860-0811, Japan
| | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Nagao
- Heart Center, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Kenji Yoshihara
- Heart Center, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, and the National Heart Research Institute Singapore, National Heart Center Singapore, 8 College Road Singapore 169857, Singapore
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3, Minatojiima-Minamimachi, Chuou-ku, Kobe 650-0047, Japan
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sachiko Miyagawa-Tomita
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Heart Center, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.,Department of Animal Nursing Science, Yamazaki University of Animal Health Technology, 4-7-2 Minami-Osawa, Hachioji, Tokyo 192-0364, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
144
|
Specialized Pro-Resolving Mediators and the Lymphatic System. Int J Mol Sci 2021; 22:ijms22052750. [PMID: 33803130 PMCID: PMC7963193 DOI: 10.3390/ijms22052750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Diminished lymphatic function and abnormal morphology are common in chronic inflammatory diseases. Recent studies are investigating whether it is possible to target chronic inflammation by promoting resolution of inflammation, in order to enhance lymphatic function and attenuate disease. Resolution of inflammation is an active process regulated by bioactive lipids known as specialized pro-resolving mediators (SPMs). SPMs can modulate leukocyte migration and function, alter cytokine/chemokine release, modify autophagy, among other immune-related activities. Here, we summarize the role of the lymphatics in resolution of inflammation and lymphatic impairment in chronic inflammatory diseases. Furthermore, we discuss the current literature describing the connection between SPMs and the lymphatics, and the possibility of targeting the lymphatics with innovative SPM therapy to promote resolution of inflammation and mitigate disease.
Collapse
|
145
|
Reduced Lymphatic Reserve in Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol 2021; 76:2817-2829. [PMID: 33303070 PMCID: PMC7724570 DOI: 10.1016/j.jacc.2020.10.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Microvascular dysfunction plays an important role in the pathogenesis of heart failure with preserved ejection fraction (HFpEF). However, no mechanistic link between systemic microvasculature and congestion, a central feature of the syndrome, has yet been investigated. OBJECTIVES This study aimed to investigate capillary-interstitium fluid exchange in HFpEF, including lymphatic drainage and the potential osmotic forces exerted by any hypertonic tissue Na+ excess. METHODS Patients with HFpEF and healthy control subjects of similar age and sex distributions (n = 16 per group) underwent: 1) a skin biopsy for vascular immunohistochemistry, gene expression, and chemical (water, Na+, and K+) analyses; and 2) venous occlusion plethysmography to assess peripheral microvascular filtration coefficient (measuring capillary fluid extravasation) and isovolumetric pressure (above which lymphatic drainage cannot compensate for fluid extravasation). RESULTS Skin biopsies in patients with HFpEF showed rarefaction of small blood and lymphatic vessels (p = 0.003 and p = 0.012, respectively); residual skin lymphatics showed a larger diameter (p = 0.007) and lower expression of lymphatic differentiation and function markers (LYVE-1 [lymphatic vessel endothelial hyaluronan receptor 1]: p < 0.05; PROX-1 [prospero homeobox protein 1]: p < 0.001) compared with control subjects. In patients with HFpEF, microvascular filtration coefficient was lower (calf: 3.30 [interquartile range (IQR): 2.33 to 3.88] l × 100 ml of tissue-1 × min-1 × mm Hg-1 vs. 4.66 [IQR: 3.70 to 6.15] μl × 100 ml of tissue-1 × min-1 × mm Hg-1; p < 0.01; forearm: 5.16 [IQR: 3.86 to 5.43] l × 100 ml of tissue-1 × min-1 × mm Hg-1 vs. 5.66 [IQR: 4.69 to 8.38] μl × 100 ml of tissue-1 × min-1 × mm Hg-1; p > 0.05), in keeping with blood vascular rarefaction and the lack of any observed hypertonic skin Na+ excess, but the lymphatic drainage was impaired (isovolumetric pressure in patients with HFpEF vs. control subjects: calf 16 ± 4 mm Hg vs. 22 ± 4 mm Hg; p < 0.005; forearm 17 ± 4 mm Hg vs. 25 ± 5 mm Hg; p < 0.001). CONCLUSIONS Peripheral lymphatic vessels in patients with HFpEF exhibit structural and molecular alterations and cannot effectively compensate for fluid extravasation and interstitial accumulation by commensurate drainage. Reduced lymphatic reserve may represent a novel therapeutic target.
Collapse
|
146
|
Lin Q, Zhang Y, Bai J, Liu J, Li H. VEGF-C/VEGFR-3 axis protects against pressure-overload induced cardiac dysfunction through regulation of lymphangiogenesis. Clin Transl Med 2021; 11:e374. [PMID: 33783987 PMCID: PMC7989711 DOI: 10.1002/ctm2.374] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Prolonged pressure overload triggers cardiac hypertrophy and frequently leads to heart failure (HF). Vascular endothelial growth factor-C (VEGF-C) and its receptor VEGFR-3 are components of the central pathway for lymphatic vessel growth (also known as lymphangiogenesis), which has crucial functions in the maintenance of tissue fluid balance and myocardial function after ischemic injury. However, the roles of this pathway in the development of cardiac hypertrophy and dysfunction during pressure overload remain largely unknown. Eight- to 10-week-old male wild-type (WT) mice, VEGFR-3 knockdown (VEGFR-3f/- ) mice, and their WT littermates (VEGFR-3f/f ) were subjected to pressure overload induced by transverse aortic constriction (TAC) for 1-6 weeks. We found that cardiac lymphangiogenesis and the protein expression of VEGF-C and VEGFR-3 were upregulated in the early stage of cardiac hypertrophy but were markedly reduced in failing hearts. Moreover, TAC for 6 weeks significantly reduced cardiac lymphangiogenesis by inhibiting activation of VEGFR-3-mediated signals (AKT/ERK1/2, calcineurin A/NFATc1/FOXc2, and CX43), leading to increased cardiac edema, hypertrophy, fibrosis, apoptosis, inflammation, and dysfunction. These effects were further aggravated in VEGFR-3f/- mice and were dose-dependently attenuated by delivery of recombinant VEGF-C156S in WT mice. VEGF-C156s administration also reversed pre-established cardiac dysfunction induced by sustained pressure overload. Thus, these results demonstrate, for the first time, that activation of the VEGF-C-VEGFR-3 axis exerts a protective effect during the transition from cardiac hypertrophy to HF and highlight selective stimulation of cardiac lymphangiogenesis as a potential new therapeutic approach for hypertrophic heart diseases.
Collapse
Affiliation(s)
- Qiu‐Yue Lin
- Department of Cardiology, Institute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yun‐Long Zhang
- Department of Emergency MedicineBeijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jie Bai
- Department of Cardiology, Institute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jin‐Qiu Liu
- Department of Cardiology, Institute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Hui‐Hua Li
- Department of Cardiology, Institute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Emergency MedicineBeijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
147
|
Feng X, Travisano S, Pearson CA, Lien CL, Harrison MRM. The Lymphatic System in Zebrafish Heart Development, Regeneration and Disease Modeling. J Cardiovasc Dev Dis 2021; 8:21. [PMID: 33669620 PMCID: PMC7922492 DOI: 10.3390/jcdd8020021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/18/2023] Open
Abstract
Heart disease remains the single largest cause of death in developed countries, and novel therapeutic interventions are desperately needed to alleviate this growing burden. The cardiac lymphatic system is the long-overlooked counterpart of the coronary blood vasculature, but its important roles in homeostasis and disease are becoming increasingly apparent. Recently, the cardiac lymphatic vasculature in zebrafish has been described and its role in supporting the potent regenerative response of zebrafish heart tissue investigated. In this review, we discuss these findings in the wider context of lymphatic development, evolution and the promise of this system to open new therapeutic avenues to treat myocardial infarction and other cardiopathologies.
Collapse
Affiliation(s)
- Xidi Feng
- The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (X.F.); (S.T.)
| | - Stanislao Travisano
- The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (X.F.); (S.T.)
| | - Caroline A. Pearson
- Laboratory of Neurogenetics and Development, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Ching-Ling Lien
- The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (X.F.); (S.T.)
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael R. M. Harrison
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
148
|
Brakenhielm E, González A, Díez J. Role of Cardiac Lymphatics in Myocardial Edema and Fibrosis: JACC Review Topic of the Week. J Am Coll Cardiol 2021; 76:735-744. [PMID: 32762908 DOI: 10.1016/j.jacc.2020.05.076] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
The cardiac lymphatic network plays a key role in regulation of myocardial extracellular volume and immune cell homeostasis. In different pathological conditions cardiac lymphatics undergo significant remodeling, with insufficient lymphatic function and/or lymphangiogenesis leading to fluid accumulation and development of edema. Additionally, by modulating the reuptake of tissue-infiltrating immune cells, lymphatics regulate immune responses. Available evidence suggests that both edema and inadequate immune response resolution may contribute to extracellular matrix remodeling and interstitial myocardial fibrosis. Interestingly, stimulation of lymphangiogenesis has been shown to improve cardiac function and reduce the progression of myocardial fibrosis during heart failure development after myocardial infarction. This review goes through the available clinical and experimental data supporting a role for cardiac lymphatics in cardiac disease, focusing on the current evidence linking poor cardiac lymphatic transport to the fibrogenic process and discussing potential avenues for novel biomarkers and therapeutic targets to limit cardiac fibrosis and dysfunction.
Collapse
Affiliation(s)
- Ebba Brakenhielm
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR1096, Faculty of Medicine and Pharmacy, Rouen, France
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain; Departments of Nephrology and Cardiology, University of Navarra Clinic, Pamplona, Spain.
| |
Collapse
|
149
|
Abstract
Diffuse myocardial fibrosis resulting from the excessive deposition of collagen fibres through the entire myocardium is encountered in a number of chronic cardiac diseases. This lesion results from alterations in the regulation of fibrillary collagen turnover by fibroblasts, facilitating the excessive deposition of type I and type III collagen fibres within the myocardial interstitium and around intramyocardial vessels. The available evidence suggests that, beyond the extent of fibrous deposits, collagen composition and the physicochemical properties of the fibres are also relevant in the detrimental effects of diffuse myocardial fibrosis on cardiac function and clinical outcomes in patients with heart failure. In this regard, findings from the past 20 years suggest that various clinicopathological phenotypes of diffuse myocardial fibrosis exist in patients with heart failure. In this Review, we summarize the current knowledge on the mechanisms and detrimental consequences of diffuse myocardial fibrosis in heart failure. Furthermore, we discuss the validity and usefulness of available imaging techniques and circulating biomarkers to assess the clinicopathological variation in this lesion and to track its clinical evolution. Finally, we highlight the currently available and potential future therapeutic strategies aimed at personalizing the prevention and reversal of diffuse myocardial fibrosis in patients with heart failure.
Collapse
|
150
|
Narasimhan B, Aravinthkumar R, Correa A, Aronow WS. Pharmacotherapeutic principles of fluid management in heart failure. Expert Opin Pharmacother 2021; 22:595-610. [PMID: 33560159 DOI: 10.1080/14656566.2020.1850694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Heart failure is a major public health concern that is expected to increase over the decades to come. Despite significant advances, fluid overload and congestion remain a major therapeutic challenge. Vascular congestion and neurohormonal activation are intricately linked and the goal of therapy fundamentally aims to reduce both.Areas covered: The authors briefly review a number of core concepts that elucidate the link between fluid overload and neuro-hormonal activation. This is followed by a review of heart-kidney interactions and the impact of diuresis in this setting. Following an in-depth review of currently available pharmacological agents, the rationale and evidence behind their use, the authors end with a brief note on novel agents/approaches to aid volume management in HF.Expert opinion: A number of non-pharmacological advances in the management of volume overload in heart failure, though promising - are associated with a number of shortcomings. Pharmacological therapy remains the cornerstone of volume management. A number of novel approaches, utilizing existing therapies as well as the emergence of new agents over the past decade bode well for the vulnerable HF population.
Collapse
Affiliation(s)
- Bharat Narasimhan
- Department of Medicine, Mount Sinai Morningside, Mount Sinai West, New York, NY
| | | | - Ashish Correa
- Department of Cardiology, Mount Sinai Morningside, Mount Sinai West, Icahn School of Medicine at Mount Sinai
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical center/New York Medical College, Valhalla, NY
| |
Collapse
|