101
|
Wang X, Liang G, Guo Q, Cai W, Zhang X, Ni J, Tao Y, Niu X, Chen S. ELABELA improves endothelial cell function via the ELA-APJ axis by activating the PI3K/Akt signalling pathway in HUVECs and EA.hy926 cells. Clin Exp Pharmacol Physiol 2020; 47:1953-1964. [PMID: 32687618 DOI: 10.1111/1440-1681.13382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 01/26/2023]
Abstract
Destruction of endothelial cells (ECs) function is involved in the structural and functional pathophysiological processes of preeclampsia (PE). Vascular endothelial injury may pre-exist for several years in women that develop PE and may pose increased risks for hypertension, coronary artery disease, and type-2 diabetes mellitus. Previous findings showed that Elabela (ELA), the endogenous ligand of the apelin (APJ) receptor expressed mainly on ECs, may play a protective role in early pregnancy and prevent PE. However, the exact functional role and molecular mechanisms of ELA are unclear. Here, we aimed to classify whether and how ELA improves EC function via the ELA-APJ axis. Two human umbilical vein endothelial cell (HUVEC) lines, namely HUVECs and EA.hy926, were treated with ELA, and then their cellular activities were studied by performing CCK-8 tests, scratch-wound analysis, and tube-formation assays. Doses of ELA exceeding 0.01 μmol/L markedly improved the cell viability, migration, and tube formation ability of HUVECs and EA.hy926 cells. Western blot analysis indicated that the above effects caused by ELA were related to upregulation of the APJ receptor and activation of PI3K/Akt signalling. Further verification tests were performed using the PI3K inhibitor wortmannin, and the results illustrated that inhibiting PI3K/Akt signalling blocked the positive effects of ELA on EC function and APJ receptor expression. Taken together, our findings indicate that ELA may alter EC function via the ELA-APJ axis and PI3K/Akt signalling and that ELA shows promise for use in endothelial dysfunction therapy for preventing and treating PE.
Collapse
Affiliation(s)
- Xiujuan Wang
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Guoqing Liang
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Qing Guo
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Wei Cai
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Xin Zhang
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Jianmei Ni
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Yanyan Tao
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Xiulong Niu
- Institute of Prevention and Treatment of Dermatosis in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Shaobo Chen
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| |
Collapse
|
102
|
Strohbach A, Böhm A, Mahajan-Thakur S, Wirtz C, Wetzel H, Busch MC, Felix SB, Rauch BH, Busch R. Platelet apelin receptor expression is reduced in patients with acute myocardial infarction. Vascul Pharmacol 2020; 136:106808. [PMID: 33130016 DOI: 10.1016/j.vph.2020.106808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/06/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND The G-protein-coupled apelin receptor and its apelin ligand are an emerging regulatory system of the vascular homeostasis. To date, the implications of the apelin/apelin receptor system in athero-thrombosis are not completely clarified yet. This study determines the expression of the apelin receptor on human platelets, the effect of different apelin isoforms on platelet aggregation and the potential role of the apelin/apelin receptor system in acute myocardial infarction. METHODS We applied immunofluorescence staining, Western Blot analysis, aggregometry, and flow cytometry to elucidate the role of the apelin receptor in activated platelets. Furthermore, in an observational pilot study, we assessed platelet apelin recpetor expression and apelin-17 plasma levels in patients with acute myocardial infarction (AMI, n = 27). RESULTS Immunofluorescence staining indicates that the apelin receptor is located at the cell membrane in resting platelets and diminishes upon activation with a selective thrombin receptor-activating peptide (AP1, 3 to 100 μM). Western Blot analyses of AP1-activated platelets and their supernatants suggest that the apelin receptor is not predominantly internalized but is released from activated platelets. The isoform apelin-17 attenuated AP-1-induced platelet activation in-vitro, presumably via a NO-dependent mechanism. Furthermore, platelet apelin receptor expression was significantly reduced in patients with AMI (n = 27) compared to age-matched controls (n = 14; p < 0.05) and inversely correlated with troponin I plasma levels (r = -0.46; p = 0.03). Besides that, circulating apelin-17 was significantly reduced in MI patients compared to the control group. CONCLUSION Taken together, our data support a crucial role of the platelet apelinergic system assuming an antithrombotic effect and therefore holding a potential diagnostic and therapeutic impact.
Collapse
Affiliation(s)
- Anne Strohbach
- Department of Internal Medicine B (Cardiology), University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner site, Greifswald, Germany.
| | - Andreas Böhm
- DZHK (German Centre for Cardiovascular Research), Partner site, Greifswald, Germany; Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), Ernst-Moritz-Arndt University, Felix-Hausdorff-Strasse 3, 17487 Greifswald, Germany
| | - Shailaja Mahajan-Thakur
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), Ernst-Moritz-Arndt University, Felix-Hausdorff-Strasse 3, 17487 Greifswald, Germany
| | - Christopher Wirtz
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), Ernst-Moritz-Arndt University, Felix-Hausdorff-Strasse 3, 17487 Greifswald, Germany
| | - Hanno Wetzel
- Department of Internal Medicine B (Cardiology), University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany
| | - Mathias C Busch
- Department of Internal Medicine B (Cardiology), University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner site, Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B (Cardiology), University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner site, Greifswald, Germany
| | - Bernhard H Rauch
- DZHK (German Centre for Cardiovascular Research), Partner site, Greifswald, Germany; Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), Ernst-Moritz-Arndt University, Felix-Hausdorff-Strasse 3, 17487 Greifswald, Germany
| | - Raila Busch
- Department of Internal Medicine B (Cardiology), University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner site, Greifswald, Germany.
| |
Collapse
|
103
|
Acele A, Bulut A, Donmez Y, Koc M. Serum Elabela Level Significantly Increased in Patients with Complete Heart Block. Braz J Cardiovasc Surg 2020; 35:683-688. [PMID: 33118733 PMCID: PMC7598968 DOI: 10.21470/1678-9741-2019-0461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objective To investigate the change in serum Elabela level, a new apelinergic system peptide, in patients with complete atrioventricular (AV) block and healthy controls. Methods The study included 50 patients with planned cardiac pacemaker (PM) implantation due to complete AV block and 50 healthy controls with similar age and gender. Elabela level was measured in addition to routine anamnesis, physical examination, and laboratory tests. Patients were divided into two groups, with and without AV block, and then compared. Results In patients with AV block, serum Elabela level was significantly higher and heart rate and cardiac output were significantly lower than in healthy controls. Serum Elabela level was found to be positively correlated with high-sensitive C-reactive protein and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, but negatively correlated with heart rate, high-density lipoprotein cholesterol, and cardiac output. In linear regression analysis, it was found that these parameters were only closely related to heart rate and NT-proBNP. Serum Elabela level was determined in the patients with AV block independently; an Elabela level > 9.5 ng/ml determined the risk of complete AV-block with 90.2% sensitivity and 88.0% specificity. Conclusion In patients with complete AV block, the serum Elabela level increases significantly before the PM implantation procedure. According to the results of our study, it was concluded that serum Elabela level could be used in the early determination of patients with complete AV block.
Collapse
Affiliation(s)
- Armağan Acele
- Adana Health Practice and Research Center University of Health Sciences Department of Cardiology Adana Turkey Department of Cardiology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Atilla Bulut
- Adana Health Practice and Research Center University of Health Sciences Department of Cardiology Adana Turkey Department of Cardiology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Yurdaer Donmez
- Adana Health Practice and Research Center University of Health Sciences Department of Cardiology Adana Turkey Department of Cardiology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Mevlut Koc
- Adana Health Practice and Research Center University of Health Sciences Department of Cardiology Adana Turkey Department of Cardiology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| |
Collapse
|
104
|
Yang Y, Lin F, Xiao Z, Sun B, Wei Z, Liu B, Xue L, Xiong C. Investigational pharmacotherapy and immunotherapy of pulmonary arterial hypertension: An update. Biomed Pharmacother 2020; 129:110355. [DOI: 10.1016/j.biopha.2020.110355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
|
105
|
Yu P, Ma S, Dai X, Cao F. Elabela alleviates myocardial ischemia reperfusion-induced apoptosis, fibrosis and mitochondrial dysfunction through PI3K/AKT signaling. Am J Transl Res 2020; 12:4467-4477. [PMID: 32913520 PMCID: PMC7476165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a common cardiovascular disease with high morbidity and mortality globally, which derives from acute myocardial infarction and coronary artery disease. Elabela has been proved to bind to apelin receptors in the heart. The present study aimed to investigate the protective effects of Elabela in myocardial I/R injury and illustrating the potential mechanisms. In this study, the rat I/R model was established in vivo. Following treatment with Elabela, the histopathological changes of heart tissue were evaluated by the hematoxylin and eosin- or Masson's trichrome staining. Apoptosis of heart tissue was examined using TUNEL staining. The expression of type I or III collagen and apoptosis-associated proteins was measured using western blotting. Moreover, myocardial ultrastructure in myocardium was detected via electron microscopy analysis. H9c2 cells were treated with hypoxia/reoxygenation (H/R) to mimic the myocardial I/R injury in vitro. After treatment with Elabela or Elabela combined with LY294002, the levels of oxidative stress and apoptosis were examined. The results revealed that Elabela significantly improved the pathological changes of rat myocardial tissues induced by I/R. Additionally, Elabela treatment reduced cardiomyocyte I/R induced fibrosis and apoptosis as well as ameliorated mitochondrial dysfunction in animal and cells. Within inhibition of PI3K pathway, the protective effects of Elabela was reversed. Taken together, these findings demonstrated that Elabela could protect against fibrosis, apoptosis and oxidative stress via PI3K/ATK signaling pathway in cardiac ischemia reperfusion.
Collapse
Affiliation(s)
- Peng Yu
- Department of Cardiology, Xijing Hospital, Air Force Medical UniversityXi’an 710032, China
| | - Sicong Ma
- Department of Cardiology, Xijing Hospital, Air Force Medical UniversityXi’an 710032, China
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Air Force Medical UniversityXi’an 710032, China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General HospitalBeijing 100853, China
| |
Collapse
|
106
|
Buyuksimsek M, Gulumsek E, Aslan MZ, Ozturk HA, Bashir AM, Icen YK, Ay N, Acibucu F, Koc M, Sumbul HE, Saler T. Serum Elabela Levels Are Elevated in Patients with Hyperthyroidism. TOHOKU J EXP MED 2020; 251:255-261. [PMID: 32713880 DOI: 10.1620/tjem.251.255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The apelinergic system plays an important role in the modulation of the cardiovascular system via the apelin peptide and the apelin receptor (APJ receptor). Apelin and elabela, also known toddler, are peptide ligands for the apelin receptor. These two peptides show similar biological actions, such as vasodilatation, increased myocardial contractility, angiogenesis, and energy metabolism. However, the serum levels of elabela in patients with hyperthyroidism are not well known. The aim of this study was to investigate the changes in serum elabela levels in patients with hyperthyroidism and its association with hypertension. This cross-sectional study included 74 patients with newly diagnosed hyperthyroidism due to Graves' disease and 20 healthy individuals. Serum elabela levels were measured by enzyme-linked immunosorbent assay. The patients were divided into two groups: hyperthyroid patients without hypertension (n = 51) and those with hypertension (n = 23). Basal heart rate, serum glucose and high-sensitive C reactive protein were significantly higher in hyperthyroid patients with and those without hypertension than in healthy controls (p < 0.05 for each). Serum elabela levels were significantly elevated in hyperthyroid patients compared with healthy controls, with higher serum elabela levels found in hyperthyroid patients with hypertension than those without hypertension. Linear regression analysis showed that serum elabela levels were correlated with systolic blood pressure (p < 0.001). In conclusion, serum elabela levels were significantly increased in patients with hyperthyroidism, especially in hyperthyroid patients with hypertension. Elevation in serum elabela levels may contribute to alleviation of cardiovascular complications of hyperthyroidism and hypertension.
Collapse
Affiliation(s)
- Mahmut Buyuksimsek
- Department of Medical Oncology, University of Health Sciences-Adana Health Practice and Research Center
| | - Erdinc Gulumsek
- Department of Gastroenterology, University of Health Sciences-Adana Health Practice and Research Center
| | - Muhammed Zubeyir Aslan
- Department of Internal Medicine, University of Health Sciences-Adana Health Practice and Research Center
| | - Huseyin Ali Ozturk
- Department of Internal Medicine, University of Health Sciences-Adana Health Practice and Research Center
| | - Ahmed Muhammad Bashir
- Department of Internal Medicine, University of Health Sciences-Mogadishu Somalia-Turkey Recep Tayyip Erdogan Training and Research Hospital
| | - Yahya Kemal Icen
- Department of Cardiology, University of Health Sciences-Adana Health Practice and Research Center
| | - Nurettin Ay
- Department of Internal Medicine, University of Health Sciences-Adana Health Practice and Research Center
| | - Fettah Acibucu
- Department of Endocrinology, University of Health Sciences-Adana Health Practice and Research Center
| | - Mevlut Koc
- Department of Cardiology, University of Health Sciences-Adana Health Practice and Research Center
| | - Hilmi Erdem Sumbul
- Department of Internal Medicine, University of Health Sciences-Adana Health Practice and Research Center
| | - Tayyibe Saler
- Department of Internal Medicine, University of Health Sciences-Adana Health Practice and Research Center
| |
Collapse
|
107
|
The Elabela in hypertension, cardiovascular disease, renal disease, and preeclampsia: an update. J Hypertens 2020; 39:12-22. [PMID: 32740407 DOI: 10.1097/hjh.0000000000002591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
: Although considerable success has been shown for antihypertensive medications, the resistant hypertension and hypertension-related organ damages are still the important clinical issues and pose as high health and economic pressure. Therefore, novel therapeutic techniques and antihypertensive drugs are needed to advance more effective therapy of hypertension and hypertension-related disease to ameliorate mortality and healthcare costs worldwide. In this review, we highlight the latest progress in supporting the therapeutic potential of Elabela (ELA), a recently discovered early endogenous ligand for G-protein-coupled receptor apelin peptide jejunum, apelin receptor. Systemic administration of ELA exerts vasodilatory, antihypertensive, cardioprotective, and renoprotective effects, whereas central application of ELA increases blood pressure and causes cardiovascular remodeling primarily secondary to the hypertension. In addition, ELA drives extravillous trophoblast differentiation and prevents the pathogenesis of preeclampsia (a gestational hypertensive syndrome) by promoting placental angiogenesis. These findings strongly suggest peripheral ELA's therapeutic potential in preventing and treating hypertension and hypertension-related diseases including cardiovascular disease, kidney disease, and preeclampsia. Since therapeutic use of ELA is mainly limited by its short half-life and parenteral administration, it may be a clinical application candidate for the therapy of hypertension and its complications when fused with a large inert chemicals (e.g. polyethylene glycol, termed polyethylene glycol-ELA-21) or other proteins (e.g. the Fc fragment of IgG and albumin, termed Fc-ELA-21 or albumin-ELA-21), and new delivery methods are encouraged to develop to improve the efficacy of ELA fragments on apelin peptide jejunum or alternative unknown receptors.
Collapse
|
108
|
Soulet F, Bodineau C, Hooks KB, Descarpentrie J, Alves I, Dubreuil M, Mouchard A, Eugenie M, Hoepffner JL, López JJ, Rosado JA, Soubeyran I, Tomé M, Durán RV, Nikolski M, Villoutreix BO, Evrard S, Siegfried G, Khatib AM. ELA/APELA precursor cleaved by furin displays tumor suppressor function in renal cell carcinoma through mTORC1 activation. JCI Insight 2020; 5:129070. [PMID: 32516140 DOI: 10.1172/jci.insight.129070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/05/2020] [Indexed: 01/15/2023] Open
Abstract
Apelin is a well-established mediator of survival and mitogenic signaling through the apelin receptor (Aplnr) and has been implicated in various cancers; however, little is known regarding Elabela (ELA/APELA) signaling, also mediated by Aplnr, and its role and the role of the conversion of its precursor proELA into mature ELA in cancer are unknown. Here, we identified a function of mTORC1 signaling as an essential mediator of ELA that repressed kidney tumor cell growth, migration, and survival. Moreover, sunitinib and ELA showed a synergistic effect in repressing tumor growth and angiogenesis in mice. The use of site-directed mutagenesis and pharmacological experiments provided evidence that the alteration of the cleavage site of proELA by furin induced improved ELA antitumorigenic activity. Finally, a cohort of tumors and public data sets revealed that ELA was only repressed in the main human kidney cancer subtypes, namely clear cell, papillary, and chromophobe renal cell carcinoma. Aplnr was expressed by various kidney cells, whereas ELA was generally expressed by epithelial cells. Collectively, these results showed the tumor-suppressive role of mTORC1 signaling mediated by ELA and established the potential use of ELA or derivatives in kidney cancer treatment.
Collapse
Affiliation(s)
- Fabienne Soulet
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Clement Bodineau
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | | | - Jean Descarpentrie
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | | | - Marielle Dubreuil
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Amandine Mouchard
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Malaurie Eugenie
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France
| | | | - Jose J López
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | - Mercedes Tomé
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Raúl V Durán
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Macha Nikolski
- LaBRI, CNRS UMR 5800, University of Bordeaux, Bordeaux, France
| | | | - Serge Evrard
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.,Bergonié Institute, Bordeaux, France
| | - Geraldine Siegfried
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Abdel-Majid Khatib
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| |
Collapse
|
109
|
Pan Y, Li Q, Yan H, Huang J, Wang Z. Apela improves cardiac and renal function in mice with acute myocardial infarction. J Cell Mol Med 2020; 24:10382-10390. [PMID: 32686917 PMCID: PMC7521152 DOI: 10.1111/jcmm.15651] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Apela was recently identified as a new ligand of the apelin peptide jejunum (APJ) receptor. The purpose of this study was to investigate the role of apela in post-myocardial infarction (post-MI) recovery from cardiorenal damage. A murine MI model was established, and apela was then infused subcutaneously for two weeks. Echocardiographs were performed before and after infarction at the indicated times. Renal function was evaluated by serum and urine biochemistry. Immunohistochemistry of heart and kidney tissue was performed by in situ terminal deoxynucleotidyl transferase-mediated dUPT nick end-labelling reaction. Compared to the control group (MI/vehicle), the average value of the left ventricular ejection fraction in apela-treated mice increased by 32% and 39% at 2- and 4-week post-MI, respectively. The mean levels of serum blood urea nitrogen,creatinine, N-terminal pro-brain natriuretic peptide and 24-hour urine protein were significantly decreased at 4-week post-MI in apela-treated mice relative to that of control animals. At the cellular level, we found that apela treatment significantly reduced myocardial fibrosis and cellular apoptosis in heart and kidney tissue. These data suggest that apela improves cardiac and renal function in mice with acute MI. The peptide may be potential therapeutic agent for heart failure.
Collapse
Affiliation(s)
- Yang Pan
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Quanyi Li
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Hong Yan
- Department of Clinical Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Clinical Laboratory, Nanjing Chest Hospital, Nanjing, China
| | - Jin Huang
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Zhi Wang
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| |
Collapse
|
110
|
Song JJ, Yang M, Liu Y, Song JW, Wang J, Chi HJ, Liu XY, Zuo K, Yang XC, Zhong JC. MicroRNA-122 aggravates angiotensin II-mediated apoptosis and autophagy imbalance in rat aortic adventitial fibroblasts via the modulation of SIRT6-elabela-ACE2 signaling. Eur J Pharmacol 2020; 883:173374. [PMID: 32682786 PMCID: PMC7364171 DOI: 10.1016/j.ejphar.2020.173374] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Abnormal aortic adventitial fibroblasts (AFs) play essential roles in the development of vascular remodeling and disorders. Previous studies revealed that microRNA-122 (miR-122) levels were elevated in the aortic adventitia of hypertensive rats with vascular injury. Here, we aim to evaluate the biological effects and underlying mechanisms of miR-122 in rat AFs. Exposure to angiotensin II (ATII) in rat AFs resulted in decreased levels of sirtuin 6 (SIRT6), elabela (ELA), and angiotensin-converting enzyme 2 (ACE2). Additionally, stimulation with ATII contributed to a decline in autophagic flux and obvious increases in cellular migration, oxidative stress, and apoptosis, which were exacerbated by the transfection of miR-122-5p mimic but were rescued by miR-122-5p inhibitor, exogenous replenishment of ELA, and recombinant adeno-associated virus expressing SIRT6 (rAAV-SIRT6), respectively. Moreover, stimulation with miR-122-5p mimic led to a marked reduction in the levels of SIRT6 and ELA in rat AFs, which were elevated by stimulation with rAAV-SIRT6. Furthermore, miR-122-5p inhibitor-mediated pro-autophagic, anti-oxidant and anti-apoptotic effects in rat AFs were partially suppressed by 3-methyladenine, SIRT6 small interfering RNA (siRNA) and ELA siRNA, which were linked with the downregulation in the protein levels of LC3-II, beclin-1, and ACE2 and the upregulation of p62 expression and bax/bcl-2 ratio. Our findings indicated that miR-122-5p inhibition prevented ATII-mediated loss of autophagy, and the promotion of apoptosis and oxidative stress via activating the SIRT6-ELA-ACE2 signaling. MiR-122-5p may be a novel predictive biomarker of adventitial injury, and targeting the SIRT6-ELA-ACE2 signaling may have the potential therapeutic importance of controlling vascular remodeling and disorders.
Collapse
Affiliation(s)
- Juan-Juan Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Mei Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Juan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hong-Jie Chi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiao-Yan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Kun Zuo
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Chun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
111
|
Read C, Yang P, Kuc RE, Nyimanu D, Williams TL, Glen RC, Holt LJ, Arulanantham H, Smart A, Davenport AP, Maguire JJ. Apelin peptides linked to anti-serum albumin domain antibodies retain affinity in vitro and are efficacious receptor agonists in vivo. Basic Clin Pharmacol Toxicol 2020; 126 Suppl 6:96-103. [PMID: 30901161 DOI: 10.1111/bcpt.13227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
The apelin receptor is a potential target in the treatment of heart failure and pulmonary arterial hypertension where levels of endogenous apelin peptides are reduced but significant receptor levels remain. Our aim was to characterise the pharmacology of a modified peptide agonist, MM202, designed to have high affinity for the apelin receptor and resistance to peptidase degradation and linked to an anti-serum albumin domain antibody (AlbudAb) to extend half-life in the blood. In competition, binding experiments in human heart MM202-AlbudAb (pKi = 9.39 ± 0.09) bound with similar high affinity as the endogenous peptides [Pyr1 ]apelin-13 (pKi = 8.83 ± 0.06) and apelin-17 (pKi = 9.57 ± 0.08). [Pyr1 ]apelin-13 was tenfold more potent in the cAMP (pD2 = 9.52 ± 0.05) compared to the β-arrestin (pD2 = 8.53 ± 0.03) assay, whereas apelin-17 (pD2 = 10.31 ± 0.28; pD2 = 10.15 ± 0.13, respectively) and MM202-AlbudAb (pD2 = 9.15 ± 0.12; pD2 = 9.26 ± 0.03, respectively) were equipotent in both assays, with MM202-AlbudAb tenfold less potent than apelin-17. MM202-AlbudAb bound to immobilised human serum albumin with high affinity (pKD = 9.02). In anaesthetised, male Sprague Dawley rats, MM202-AlbudAb (5 nmol, n = 15) significantly reduced left ventricular systolic pressure by 6.61 ± 1.46 mm Hg and systolic arterial pressure by 14.12 ± 3.35 mm Hg and significantly increased cardiac contractility by 533 ± 170 mm Hg/s, cardiac output by 1277 ± 190 RVU/min, stroke volume by 3.09 ± 0.47 RVU and heart rate by 4.64 ± 2.24 bpm. This study demonstrates that conjugating an apelin mimetic peptide to the AlbudAb structure retains receptor and in vivo activity and may be a new strategy for development of apelin peptides as therapeutic agents.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Robert C Glen
- The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
112
|
Onalan E, Doğan Y, Onalan E, Gozel N, Buran I, Donder E. Elabela levels in patients with type 2 diabetes: can it be a marker for diabetic nephropathy? Afr Health Sci 2020; 20:833-840. [PMID: 33163050 PMCID: PMC7609116 DOI: 10.4314/ahs.v20i2.37] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Elabela (ELA) is a hormone that is secreted at high levels in the kidneys of a healthy adult. This study aims to investigate whether serum ELA levels of patients with Type 2 Diabetes vary with the severity of renal damage. METHODS Our study included 50 healthy control subjects and 100 diabetic patients, who were categorized into groups based on urine albumin/creatinine ratios (ACR). Patients included in the study were assigned to four groups: Group 1 (healthy control), Group 2 (ACR<29mg/g), Group 3 (ACR=30-299 mg/g), and Group 4 (ACR>300 mg/g normal or high serum creatinine). Physical examination findings, demographic characteristics of the study group were recorded, and serum ELA levels and other laboratory parameters were assessed using appropriate methods. RESULTS The results of the study indicated that ELA levels determined in healthy individuals gradually decreased through stages of normal albuminuria, microalbuminuria, and macroalbuminuria. Moreover, ELA had a significant negative correlation with LDL-C (r=-0.201, p=0.014), glucose (r=-0.437, P<0.001), retinopathy (r=-0.222, P=0.006), serum BUN (r=-0.161, P=0.049), and a positive correlation with eGFR (r=0.250, P=0.002). CONCLUSIONS The fact that ELA levels are higher in healthy individuals compared to diabetic patients without microalbuminuria, and higher in diabetic patients without microalbuminuria compared to patients with advanced albuminuria and kidney damage, suggests that the ELA level can be an important clinical prognostic variable and even a promising agent for the treatment of diabetic nephropathy patients.
Collapse
Affiliation(s)
- Erhan Onalan
- Department of Internal Medicine, Faculty of Medicine, Firat University, 23000, Elazig, Turkey
- Corresponding author: Erhan Onalan, Assistant Professor, Firat University Medical Faculty, Internal Medicine Department, Elaziğ, Turkey. E-mail:
| | - Yusuf Doğan
- Department of Internal Medicine, Faculty of Medicine, Firat University, 23000, Elazig, Turkey
| | - Ebru Onalan
- Department of Medical Biology, Medical Faculty of Firat University, 23000, Elaziğ, Turkey
| | - Nevzat Gozel
- Department of Internal Medicine, Faculty of Medicine, Firat University, 23000, Elazig, Turkey
| | - Ilay Buran
- Department of Medical Biology, Medical Faculty of Firat University, 23000, Elaziğ, Turkey
| | - Emir Donder
- Department of Internal Medicine, Faculty of Medicine, Firat University, 23000, Elazig, Turkey
| |
Collapse
|
113
|
Qin S, Predescu DN, Patel M, Drazkowski P, Ganesh B, Predescu SA. Sex differences in the proliferation of pulmonary artery endothelial cells: implications for plexiform arteriopathy. J Cell Sci 2020; 133:133/9/jcs237776. [PMID: 32409569 DOI: 10.1242/jcs.237776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
The sex-biased disease pulmonary arterial hypertension (PAH) is characterized by the proliferation and overgrowth of dysfunctional pulmonary artery endothelial cells (PAECs). During inflammation associated with PAH, granzyme B cleaves intersectin-1 to produce N-terminal (EHITSN) and C-terminal (SH3A-EITSN) protein fragments. In a murine model of PAH, EHITSN triggers plexiform arteriopathy via p38-ELK1-c-Fos signaling. The SH3A-EITSN fragment also influences signaling, having dominant-negative effects on ERK1 and ERK2 (also known as MAPK3 and MAPK1, respectively). Using PAECs engineered to express tagged versions of EHITSN and SH3A-EITSN, we demonstrate that the two ITSN fragments increase both p38-ELK1 activation and the ratio of p38 to ERK1 and ERK2 activity, leading to PAEC proliferation, with female cells being more responsive than male cells. Furthermore, expression of EHITSN substantially upregulates the expression and activity of the long non-coding RNA Xist in female PAECs, which in turn upregulates the X-linked gene ELK1 and represses expression of krüppel-like factor 2 (KLF2). These events are recapitulated by the PAECs of female idiopathic PAH patients, and may account for their proliferative phenotype. Thus, upregulation of Xist could be an important factor in explaining sexual dimorphism in the proliferative response of PAECs and the imbalanced sex ratio of PAH.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Monal Patel
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick Drazkowski
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Balaji Ganesh
- Division of Bioanalytics, Biophysics and Cytomics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
114
|
Wang Z, Wang F, Zhong J, Zhu T, Zheng Y, Zhao T, Xie Q, Ma F, Li R, Tang Q, Xu F, Tian X, Zhu J. Using apelin-based synthetic Notch receptors to detect angiogenesis and treat solid tumors. Nat Commun 2020; 11:2163. [PMID: 32358530 PMCID: PMC7195494 DOI: 10.1038/s41467-020-15729-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is a necessary process for solid tumor growth. Cellular markers for endothelial cell proliferation are potential targets for identifying the vasculature of tumors in homeostasis. Here we customize the behaviors of engineered cells to recognize Apj, a surface marker of the neovascular endothelium, using synthetic Notch (synNotch) receptors. We designed apelin-based synNotch receptors (AsNRs) that can specifically interact with Apj and then stimulate synNotch pathways. Cells engineered with AsNRs have the ability to sense the proliferation of endothelial cells (ECs). Designed for different synNotch pathways, engineered cells express different proteins to respond to angiogenic signals; therefore, angiogenesis can be detected by cells engineered with AsNRs. Furthermore, T cells customized with AsNRs can sense the proliferation of vascular endothelial cells. As solid tumors generally require vascular support, AsNRs are potential tools for the detection and therapy of a variety of solid tumors in adults.
Collapse
Affiliation(s)
- Zhifu Wang
- Department of Neurosurgery, Fudan University Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No. 12 Urumqi Mid Road, Shanghai, 200040, China
| | - Fan Wang
- Department of Neurosurgery, Fudan University Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No. 12 Urumqi Mid Road, Shanghai, 200040, China
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Junjie Zhong
- Department of Neurosurgery, Fudan University Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No. 12 Urumqi Mid Road, Shanghai, 200040, China
| | - Tongming Zhu
- Department of Neurosurgery, Fudan University Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No. 12 Urumqi Mid Road, Shanghai, 200040, China
| | - Yongtao Zheng
- Department of Neurosurgery, Fudan University Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No. 12 Urumqi Mid Road, Shanghai, 200040, China
| | - Tong Zhao
- Department of Neurosurgery, Fudan University Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No. 12 Urumqi Mid Road, Shanghai, 200040, China
| | - Qiang Xie
- Department of Neurosurgery, Fudan University Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No. 12 Urumqi Mid Road, Shanghai, 200040, China
| | - Fukai Ma
- Department of Neurosurgery, Fudan University Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No. 12 Urumqi Mid Road, Shanghai, 200040, China
| | - Ronggang Li
- Department of Neurosurgery, Fudan University Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No. 12 Urumqi Mid Road, Shanghai, 200040, China
- Department of Neurosurgery, Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolanggong Road, Shanghai, 201508, China
| | - Qisheng Tang
- Department of Neurosurgery, Fudan University Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No. 12 Urumqi Mid Road, Shanghai, 200040, China
| | - Feng Xu
- Department of Neurosurgery, Fudan University Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No. 12 Urumqi Mid Road, Shanghai, 200040, China
| | - Xueying Tian
- Key Laboratory of Regenerative Medicine of Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jianhong Zhu
- Department of Neurosurgery, Fudan University Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No. 12 Urumqi Mid Road, Shanghai, 200040, China.
| |
Collapse
|
115
|
Ason B, Chen Y, Guo Q, Hoagland KM, Chui RW, Fielden M, Sutherland W, Chen R, Zhang Y, Mihardja S, Ma X, Li X, Sun Y, Liu D, Nguyen K, Wang J, Li N, Rajamani S, Qu Y, Gao B, Boden A, Chintalgattu V, Turk JR, Chan J, Hu LA, Dransfield P, Houze J, Wong J, Ma J, Pattaropong V, Véniant MM, Vargas HM, Swaminath G, Khakoo AY. Cardiovascular response to small-molecule APJ activation. JCI Insight 2020; 5:132898. [PMID: 32208384 DOI: 10.1172/jci.insight.132898] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/18/2020] [Indexed: 12/29/2022] Open
Abstract
Heart failure (HF) remains a grievous illness with poor prognosis even with optimal care. The apelin receptor (APJ) counteracts the pressor effect of angiotensin II, attenuates ischemic injury, and has the potential to be a novel target to treat HF. Intravenous administration of apelin improves cardiac function acutely in patients with HF. However, its short half-life restricts its use to infusion therapy. To identify a longer acting APJ agonist, we conducted a medicinal chemistry campaign, leading to the discovery of potent small-molecule APJ agonists with comparable activity to apelin by mimicking the C-terminal portion of apelin-13. Acute infusion increased systolic function and reduced systemic vascular resistance in 2 rat models of impaired cardiac function. Similar results were obtained in an anesthetized but not a conscious canine HF model. Chronic oral dosing in a rat myocardial infarction model reduced myocardial collagen content and improved diastolic function to a similar extent as losartan, a RAS antagonist standard-of-care therapy, but lacked additivity with coadministration. Collectively, this work demonstrates the feasibility of developing clinical, viable, potent small-molecule agonists that mimic the endogenous APJ ligand with more favorable drug-like properties and highlights potential limitations for APJ agonism for this indication.
Collapse
Affiliation(s)
- Brandon Ason
- Amgen Research, South San Francisco, California, USA
| | - Yinhong Chen
- Amgen Research, South San Francisco, California, USA
| | - Qi Guo
- Amgen Research, South San Francisco, California, USA
| | | | - Ray W Chui
- Amgen Research, Thousand Oaks, California, USA
| | | | | | - Rhonda Chen
- Amgen Research, South San Francisco, California, USA
| | - Ying Zhang
- Amgen Research, South San Francisco, California, USA
| | | | - Xiaochuan Ma
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | - Xun Li
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | - Yaping Sun
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | - Dongming Liu
- Amgen Research, South San Francisco, California, USA
| | - Khanh Nguyen
- Amgen Research, South San Francisco, California, USA
| | - Jinghong Wang
- Amgen Research, South San Francisco, California, USA
| | - Ning Li
- Amgen Research, South San Francisco, California, USA
| | | | - Yusheng Qu
- Amgen Research, Thousand Oaks, California, USA
| | - BaoXi Gao
- Amgen Research, Thousand Oaks, California, USA
| | | | | | - Jim R Turk
- Amgen Research, Thousand Oaks, California, USA
| | - Joyce Chan
- Amgen Research, South San Francisco, California, USA
| | - Liaoyuan A Hu
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | | | | | - Jingman Wong
- Amgen Research, South San Francisco, California, USA
| | - Ji Ma
- Amgen Research, South San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
116
|
Griffiths PR, Lolait SJ, Bijabhai A, O’Carroll-Lolait A, Paton JFR, O’Carroll AM. Increased apelin receptor gene expression in the subfornical organ of spontaneously hypertensive rats. PLoS One 2020; 15:e0231844. [PMID: 32315363 PMCID: PMC7173921 DOI: 10.1371/journal.pone.0231844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
The vascular organ of the lamina terminalis, subfornical organ (SFO), and area postrema comprise the sensory circumventricular organs (CVO) which are central structures that lie outside the blood brain barrier and are thought to provide an interface between peripherally circulating signals and the brain through their projections to central autonomic structures. The SFO expresses mRNA for the G protein-coupled apelin receptor (APJ, gene name aplnr) and exogenous microinjection of the neuropeptide apelin (apln) to the SFO elicits a depressor effect. Here we investigated the expression and cellular distribution of aplnr, apln and the recently described ligand apela (apela) in the CVOs and investigated whether differences in the levels of expression of apelinergic gene transcripts in these regions might underlie the chronic elevated blood pressure seen in hypertension. We carried out multiplex in situ hybridization histochemistry on CVO tissue sections from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) controls. Confocal immunofluorescent images indicated strong aplnr expression, with lower levels of apln and modest apela expression, in the CVOs of both WKY rats and SHRs, in both neurons and glia. The expression level of aplnr transcripts was increased in the SFO of SHRs compared to WKY rats. Our data may highlight a potential dysfunction in the communication between CVOs and downstream signalling pathways in SHRs, which may contribute to its different phenotype/s.
Collapse
Affiliation(s)
- Philip R. Griffiths
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Stephen J. Lolait
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Aarifah Bijabhai
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Aoife O’Carroll-Lolait
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Julian F. R. Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Anne-Marie O’Carroll
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
117
|
Couvineau P, Llorens-Cortes C, Iturrioz X. Elabela/Toddler and apelin bind differently to the apelin receptor. FASEB J 2020; 34:7989-8000. [PMID: 32301550 DOI: 10.1096/fj.201903029r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 01/17/2023]
Abstract
Like apelin (pE13F, K17F), Elabela/Toddler is an endogenous ligand of the apelin receptor playing a key role in cardiovascular development. Elabela/Toddler exists as peptide fragments of 32 (Q32P), 22 (K22P) and 11 (C11P) amino acids. In this study, we investigated the possible structural and functional similarities between these endogenous ligands. We performed in vitro pharmacological characterization and biased signaling analyses for apelin and Elabela/Toddler fragments in CHO cells, by assessing binding affinities, the inhibition of cyclic adenosine monophosphate (cAMP) production and the triggering of ß-arrestin 2 recruitment. We also performed Alanine scanning for Elabela/Toddler and structure-function studies based on site-directed mutagenesis of the rat and human apelin receptor, to compare the modes of binding of the different endogenous ligands. Alanine scanning of K22P showed that neither of its cysteine residues were involved in binding or in peptide activity and that its C-terminus carried the key pharmacophore for receptor binding and activation. We showed that Asp282 and Asp284 of rat and human apelin receptor, respectively, were not involved in Elabela/Toddler activity, whereas they are key residues for apelin binding and activity. We found that the structural features of Elabela/Toddler and apelin were different, resulting in different modes of binding of these endogenous ligands to the apelin receptor. These differences should be taken into account in the future development metabolically stable analogs of Elabela/Toddler and apelin as potential therapeutic tools for the treatment of cardiovascular diseases and water retention/hyponatremic disorders.
Collapse
Affiliation(s)
- Pierre Couvineau
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Xavier Iturrioz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
118
|
Essential Role of the ELABELA-APJ Signaling Pathway in Cardiovascular System Development and Diseases. J Cardiovasc Pharmacol 2020; 75:284-291. [DOI: 10.1097/fjc.0000000000000803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
119
|
Davenport AP, Scully CCG, de Graaf C, Brown AJH, Maguire JJ. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov 2020; 19:389-413. [PMID: 32494050 DOI: 10.1038/s41573-020-0062-z] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Dysregulation of peptide-activated pathways causes a range of diseases, fostering the discovery and clinical development of peptide drugs. Many endogenous peptides activate G protein-coupled receptors (GPCRs) - nearly 50 GPCR peptide drugs have been approved to date, most of them for metabolic disease or oncology, and more than 10 potentially first-in-class peptide therapeutics are in the pipeline. The majority of existing peptide therapeutics are agonists, which reflects the currently dominant strategy of modifying the endogenous peptide sequence of ligands for peptide-binding GPCRs. Increasingly, novel strategies are being employed to develop both agonists and antagonists, to both introduce chemical novelty and improve drug-like properties. Pharmacodynamic improvements are evolving to allow biasing ligands to activate specific downstream signalling pathways, in order to optimize efficacy and reduce side effects. In pharmacokinetics, modifications that increase plasma half-life have been revolutionary. Here, we discuss the current status of the peptide drugs targeting GPCRs, with a focus on evolving strategies to improve pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | | | | | | | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
120
|
Xu C, Wang F, Chen Y, Xie S, Sng D, Reversade B, Yang T. ELABELA antagonizes intrarenal renin-angiotensin system to lower blood pressure and protects against renal injury. Am J Physiol Renal Physiol 2020; 318:F1122-F1135. [PMID: 32174138 DOI: 10.1152/ajprenal.00606.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence has demonstrated that (pro)renin receptor (PRR)-mediated activation of intrarenal renin-angiotensin system (RAS) plays an essential role in renal handling of Na+ and water balance and blood pressure. The present study tested the possibility that the intrarenal RAS served as a molecular target for the protective action of ELABELA (ELA), a novel endogenous ligand of apelin receptor, in the distal nephron. By RNAscope and immunofluorescence, mRNA and protein expression of endogenous ELA was consistently localized to the collecting duct (CD). Apelin was also found in the medullary CDs as assessed by immunofluorescence. In cultured CD-derived M1 cells, exogenous ELA induced parallel decreases of full-length PRR (fPRR), soluble PRR (sPRR), and prorenin/renin protein expression as assessed by immunoblotting and medium sPRR and prorenin/renin levels by ELISA, all of which were reversed by 8-bromoadenosine 3',5'-cyclic monophosphate. Conversely, deletion of PRR in the CD or nephron in mice elevated Apela and Apln mRNA levels as well as urinary ELA and apelin excretion, supporting the antagonistic relationship between the two systems. Administration of exogenous ELA-32 infusion (1.5 mg·kg-1·day-1, minipump) to high salt (HS)-loaded Dahl salt-sensitive (SS) rats significantly lowered mean arterial pressure, systolic blood pressure, diastolic blood pressure, and albuminuria, accompanied with a reduction of urinary sPRR, angiotensin II, and prorenin/renin excretion. HS upregulated renal medullary protein expression of fPRR, sPRR, prorenin, and renin in Dahl SS rats, all of which were significantly blunted by exogenous ELA-32 infusion. Additionally, HS-induced upregulation of inflammatory cytokines (IL-1β, IL-2, IL-6, IL-17A, IFN-γ, VCAM-1, ICAM-1, and MCP-1), fibrosis markers (TGF-β1, FN, Col1A1, PAI-1, and TIMP-1), and kidney injury markers (NGAL, Kim-1, albuminuria, and urinary NGAL excretion) were markedly blocked by exogenous ELA infusion. Together, these results support the antagonistic interaction between ELA and intrarenal RAS in the distal nephron that appears to exert a major impact on blood pressure regulation.
Collapse
Affiliation(s)
- Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Yanting Chen
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Shiying Xie
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Danielle Sng
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, Singapore
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| |
Collapse
|
121
|
Liu W, Yan J, Pan W, Tang M. Apelin/Elabela-APJ: a novel therapeutic target in the cardiovascular system. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:243. [PMID: 32309390 PMCID: PMC7154429 DOI: 10.21037/atm.2020.02.07] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apelin and Elabela (ELA) are endogenous ligands of angiotensin domain type 1 receptor-associated proteins (APJ). Apelin/ELA-APJ signal is widely distributed in the cardiovascular system of fetuse and adult. The signal is involved in the development of the fetal heart and blood vessels and regulating vascular tension in adults. This review described the effects of apelin/ELA-APJ on fetal (vasculogenesis and angiogenesis) and adult cardiovascular function [vascular smooth muscle cell (VSMC) proliferation, vasodilation, positive myodynamia], and relative diseases [eclampsia, hypertension, pulmonary hypertension, heart failure (HF), myocardial infarction (MI), atherosclerosis, etc.] in detail. The pathways of apelin/ELA-APJ regulating cardiovascular function and cardiovascular-related diseases are summarized. The drugs developed based on apelin and ELA suggests APJ is a prospective strategy for cardiovascular disease therapy.
Collapse
Affiliation(s)
- Wei Liu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jialong Yan
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Weinan Pan
- Hunan Food and Drug Vocational College, Changsha 410208, China
| | - Mengjie Tang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| |
Collapse
|
122
|
Fischer C. A patent review of apelin receptor (APJR) modulators (2014-2019). Expert Opin Ther Pat 2020; 30:251-261. [DOI: 10.1080/13543776.2020.1731473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Conrad Fischer
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
123
|
Ma Y, Ding Y, Song X, Ma X, Li X, Zhang N, Song Y, Sun Y, Shen Y, Zhong W, Hu LA, Ma Y, Zhang MY. Structure-guided discovery of a single-domain antibody agonist against human apelin receptor. SCIENCE ADVANCES 2020; 6:eaax7379. [PMID: 31998837 PMCID: PMC6962038 DOI: 10.1126/sciadv.aax7379] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/29/2019] [Indexed: 06/01/2023]
Abstract
Developing antibody agonists targeting the human apelin receptor (APJ) is a promising therapeutic approach for the treatment of chronic heart failure. Here, we report the structure-guided discovery of a single-domain antibody (sdAb) agonist JN241-9, based on the cocrystal structure of APJ with an sdAb antagonist JN241, the first cocrystal structure of a class A G protein-coupled receptor (GPCR) with a functional antibody. As revealed by the structure, JN241 binds to the extracellular side of APJ, makes critical contacts with the second extracellular loop, and inserts the CDR3 into the ligand-binding pocket. We converted JN241 into a full agonist JN241-9 by inserting a tyrosine into the CDR3. Modeling and molecular dynamics simulation shed light on JN241-9-stimulated receptor activation, providing structural insights for finding agonistic antibodies against class A GPCRs.
Collapse
Affiliation(s)
- Yanbin Ma
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yao Ding
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Xianqiang Song
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Xiaochuan Ma
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Xun Li
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Ning Zhang
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yunpeng Song
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yaping Sun
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yuqing Shen
- Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Wenge Zhong
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Liaoyuan A. Hu
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yingli Ma
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Mei-Yun Zhang
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| |
Collapse
|
124
|
Fan J, Fan X, Guang H, Shan X, Tian Q, Zhang F, Chen R, Ye F, Quan H, Zhang H, Ding L, Gan Z, Xue F, Wang Y, Mao S, Hu L, Gong Y. Upregulation of miR-335-3p by NF-κB Transcriptional Regulation Contributes to the Induction of Pulmonary Arterial Hypertension via APJ during Hypoxia. Int J Biol Sci 2020; 16:515-528. [PMID: 32015687 PMCID: PMC6990898 DOI: 10.7150/ijbs.34517] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a cardiopulmonary disease that can lead to heart failure and eventually death. MicroRNAs (miRs) play essential roles during PAH progression; however, their exact mechanism of action remains unclear. Apelin is a small bioactive peptide with a key protective function in the pathogenesis of PAH mediated by binding to the APJ gene. The aim of the present study was to investigate the role of miR-335-3p in chronic normobaric hypoxia (CNH)-induced PAH in mice and the potential underlying regulatory mechanism. Adult male C57BL/6 mice were exposed to normoxia (~21% O2) or CNH (~10% O2, 23 h/d) for 5 weeks. MiR-335-3p was significantly increased in lung tissue of CNH-induced PAH mice. Blocking miR-335-3p attenuated CNH-induced PAH and alleviated pulmonary vascular remodeling. Bioinformatics analysis and luciferase reporter assay indicated that nuclear factor-kappa beta (NF-κB) acted as a transcriptional regulator upstream of miR-335-3p. Pyrrolidine dithiocarbamate treatment reversed the CNH-induced increase in miR-335-3p expression and diminished CNH-induced PAH. Moreover, p50-/- mice were resistant to CNH-induced PAH. Finally, APJ was identified as a direct targeting gene downstream of miR-335-3p, and pharmacological activation of APJ by its ligand apelin-13 reduced CNH-induced PAH and improved pulmonary vascular remodeling. Our results indicate that NF-κB-mediated transcriptional upregulation of miR-335-3p contributes to the inhibition of APJ and induction of PAH during hypoxia; hence, miR-335-3p could be a potential therapeutic target for hypoxic PAH.
Collapse
Affiliation(s)
- Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hui Guang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoqiong Shan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qiuyun Tian
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fukun Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ran Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fangzhou Ye
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hui Quan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Haizeng Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lu Ding
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhuohui Gan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Feng Xue
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Sunzhong Mao
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lianggang Hu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
125
|
Geng Z, Ye C, Tong Y, Zhang F, Zhou YB, Xiong XQ. Exacerbated pressor and sympathoexcitatory effects of central Elabela in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2019; 318:H124-H134. [PMID: 31834836 DOI: 10.1152/ajpheart.00449.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Elabela (ELA) is a newly discovered peptide that acts as a novel endogenous ligand of angiotensin receptor-like 1 (APJ) receptor. This study was designed to evaluate the effects of ELA-21 in paraventricular nucleus (PVN) on blood pressure and sympathetic nerve activity in spontaneously hypertensive rats (SHR). Experiments were performed in male Wistar-Kyoto rats (WKY) and SHR. ELA expression was upregulated in PVN of SHR. PVN microinjection of ELA-21 increased renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), heart rate (HR), plasma norepinephrine, and arginine vasopressin (AVP) levels in SHR. Intravenous injection of ELA-21 significantly decreased MAP and HR in both WKY and SHR, but only induced a slight decrease in RSNA. APJ antagonist F13A in PVN abolished the effects of ELA-21 on RSNA, MAP and HR. Intravenous infusion of both ganglionic blocker hexamethonium and AVP V1a receptor antagonist SR49059 caused significant reduction in the effects of ELA-21 on RSNA, MAP and HR in SHR, while combined administration of hexamethonium and SR49059 abolished the effects of ELA-21. ELA-21 microinjection stimulated Akt and p85α subunit of phosphatidylinositol 3-kinase (PI3K) phosphorylation in PVN, whereas PI3K inhibitor LY294002 or Akt inhibitor MK-2206 almost abolished the effects of ELA-21 on RSNA, MAP, and HR. Chronic PVN infusion of ELA-21 induced sympathetic activation, hypertension, and AVP release accompanied with cardiovascular remodeling in normotensive WKY. In conclusion, ELA-21 in PVN induces exacerbated pressor and sympathoexcitatory effects in hypertensive rats via PI3K-Akt pathway.NEW & NOTEWORTHY We demonstrated that PVN microinjection of ELA-21 increases sympathetic nerve activity and blood pressure, which can be abolished by pretreatment of APJ antagonist. This is the first demonstration that central ELA can induce hypertension. The pressor effects in PVN are mediated by both sympathetic activation and vasopressin release via PI3K-Akt pathway. Our data confirm that ELA is upregulated in the PVN of SHR and so may be involved in the pressor and sympathoexcitatory effects in hypertension.
Collapse
Affiliation(s)
- Zhi Geng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Ye
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Tong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Qing Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
126
|
Andersson C, Lin H, Liu C, Levy D, Mitchell GF, Larson MG, Vasan RS. Integrated Multiomics Approach to Identify Genetic Underpinnings of Heart Failure and Its Echocardiographic Precursors. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002489. [DOI: 10.1161/circgen.118.002489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background:
Heart failure (HF) may arise from alterations in metabolic, structural, and signaling pathways, but its genetic architecture is incompletely understood. To elucidate potential genetic contributors to cardiac remodeling and HF, we integrated genome-wide single-nucleotide polymorphisms, gene expression, and DNA methylation using a transomics analytical approach.
Methods:
We used robust rank aggregation (where the position of a certain gene in a rank order list [based on statistical significance level] is tested against a randomly shuffled rank order list) to derive an integrative transomic score for each annotated gene associated with a HF trait.
Results:
We evaluated ≤8372 FHS (Framingham Heart Study) participants (54% women; mean age, 55±17 years). Of these, 62 (0.7%) and 35 (0.4%) had prevalent HF with reduced ejection fraction and HF with preserved left ventricular ejection fraction, respectively. During a mean follow-up of 8.5 years (minimum–maximum, 0.005–18.6 years), 223 (2.7%) and 234 (2.8%) individuals developed incident HF with reduced ejection fraction and HF with reduced ejection fraction, respectively. Top genes included
MMP20
and
MTSS1
(promotes actin assembly at intercellular junctions) for left ventricular systolic function;
ITGA9
(receptor for
VCAM1
[vascular cell protein 1]) and
C5
for left ventricular remodeling;
NUP210
(expressed during myogenic differentiation) and
ANK1
(cytoskeletal protein) for diastolic function;
TSPAN16
and
RAB11FIP3
(involved in regulation of actin cytoskeleton) for prevalent HF with reduced ejection fraction;
ANKRD13D
and
TRIM69
for incident HF with reduced ejection fraction;
HPCAL1
and
PTTG1IP
for prevalent HF with reduced ejection fraction; and
ZNF146
(close to the
COX7A1
enzyme) and
ZFP3
(close to
SLC52A1
—the riboflavin transporter) for incident HF with reduced ejection fraction. We tested the HF-related top single-nucleotide polymorphisms in the UK biobank, where
rs77059055
in
TPM1
(minor allele frequency, 0.023; odds ratio, 0.83;
P
=0.002) remained statistically significant upon Bonferroni correction.
Conclusions:
Our integrative transomics approach offers insights into potential molecular and genetic contributors to HF and its precursors. Although several of our candidate genes have been implicated in HF in animal models, independent replication is warranted.
Collapse
Affiliation(s)
- Charlotte Andersson
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Department of Cardiology, Herlev and Gentofte Hospital, Herlev, Denmark (C.A.)
| | - Honghuang Lin
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Section of Computational Biomedicine, Department of Medicine (H.L.), Boston University School of Medicine, MA
| | - Chunyu Liu
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Department of Biostatistics (C.L., M.G.L.), Boston University School of Public Health, MA
| | - Daniel Levy
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (D.L.)
| | | | - Martin G. Larson
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Department of Biostatistics (C.L., M.G.L.), Boston University School of Public Health, MA
| | - Ramachandran S. Vasan
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine (R.S.V.), Boston University School of Medicine, MA
- Department of Epidemiology (R.S.V.), Boston University School of Public Health, MA
| |
Collapse
|
127
|
Georgiadou D, Boussata S, van Dijk M. ELABELA measurements by commercial ELISA kits require sample extraction. Am J Physiol Endocrinol Metab 2019; 317:E1218-E1219. [PMID: 31808726 DOI: 10.1152/ajpendo.00257.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Danai Georgiadou
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, location AMC, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Souad Boussata
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, location AMC, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Marie van Dijk
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, location AMC, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
128
|
Marsault E, Llorens-Cortes C, Iturrioz X, Chun HJ, Lesur O, Oudit GY, Auger-Messier M. The apelinergic system: a perspective on challenges and opportunities in cardiovascular and metabolic disorders. Ann N Y Acad Sci 2019; 1455:12-33. [PMID: 31236974 PMCID: PMC6834863 DOI: 10.1111/nyas.14123] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
The apelinergic pathway has been generating increasing interest in the past few years for its potential as a therapeutic target in several conditions associated with the cardiovascular and metabolic systems. Indeed, preclinical and, more recently, clinical evidence both point to this G protein-coupled receptor as a target of interest in the treatment of not only cardiovascular disorders such as heart failure, pulmonary arterial hypertension, atherosclerosis, or septic shock, but also of additional conditions such as water retention/hyponatremic disorders, type 2 diabetes, and preeclampsia. While it is a peculiar system with its two classes of endogenous ligand, the apelins and Elabela, its intricacies are a matter of continuing investigation to finely pinpoint its potential and how it enables crosstalk between the vasculature and organ systems of interest. In this perspective article, we first review the current knowledge on the role of the apelinergic pathway in the above systems, as well as the associated therapeutic indications and existing pharmacological tools. We also offer a perspective on the challenges and potential ahead to advance the apelinergic system as a target for therapeutic intervention in several key areas.
Collapse
Affiliation(s)
- Eric Marsault
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Llorens-Cortes
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Xavier Iturrioz
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Hyung J. Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Departments of Internal Medicine and Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Olivier Lesur
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Intensive Care Units, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gavin Y. Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Mannix Auger-Messier
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Cardiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
129
|
Nyimanu D, Kuc RE, Williams TL, Bednarek M, Ambery P, Jermutus L, Maguire JJ, Davenport AP. Apelin-36-[L28A] and Apelin-36-[L28C(30kDa-PEG)] peptides that improve diet induced obesity are G protein biased ligands at the apelin receptor. Peptides 2019; 121:170139. [PMID: 31472173 PMCID: PMC6838674 DOI: 10.1016/j.peptides.2019.170139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Apelin signalling pathways have important cardiovascular and metabolic functions. Recently, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)], were reported to function independent of the apelin receptor in vivo to produce beneficial metabolic effects without modulating blood pressure. We aimed to show that these peptides bound to the apelin receptor and to further characterise their pharmacology in vitro at the human apelin receptor. METHODS [Pyr1]apelin-13 saturation binding experiments and competition binding experiments were performed in rat and human heart homogenates using [125I]apelin-13 (0.1 nM), and/or increasing concentrations of apelin-36, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] (50pM-100μM). Apelin-36 and its analogues apelin-36-[F36A], apelin-36-[L28A], apelin-36-[L28C(30kDa-PEG)], apelin-36-[A28 A13] and [40kDa-PEG]-apelin-36 were tested in forskolin-induced cAMP inhibition and β-arrestin assays in CHO-K1 cells heterologously expressing the human apelin receptor. Bias signaling was quantified using the operational model for bias. RESULTS In both species, [Pyr1]apelin-13 had comparable subnanomolar affinity and the apelin receptor density was similar. Apelin-36, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] competed for binding of [125I]apelin-13 with nanomolar affinities. Apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] inhibited forskolin-induced cAMP release, with nanomolar potencies but they were less potent compared to apelin-36 at recruiting β-arrestin. Bias analysis suggested that these peptides were G protein biased. Additionally, [40kDa-PEG]-apelin-36 and apelin-36-[F36A] retained nanomolar potencies in both cAMP and β-arrestin assays whilst apelin-36-[A13 A28] exhibited a similar profile to apelin-36-[L28C(30kDa-PEG)] in the β-arrestin assay but was more potent in the cAMP assay. CONCLUSIONS Apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] are G protein biased ligands of the apelin receptor, suggesting that the apelin receptor is an important therapeutic target in metabolic diseases.
Collapse
Affiliation(s)
- Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Rhoda E. Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Thomas L. Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Maria Bednarek
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Philip Ambery
- Late-stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lutz Jermutus
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Janet J. Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
- Corresponding authors.
| | - Anthony P. Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
- Corresponding authors.
| |
Collapse
|
130
|
Roles of the Hepatic Endocannabinoid and Apelin Systems in the Pathogenesis of Liver Fibrosis. Cells 2019; 8:cells8111311. [PMID: 31653030 PMCID: PMC6912778 DOI: 10.3390/cells8111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatic fibrosis is the consequence of an unresolved wound healing process in response to chronic liver injury and involves multiple cell types and molecular mechanisms. The hepatic endocannabinoid and apelin systems are two signalling pathways with a substantial role in the liver fibrosis pathophysiology-both are upregulated in patients with advanced liver disease. Endogenous cannabinoids are lipid-signalling molecules derived from arachidonic acid involved in the pathogenesis of cardiovascular dysfunction, portal hypertension, liver fibrosis, and other processes associated with hepatic disease through their interactions with the CB1 and CB2 receptors. Apelin is a peptide that participates in cardiovascular and renal functions, inflammation, angiogenesis, and hepatic fibrosis through its interaction with the APJ receptor. The endocannabinoid and apelin systems are two of the multiple cell-signalling pathways involved in the transformation of quiescent hepatic stellate cells into myofibroblast like cells, the main matrix-producing cells in liver fibrosis. The mechanisms underlying the control of hepatic stellate cell activity are coincident despite the marked dissimilarities between the endocannabinoid and apelin signalling pathways. This review discusses the current understanding of the molecular and cellular mechanisms by which the hepatic endocannabinoid and apelin systems play a significant role in the pathophysiology of liver fibrosis.
Collapse
|
131
|
Mechanism of KLF4 Protection against Acute Liver Injury via Inhibition of Apelin Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6140360. [PMID: 31687083 PMCID: PMC6811788 DOI: 10.1155/2019/6140360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/22/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Krüppel-like factor 4 (KLF4) is a key transcription factor that regulates genes involved in the proliferation or differentiation in different tissues. Apelin plays roles in cardiovascular functions, metabolic disease, and homeostatic disorder. However, the biological function of apelin in liver disease is still ongoing. In this study, we investigated the mechanism of KLF4-mediated protection against acute liver injury via the inhibition of the apelin signaling pathway. Mice were intraperitoneally injected with carbon tetrachloride (CCl4; 0.2 mL dissolved in 100 mL olive oil, 10 mL/kg) to establish an acute liver injury model. A KLF4 expression plasmid was injected through the tail vein 48 h before CCl4 treatment. In cultured LX-2 cells, pAd-KLF4 or siRNA KLF4 was overexpressed or knockdown, and the mRNA and protein levels of apelin were determined. The results showed that the apelin serum level in the CCl4-injected group was higher than that of control group, and the expression of apelin in the liver tissues was elevated while KLF4 expression was decreased in the CCl4-injected group compared to the KLF4-plasmid-injected group. HE staining revealed serious hepatocellular steatosis in the CCl4-injected mice, and KLF4 alleviated this steatosis in the mice injected with KLF4 plasmid. In vitro experiments showed that tumor necrosis factor-alpha (TNF-α) could downregulate the transcription and translation levels of apelin in LX-2 cells and also upregulate KLF4 mRNA and protein expression. RT-PCR and Western blotting showed that the overexpression of KLF4 markedly decreased basal apelin expression, but knockdown of KLF4 restored apelin expression in TNF-α-treated LX-2 cells. These in vivo and in vitro experiments suggest that KLF4 plays a key role in inhibiting hepatocellular steatosis in acute liver injury, and that its mechanism might be the inhibition of the apelin signaling pathway.
Collapse
|
132
|
Cui L, Zhang JY, Ren ZP, Zhao HJ, Li GS. APLNR promotes the progression of osteosarcoma by stimulating cell proliferation and invasion. Anticancer Drugs 2019; 30:940-947. [PMID: 30920988 DOI: 10.1097/cad.0000000000000785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is the most common type of bone malignancies with a poor prognosis. In recent years, targeted therapy has shown great potential in the treatment of osteosarcoma, and more effective therapeutic targets for this disease need to be developed. APLNR is a seven transmembrane G-protein-coupled receptor expressed widely in multiple tissues. As has been reported, APLNR is involved in various physiological and pathological processes. Although APLNR plays a role in the development and progression of multiple tumors, the potential role of APLNR in osteosarcoma, a highly malignant tumor, remains unclear. Here, we reported that APLNR expression was correlated positively with clinical features including tumor size and stage of osteosarcoma. We found that APLNR knockdown inhibited the proliferation and invasion of osteosarcoma cells in vitro. In addition, APLNR could promote the progression and metastasis of osteosarcoma in mice. Collectively, this study showed the potential link between APLNR and osteosarcoma and suggested APLNR as a novel therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Lei Cui
- Departments of Ophthalmology Surgery
| | | | | | - He-Jun Zhao
- Department of Endocrinology, Tianjin First Center Hospital, Tianjin, China
| | - Gui-Shi Li
- Joint Orthopaedics, Yantai Yuhuangding Hospital, Yantai, Shandong Province
| |
Collapse
|
133
|
Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae RGC, Yang P, Glen RC, Maguire JJ, Davenport AP. International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacol Rev 2019; 71:467-502. [PMID: 31492821 PMCID: PMC6731456 DOI: 10.1124/pr.119.017533] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - David J Huggins
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Petra Sulentic
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robyn G C Macrae
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robert C Glen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| |
Collapse
|
134
|
Xi Y, Yu D, Yang R, Zhao Q, Wang J, Zhang H, Qian K, Shi Z, Wang W, Brown R, Li Y, Tian Z, Gong DW. Recombinant Fc-Elabela fusion protein has extended plasma half-life andmitigates post-infarct heart dysfunction in rats. Int J Cardiol 2019; 292:180-187. [DOI: 10.1016/j.ijcard.2019.04.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 04/05/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
|
135
|
Sunjaya AP, Sunjaya AF, Ferdinal F. Apela/Elabela/Toddler: New perspectives in molecular mechanism of heart failure. Glob Cardiol Sci Pract 2019; 2019:e201915. [PMID: 31799290 PMCID: PMC6865182 DOI: 10.21542/gcsp.2019.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background. Despite significant therapeutic advances, heart failure (HF) remains unacceptably high in morbidity and mortality. Additionally, its high-care and costs make HF a deadly and costly disease. First reported independently by two group of researchers, Apela/Elabela/Toddler (ELA) is the second endogenous apelin-receptor ligand discovered which is encoded from a previously classified non-coding gene, and has emerged as a key signalling-pathway in the cardiovascular system. Aims. To explore and summarise the biological effects and diagnostic potential of ELA as a new biomarker for heart failure. Results. ELA (prepro-ELA 54 AA) is a molecule with three isoforms (ELA 11,16 and 32), recently identified as the second endogenous ligand to APJ-receptor and functions to mediate early cardiac development during zebrafish embryogenesis by inducing cardiogenesis, vasculogenesis and bone formation. In adults, it enhances cardiac contractility, promotes vasodilatory effects, mediates fluid homeostasis, reduces food intake, limits kidney dysfunction and exerts anti-atherosclerotic as well as anti-oxidative properties. Conclusion. These results show that ELA, an endogenous agonist of the APJ-receptor exerts cardiovascular effects comparable and potentially more potent than apelin and is found to be downregulated in experimental models and humans with heart failure.
Collapse
Affiliation(s)
- Anthony P Sunjaya
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jl. Letjen S. Parman No. 1, Jakarta, Indonesia
| | - Angela F Sunjaya
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jl. Letjen S. Parman No. 1, Jakarta, Indonesia
| | - Frans Ferdinal
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jl. Letjen S. Parman No. 1, Jakarta, Indonesia
| |
Collapse
|
136
|
Aydin S, Kuloglu T, Aydin Y, Yalcin MH, Ugur K, Albayrak S, Aksoy A, Sahin I, Dagli AF, Akkoc RF, Aydin S. Effects of iloprost and sildenafil treatment on elabela, apelin-13, nitric oxide, and total antioxidant and total oxidant status in experimental enzyme-positive acute coronary syndrome in rats. Biotech Histochem 2019; 95:145-151. [PMID: 31429306 DOI: 10.1080/10520295.2019.1653497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite significant advances in medicine, mortality due to cardiovascular disease is not yet preventable. We investigated the amounts of elabela (ELA) and apelin, synthesized by cardiomyocytes, and changes of these compounds in cardiac tissue and circulation after administration of iloprost (ILO) and sildenafil (SIL) in rats with induced myocardial ischemia (MI). We also investigated a connection with circulating troponin-I, creatine kinase (CK), creatine kinase-myocardial band (CK-MB) and nitric oxide (NO), and total anti-oxidant (TAS)/total oxidant status (TOS). We established eight study groups of five rats each. Group 1, sham, was given only physiologic serum; group 2, ILO; group 3, SIL; group 4, ILO + SIL; group 5, MI; group 6, MI + ILO; group 7, MI + SIL; group 8, MI + ILO + SIL. Troponin-I, CK, CK-MB and TAS-TOS were investigated using an autoanalyzer. NO, ELA and apelin were analyzed by ELISA. Tissue apelin and ELA expressions and localizations were determined by immunohistochemistry. The MI group compared to the control (sham) group showed that ELA, apelin, troponin-I, CK, CK-MB, NO and TOS levels were elevated significantly. Concentrations of these factors increased in MI, but decreased after ILO and SIL administration. The largest decrease of TOS was identified in the ILO + SIL group. ELA and apelin may be novel indicators of MI and administration of ILO and SIL, individually or together, may be useful for treating MI.
Collapse
Affiliation(s)
- S Aydin
- Department of Cardiovascular Surgery, Fethi Sekin City Hospital, Elazig, Turkey.,Department of Anatomy, School of Medicine, Firat University, Elazig, Turkey
| | - T Kuloglu
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Y Aydin
- Department of Internal Medicine, School of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - M H Yalcin
- Department of Histology and Embryology, School of Veterinary Medicine, Firat University, Elazig, Turkey
| | - K Ugur
- Department of Endocrine and Metabolism Diseases, School of Medicine, Firat University, Elazig, Turkey
| | - S Albayrak
- Department of Brain Surgery, Elazig Education and Research Hospital, Health Science University, Elazig, Turkey
| | - A Aksoy
- Department of Nutrition and Dietetics, Bitlis Eren University, Bitlis, Turkey
| | - I Sahin
- Department of Medical Biology, School of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey.,Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), School of Medicine, Firat University, Elazig, Turkey
| | - A F Dagli
- Department of Pathology, School of Medicine, Firat University, Elazig, Turkey
| | - R F Akkoc
- Department of Anatomy, School of Medicine, Firat University, Elazig, Turkey
| | - S Aydin
- Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
137
|
Wang L, Zhang Y, Qu H, Xu F, Hu H, Zhang Q, Ye Y. Reduced ELABELA expression attenuates trophoblast invasion through the PI3K/AKT/mTOR pathway in early onset preeclampsia. Placenta 2019; 87:38-45. [PMID: 31546152 DOI: 10.1016/j.placenta.2019.08.077] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Early onset preeclampsia is linked to abnormal trophoblast invasion, leading to insufficient recasting of uterine spiral arteries and shallow placental implantation. This study investigated ELABELA (ELA) expression and its involvement in the pathogenesis of early onset preeclampsia. METHODS We used immunohistochemistry, quantitative PCR and Western blot to calculate ELA levels in the placentas. Transwell assays were utilize to assess the invasion and migration of trophoblastic Cells. Western blot was used to identify the concentrations of vital kinases in PI3K/AKT/mTOR pathways and invasion-related proteins in trophoblast cells. RESULTS ELA was expressed in villous cytotrophoblasts and syncytiotrophoblasts in placental tissue. Compared with the normal pregnancies, ELA mRNA and protein expression was significantly reduced in early onset preeclampsia placentas. In the HTR-8/SVneo cells, when ELA was knocked down, the invasion and migration capability of cells decreased significantly, with MMP2 and MMP9 expression downregulated and the expression of important kinases in the PI3K/AKT/mTOR pathways being significantly decreased compared to the control group. Overexpression of ELA was on the contrary. Besides, while PI3K was blocked, the invasion and migration capability of HTR-8/SVneo cells and the expression of key kinases in PI3K/AKT/mTOR pathways were decreased significantly. DISCUSSION ELA stimulates the invasion and migration of trophoblastic cells through activation of downstream PI3K/AKT/mTOR pathway and is complicit in early onset preeclampsia pathogenesis. Our research offers a potential novel treatment for PE.
Collapse
Affiliation(s)
- Lijing Wang
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China; Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Yan Zhang
- Department of Obstetrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hongmei Qu
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Fengsen Xu
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Haiyan Hu
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Qian Zhang
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Yuanhua Ye
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China; Department of Obstetrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
138
|
Melatonin prevents lung injury by regulating apelin 13 to improve mitochondrial dysfunction. Exp Mol Med 2019; 51:1-12. [PMID: 31273199 PMCID: PMC6802616 DOI: 10.1038/s12276-019-0273-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Pulmonary fibrosis is a progressive disease characterized by epithelial cell damage, fibroblast proliferation, excessive extracellular matrix (ECM) deposition, and lung tissue scarring. Melatonin, a hormone produced by the pineal gland, plays an important role in multiple physiological and pathological responses in organisms. However, the function of melatonin in the development of bleomycin-induced pulmonary injury is poorly understood. In the present study, we found that melatonin significantly decreased mortality and restored the function of the alveolar epithelium in bleomycin-treated mice. However, pulmonary function mainly depends on type II alveolar epithelial cells (AECIIs) and is linked to mitochondrial integrity. We also found that melatonin reduced the production of reactive oxygen species (ROS) and prevented apoptosis and senescence in AECIIs. Luzindole, a nonselective melatonin receptor antagonist, blocked the protective action of melatonin. Interestingly, we found that the expression of apelin 13 was significantly downregulated in vitro and in vivo and that this downregulation was reversed by melatonin. Furthermore, ML221, an apelin inhibitor, disrupted the beneficial effects of melatonin on alveolar epithelial cells. Taken together, these results suggest that melatonin alleviates lung injury through regulating apelin 13 to improve mitochondrial dysfunction in the process of bleomycin-induced pulmonary injury. The hormone melatonin could protect lung cells from the damage associated with respiratory diseases such as pulmonary fibrosis. Several studies have linked such damage with abnormal activity of the mitochondria, with these essential metabolic organelles churning out damaging ‘reactive oxygen species’ (ROS), compounds that induce premature cell aging and death. Melatonin can mitigate ROS production, and researchers led by Haihai Liang at China’s Harbin Medical University have demonstrated that it can prevent injury to airway epithelial cells in a mouse model of lung disease. Melatonin treatment countered much of the damage, resulting in significantly longer survival, and the team identified a target molecule in the mitochondria that may be responsible for this effect. This approach could offer hope for a family of diseases with a poor prognosis and limited treatment options.
Collapse
|
139
|
Apelin promotes hepatic fibrosis through ERK signaling in LX-2 cells. Mol Cell Biochem 2019; 460:205-215. [PMID: 31270645 PMCID: PMC6745032 DOI: 10.1007/s11010-019-03581-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/27/2019] [Indexed: 02/08/2023]
Abstract
Apelin participates in cardiovascular functions, metabolic disease, and homeostasis disorder. However, the biological function of apelin in liver diseases, especially liver fibrosis is still under investigation. The present study aimed to investigate the expression of apelin in nonalcoholic fatty liver disease (NAFLD) and the mechanism of apelin promoting hepatic fibrosis through ERK signaling in hepatic stellate LX-2 cells. The results showed that the ALT and AST levels in serum were increased in the mice fed HFC. The histological staining revealed that hepatocellular steatosis and ballooning degeneration was severe, and fibrogenesis appeared as increased pericellular collagen deposition along with pericentral (lobular) collagen deposition in the mice fed HFC. Immunochemistry and qRT-PCR results showed that the expression of apelin and profibrotic genes was higher as compared to the control group. The in vitro experiments demonstrated that apelin-13 upregulated the transcription and translation levels of collagen type I (collagen-I) and α-smooth muscle actin (α-SMA) in LX-2 cells. The immunofluorescent staining, qRT-PCR, and Western blot results showed that the overexpression of apelin markedly increased the expression of α-SMA and cyclinD1. The LX-2 cells treated with apelin-13 displayed an increased expression of pERK1/2 in a time-dependent manner, while the pretreatment with PD98059 abolished the apelin-induced expression of α-SMA and cyclinD1. Furthermore, the in vivo and in vitro assays suggested a key role of apelin in promoting liver fibrosis, and the underlying mechanism might be ascribed to the apelin expression of profibrotic genes via ERK signaling pathway.
Collapse
|
140
|
Huang R, Zhu J, Zhang L, Hua X, Ye W, Chen C, Sun K, Wang W, Feng L, Zhang J. Is ELABELA a reliable biomarker for hypertensive disorders of pregnancy? Pregnancy Hypertens 2019; 17:226-232. [PMID: 31487645 PMCID: PMC7001771 DOI: 10.1016/j.preghy.2019.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/26/2019] [Accepted: 06/25/2019] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We aimed to examine the ELABELA levels at different stages of pregnancy among normotensive controls and women with hypertensive disorders of pregnancy (HDP). STUDY DESIGN A total of 336 blood samples of 169 women were collected from pre-pregnancy, the first, second, and third trimesters. Women were divided into the following six groups: 1) non-pregnant healthy women; 2) healthy pregnant controls; 3) chronic hypertension; 4) gestational hypertension; 5) preeclampsia; and 6) preeclampsia superimposed on chronic hypertension. ELABELA plasma concentrations were measured by human ELA Elisa Kit (Peninsula Laboratories International, Inc. USA). Kruskal-Wallis test was used to test whether ELABELA level in each type of HDP differed from that in gestational week-matched normotensive controls. MAIN OUTCOME MEASURES Hypertensive disorders of pregnancy. RESULTS In the first trimester, patients with gestational hypertension had higher ELABELA level than gestational week-matched normotensive controls [median (ng/ml): 31.9, (IQR (ng/ml): 16.3, 47.6) vs. 19.7 (13.7, 23.2), p = 0.03]. In the second trimester, the levels were 49.2 (32.2, 69.1) vs 24.0 (13.0, 32.6) (p = 0.002), respectively. The level for gestational hypertensive women in the third trimester did not differ significantly from that of normotensive women [43.8 (30.8, 62.7) vs 25.0 (12.3, 74.0), p = 0.82]. The ELABELA levels were similar between preeclamptic women and normotensive controls throughout pregnancy. CONCLUSIONS Maternal blood ELABELA levels in the first and second trimesters were elevated in women who developed gestational hypertension late in pregnancy, but the ELABELA level bears no significant relationship with preeclampsia during any stage of pregnancy.
Collapse
Affiliation(s)
- Rong Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Jing Zhu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Hua
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping Ye
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Weiye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Liping Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
141
|
Zhu C, Guo Z, Zhang Y, Liu M, Chen B, Cao K, Wu Y, Yang M, Yin W, Zhao H, Tai H, Ou Y, Yu X, Liu C, Li S, Su B, Feng Y, Huang S. Aplnra/b Sequentially Regulate Organ Left-Right Patterning via Distinct Mechanisms. Int J Biol Sci 2019; 15:1225-1239. [PMID: 31223282 PMCID: PMC6567806 DOI: 10.7150/ijbs.30100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
The G protein-coupled receptor APJ/Aplnr has been widely reported to be involved in heart and vascular development and disease, but whether it contributes to organ left-right patterning is largely unknown. Here, we show that in zebrafish, aplnra/b coordinates organ LR patterning in an apela/apln ligand-dependent manner using distinct mechanisms at different stages. During gastrulation and early somitogenesis, aplnra/b loss of function results in heart and liver LR asymmetry defects, accompanied by disturbed KV/cilia morphogenesis and disrupted left-sided Nodal/spaw expression in the LPM. In this process, only aplnra loss of function results in KV/cilia morphogenesis defect. In addition, only apela works as the early endogenous ligand to regulate KV morphogenesis, which then contributes to left-sided Nodal/spaw expression and subsequent organ LR patterning. The aplnra-apela cascade regulates KV morphogenesis by enhancing the expression of foxj1a, but not fgf8 or dnh9, during KV development. At the late somite stage, both aplnra and aplnrb contribute to the expression of lft1 in the trunk midline but do not regulate KV formation, and this role is possibly mediated by both endogenous ligands, apela and apln. In conclusion, our study is the first to identify a role for aplnra/b and their endogenous ligands apela/apln in LR patterning, and it clarifies the distinct roles of aplnra-apela and aplnra/b-apela/apln in orchestrating organ LR patterning.
Collapse
Affiliation(s)
- Chengke Zhu
- College of Animal Science in Rongchang Campus, Southwest University, Key Laboratary of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 402460, China.,UoE Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Zhenghua Guo
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Yu Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Min Liu
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Bingyu Chen
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Kang Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Yongmei Wu
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Min Yang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Wenqing Yin
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts. USA
| | - Haixia Zhao
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Haoran Tai
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Yu Ou
- School of Public Health, Chengdu Medical College , Chengdu 610500, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College , Chengdu 610500, China
| | - Chi Liu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Shurong Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Bingyin Su
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Yi Feng
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
142
|
Effects of Apelin on Left Ventricular-Arterial Coupling and Mechanical Efficiency in Rats with Ischemic Heart Failure. DISEASE MARKERS 2019; 2019:4823156. [PMID: 31316680 PMCID: PMC6604493 DOI: 10.1155/2019/4823156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/06/2018] [Indexed: 01/13/2023]
Abstract
Apelin plays important roles in cardiovascular homeostasis. However, its effects on the mechanoenergetics of heart failure (HF) are unavailable. We attempted to investigate the effects of apelin on the left ventricular-arterial coupling (VAC) and mechanical efficiency in rats with HF. HF was induced in rats by the ligation of the left coronary artery. The ischemic HF rats were treated with apelin or saline for 12 weeks. The sham-operated animals served as the control. The left ventricular (LV) afterload and the systolic and diastolic functions, as well as the mechanoenergetic indices were estimated from the pressure-volume loops. Myocardial fibrosis by Masson's trichrome staining, myocardial apoptosis by TUNEL, and collagen content in the aorta as well as media area in the aorta and the mesenteric arteries were determined. Our data indicated that HF rats manifested an increased arterial load (Ea), a declined systolic function (reduced ejection fraction, +dP/dtmax, end-systolic elastance, and stroke work), an abnormal diastolic function (elevated end-diastolic pressure, τ, and declined −dP/dtmax), and decreased mechanical efficiency. Apelin treatment improved those indices. Concomitantly, increased fibrosis in the LV myocardium and the aorta and enhanced apoptosis in the LV were partially restored by apelin treatment. A declined wall-to-lumen ratio in the mesenteric arteries of the untreated HF rats was further reduced in the apelin-treated group. We concluded that the rats with ischemic HF were characterized by deteriorated LV mechanoenergetics. Apelin improved mechanical efficiency, at least in part, due to the inhibiting cardiac fibrosis and apoptosis in the LV myocardium, reducing collagen deposition in the aorta and dilating the resistant artery.
Collapse
|
143
|
Li Y, Yang X, Ouyang S, He J, Yu B, Lin X, Zhang Q, Tao J. Declined circulating Elabela levels in patients with essential hypertension and its association with impaired vascular function: A preliminary study. Clin Exp Hypertens 2019; 42:239-243. [PMID: 31116039 DOI: 10.1080/10641963.2019.1619756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Elabela (ELA) is a newly identified endogenous ligand of apelin receptor (APJ) which has been confirmed to be implicated in the pathogenesis of hypertension. Previous experiments have revealed the critical role of ELA in eliciting vasodilation and lowering blood pressure. However, the role of plasma ELA levels in hypertensive patients and its relationship with vascular function have not been investigated.Method: Thirty-one patients with essential hypertension (EH) and 31 age-matched healthy subjects as controls were recruited in the study. Plasma ELA concentration and vascular function parameters including brachial artery flow-mediated dilation (FMD) and brachial-ankle pulse wave velocity (baPWV) were measured.Results: We observed remarkably lower plasma ELA concentration in hypertensive patients as compared with controls (1.29 ± 0.56 ng/ml vs. 1.79 ± 0.55 ng/ml; P = 0.001). Linear correlation analysis showed that ELA was negatively correlated with systolic blood pressure (r = -0.388, P = 0.002) and diastolic blood pressure (r = -0.321, P = 0.011) and positively correlated with FMD (r = 0.319, P = 0.011). There was no statistically significant relationship between ELA and baPWV (r = 0.234, P = 0.067). Stepwise multiple linear analysis also identified a close association of plasma ELA levels with endothelial function.Conclusion: The present study demonstrates for the first time that circulating ELA levels are reduced in patients with EH. The fall in endogenous ELA levels may be involved in the pathogenesis of hypertension-related vascular damage.
Collapse
Affiliation(s)
- Yutao Li
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Xulong Yang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shun Ouyang
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Jiang He
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingbo Yu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiufang Lin
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Qunying Zhang
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
144
|
Deniz R, Baykus Y, Ustebay S, Ugur K, Yavuzkir Ş, Aydin S. Evaluation of elabela, apelin and nitric oxide findings in maternal blood of normal pregnant women, pregnant women with pre-eclampsia, severe pre-eclampsia and umbilical arteries and venules of newborns. J OBSTET GYNAECOL 2019; 39:907-912. [PMID: 31064239 DOI: 10.1080/01443615.2019.1572727] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pre-eclampsia is multisystem metabolic diseases, commonly accompanied by hypertension and proteinuria, which are among the important causes of maternal and perinatal mortality and morbidity worldwide. In a pre-eclampsia animal model study in the last year, Elabela (ELA) infusion was reported to correct hypertension and proteinuria and to normalise the birth weights of the offspring. Therefore, our main goal in this human study is to compare ELA, apelin (APLN) and nitric oxide (NO) levels in the maternal blood of pregnant women with pre-eclampsia and severe pre-eclampsia and in their newborns' venous-arterial cord blood with maternal blood of healthy pregnant women and their newborns' venous-arterial cord blood. Thirty controls, 28 pre-eclampsia and 24 severe pre-eclampsia cases and their newborns participated in this study. Maternal blood and newborn venous-arterial cord blood samples were collected from these patients. ELA, APLN and NO levels in these samples were measured by ELISA method. When the maternal blood ELA, APLN and NO amounts were compared with control groups, there was a significant decrease in both pre-eclamptic and severe pre-eclamptic women and this was more prominent in the women with severe pre-eclampsia. When ELA, APLN and NO levels in the newborn venous-arterial cord blood of control group was compared with that of severe pre-eclamptic and pre-eclamptic women; it was parallel with maternal findings. ELA, APLN and NO levels appear to play a role in the pathophysiology of pre-eclampsia. It is predicted that if these molecules, which are reduced due to pre-eclampsia and severe pre-eclampsia, are brought to physiological limits in the future; pre-eclampsia related maternal and perinatal mortality and morbidity can be reduced. Impact Statement What is already known on this subject? There are two studies (one human and one animal) in the literature evaluating only maternal elabela (ELA) levels in pre-eclamptic pregnancies. The animal study demonstrated decreased blood ELA levels in pre-eclamptic animals and the human study found increased blood ELA levels in pre-eclamptic patients. There are no studies evaluating maternal ELA levels in severe pre-eclampsia patients and also there are no studies evaluating maternal ELA levels in pre-eclampsia and severe pre-eclampsia patients. There are no studies evaluating newborns' venous-arterial blood APLN and NO levels. Apelin (APLN) and nitric oxide (NO) results were controversial in pre-eclampsia and severe pre-eclampsia patients. What the results of this study add? The present study, for the first time, demonstrates that decreased blood ELA, APLN and NO levels in maternal blood of pregnant women with pre-eclampsia and severe pre-eclampsia and in their newborns' venous-arterial blood. Furthermore, we have also demonstrated for the first time that decreased ELA, APLN and NO are also related with low birth weights. What the implications are of these findings for clinical practice and/or further research? The low levels of ELA, APLN and NO in maternal blood and newborns' venous-arterial blood may be the result or the cause of pathologic changes in pre-eclampsia and severe pre-eclampsia. Also, ELA, APLN and NO may be new indicator parameters of systemic endothelial dysfunction together. More studies are needed to evaluate the relationship between of ELA, APLN and NO and pre-eclampsia and severe pre-eclampsia and in newborns' venous-arterial blood.
Collapse
Affiliation(s)
- Rulin Deniz
- Department of Obstetrics and Gynecology, School of Medicine, Kafkas University , Kars , Turkey
| | - Yakup Baykus
- Department of Obstetrics and Gynecology, School of Medicine, Kafkas University , Kars , Turkey
| | - Sefer Ustebay
- Department of Pediatrics, School of Medicine, Kafkas University , Kars , Turkey
| | - Kader Ugur
- Department of Internal Medicine (Endocrinology and Metabolism Diseases), School of Medicine, Firat University , Elazig , Turkey
| | - Şeyda Yavuzkir
- Department of Obstetrics and Gynecology, School of Medicine, Firat University , Elazig , Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University , Elazig , Turkey
| |
Collapse
|
145
|
Yang P, Read C, Kuc RE, Nyimanu D, Williams TL, Crosby A, Buonincontri G, Southwood M, Sawiak SJ, Glen RC, Morrell NW, Davenport AP, Maguire JJ. A novel cyclic biased agonist of the apelin receptor, MM07, is disease modifying in the rat monocrotaline model of pulmonary arterial hypertension. Br J Pharmacol 2019; 176:1206-1221. [PMID: 30710493 PMCID: PMC6468262 DOI: 10.1111/bph.14603] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Apelin is an endogenous vasodilatory and inotropic peptide that is down-regulated in human pulmonary arterial hypertension, although the density of the apelin receptor is not significantly attenuated. We hypothesised that a G protein-biased apelin analogue MM07, which is more stable than the endogenous apelin peptide, may be beneficial in this condition with the advantage of reduced β-arrestin-mediated receptor internalisation with chronic use. EXPERIMENTAL APPROACH Male Sprague-Dawley rats received either monocrotaline to induce pulmonary arterial hypertension or saline and then daily i.p. injections of either MM07 or saline for 21 days. The extent of disease was assessed by right ventricular catheterisation, cardiac MRI, and histological analysis of the pulmonary vasculature. The effect of MM07 on signalling, proliferation, and apoptosis of human pulmonary artery endothelial cells was investigated. KEY RESULTS MM07 significantly reduced the elevation of right ventricular systolic pressure and hypertrophy induced by monocrotaline. Monocrotaline-induced changes in cardiac structure and function, including right ventricular end-systolic and end-diastolic volumes, ejection fraction, and left ventricular end-diastolic volume, were attenuated by MM07. MM07 also significantly reduced monocrotaline-induced muscularisation of small pulmonary blood vessels. MM07 stimulated endothelial NOS phosphorylation and expression, promoted proliferation, and attenuated apoptosis of human pulmonary arterial endothelial cells in vitro. CONCLUSION AND IMPLICATIONS Our findings suggest that chronic treatment with MM07 is beneficial in this animal model of pulmonary arterial hypertension by addressing disease aetiology. These data support the development of G protein-biased apelin receptor agonists with improved pharmacokinetic profiles for use in human disease.
Collapse
Affiliation(s)
- Peiran Yang
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Cai Read
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Rhoda E. Kuc
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Duuamene Nyimanu
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Thomas L. Williams
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Alexi Crosby
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Guido Buonincontri
- Wolfson Brain Imaging Centre, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Mark Southwood
- Department of PathologyPapworth Hospital NHS Foundation TrustCambridgeUK
| | - Stephen J. Sawiak
- Wolfson Brain Imaging Centre, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Robert C. Glen
- The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, CambridgeUK and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College LondonUK
| | | | | | - Janet J. Maguire
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| |
Collapse
|
146
|
Tang M, Huang Z, Luo X, Liu M, Wang L, Qi Z, Huang S, Zhong J, Chen JX, Li L, Wu D, Chen L. Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy. Free Radic Biol Med 2019; 134:445-457. [PMID: 30731113 DOI: 10.1016/j.freeradbiomed.2019.01.052] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/18/2023]
Abstract
Excess iron accumulation and cardiac oxidative stress have been shown as important mediators of cardiac hypertrophy, whereas it remains largely elusive about the occurrence of mitochondrial iron overload and its significance during cardiac hypertrophy. In the present study, we aim to investigate the role of NCOA4-mediated ferritinophagy and SFXN1-dependent mitochondria iron overload in apelin-13-induced cardiomyocytes hypertrophy. Apelin-13 significantly promotes ferric citrate (FAC)-induced total cellular and mitochondria ion production, as well as mitochondria ROS contents. Mechanistically, apelin-13 effectively induces the expression of SFXN1, a mitochondria iron transporting protein and NCOA4, a cargo receptor of ferritinophagy in dose and time-dependent manner. Conversely, blockade of APJ by F13A abolishes these stimulatory effects. In addition, apelin-13-triggered mitochondria iron overload is reversed by the genetic inhibition of SFXN1 and NCOA4. NCOA4 deficiency via its silencing also interferes with the enhanced expression of SFXN1 evoked by apelin-13. In apelin-13-treated H9c2 cells, the promotion in cell diameter, volume as well as protein contents are obviously suppressed by the knockdown of NCOA4 and SFXN1 with their corresponding siRNAs. Remarkably, the human and murine hypertrophic hearts models, as well as apelin-13-injected mice models, present evident cardiac mitochondrial iron deposition and raised expressions of NCOA4 and SFXN1. Taken together, these results provide experimental evidences that NCOA4-mediated ferritinophagy might be defined as an essential mechanism leading to apelin-13-cardiomyocytes hypertrophy in SFXN1-dependent mitochondria iron overload manners.
Collapse
Affiliation(s)
- Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Xuling Luo
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Lingzhi Wang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Zhihao Qi
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Shifang Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China.
| | - Di Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China.
| |
Collapse
|
147
|
Zhang Y, Wang Y, Luo M, Xu F, Lu Y, Zhou X, Cui W, Miao L. Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides 2019; 114:29-37. [PMID: 30959144 DOI: 10.1016/j.peptides.2019.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/25/2023]
Abstract
Diabetic nephropathy is a common complication of diabetes characterized by an increased rate of protein excretion in urine and kidney function loss. Elabela is a newly discovered peptide whose role in the regulation of diabetes is the major focus of this research. We established an in vivo model of Type 1 diabetes mellitus by injecting mice intraperitoneally with streptozotocin. The treatment group was administered Elabela for 6 months. In the present study, Elabela administration under diabetic conditions was found to reduce renal inflammation and fibrosis markers, leading to improvement in renal pathology and kidney dysfunction. Furthermore, Elabela acts through the phosphoinositide 3-kinase /Akt/mammalian target of rapamycin signaling pathway and decreases podocyte apoptosis, thereby exhibiting a nephroprotective effect against diabetic nephropathy. Our findings provide the first evidence that Elabela has a potential renoprotective effect in patients of diabetes.
Collapse
Affiliation(s)
- Yixian Zhang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Manyu Luo
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Feng Xu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yue Lu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Xiaoxi Zhou
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
148
|
Elabela and Apelin actions in healthy and pathological pregnancies. Cytokine Growth Factor Rev 2019; 46:45-53. [PMID: 30910349 DOI: 10.1016/j.cytogfr.2019.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Abstract
Pregnancy is a dynamic and precisely organized process during which one or more baby develops. Embryonic development relies on the formation of the placenta, allowing nutrient and oxygen exchange between the mother and the fetus. Dysfunction of placental formation lead to pregnancy disorders such as preeclampsia (PE) with serious deleterious consequences for fetal and maternal health. Identifying factors involved in fetoplacental homeostasis could inform better diagnostic and therapeutic strategies for these pathological pregnancies. Here, we summarize actions of elabela, apelin and their common receptor APJ in the fetoplacental unit. Studies indicate that elabela is crucial for embryo cardiovascular system formation and early placental development, while apelin acts in mid/late gestation to modulate fetal angiogenesis and energy homeostasis. Most of these findings, drawn from animal models, indicate a key role of elabela/apelin-APJ system in the fetoplacental unit. This review also provides an overview of clinical studies investigating elabela/apelin-APJ system in pathological complicated pregnancies such as PE and gestational diabetes mellitus (GDM). While elabela-deficient mice display all the features of PE, current clinical studies show no difference in circulating elabela levels between PE and control patients which does not support a role in PE development. Conversely, apelin levels are increased during PE, but the use of apelin as an early PE marker remains to be fully investigated.
Collapse
|
149
|
Yang X, Bian Y, Wan J, Li L, Yang P, Zhao S, Zhao H. Variants in the 5'‐UTR of
APELA
gene in women with preeclampsia. Prenat Diagn 2019; 39:308-313. [PMID: 30719741 DOI: 10.1002/pd.5431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/13/2018] [Accepted: 01/30/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Xin Yang
- Center for Reproductive MedicineShandong Provincial Hospital Affiliated to Shandong University Jinan China
- Reproductive Medicine Center of Zibo Maternity and Child Health Hospital Zibo China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University Jinan China
- The Key Laboratory for Reproductive EndocrinologyShandong University, Ministry of Education Jinan China
| | - Yuehong Bian
- Center for Reproductive MedicineShandong Provincial Hospital Affiliated to Shandong University Jinan China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University Jinan China
- The Key Laboratory for Reproductive EndocrinologyShandong University, Ministry of Education Jinan China
| | - Jipeng Wan
- Department of Obstetrics and GynecologyShandong Provincial Hospital Affiliated to Shandong University Jinan China
| | - Lei Li
- Center for Reproductive MedicineShandong Provincial Hospital Affiliated to Shandong University Jinan China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University Jinan China
- The Key Laboratory for Reproductive EndocrinologyShandong University, Ministry of Education Jinan China
- Department of Biological SciencesUniversity of Notre Dame Notre Dame IN USA
| | - Ping Yang
- Center for Reproductive MedicineShandong Provincial Hospital Affiliated to Shandong University Jinan China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University Jinan China
- The Key Laboratory for Reproductive EndocrinologyShandong University, Ministry of Education Jinan China
| | - Shigang Zhao
- Center for Reproductive MedicineShandong Provincial Hospital Affiliated to Shandong University Jinan China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University Jinan China
- The Key Laboratory for Reproductive EndocrinologyShandong University, Ministry of Education Jinan China
| | - Han Zhao
- Center for Reproductive MedicineShandong Provincial Hospital Affiliated to Shandong University Jinan China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University Jinan China
- The Key Laboratory for Reproductive EndocrinologyShandong University, Ministry of Education Jinan China
| |
Collapse
|
150
|
Liu Y, Wang L, Shi H. The biological function of ELABELA and APJ signaling in the cardiovascular system and pre-eclampsia. Hypertens Res 2019; 42:928-934. [PMID: 30626933 DOI: 10.1038/s41440-018-0193-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 12/02/2018] [Indexed: 01/12/2023]
Abstract
Pre-eclampsia (PE) is a pregnancy-specific syndrome that is characterized by hypertension and proteinuria. The etiology of PE is not completely understood but is believed to involve placental insufficiency and maternal vascular damage. Growing evidence supports an important role for the apelin receptor (APJ) system in regulating cardiovascular physiology. There are two vertebrate APJ ligands, APELIN and ELABELA, both of which mediate vasodilatory functions. A recent study linked deficient ELABELA signaling and the development of PE, though the molecular mechanism remains largely unknown. In this review, we summarize the biological function of the ELABELA and APJ system in cardiovascular homeostasis and discuss the potential mechanisms by which ELABELA and APJ regulate placenta trophoblast invasion and vascular functions and participate in the development of PE.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liquan Wang
- Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongjun Shi
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|