101
|
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome and may comprise several different phenotypes that are driven by different molecular mechanisms (endotypes). Several different clinical, genetic, and inflammatory phenotypes of COPD have been recognized and this may lead to more precise effective therapies. AREAS COVERED The different clinical phenotypes, including smoking versus nonsmoking COPD, small airway disease versus emphysema, non-exacerbators versus frequent exacerbators are discussed. Rare genetic endotypes (alpha1-antitrypsin deficiency, telomerase polymorphisms), and inflammatory phenotypes (eosinophilic versus neutrophilic) are also recognized in stable and exacerbating patients and have implications for the choice of therapy. EXPERT OPINION Clinical phenotypes have so far not proved to be very useful in selecting more personalized therapy for COPD. Even with genetic endotypes, this has not led to improved therapy. More promising is the recognition that COPD patients who have increased sputum or blood eosinophils tend to have more frequent exacerbations and inhaled corticosteroids are more effective in preventing exacerbation. Increased blood eosinophils have proved to be a useful biomarker now used to target ICS more effectively. Furthermore, COPD patients with low eosinophils are more likely to get pneumonia with ICS and to have lower airway bacterial colonization.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College London , London, UK
| |
Collapse
|
102
|
Laudermilk LT, Tovar A, Homstad AK, Thomas JM, McFadden KM, Tune MK, Cowley DO, Mock JR, Ideraabdullah F, Kelada SNP. Baseline and innate immune response characterization of a Zfp30 knockout mouse strain. Mamm Genome 2020; 31:205-214. [PMID: 32860515 PMCID: PMC7486244 DOI: 10.1007/s00335-020-09847-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022]
Abstract
Airway neutrophilia is correlated with disease severity in a number of chronic and acute pulmonary diseases, and dysregulation of neutrophil chemotaxis can lead to host tissue damage. The gene Zfp30 was previously identified as a candidate regulator of neutrophil recruitment to the lungs and secretion of CXCL1, a potent neutrophil chemokine, in a genome-wide mapping study using the Collaborative Cross. ZFP30 is a putative transcriptional repressor with a KRAB domain capable of inducing heterochromatin formation. Using a CRISPR-mediated knockout mouse model, we investigated the role that Zfp30 plays in recruitment of neutrophils to the lung using models of allergic airway disease and acute lung injury. We found that the Zfp30 null allele did not affect CXCL1 secretion or neutrophil recruitment to the lungs in response to various innate immune stimuli. Intriguingly, despite the lack of neutrophil phenotype, we found there was a significant reduction in the proportion of live Zfp30 homozygous female mutant mice produced from heterozygous matings. This deviation from the expected Mendelian ratios implicates Zfp30 in fertility or embryonic development. Overall, our results indicate that Zfp30 is an essential gene but does not influence neutrophilic inflammation in this particular knockout model.
Collapse
Affiliation(s)
- Lucas T Laudermilk
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Adelaide Tovar
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Alison K Homstad
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Joseph M Thomas
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Kathryn M McFadden
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Miriya K Tune
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Dale O Cowley
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Animal Models Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | - Jason R Mock
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Folami Ideraabdullah
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Samir N P Kelada
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA.
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
103
|
Mitri C, Xu Z, Bardin P, Corvol H, Touqui L, Tabary O. Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Front Pharmacol 2020; 11:1096. [PMID: 32848733 PMCID: PMC7396676 DOI: 10.3389/fphar.2020.01096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disorder among Caucasians, estimated to affect more than 70,000 people in the world. Severe and persistent bronchial inflammation and chronic bacterial infection, along with airway mucus obstruction, are hallmarks of CF lung disease and participate in its progression. Anti-inflammatory therapies are, therefore, of particular interest for CF lung disease. Furthermore, a better understanding of the molecular mechanisms involved in airway infection and inflammation in CF has led to the development of new therapeutic approaches that are currently under evaluation by clinical trials. These new strategies dedicated to CF inflammation are designed to treat different dysregulated aspects such as oxidative stress, cytokine secretion, and the targeting of dysregulated pathways. In this review, we summarize the current understanding of the cellular and molecular mechanisms that contribute to abnormal lung inflammation in CF, as well as the new anti-inflammatory strategies proposed to CF patients by exploring novel molecular targets and novel drug approaches.
Collapse
Affiliation(s)
- Christie Mitri
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Zhengzhong Xu
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Yangzhou University, Yangzhou, China
| | - Pauline Bardin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Département de Pédiatrie Respiratoire, Hôpital Trousseau, AP-HP, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Equipe Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Institut Pasteur, Paris, France
| | - Olivier Tabary
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| |
Collapse
|
104
|
CXCR2 antagonist for patients with chronic obstructive pulmonary disease with chronic mucus hypersecretion: a phase 2b trial. Respir Res 2020; 21:149. [PMID: 32532258 PMCID: PMC7291447 DOI: 10.1186/s12931-020-01401-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background Oral CXC chemokine receptor 2 (CXCR2) antagonists have been shown to inhibit neutrophil migration and activation in the lung in preclinical and human models of neutrophilic airway inflammation. A previous study with danirixin, a reversible CXCR2 antagonist, demonstrated a trend for improved respiratory symptoms and health status in patients with COPD. Methods This 26-week, randomised, double-blind, placebo-controlled phase IIb study enrolled symptomatic patients with mild-to-moderate COPD at risk for exacerbations. Patients received danirixin 5, 10, 25, 35 or 50 mg twice daily or placebo in addition to standard of care. Primary end-points were the dose response of danirixin compared with placebo on the incidence and severity of respiratory symptoms (Evaluating Respiratory Symptoms in COPD [E-RS:COPD] scores) and safety. Secondary end-points included the incidence of moderate-severe exacerbations, health status (COPD Assessment test, CAT) and health-related quality of life HRQoL (St. George Respiratory Questionnaire-COPD, SGRQ-C). Results A total of 614 participants were randomized to treatment. There were no improvements in E-RS:COPD, CAT or SGRQ-C scores in participants treated with any dose of danirixin compared to placebo; a larger than expected placebo effect was observed. There was an increased incidence of exacerbation in the danirixin-treated groups and an increased number of pneumonias in participants treated with danirixin 50 mg. Conclusions The robust placebo and study effects prohibited any conclusions on the efficacy of danirixin. However, the absence of a clear efficacy benefit and the observed increase in exacerbations in danirixin-treated groups suggests an unfavorable benefit-risk profile in patients with COPD. Trial registration This study was registered with clinicaltrials.gov, NCT03034967.
Collapse
|
105
|
Baci D, Bosi A, Gallazzi M, Rizzi M, Noonan DM, Poggi A, Bruno A, Mortara L. The Ovarian Cancer Tumor Immune Microenvironment (TIME) as Target for Therapy: A Focus on Innate Immunity Cells as Therapeutic Effectors. Int J Mol Sci 2020; 21:3125. [PMID: 32354198 PMCID: PMC7247443 DOI: 10.3390/ijms21093125] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer (OvCA) accounts for one of the leading causes of death from gynecologic malignancy. Despite progress in therapy improvements in OvCA, most patients develop a recurrence after first-line treatments, dependent on the tumor and non-tumor complexity/heterogeneity of the neoplasm and its surrounding tumor microenvironment (TME). The TME has gained greater attention in the design of specific therapies within the new era of immunotherapy. It is now clear that the immune contexture in OvCA, here referred as tumor immune microenvironment (TIME), acts as a crucial orchestrator of OvCA progression, thus representing a necessary target for combined therapies. Currently, several advancements of antitumor immune responses in OvCA are based on the characterization of tumor-infiltrating lymphocytes, which have been shown to correlate with a significantly improved clinical outcome. Here, we reviewed the literature on selected TIME components of OvCA, such as macrophages, neutrophils, γδ T lymphocytes, and natural killer (NK) cells; these cells can have a role in either supporting or limiting OvCA, depending on the TIME stimuli. We also reviewed and discussed the major (immune)-therapeutic approaches currently employed to target and/or potentiate macrophages, neutrophils, γδ T lymphocytes, and NK cells in the OvCA context.
Collapse
Affiliation(s)
- Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Annalisa Bosi
- Laboratory of Pharmacology, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Matteo Gallazzi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Manuela Rizzi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Douglas M. Noonan
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
- IRCCS MultiMedica, 20138 Milan, Italy;
| | - Alessandro Poggi
- UOSD Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | | | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| |
Collapse
|
106
|
Rapoport BL, Steel HC, Theron AJ, Smit T, Anderson R. Role of the Neutrophil in the Pathogenesis of Advanced Cancer and Impaired Responsiveness to Therapy. Molecules 2020; 25:molecules25071618. [PMID: 32244751 PMCID: PMC7180559 DOI: 10.3390/molecules25071618] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Notwithstanding the well-recognized involvement of chronic neutrophilic inflammation in the initiation phase of many types of epithelial cancers, a growing body of evidence has also implicated these cells in the pathogenesis of the later phases of cancer development, specifically progression and spread. In this setting, established tumors have a propensity to induce myelopoiesis and to recruit neutrophils to the tumor microenvironment (TME), where these cells undergo reprogramming and transitioning to myeloid-derived suppressor cells (MDSCs) with a pro-tumorigenic phenotype. In the TME, these MDSCs, via the production of a broad range of mediators, not only attenuate the anti-tumor activity of tumor-infiltrating lymphocytes, but also exclude these cells from the TME. Realization of the pro-tumorigenic activities of MDSCs of neutrophilic origin has resulted in the development of a range of adjunctive strategies targeting the recruitment of these cells and/or the harmful activities of their mediators of immunosuppression. Most of these are in the pre-clinical or very early clinical stages of evaluation. Notable exceptions, however, are several pharmacologic, allosteric inhibitors of neutrophil/MDSC CXCR1/2 receptors. These agents have entered late-stage clinical assessment as adjuncts to either chemotherapy or inhibitory immune checkpoint-targeted therapy in patients with various types of advanced malignancy. The current review updates the origins and identities of MDSCs of neutrophilic origin and their spectrum of immunosuppressive mediators, as well as current and pipeline MDSC-targeted strategies as potential adjuncts to cancer therapies. These sections are preceded by a consideration of the carcinogenic potential of neutrophils.
Collapse
Affiliation(s)
- Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa;
- Correspondence: ; Tel.: +27-11-880-4169
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa;
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| |
Collapse
|
107
|
Osei ET, Brandsma CA, Timens W, Heijink IH, Hackett TL. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur Respir J 2020; 55:13993003.00563-2019. [PMID: 31727692 DOI: 10.1183/13993003.00563-2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) cause significant morbidity and mortality worldwide. In the context of disease pathogenesis, both asthma and COPD involve chronic inflammation of the lung and are characterised by the abnormal release of inflammatory cytokines, dysregulated immune cell activity and remodelling of the airways. To date, current treatments still only manage symptoms and do not reverse the primary disease processes. In recent work, interleukin (IL)-1α and IL-1β have been suggested to play important roles in both asthma and COPD. In this review, we summarise overwhelming pre-clinical evidence for dysregulated signalling of IL-1α and IL-1β contributing to disease pathogenesis and discuss the paradox of IL-1 therapeutic studies in asthma and COPD. This is particularly important given recent completed and ongoing clinical trials with IL-1 biologics that have had varying degrees of failure and success as therapeutics for disease modification in asthma and COPD.
Collapse
Affiliation(s)
- Emmanuel T Osei
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada .,Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Corry-Anke Brandsma
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wim Timens
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
108
|
Chellappan DK, Yee LW, Xuan KY, Kunalan K, Rou LC, Jean LS, Ying LY, Wie LX, Chellian J, Mehta M, Satija S, Singh SK, Gulati M, Dureja H, Da Silva MW, Tambuwala MM, Gupta G, Paudel KR, Wadhwa R, Hansbro PM, Dua K. Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug Dev Res 2020; 81:419-436. [PMID: 32048757 DOI: 10.1002/ddr.21648] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/29/2022]
Abstract
Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.
Collapse
Affiliation(s)
- Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim W Yee
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kong Y Xuan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishen Kunalan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim C Rou
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Leong S Jean
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee Y Ying
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee X Wie
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Mateus Webba Da Silva
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jaipur, India
| | - Keshav R Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
109
|
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19:253-275. [PMID: 31969717 DOI: 10.1038/s41573-019-0054-z] [Citation(s) in RCA: 454] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
110
|
Tang F, Tie Y, Tu C, Wei X. Surgical trauma-induced immunosuppression in cancer: Recent advances and the potential therapies. Clin Transl Med 2020; 10:199-223. [PMID: 32508035 PMCID: PMC7240866 DOI: 10.1002/ctm2.24] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Surgical resection remains the mainstay treatment for solid cancers, especially for localized disease. However, the postoperative immunosuppression provides a window for cancer cell proliferation and awakening dormant cancer cells, leading to rapid recurrences or metastases. This immunosuppressive status after surgery is associated with the severity of surgical trauma since immunosuppression induced by minimally invasive surgery is less than that of an extensive open surgery. The systemic response to tissue damages caused by surgical operations and the subsequent wound healing induced a cascade alteration in cellular immunity. After surgery, patients have a high level of circulating damage-associated molecular patterns (DAMPs), triggering a local and systemic inflammation. The inflammatory metrics in the immediate postoperative period was associated with the prognosis of cancer patients. Neutrophils provide the first response to surgical trauma, and the production of neutrophil extracellular traps (NETs) promotes cancer progression. Activated macrophage during wound healing presents a tumor-associated phenotype that cancers can exploit for their survival advantage. In addition, the amplification and activation of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) or the elevated programmed death ligand-1 and vascular endothelial growth factor expression under surgical trauma, exacerbate the immunosuppression and favor of the formation of the premetastatic niche. Therapeutic strategies to reduce the cellular immunity impairment after surgery include anti-DAMPs, anti-postoperative inflammation or inflammatory/pyroptosis signal, combined immunotherapy with surgery, antiangiogenesis and targeted therapies for neutrophils, macrophages, MDSCs, and Tregs. Further, the application of enhanced recovery after surgery also has a feasible outcome for postoperative immunity restoration. Overall, current therapies to improve the cellular immunity under the special condition after surgery are relatively lacking. Further understanding the underlying mechanisms of surgical trauma-related immunity dysfunction, phenotyping the immunosuppressive cells, and developing the related therapeutic intervention should be explored.
Collapse
Affiliation(s)
- Fan Tang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
- Department of OrthopeadicsWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Yan Tie
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanPeople's Republic of China
| | - Chongqi Tu
- Department of OrthopeadicsWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| |
Collapse
|
111
|
Comment on: Pathological consequences of Anti-Citrullinated Protein Antibodies in Tear Fluid and therapeutic potential of Pooled Human Immune Globulin-Eye Drops in Dry Eye Disease: Too much of a good thing, how chronic neutrophilic inflammation can drive human disease. Ocul Surf 2019; 18:193-195. [PMID: 31863861 DOI: 10.1016/j.jtos.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
112
|
McElvaney OJ, Wade P, Murphy M, Reeves EP, McElvaney NG. Targeting airway inflammation in cystic fibrosis. Expert Rev Respir Med 2019; 13:1041-1055. [PMID: 31530195 DOI: 10.1080/17476348.2019.1666715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: The major cause of morbidity and mortality in patients with cystic fibrosis (CF) is lung disease. Inflammation in the CF airways occurs from a young age and contributes significantly to disease progression and shortened life expectancy. Areas covered: In this review, we discuss the key immune cells involved in airway inflammation in CF, the contribution of the intrinsic genetic defect to the CF inflammatory phenotype, and anti-inflammatory strategies designed to overcome what is a critical factor in the pathogenesis of CF lung disease. Review of the literature was carried out using the MEDLINE (from 1975 to 2018), Google Scholar and The Cochrane Library databases. Expert opinion: Therapeutic interventions specifically targeting the defective CF transmembrane conductance regulator (CFTR) protein have changed the clinical landscape and significantly improved the outlook for CF. As survival estimates for people with CF increase, long-term management has become an important focus, with an increased need for therapies targeted at specific elements of inflammation, to complement CFTR modulator therapies.
Collapse
Affiliation(s)
- Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Patricia Wade
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Mark Murphy
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
113
|
Yamazumi Y, Sasaki O, Suyama-Fuchino S, Kohu K, Kamoshida Y, Harada H, Fujio K, Oda T, Akiyama T. The RNA-binding protein Mex-3B plays critical roles in the development of steroid-resistant neutrophilic airway inflammation. Biochem Biophys Res Commun 2019; 519:220-226. [PMID: 31493864 DOI: 10.1016/j.bbrc.2019.08.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 01/18/2023]
Abstract
While most asthma can be treated with steroids, about 10%, called severe asthma, is refractory to steroids. It has recently been shown that in a subgroup of severe asthma cases, neutrophils that infiltrate into the airways play an important role in inflammation. However, the mechanisms underlying this increased neutrophil infiltration are not well understood. Here, using a mouse model of steroid-resistant neutrophilic inflammation, we show that mice deficient for the RNA-binding protein Mex-3B have significantly less neutrophil infiltration in the airways than wild-type mice. We further demonstrate that Mex-3B post-transcriptionally upregulates CXCL2, a chemokine that induces neutrophil chemotaxis and migration. Moreover, we show that treatment with either anti-CXCL2 antibody or anti-Mex-3B antisense oligonucleotide suppresses neutrophilic allergic airway inflammation. These results suggest that Mex-3B-mediated induction of CXCL2 is crucial for steroid-resistant neutrophilic allergic airway inflammation. Our findings suggest new strategies for therapeutic intervention in steroid-resistant severe asthma.
Collapse
Affiliation(s)
- Yusuke Yamazumi
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Oh Sasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Saki Suyama-Fuchino
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kazuyoshi Kohu
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yuki Kamoshida
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hiroaki Harada
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeaki Oda
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
114
|
Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2019; 18:454-466. [PMID: 29626211 DOI: 10.1038/s41577-018-0006-6] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytokines play a key role in orchestrating and perpetuating the chronic airway inflammation in asthma and chronic obstructive pulmonary disease (COPD), making them attractive targets for treating these disorders. Asthma and some cases of COPD are mainly driven by type 2 immune responses, which comprise increased airway eosinophils, T helper 2 (TH2) cells and group 2 innate lymphoid cells (ILC2s) and the secretion of IL-4, IL-5 and IL-13. Clinical trials of antibodies that block these interleukins have shown reduced acute exacerbations and oral corticosteroid use and improvements in lung function and symptoms in selected patients. More recent approaches that block upstream cytokines, such as thymic stromal lymphopoietin (TSLP), show promise in improving patient outcome. Importantly, the clinical trials in cytokine blockade have highlighted the crucial importance of patient selection for the successful use of these expensive therapies and the need for biomarkers to better predict drug responses.
Collapse
|
115
|
Wang H, Pan L, Liu Z. Neutrophils as a Protagonist and Target in Chronic Rhinosinusitis. Clin Exp Otorhinolaryngol 2019; 12:337-347. [PMID: 31394895 PMCID: PMC6787473 DOI: 10.21053/ceo.2019.00654] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Neutrophils have traditionally been acknowledged as the first immune cells that are recruited to inflamed tissues during acute inflammation. By contrast, their importance in the context of chronic inflammation has been studied in less depth. Neutrophils can be recruited and are largely present in the nasal mucosa of patients with chronic rhinosinusitis (CRS) both in Asians and in Caucasians. Increased infiltration of neutrophils in patients with CRS has been linked to poor corticosteroid response and disease prognosis. Meanwhile, tissue neutrophils may possess specific phenotypic features distinguishing them from resting blood counterparts and are endowed with particular functions, such as cytokines and chemokines production, thus may contribute to the pathogenesis of CRS. This review aims to summarize our current understanding of the pathophysiologic mechanisms of CRS, with a focus on the roles of neutrophils. We discuss recruitment, function, and regulation of neutrophils in CRS and outline the potential therapeutic strategies targeting neutrophils.
Collapse
Affiliation(s)
- Hai Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Pan
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
116
|
Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir J 2019; 54:13993003.00651-2019. [PMID: 31073084 DOI: 10.1183/13993003.00651-2019] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a significant cause of morbidity and mortality worldwide, and its prevalence is increasing. Airway inflammation is a consistent feature of COPD and is implicated in the pathogenesis and progression of COPD, but anti-inflammatory therapy is not first-line treatment. The inflammation has many guises and phenotyping this heterogeneity has revealed different patterns. Neutrophil-associated COPD with activation of the inflammasome, T1 and T17 immunity is the most common phenotype with eosinophil-associated T2-mediated immunity in a minority and autoimmunity observed in more severe disease. Biomarkers have enabled targeted anti-inflammatory strategies and revealed that corticosteroids are most effective in those with evidence of eosinophilic inflammation, whereas, in contrast to severe asthma, response to anti-interleukin-5 biologicals in COPD has been disappointing, with smaller benefits for the same intensity of eosinophilic inflammation questioning its role in COPD. Biological therapies beyond T2-mediated inflammation have not demonstrated benefit and in some cases increased risk of infection, suggesting that neutrophilic inflammation and inflammasome activation might be largely driven by bacterial colonisation and dysbiosis. Herein we describe current and future biomarker approaches to assess inflammation in COPD and how this might reveal tractable approaches to precision medicine and unmask important host-environment interactions leading to airway inflammation.
Collapse
Affiliation(s)
- Christopher Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Dept of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Neil Greening
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Dept of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
117
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a major global health problem that is poorly treated by current therapies as it has proved difficult to treat the underlying inflammation, which is largely corticosteroid-resistant in most patients. Although rare genetic endotypes of COPD have been recognized, despite the clinical heterogeneity of COPD, it has proved difficult to identify distinct inflammatory endotypes. Most patients have increased neutrophils and macrophages in sputum, reflecting the increased secretion of neutrophil and monocyte chemotactic mediators in the lungs. However, some patients also have increased eosinophils in sputum and this may be reflected by increased blood eosinophils. Increased blood and sputum eosinophils are associated with more frequent exacerbations and predict a good response to corticosteroids in reducing and treating acute exacerbations. Eosinophilic COPD may represent an overlap with asthma but the mechanism of eosinophilia is uncertain as, although an increase in sputum IL-5 has been detected, anti-IL-5 therapies are not effective in preventing exacerbations. More research is needed to link inflammatory endotypes to clinical manifestations and outcomes in COPD and in particular to predict response to precision medicines.
Collapse
Affiliation(s)
- Peter J. Barnes
- National Heart and Lung Institute Imperial College London UK
| |
Collapse
|
118
|
Chemokines in COPD: From Implication to Therapeutic Use. Int J Mol Sci 2019; 20:ijms20112785. [PMID: 31174392 PMCID: PMC6600384 DOI: 10.3390/ijms20112785] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Chronic Obstructive Pulmonary Disease (COPD) represents the 3rd leading cause of death in the world. The underlying pathophysiological mechanisms have been the focus of extensive research in the past. The lung has a complex architecture, where structural cells interact continuously with immune cells that infiltrate into the pulmonary tissue. Both types of cells express chemokines and chemokine receptors, making them sensitive to modifications of concentration gradients. Cigarette smoke exposure and recurrent exacerbations, directly and indirectly, impact the expression of chemokines and chemokine receptors. Here, we provide an overview of the evidence regarding chemokines involvement in COPD, and we hypothesize that a dysregulation of this tightly regulated system is critical in COPD evolution, both at a stable state and during exacerbations. Targeting chemokines and chemokine receptors could be highly attractive as a mean to control both chronic inflammation and bronchial remodeling. We present a special focus on the CXCL8-CXCR1/2, CXCL9/10/11-CXCR3, CCL2-CCR2, and CXCL12-CXCR4 axes that seem particularly involved in the disease pathophysiology.
Collapse
|
119
|
Assaf S, Hanania NA. Novel therapeutic targets and drug development for the precision treatment of COPD. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1614438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sara Assaf
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
120
|
Iida T, Matsuzawa Y, Ogura H, Nagakubo T, Wakamatsu A, Ambery C, Miller BE, Lazaar AL, Numachi Y. Evaluation of the Safety, Tolerability, Pharmacokinetics, and Food Effect of Danirixin Hydrobromide Tablets in Japanese Healthy Elderly Participants. Clin Pharmacol Drug Dev 2019; 8:1081-1087. [PMID: 31056840 DOI: 10.1002/cpdd.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/08/2019] [Indexed: 11/06/2022]
Abstract
Danirixin is a selective and reversible CXC chemokine receptor 2 antagonist that may be useful for the treatment of respiratory diseases such as chronic obstructive pulmonary disease. This study aimed to evaluate the safety, tolerability, and pharmacokinetics of danirixin after administration of single oral doses of 10, 50, and 100 mg danirixin hydrobromide (HBr) tablets in the fed state (high-fat meal) (part 1) and to evaluate the food effect (low-fat meal) on the pharmacokinetics of danirixin after administration of a single oral dose of 50 mg danirixin HBr tablets (part 2). A total of 34 Japanese healthy elderly male participants were enrolled; 18 participants were included in part 1, and 16 in part 2. The systemic exposure to danirixin (maximum blood concentration [Cmax ] and area under the concentration-time curve [AUC0-t ]) increased in an approximately dose-proportional manner. The exposure to danirixin was lower in the fed state (low-fat meal) than in the fasted state (a 56% and 35% decrease in Cmax and AUC0-t , respectively). This first study of danirixin in Japanese healthy elderly participants showed a favorable safety profile with no drug-related adverse events and no clinically significant concerns in clinical laboratory values, vital signs, ocular examination, or electrocardiograms.
Collapse
Affiliation(s)
- Takayuki Iida
- Clinical Pharmacology Office, Japan Development Division, GlaxoSmithKline KK, Tokyo, Japan
| | - Yuki Matsuzawa
- Clinical Pharmacology Office, Japan Development Division, GlaxoSmithKline KK, Tokyo, Japan
| | - Hirofumi Ogura
- Clinical Pharmacology Office, Japan Development Division, GlaxoSmithKline KK, Tokyo, Japan
| | - Takashi Nagakubo
- Biomedical Data Sciences Department, Japan Development Division, GlaxoSmithKline KK, Tokyo, Japan
| | - Akira Wakamatsu
- Pre-Clinical Development Department, Japan Development Division, GlaxoSmithKline KK, Tokyo, Japan
| | - Claire Ambery
- Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, Stockley Park, UK
| | - Bruce E Miller
- Respiratory Therapy Area Unit, GlaxoSmithKline Research and Development, Collegeville, PA, USA
| | - Aili L Lazaar
- Respiratory Therapy Area Unit, GlaxoSmithKline Research and Development, Collegeville, PA, USA
| | - Yotaro Numachi
- Medicines Development, Japan Development Division, GlaxoSmithKline KK, Tokyo, Japan
| |
Collapse
|
121
|
Jasper AE, McIver WJ, Sapey E, Walton GM. Understanding the role of neutrophils in chronic inflammatory airway disease. F1000Res 2019; 8. [PMID: 31069060 PMCID: PMC6489989 DOI: 10.12688/f1000research.18411.1] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Airway neutrophilia is a common feature of many chronic inflammatory lung diseases and is associated with disease progression, often regardless of the initiating cause. Neutrophils and their products are thought to be key mediators of the inflammatory changes in the airways of patients with chronic obstructive pulmonary disease (COPD) and have been shown to cause many of the pathological features associated with disease, including emphysema and mucus hypersecretion. Patients with COPD also have high rates of bacterial colonisation and recurrent infective exacerbations, suggesting that neutrophil host defence mechanisms are impaired, a concept supported by studies showing alterations to neutrophil migration, degranulation and reactive oxygen species production in cells isolated from patients with COPD. Although the role of neutrophils is best described in COPD, many of the pathological features of this disease are not unique to COPD and also feature in other chronic inflammatory airway diseases, including asthma, cystic fibrosis, alpha-1 anti-trypsin deficiency, and bronchiectasis. There is increasing evidence for immune cell dysfunction contributing to inflammation in many of these diseases, focusing interest on the neutrophil as a key driver of pulmonary inflammation and a potential therapeutic target than spans diseases. This review discusses the evidence for neutrophilic involvement in COPD and also considers their roles in alpha-1 anti-trypsin deficiency, bronchiectasis, asthma, and cystic fibrosis. We provide an in-depth assessment of the role of the neutrophil in each of these conditions, exploring recent advances in understanding, and finally discussing the possibility of common mechanisms across diseases.
Collapse
Affiliation(s)
- Alice E Jasper
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - William J McIver
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Georgia M Walton
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| |
Collapse
|
122
|
Knabe L, Petit A, Vernisse C, Charriot J, Pugnière M, Henriquet C, Sasorith S, Molinari N, Chanez P, Berthet JP, Suehs C, Vachier I, Ahmed E, Bourdin A. CCSP counterbalances airway epithelial-driven neutrophilic chemotaxis. Eur Respir J 2019; 54:13993003.02408-2018. [DOI: 10.1183/13993003.02408-2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/08/2019] [Indexed: 11/05/2022]
Abstract
Club cell secretory protein (CCSP) knockout mice exhibit increased airway neutrophilia, as found in chronic obstructive pulmonary disease (COPD). We therefore investigated whether treating COPD airway epithelia with recombinant human CCSP (rhCCSP) could dampen exaggerated airway neutrophilia.Control, smoker and COPD air–liquid interface (ALI) cultures exposed to cigarette smoke extract (CSE) were treated with and without rhCCSP. The chemotactic properties of the supernatants were assessed using Dunn chambers. Neutrophil chemotaxis along recombinant human interleukin 8 (rhIL8) gradients (with and without rhCCSP) was also determined. rhCCSP–rhIL8 interactions were tested through co-immunoprecipitation, Biacore surface plasmon resonance (SPR) andin silicomodelling. The relationship between CCSP/IL8 concentration ratios in the supernatant of induced sputum from COPD patientsversusneutrophilic airway infiltration assessed in lung biopsies was assessed.Increased neutrophilic chemotactic activity of CSE-treated ALI cultures followed IL8 concentrations and returned to normal when supplemented with rhCCSP. rhIL8-induced chemotaxis of neutrophils was reduced by rhCCSP. rhCCSP and rhIL8 co-immunoprecipitated. SPR confirmed thisin vitrointeraction (equilibrium dissociation constant=8 µM).In silicomodelling indicated that this interaction was highly likely. CCSP/IL8 ratios in induced sputum correlated well with the level of small airway neutrophilic infiltration (r2=0.746, p<0.001).CCSP is a biologically relevant counter-balancer of neutrophil chemotactic activity. These different approaches used in this study suggest that, among the possible mechanisms involved, CCSP may directly neutralise IL8.
Collapse
|
123
|
Dyer DP, Nebot JB, Kelly CJ, Medina‐Ruiz L, Schuette F, Graham GJ. The chemokine receptor CXCR2 contributes to murine adipocyte development. J Leukoc Biol 2019; 105:497-506. [PMID: 30517976 PMCID: PMC6392114 DOI: 10.1002/jlb.1a0618-216rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 01/20/2023] Open
Abstract
Chemokines are members of a large family of chemotactic cytokines that signal through their receptors to mediate leukocyte recruitment during inflammation and homeostasis. The chemokine receptor CXCR2 has largely been associated with neutrophil recruitment. However, there is emerging evidence of roles for chemokines and their receptors in processes other than leukocyte migration. We have previously demonstrated that CXCR2 knockout (KO) mice have thinner skin compared to wild-type mice. Herein we demonstrate that this is due to a thinner subcutaneous adipose layer, as a result of fewer and smaller individual adipocytes. We observe a similar phenotype in other fat depots and present data that suggests this may be due to reduced expression of adipogenesis related genes associated with adipocyte specific CXCR2 signaling. Interestingly, this phenotype is evident in female, but not male, CXCR2 KO mice. These findings expand our understanding of nonleukocyte related chemokine receptor functions and help to explain some previously observed adipose-related phenotypes in CXCR2 KO mice.
Collapse
Affiliation(s)
- Douglas P. Dyer
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
- Wellcome Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUnited Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUnited Kingdom
| | - Joan Boix Nebot
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Christopher J. Kelly
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Laura Medina‐Ruiz
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Fabian Schuette
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
124
|
Xiang L, Gilkes DM. The Contribution of the Immune System in Bone Metastasis Pathogenesis. Int J Mol Sci 2019; 20:ijms20040999. [PMID: 30823602 PMCID: PMC6412551 DOI: 10.3390/ijms20040999] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis is associated with significant morbidity for cancer patients and results in a reduced quality of life. The bone marrow is a fertile soil containing a complex composition of immune cells that may actually provide an immune-privileged niche for disseminated tumor cells to colonize and proliferate. In this unique immune milieu, multiple immune cells including T cells, natural killer cells, macrophages, dendritic cells, myeloid-derived suppressor cells, and neutrophils are involved in the process of bone metastasis. In this review, we will discuss the crosstalk between immune cells in bone microenvironment and their involvement with cancer cell metastasis to the bone. Furthermore, we will highlight the anti-tumoral and pro-tumoral function of each immune cell type that contributes to bone metastasis. We will end with a discussion of current therapeutic strategies aimed at sensitizing immune cells.
Collapse
Affiliation(s)
- Lisha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu 610041, China.
| | - Daniele M Gilkes
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
125
|
Matrine reduces cigarette smoke-induced airway neutrophilic inflammation by enhancing neutrophil apoptosis. Clin Sci (Lond) 2019; 133:551-564. [PMID: 30733313 DOI: 10.1042/cs20180912] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a major incurable global health burden and will become the third largest cause of death in the world by 2030. It is well established that an exaggerated inflammatory and oxidative stress response to cigarette smoke (CS) leads to, emphysema, small airway fibrosis, mucus hypersecretion, and progressive airflow limitation. Current treatments have limited efficacy in inhibiting chronic inflammation and consequently do not reverse the pathology that initiates and drives the long-term progression of disease. In particular, there are no effective therapeutics that target neutrophilic inflammation in COPD, which is known to cause tissue damage by degranulation of a suite of proteolytic enzymes including neutrophil elastase (NE). Matrine, an alkaloid compound extracted from Sophora flavescens Ait, has well known anti-inflammatory activity. Therefore, the aim of the present study was to investigate whether matrine could inhibit CS-induced lung inflammation in mice. Matrine significantly reduced CS-induced bronchoalveolar lavage fluid (BALF) neutrophilia and NE activity in mice. The reduction in BALF neutrophils in CS-exposed mice by matrine was not due to reductions in pro-neutrophil cytokines/chemokines, but rather matrine's ability to cause apoptosis of neutrophils, which we demonstrated ex vivo Thus, our data suggest that matrine has anti-inflammatory actions that could be of therapeutic potential in treating CS-induced lung inflammation observed in COPD.
Collapse
|
126
|
Uddin M, Watz H, Malmgren A, Pedersen F. NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma. Front Immunol 2019; 10:47. [PMID: 30804927 PMCID: PMC6370641 DOI: 10.3389/fimmu.2019.00047] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
Neutrophils play a central role in innate immunity, inflammation, and resolution. Unresolving neutrophilia features as a disrupted inflammatory process in the airways of patients with chronic obstructive pulmonary disease (COPD) and severe asthma. The extent to which this may be linked to disease pathobiology remains obscure and could be further confounded by indication of glucocorticoids or concomitant respiratory infections. The formation of neutrophil extracellular traps (NETs) represents a specialized host defense mechanism that entrap and eliminate invading microbes. NETs are web-like scaffolds of extracellular DNA in complex with histones and neutrophil granular proteins, such as myeloperoxidase and neutrophil elastase. Distinct from apoptosis, NET formation is an active form of cell death that could be triggered by various microbial, inflammatory, and endogenous or exogenous stimuli. NETs are reportedly enriched in neutrophil-dominant refractory lung diseases, such as COPD and severe asthma. Evidence for a pathogenic role for respiratory viruses (e.g., Rhinovirus), bacteria (e.g., Staphylococcus aureus) and fungi (e.g., Aspergillus fumigatus) in NET induction is emerging. Dysregulation of this process may exert localized NET burden and contribute to NETopathic lung inflammation. Disentangling the role of NETs in human health and disease offer unique opportunities for therapeutic modulation. The chemokine CXCR2 receptor regulates neutrophil activation and migration, and small molecule CXCR2 antagonists (e.g., AZD5069, danirixin) have been developed to selectively block neutrophilic inflammatory pathways. NET-stabilizing agents using CXCR2 antagonists are being investigated in proof-of-concept studies in patients with COPD to provide mechanistic insights. Clinical validation of this type could lead to novel therapeutics for multiple CXCR2-related NETopathologies. In this Review, we discuss the emerging role of NETs in the clinicopathobiology of COPD and severe asthma and provide an outlook on how novel NET-stabilizing therapies via CXCR2 blockade could be leveraged to disrupt NETopathic inflammation in disease-specific phenotypes.
Collapse
Affiliation(s)
- Mohib Uddin
- Respiratory Global Medicines Development, AstraZeneca, Gothenburg, Sweden.,Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic, Großhansdorf, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Anna Malmgren
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frauke Pedersen
- Pulmonary Research Institute at LungenClinic, Großhansdorf, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany.,LungenClinic, Großhansdorf, Germany
| |
Collapse
|
127
|
Campbell JJ, Ebsworth K, Ertl LS, McMahon JP, Wang Y, Yau S, Mali VR, Chhina V, Kumamoto A, Liu S, Dang T, Newland D, Charo IF, Zhang P, Schall TJ, Singh R. Efficacy of Chemokine Receptor Inhibition in Treating IL-36α-Induced Psoriasiform Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 202:1687-1692. [PMID: 30718298 DOI: 10.4049/jimmunol.1801519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/05/2019] [Indexed: 12/29/2022]
Abstract
Several types of psoriasiform dermatitis are associated with increased IL-36 cytokine activity in the skin. A rare, but severe, psoriasis-like disorder, generalized pustular psoriasis (GPP), is linked to loss-of-function mutations in the gene encoding IL-36RA, an important negative regulator of IL-36 signaling. To understand the effects of IL-36 dysregulation in a mouse model, we studied skin inflammation induced by intradermal injections of preactivated IL-36α. We found the immune cells infiltrating IL-36α-injected mouse skin to be of dramatically different composition than those infiltrating imiquimod-treated skin. The IL-36α-induced leukocyte population comprised nearly equal numbers of CD4+ αβ T cells, neutrophils, and inflammatory dendritic cells, whereas the imiquimod-induced population comprised γδ T cells and neutrophils. Ligands for chemokine receptors CCR6 and CXCR2 are increased in both GPP and IL-36α-treated skin, which led us to test an optimized small-molecule antagonist (CCX624) targeting CCR6 and CXCR2 in the IL-36α model. CCX624 significantly reduced the T cell, neutrophil, and inflammatory dendritic cell infiltrates and was more effective than saturating levels of an anti-IL-17RA mAb at reducing inflammatory symptoms. These findings put CCR6 and CXCR2 forward as novel targets for a mechanistically distinct therapeutic approach for inflammatory skin diseases involving dysregulated IL-36 signaling, such as GPP.
Collapse
Affiliation(s)
| | | | | | | | - Yu Wang
- ChemoCentryx, Inc., Mountain View, CA 94043
| | - Simon Yau
- ChemoCentryx, Inc., Mountain View, CA 94043
| | | | | | | | | | - Ton Dang
- ChemoCentryx, Inc., Mountain View, CA 94043
| | | | | | | | | | | |
Collapse
|
128
|
Inui T, Watanabe M, Nakamoto K, Sada M, Hirata A, Nakamura M, Honda K, Ogawa Y, Takata S, Yokoyama T, Saraya T, Kurai D, Wada H, Ishii H, Takizawa H. Bronchial epithelial cells produce CXCL1 in response to LPS and TNFα: A potential role in the pathogenesis of COPD. Exp Lung Res 2019; 44:323-331. [PMID: 30676127 DOI: 10.1080/01902148.2018.1520936] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE Neutrophilic airway inflammation plays a central role in chronic obstructive pulmonary disease (COPD). CXC chemokine ligand (CXCL)1 is a neutrophil chemokine involved in the pathogenesis of COPD. However, its clinical significance in COPD patients is poorly understood. AIM OF THE STUDY To assess the production of CXCL1 by bronchial epithelial cells in response to lipopolysaccharide (LPS) and tumor necrosis factor (TNF)α. MATERIALS AND METHODS We measured sputum CXCL1 and CXCL8 levels in patients with COPD, asthma, and asthma-COPD overlap (ACO), and compared them to those of patients with interstitial pneumonia (IP). Using primary human bronchial epithelial cells and BEAS-2B cells, CXCL1 protein release and mRNA expression were measured after LPS or TNFα stimulation. We evaluated signal transduction mechanisms for CXCL1 production using nuclear factor-κ B (NF-kB) and mitogen-activated protein kinase (MAPK) inhibitors, and examined the effects of anti-inflammatory agents on CXCL1 production in BEAS-2B cells. RESULTS Sputum CXCL1 levels in COPD and ACO patients were higher than in IP patients, whereas sputum CXCL8 levels were not. Sputum CXCL1 levels were not affected by inhaled corticosteroid usage, whereas sputum CXCL8 levels tended to be affected. LPS and TNFα stimulated CXCL1 production and mRNA expression in bronchial epithelial cells. NF-kB and MAPK p38 were involved in LPS-induced CXCL1 production. Therapeutic anti-inflammatory agents minimally attenuated CXCL1 production and considerably inhibited CXCL8 production in BEAS-2B cells. CONCLUSIONS Sputum CXCL1 levels is a potentially better diagnostic marker for COPD than sputum CXCL8 levels, which is explained by that CXCL1 production in bronchial epithelial cells is less affected by therapeutic anti-inflammatory agents than CXCL8 production.
Collapse
Affiliation(s)
- Toshiya Inui
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Masato Watanabe
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Keitaro Nakamoto
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Mitsuru Sada
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Aya Hirata
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Masuo Nakamura
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Kojiro Honda
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Yukari Ogawa
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Saori Takata
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Takuma Yokoyama
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Takeshi Saraya
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Daisuke Kurai
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Hiroo Wada
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Haruyuki Ishii
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| | - Hajime Takizawa
- a Department of Respiratory Medicine , Kyorin University School of Medicine , Mitaka , Japan
| |
Collapse
|
129
|
Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. Int J Mol Sci 2018; 19:ijms19113402. [PMID: 30380761 PMCID: PMC6275012 DOI: 10.3390/ijms19113402] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Cytokines are key players in the initiation and propagation of inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis and allergic asthma. This makes them attractive targets for specific novel anti-inflammatory treatment strategies. Recently, both interleukin-1 (IL-1) and IL-6 have been associated with negative health outcomes, mortality and a pro-inflammatory phenotype in COPD. IL-6 in COPD was shown to correlate negatively with lung function, and IL-1beta was induced by cigarette smoke in the bronchial epithelium, causing airway inflammation. Furthermore, IL-8 has been shown to be a pro-inflammatory marker in bronchiectasis, COPD and allergic asthma. Clinical trials using specific cytokine blockade therapies are currently emerging and have contributed to reduce exacerbations and steroid use in COPD. Here, we present a review of the current understanding of the roles of cytokines in the pathophysiology of chronic inflammatory airway diseases. Furthermore, outcomes of clinical trials in cytokine blockade as novel treatment strategies for selected patient populations with those diseases will be discussed.
Collapse
|
130
|
Pylaeva E, Harati MD, Spyra I, Bordbari S, Strachan S, Thakur BK, Höing B, Franklin C, Skokowa J, Welte K, Schadendorf D, Bankfalvi A, Brandau S, Lang S, Jablonska J. NAMPT signaling is critical for the proangiogenic activity of tumor-associated neutrophils. Int J Cancer 2018; 144:136-149. [PMID: 30121947 DOI: 10.1002/ijc.31808] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
Abstract
Tumor-associated neutrophils (TANs) regulate many processes associated with tumor progression, and depending on the microenvironment, they can exhibit pro- or antitumor functions. However, the molecular mechanisms regulating their tumorigenicity are not clear. Using transplantable tumor models, we showed here that nicotinamide phosphoribosyltransferase (NAMPT), a molecule involved in CSF3R downstream signaling, is essential for tumorigenic conversion of TANs and their pro-angiogenic switch. As a result tumor vascularization and growth are strongly supported by these cells. Inhibition of NAMPT in TANs leads to their antitumor conversion. Adoptive transfer of such TANs into B16F10-tumor bearing mice attenuates tumor angiogenesis and growth. Of note, we observe that the regulation of NAMPT signaling in TANs, and its effect on the neutrophil tumorigenicity, are analogous in mice and human. NAMPT is up-regulated in TANs from melanoma and head-and-neck tumor patients, and its expression positively correlates with tumor stage. Mechanistically, we found that targeting of NAMPT suppresses neutrophil tumorigenicity by inhibiting SIRT1 signaling, thereby blocking transcription of pro-angiogenic genes. Based on these results, we propose that NAMPT regulatory axis is important for neutrophils to activate angiogenic switch during early stages of tumorigenesis. Thus, identification of NAMPT as the critical molecule priming protumor functions of neutrophils provides not only mechanistic insight into the regulation of neutrophil tumorigenicity, but also identifies a potential pathway that may be targeted therapeutically in neutrophils. This, in turn, may be utilized as a novel mode of cancer immunotherapy.
Collapse
Affiliation(s)
- Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mozhgan Dehghan Harati
- Department of Internal Medicine II, University Hospital, University of Tuebingen, Tuebingen, Germany.,Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Ilona Spyra
- Department of Otorhinolaryngology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sharareh Bordbari
- Department of Otorhinolaryngology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sarah Strachan
- Department of Pediatric, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Basant Kumar Thakur
- Department of Pediatric, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Benedikt Höing
- Department of Otorhinolaryngology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Cindy Franklin
- Department of Dermatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Julia Skokowa
- Department of Internal Medicine II, University Hospital, University of Tuebingen, Tuebingen, Germany
| | - Karl Welte
- Department of Pediatric, University Hospital, University of Tuebingen, Tuebingen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Agnes Bankfalvi
- Department of Pathology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Internal Medicine II, University Hospital, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
131
|
Schernberg A, Mezquita L, Boros A, Botticella A, Caramella C, Besse B, Escande A, Planchard D, Le Péchoux C, Deutsch E. Neutrophilia as prognostic biomarker in locally advanced stage III lung cancer. PLoS One 2018; 13:e0204490. [PMID: 30304046 PMCID: PMC6179235 DOI: 10.1371/journal.pone.0204490] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 09/10/2018] [Indexed: 01/06/2023] Open
Abstract
Objective To study the prognostic value of baseline leukocytosis or neutrophiliain two retrospective cohorts of stage III Non-Small Cell Lung Cancer (NSCLC) patients. Materials and methods Clinical records of consecutive previously untreated NSCLC patients in our Institution between June 2001 and September 2016 for stage III NSCLC were collected. The prognostic value of pretreatment leucocyte disorders was examined, with focus on patterns of relapse and survival. Leukocytosis and neutrophilia were defined as a leukocyte count or a neutrophil count exceeding 10 and 7 G/L, respectively. Results We identified 238 patients, displaying baseline leukocytosis or neutrophilia in 39% and 40% respectively. Most were diagnosed with adenocarcinoma (48%), and stage IIIB NSCLC (58%). 3-year actuarial overall survival (OS) and progression-free survival (PFS) were 35% and 27% respectively. Local relapses were reported in 100 patients (42%), and distant metastases in 132 patients (55%). In multivariate analysis, leukocytosis, neutrophilia, and induction chemotherapy regimen based on carboplatin/paclitaxel were associated with worse OS and PFS (p<0.05). Neutrophilia independently decreased Locoregional Control (LRC) (HR = 2.5, p<0.001) and Distant Metastasis Control (DMC) (HR = 2.1, p<0.001). Neutrophilia was significantly associated with worse brain metastasis control (p = 0.004), mostly in adenocarcinoma patients (p<0.001). Conclusion In stage III NSCLC patients, treated with concurrent cisplatin-based chemoradiation, baseline leukocytosis and neutrophilia were associated with worse OS, PFS, LRC, and DMC. In addition with previously available markers, this independent cost-effective biomarker could help to stratify stage III NSCLC population with more accuracy.
Collapse
Affiliation(s)
- Antoine Schernberg
- Radiation oncology department, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM 1030, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laura Mezquita
- Department of Medical Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Angela Boros
- Radiation oncology department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Angela Botticella
- Radiation oncology department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Caroline Caramella
- Department of Radiology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Benjamin Besse
- Department of Medical Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Université Paris Sud, Université Paris Saclay, Faculté de médecine du Kremlin-Bicetre, Le Kremlin-Bicetre, France
| | - Alexandre Escande
- Radiation oncology department, Gustave Roussy Cancer Campus, Villejuif, France
| | - David Planchard
- Department of Medical Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Cécile Le Péchoux
- Radiation oncology department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eric Deutsch
- Radiation oncology department, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM 1030, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Radiology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Université Paris Sud, Université Paris Saclay, Faculté de médecine du Kremlin-Bicetre, Le Kremlin-Bicetre, France
- * E-mail:
| |
Collapse
|
132
|
Lazaar AL, Miller BE, Tabberer M, Yonchuk J, Leidy N, Ambery C, Bloomer J, Watz H, Tal-Singer R. Effect of the CXCR2 antagonist danirixin on symptoms and health status in COPD. Eur Respir J 2018; 52:13993003.01020-2018. [PMID: 30139779 DOI: 10.1183/13993003.01020-2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Henrik Watz
- Pulmonary Research Institute Lungen Clinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | |
Collapse
|
133
|
Butler A, Walton GM, Sapey E. Neutrophilic Inflammation in the Pathogenesis of Chronic Obstructive Pulmonary Disease. COPD 2018; 15:392-404. [DOI: 10.1080/15412555.2018.1476475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aidan Butler
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Georgia May Walton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
134
|
Bronze-da-Rocha E, Santos-Silva A. Neutrophil Elastase Inhibitors and Chronic Kidney Disease. Int J Biol Sci 2018; 14:1343-1360. [PMID: 30123081 PMCID: PMC6097478 DOI: 10.7150/ijbs.26111] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
End-stage renal disease (ESRD), the last stage of chronic kidney disease (CKD), is characterized by chronic inflammation and oxidative stress. Neutrophils are the front line cells that mediate an inflammatory response against microorganisms as they can migrate, produce reactive oxygen species (ROS), secrete neutrophil serine proteases (NSPs), and release neutrophil extracellular traps (NETs). Serine proteases inhibitors regulate the activity of serine proteases and reduce neutrophil accumulation at inflammatory sites. This review intends to relate the role of neutrophil elastase in CKD and the effects of neutrophil elastase inhibitors in predicting or preventing inflammation.
Collapse
Affiliation(s)
- Elsa Bronze-da-Rocha
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | | |
Collapse
|
135
|
Ni L, Dong C. Roles of Myeloid and Lymphoid Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Front Immunol 2018; 9:1431. [PMID: 29977245 PMCID: PMC6021485 DOI: 10.3389/fimmu.2018.01431] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the third largest cause of human mortality in the world after stroke and heart disease. COPD is characterized by sustained inflammation of the airways, leading to destruction of lung tissue and declining pulmonary function. The main risk factor is known to be cigarette smoke currently. However, the strategies for prevention and treatment have not altered significantly for many years. A growing body of evidences indicates that the immune system plays a pivotal role in the pathogenesis of COPD. The repeated and progressive activation of immune cells is at least in part the source of this chronic inflammation. In this review paper, we have conducted an extensive literature search of the studies of immune cells in COPD patients. The objective is to assess the contributions of different immune cell types, the imbalance of pro/anti-inflammatory immune cells, such as M1/M2 macrophages, Tc1/Tc10, and Th17/Treg, and their mediators in the peripheral blood as well as in the lung to the pathogenesis of COPD. Therefore, understanding their roles in COPD development will help us find the potential target to modify this disease. This review focuses predominantly on data derived from human studies but will refer to animal studies where they help understand the disease in humans.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
136
|
Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, Fields RC, DeNardo DG, Hawkins WG, Goedegebuure P, Linehan DC. Targeting both tumour-associated CXCR2 + neutrophils and CCR2 + macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 2018; 67:1112-1123. [PMID: 29196437 PMCID: PMC5969359 DOI: 10.1136/gutjnl-2017-313738] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Chemokine pathways are co-opted by pancreatic adenocarcinoma (PDAC) to facilitate myeloid cell recruitment from the bone marrow to establish an immunosuppressive tumour microenvironment (TME). Targeting tumour-associated CXCR2+neutrophils (TAN) or tumour-associated CCR2+ macrophages (TAM) alone improves antitumour immunity in preclinical models. However, a compensatory influx of an alternative myeloid subset may result in a persistent immunosuppressive TME and promote therapeutic resistance. Here, we show CCR2 and CXCR2 combined blockade reduces total tumour-infiltrating myeloids, promoting a more robust antitumour immune response in PDAC compared with either strategy alone. METHODS Blood, bone marrow and tumours were analysed from PDAC patients and controls. Treatment response and correlative studies were performed in mice with established orthotopic PDAC tumours treated with a small molecule CCR2 inhibitor (CCR2i) and CXCR2 inhibitor (CXCR2i), alone and in combination with chemotherapy. RESULTS A systemic increase in CXCR2+ TAN correlates with poor prognosis in PDAC, and patients receiving CCR2i showed increased tumour-infiltrating CXCR2+ TAN following treatment. In an orthotopic PDAC model, CXCR2 blockade prevented neutrophil mobilisation from the circulation and augmented chemotherapeutic efficacy. However, depletion of either CXCR2+ TAN or CCR2+ TAM resulted in a compensatory response of the alternative myeloid subset, recapitulating human disease. This was overcome by combined CCR2i and CXCR2i, which augmented antitumour immunity and improved response to FOLFIRINOX chemotherapy. CONCLUSION Dual targeting of CCR2+ TAM and CXCR2+ TAN improves antitumour immunity and chemotherapeutic response in PDAC compared with either strategy alone.
Collapse
Affiliation(s)
- Timothy M Nywening
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA,Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Brian A Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA,Tumor Biology Program, University of Rochester Medical Center, Rochester, New York, USA,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Darren R Cullinan
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA,Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Roheena Z Panni
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA,Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Booyeon J Han
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA,Tumor Biology Program, University of Rochester Medical Center, Rochester, New York, USA,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Dominic E Sanford
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA,Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ryan C Jacobs
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA,Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA,Tumor Biology Program, University of Rochester Medical Center, Rochester, New York, USA,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Ankit A Patel
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA,Tumor Biology Program, University of Rochester Medical Center, Rochester, New York, USA,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA,Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ryan C Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA,Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - David G DeNardo
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA,Department of Medicine, Oncology Division, Washington University School of Medicine, St. Louis, Missouri, USA,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA,Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA,Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - David C Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA,Tumor Biology Program, University of Rochester Medical Center, Rochester, New York, USA,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
137
|
Pavord ID. Biologics and chronic obstructive pulmonary disease. J Allergy Clin Immunol 2018; 141:1983-1991. [PMID: 29729941 DOI: 10.1016/j.jaci.2018.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023]
Abstract
The presence of airway inflammation in patients with chronic obstructive pulmonary disease (COPD) provides a rationale for biological agents targeting specific inflammatory pathways. This approach has been strikingly effective in patients with other chronic inflammatory diseases, such as rheumatoid arthritis, psoriasis, and asthma. However, there are important and unresolved challenges in COPD, including our incomplete understanding of heterogeneity of the lower airway inflammatory response and how these contribute to the clinical expression of disease. As a result, progress has been slow, and there have been many failures. One notable exception is the targeting of eosinophilic airway inflammation with anti-IL-5, which has an acknowledged and important role in the treatment of severe eosinophilic asthma. Recent phase III studies have shown a reduction in exacerbations of around 20% in patients with COPD and clear evidence of a blood eosinophil count-dependent beneficial effect. The demonstration of clinical efficacy linked to a clinically accessible biomarker raises the possibility of precision biomarker-directed use of biological agents in patients with COPD. The hope is that this will be an exemplar for the future development of biological agents in patients with COPD.
Collapse
Affiliation(s)
- Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, Oxford, United Kingdom.
| |
Collapse
|
138
|
Wouters EFM, Wouters BBRAF, Augustin IML, Franssen FME. Personalized medicine and chronic obstructive pulmonary disease. Curr Opin Pulm Med 2018; 23:241-246. [PMID: 28257315 DOI: 10.1097/mcp.0000000000000377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The current review summarizes ongoing developments in personalized medicine and precision medicine in chronic obstructive pulmonary disease (COPD). Our current approach is far away of personalized management algorithms as current recommendations for COPD are largely based on a reductionist disease description, operationally defined by results of spirometry. RECENT FINDINGS Besides precision medicine developments, a personalized medicine approach in COPD is described based on a holistic approach of the patient and considering illness as the consequence of dynamic interactions within and between multiple interacting and self-adjusting systems. Pulmonary rehabilitation is described as a model of personalized medicine. Largely based on current understanding of inflammatory processes in COPD, targeted interventions in COPD are reviewed. Augmentation therapy for α-1-antitrypsine deficiency is described as model of precision medicine in COPD based in profound understanding of the related genetic endotype. SUMMARY Future developments of precision medicine in COPD require identification of relevant endotypes combined with proper identification of phenotypes involved in the complex and heterogeneous manifestations of COPD.
Collapse
Affiliation(s)
- E F M Wouters
- aDepartment of Respiratory Diseases, Maastricht University Medical Center, Maastricht bCentre of Expertise for Chronic Organ Failure, Horn, The Netherlands cDepartment of Health, Ethics and Society, Faculty of Health Medicine and Life Science, CAPHRI School for Public Health and Primary Care
| | | | | | | |
Collapse
|
139
|
Patel NR, Cunoosamy DM, Fagerås M, Taib Z, Asimus S, Hegelund-Myrbäck T, Lundin S, Pardali K, Kurian N, Ersdal E, Kristensson C, Korsback K, Palmér R, Brown MN, Greenaway S, Siew L, Clarke GW, Rennard SI, Make BJ, Wise RA, Jansson P. The development of AZD7624 for prevention of exacerbations in COPD: a randomized controlled trial. Int J Chron Obstruct Pulmon Dis 2018; 13:1009-1019. [PMID: 29628759 PMCID: PMC5877500 DOI: 10.2147/copd.s150576] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background p38 mitogen-activated protein kinase (MAPK) plays a central role in the regulation and activation of pro-inflammatory mediators. COPD patients have increased levels of activated p38 MAPK, which correlate with increased lung function impairment, alveolar wall inflammation, and COPD exacerbations. Objectives These studies aimed to assess the effect of p38 inhibition with AZD7624 in healthy volunteers and patients with COPD. The principal hypothesis was that decreasing lung inflammation via inhibition of p38α would reduce exacerbations and improve quality of life for COPD patients at high risk for acute exacerbations. Methods The p38 isoform most relevant to lung inflammation was assessed using an in situ proximity ligation assay in severe COPD patients and donor controls. Volunteers aged 18–55 years were randomized into the lipopolysaccharide (LPS) challenge study, which investigated the effect of a single dose of AZD7624 vs placebo on inflammatory biomarkers. The Proof of Principle study randomized patients aged 40–85 years with a diagnosis of COPD for >1 year to AZD7624 or placebo to assess the effect of p38 inhibition in decreasing the rate of exacerbations. Results The p38 isoform most relevant to lung inflammation was p38α, and AZD7624 specifically inhibited p38α and p38β isoforms in human alveolar macrophages. Thirty volunteers were randomized in the LPS challenge study. AZD7624 reduced the increase from baseline in sputum neutrophils and TNF-α by 56.6% and 85.4%, respectively (p<0.001). In the 213 patients randomized into the Proof of Principle study, there was no statistically significant difference between AZD7624 and placebo when comparing the number of days to the first moderate or severe exacerbation or early dropout. Conclusion Although p38α is upregulated in the lungs of COPD patients, AZD7624, an isoform-specific inhaled p38 MAPK inhibitor, failed to show any benefit in patients with COPD.
Collapse
Affiliation(s)
- Naimish R Patel
- Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden.,Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Hospital, Boston, MA
| | - Danen M Cunoosamy
- Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Malin Fagerås
- Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Ziad Taib
- Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Sara Asimus
- Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| | | | - Sofia Lundin
- Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Katerina Pardali
- Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Nisha Kurian
- Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Eva Ersdal
- Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| | | | - Katarina Korsback
- Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Robert Palmér
- Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| | - Mary N Brown
- Innovative Medicines and Early Development, AstraZeneca, Boston, MA, USA
| | | | - Leonard Siew
- Quintiles Drug Research Unit at Guy's Hospital, London
| | - Graham W Clarke
- Quintiles Drug Research Unit at Guy's Hospital, London.,Department of Cardiothoracic Pharmacology, NHLI, Imperial College London, London, UK
| | - Stephen I Rennard
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Nebraska, Omaha, NE, USA.,Clinical Discovery Unit, Innovative Medicines and Early Development, AstraZeneca, Cambridge, UK
| | - Barry J Make
- Division of Pulmonary Sciences and Critical Care Medicine, National Jewish Health, University of Colorado, Denver, CO
| | - Robert A Wise
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Paul Jansson
- Innovative Medicines and Early Development, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
140
|
Kokje VBC, Gäbel G, Dalman RL, Koole D, Northoff BH, Holdt LM, Hamming JF, Lindeman JHN. CXCL8 hyper-signaling in the aortic abdominal aneurysm. Cytokine 2018; 108:96-104. [PMID: 29587155 DOI: 10.1016/j.cyto.2018.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/26/2018] [Accepted: 03/20/2018] [Indexed: 11/29/2022]
Abstract
There are indications for elevated CXCL8 levels in abdominal aortic aneurysm disease (AAA). CXCL8 is concurrently involved in neutrophil-mediated inflammation and angiogenesis, two prominent and distinctive characteristics of AAA. As such we considered an evaluation of a role for CXCL8 in AAA progression relevant. ELISA's, real time PCR and array analysis were used to explore CXCL8 signaling in AAA wall samples. A role for CXCL8 in AAA disease was tested through the oral CXCR1/2 antagonist DF2156A in the elastase model of AAA disease. There is an extreme disparity in aortic wall CXCL8 content between AAA and aortic atherosclerotic disease (median [IQR] aortic wall CXCL8 content: 425 [141-1261] (AAA) vs. 23 [2.8-89] (atherosclerotic aorta) µg/g protein (P < 1 · 10-14)), and abundant expression of the CXCR1 and 2 receptors in AAA. Array analysis followed by pathway analysis showed that CXCL8 hyper-expression in AAA is followed increased by IL-8 signaling (Z-score for AAA vs. atherosclerotic control: 2.97, p < 0.0001). Interference with CXCL8 signaling through DF2156A fully abrogated AAA formation and prevented matrix degradation in the murine elastase model of AAA disease (p < 0.001). CXCL8-signaling is a prominent and distinctive feature of AAA, interference with the pathway constitutes a promising target for medical stabilization of AAA.
Collapse
Affiliation(s)
- Vivianne B C Kokje
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Gabor Gäbel
- Department of Vascular and Endovascular Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ron L Dalman
- Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Dave Koole
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bernd H Northoff
- Institute of Laboratory Medicine, Ludwig-Maximilians-University, Munich, Munich, Germany
| | - Lesca M Holdt
- Institute of Laboratory Medicine, Ludwig-Maximilians-University, Munich, Munich, Germany
| | - Jaap F Hamming
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
141
|
Bryant AJ, Shenoy V, Fu C, Marek G, Lorentsen KJ, Herzog EL, Brantly ML, Avram D, Scott EW. Myeloid-derived Suppressor Cells Are Necessary for Development of Pulmonary Hypertension. Am J Respir Cell Mol Biol 2018; 58:170-180. [PMID: 28862882 DOI: 10.1165/rcmb.2017-0214oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pulmonary hypertension (PH) complicates the care of patients with chronic lung disease, such as idiopathic pulmonary fibrosis (IPF), resulting in a significant increase in morbidity and mortality. Disease pathogenesis is orchestrated by unidentified myeloid-derived cells. We used murine models of PH and pulmonary fibrosis to study the role of circulating myeloid cells in disease pathogenesis and prevention. We administered clodronate liposomes to bleomycin-treated wild-type mice to induce pulmonary fibrosis and PH with a resulting increase in circulating bone marrow-derived cells. We discovered that a population of C-X-C motif chemokine receptor (CXCR) 2+ myeloid-derived suppressor cells (MDSCs), granulocytic subset (G-MDSC), is associated with severe PH in mice. Pulmonary pressures worsened despite improvement in bleomycin-induced pulmonary fibrosis. PH was attenuated by CXCR2 inhibition, with antagonist SB 225002, through decreasing G-MDSC recruitment to the lung. Molecular and cellular analysis of clinical patient samples confirmed a role for elevated MDSCs in IPF and IPF with PH. These data show that MDSCs play a key role in PH pathogenesis and that G-MDSC trafficking to the lung, through chemokine receptor CXCR2, increases development of PH in multiple murine models. Furthermore, we demonstrate pathology similar to the preclinical models in IPF with lung and blood samples from patients with PH, suggesting a potential role for CXCR2 inhibitor use in this patient population. These findings are significant, as there are currently no approved disease-specific therapies for patients with PH complicating IPF.
Collapse
Affiliation(s)
- Andrew J Bryant
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Vinayak Shenoy
- 2 Department of Pharmaceutical and Biomedical Sciences, California Health Sciences University, Clovis, California
| | - Chunhua Fu
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - George Marek
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Kyle J Lorentsen
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Erica L Herzog
- 3 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | - Mark L Brantly
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Dorina Avram
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Edward W Scott
- 4 Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida
| |
Collapse
|
142
|
Lu H, Yang T, Xu Z, Lin X, Ding Q, Zhang Y, Cai X, Dong K, Gong S, Zhang W, Patel M, Copley RCB, Xiang J, Guan X, Wren P, Ren F. Discovery of Novel 1-Cyclopentenyl-3-phenylureas as Selective, Brain Penetrant, and Orally Bioavailable CXCR2 Antagonists. J Med Chem 2018; 61:2518-2532. [DOI: 10.1021/acs.jmedchem.7b01854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongfu Lu
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Ting Yang
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Zhongmiao Xu
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xichen Lin
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Qian Ding
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Yueting Zhang
- R&D Projects Clinical Platforms and Sciences, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xin Cai
- Platform Technology Sciences, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Kelly Dong
- Platform Technology Sciences, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Sophie Gong
- Platform Technology Sciences, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Wei Zhang
- Platform Technology Sciences, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Metul Patel
- Platform Technology Sciences, GSK Pharmaceuticals R&D, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Royston C. B. Copley
- Platform Technology & Science, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jianing Xiang
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xiaoming Guan
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Paul Wren
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Feng Ren
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| |
Collapse
|
143
|
Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, Cullinan P, Custovic A, Ducharme FM, Fahy JV, Frey U, Gibson P, Heaney LG, Holt PG, Humbert M, Lloyd CM, Marks G, Martinez FD, Sly PD, von Mutius E, Wenzel S, Zar HJ, Bush A. After asthma: redefining airways diseases. Lancet 2018; 391:350-400. [PMID: 28911920 DOI: 10.1016/s0140-6736(17)30879-6] [Citation(s) in RCA: 732] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 02/26/2017] [Accepted: 03/07/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ian D Pavord
- Respiratory Medicine Unit, Nuffield Department of Medicine and NIHR Oxford Biomedical Research Centre, University of Oxford, UK.
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain; CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Gary P Anderson
- Lung Health Research Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Elisabeth Bel
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Netherlands
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium; Departments of Epidemiology and Respiratory Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Paul Cullinan
- National Heart and Lung Institute, Imperial College, London, UK
| | | | - Francine M Ducharme
- Departments of Paediatrics and Social and Preventive Medicine, University of Montreal, Montreal, QC, Canada
| | - John V Fahy
- Cardiovascular Research Institute, and Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter Gibson
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, Newcastle, NSW, Australia; Priority Research Centre for Asthma and Respiratory Disease, The University of Newcastle, Newcastle, NSW, Australia
| | - Liam G Heaney
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Marc Humbert
- L'Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Paris, France; Service de Pneumologie, Hôpital Bicêtre, Paris, France; INSERM UMR-S 999, Hôpital Marie Lannelongue, Paris, France
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College, London, UK
| | - Guy Marks
- Department of Respiratory Medicine, South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center, The University of Arizona, Tuscon, AZ, USA
| | - Peter D Sly
- Department of Children's Health and Environment, Children's Health Queensland, Brisbane, QLD, Australia; Centre for Children's Health Research, Brisbane, QLD, Australia
| | - Erika von Mutius
- Dr. von Haunersches Kinderspital, Ludwig Maximilians Universität, Munich, Germany
| | - Sally Wenzel
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross Children's Hospital and Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Andy Bush
- Department of Paediatrics, Imperial College, London, UK; Department of Paediatric Respiratory Medicine, Imperial College, London, UK
| |
Collapse
|
144
|
Pavord ID, Hilvering B, Shrimanker R. Emerging Biologics in Severe Asthma. Immunol Allergy Clin North Am 2017; 36:609-23. [PMID: 27401629 DOI: 10.1016/j.iac.2016.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Asthma is a heterogeneous disease that can be classified into different clinical endotypes, depending on the type of airway inflammation, clinical severity, and response to treatment. This article focuses on the eosinophilic endotype of asthma, which is defined by the central role that eosinophils play in the pathophysiology of the condition. It is characterized by persistently elevated sputum and/or blood eosinophils and by a significant response to treatments that suppress eosinophilia. Eosinophil activity in the airway may be more important than their numbers and this needs to be investigated. Transcriplomic or Metabolomic signatures may also be useful to identify this endotype.
Collapse
Affiliation(s)
- Ian D Pavord
- Department of Respiratory Medicine, University of Oxford, Old Road, Oxford, OX3 7LE, UK; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK.
| | - Bart Hilvering
- Department of Respiratory Medicine, University of Oxford, Old Road, Oxford, OX3 7LE, UK; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK; Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rahul Shrimanker
- Department of Respiratory Medicine, University of Oxford, Old Road, Oxford, OX3 7LE, UK; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK
| |
Collapse
|
145
|
Gross NJ, Barnes PJ. New Therapies for Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 195:159-166. [PMID: 27922751 DOI: 10.1164/rccm.201610-2074pp] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Nicholas J Gross
- 1 University Medical Research LLC, St. Francis Hospital, Hartford, Connecticut; and
| | - Peter J Barnes
- 2 Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
146
|
Giannou AD, Marazioti A, Kanellakis NI, Giopanou I, Lilis I, Zazara DE, Ntaliarda G, Kati D, Armenis V, Giotopoulou GA, Krontira AC, Lianou M, Agalioti T, Vreka M, Papageorgopoulou M, Fouzas S, Kardamakis D, Psallidas I, Spella M, Stathopoulos GT. NRAS destines tumor cells to the lungs. EMBO Mol Med 2017; 9:672-686. [PMID: 28341702 PMCID: PMC5697015 DOI: 10.15252/emmm.201606978] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The lungs are frequently affected by cancer metastasis. Although NRAS mutations have been associated with metastatic potential, their exact role in lung homing is incompletely understood. We cross-examined the genotype of various tumor cells with their ability for automatic pulmonary dissemination, modulated NRAS expression using RNA interference and NRAS overexpression, identified NRAS signaling partners by microarray, and validated them using Cxcr1- and Cxcr2-deficient mice. Mouse models of spontaneous lung metastasis revealed that mutant or overexpressed NRAS promotes lung colonization by regulating interleukin-8-related chemokine expression, thereby initiating interactions between tumor cells, the pulmonary vasculature, and myeloid cells. Our results support a model where NRAS-mutant, chemokine-expressing circulating tumor cells target the CXCR1-expressing lung vasculature and recruit CXCR2-expressing myeloid cells to initiate metastasis. We further describe a clinically relevant approach to prevent NRAS-driven pulmonary metastasis by inhibiting chemokine signaling. In conclusion, NRAS promotes the colonization of the lungs by various tumor types in mouse models. IL-8-related chemokines, NRAS signaling partners in this process, may constitute an important therapeutic target against pulmonary involvement by cancers of other organs.
Collapse
Affiliation(s)
- Anastasios D Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Nikolaos I Kanellakis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Ioannis Lilis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Dimitra E Zazara
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Giannoula Ntaliarda
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Danai Kati
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Vasileios Armenis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Georgia A Giotopoulou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Anthi C Krontira
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Marina Lianou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Theodora Agalioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Malamati Vreka
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Munich, Germany
| | - Maria Papageorgopoulou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Sotirios Fouzas
- Pneumology Unit, Department of Pediatrics, Faculty of Medicine, University of Patras, Rio, Greece
| | - Dimitrios Kardamakis
- Department of Radiation Oncology and Stereotactic Radiotherapy, Faculty of Medicine, University of Patras, Rio, Greece
| | - Ioannis Psallidas
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece.,Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece .,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
147
|
Cockx M, Gouwy M, Van Damme J, Struyf S. Chemoattractants and cytokines in primary ciliary dyskinesia and cystic fibrosis: key players in chronic respiratory diseases. Cell Mol Immunol 2017; 15:312-323. [PMID: 29176750 DOI: 10.1038/cmi.2017.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Patients with primary ciliary dyskinesia (PCD) and cystic fibrosis (CF), two inherited disorders, suffer from recurrent airway infections characterized by persistent bacterial colonization and uncontrollable inflammation. Although present in high counts, neutrophils fail to clear infection in the airways. High levels of C-X-C motif chemokine ligand 8/interleukin-8 (CXCL8/IL-8), the most potent chemokine to attract neutrophils to sites of infection, are detected in the sputum of both patient groups and might cause the high neutrophil influx in the airways. Furthermore, in CF, airway neutrophils are highly activated because of the genetic defect and the high levels of proinflammatory chemoattractants and cytokines (e.g., CXCL8/IL-8, tumor necrosis factor-α and IL-17). The overactive state of neutrophils leads to lung damage and fuels the vicious circle of infection, excessive inflammation and tissue damage. The inflammatory process in CF airways is well characterized, whereas the lung pathology in PCD is far less studied. The knowledge of CF lung pathology could be useful to guide molecular investigations of the inflammatory processes in PCD lungs. Current available therapies can not completely remedy the chronic airway infections in these diseases. This review gives an overview of the role that chemoattractants and cytokines play in these neutrophil-dominated lung pathologies. Finally, the most frequently applied treatments in CF and PCD and new experimental therapies to reduce neutrophil-dominated airway inflammation are described.
Collapse
Affiliation(s)
- Maaike Cockx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium.
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| |
Collapse
|
148
|
Schernberg A, Blanchard P, Chargari C, Deutsch E. Neutrophils, a candidate biomarker and target for radiation therapy? Acta Oncol 2017; 56:1522-1530. [PMID: 28835188 DOI: 10.1080/0284186x.2017.1348623] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neutrophils are the most abundant blood-circulating white blood cells, continuously generated in the bone marrow. Growing evidence suggests they regulate the innate and adaptive immune system during tumor evolution. This review will first summarize the recent findings on neutrophils as a key player in cancer evolution, then as a potential biomarker, and finally as therapeutic targets, with respective focuses on the interplay with radiation therapy. A complex interplay: Neutrophils have been associated with tumor progression through multiple pathways. Ionizing radiation has cytotoxic effects on cancer cells, but the sensitivity to radiation therapy in vivo differ from isolated cancer cells in vitro, partially due to the tumor microenvironment. Different microenvironmental states, whether baseline or induced, can modulate or even attenuate the effects of radiation, with consequences for therapeutic efficacy. Inflammatory biomarkers: Inflammation-based scores have been widely studied as prognostic biomarkers in cancer patients. We have performed a large retrospective cohort of patients undergoing radiation therapy (1233 patients), with robust relationship between baseline blood neutrophil count and 3-year's patient's overall survival in patients with different cancer histologies. (Pearson's correlation test: p = .001, r = -.93). Therapeutic approaches: Neutrophil-targeting agents are being developed for the treatment of inflammatory and autoimmune diseases. Neutrophils either can exert antitumoral (N1 phenotype) or protumoral (N2 phenotype) activity, depending on the Tumor Micro Environment. Tumor associated N2 neutrophils are characterized by high expression of CXCR4, VEGF, and gelatinase B/MMP9. TGF-β within the tumor microenvironment induces a population of TAN with a protumor N2 phenotype. TGF-β blockade slows tumor growth through activation of CD8 + T cells, macrophages, and tumor associated neutrophils with an antitumor N1 phenotype. CONCLUSIONS This supports the need for prospective neutrophils evaluation in clinical trials, making neutrophils a predictive biomarker with potential specific therapies.
Collapse
Affiliation(s)
- Antoine Schernberg
- Radiation Oncology Department, SIRIC SOCRATES, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1018, CESP, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Pierre Blanchard
- Radiation Oncology Department, SIRIC SOCRATES, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1018, CESP, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Cyrus Chargari
- Radiation Oncology Department, SIRIC SOCRATES, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM 1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine du Kremlin-Bicetre, Université Paris Sud, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Eric Deutsch
- Radiation Oncology Department, SIRIC SOCRATES, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM 1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine du Kremlin-Bicetre, Université Paris Sud, Université Paris Saclay, Le Kremlin-Bicetre, France
| |
Collapse
|
149
|
Watz H. Next generation of anti-inflammatory therapy for COPD? Eur Respir J 2017; 50:50/4/1702084. [PMID: 29074550 DOI: 10.1183/13993003.02084-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| |
Collapse
|
150
|
Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond) 2017; 131:1541-1558. [PMID: 28659395 DOI: 10.1042/cs20160487] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/19/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) both cause airway obstruction and are associated with chronic inflammation of the airways. However, the nature and sites of the inflammation differ between these diseases, resulting in different pathology, clinical manifestations and response to therapy. In this review, the inflammatory and cellular mechanisms of asthma and COPD are compared and the differences in inflammatory cells and profile of inflammatory mediators are highlighted. These differences account for the differences in clinical manifestations of asthma and COPD and their response to therapy. Although asthma and COPD are usually distinct, there are some patients who show an overlap of features, which may be explained by the coincidence of two common diseases or distinct phenotypes of each disease. It is important to better understand the underlying cellular and molecular mechanisms of asthma and COPD in order to develop new treatments in areas of unmet need, such as severe asthma, curative therapy for asthma and effective anti-inflammatory treatments for COPD.
Collapse
|