101
|
Lê BV, Jandrot-Perrus M, Couture C, Checkmahomed L, Venable MC, Hamelin MÈ, Boivin G. Evaluation of anticoagulant agents for the treatment of human metapneumovirus infection in mice. J Gen Virol 2018; 99:1367-1380. [PMID: 30102144 DOI: 10.1099/jgv.0.001135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thrombin has been demonstrated to be involved in several viral diseases including human metapneumovirus (hMPV) infections. We previously showed that immediate administration of thrombin inhibitor argatroban post-infection protected mice against hMPV disease. This current work aims at determining whether warfarin and heparin, two other anticoagulants inhibiting thrombin formation and activities, may also be used for treatment against hMPV in vivo. We found that immediate injections of argatroban, warfarin or heparin after virus challenge protected mice against hMPV infection, as evidenced by decreased or no mortality, less weight loss, reduced viral load and attenuated inflammation. However, delayed treatments starting 1 day post-infection with argatroban or warfarin almost did not impact the survival whereas delayed treatment with heparin induced an increased mortality during infection. Moreover, these treatments also did not reduce weight loss, viral replication and inflammation. In agreement with these results, thrombin generation was decreased upon immediate anticoagulant treatments but was unaltered upon delayed treatments. Thus, thrombin generation occurs at the onset of hMPV infection and thrombin inhibition may be only useful for the treatment of this disease when initiated in the early stage. In this case, heparin is not recommended because of its reduced efficacy on mortality in infected mice whereas argatroban and warfarin appear as safe and effective drugs for the treatment of hMPV disease. The antiviral and anti-inflammatory effects of argatroban occur via thrombin-dependent pathways whereas the mechanisms by which warfarin exerts its beneficial effects against hMPV infection were not elucidated and need to be further studied.
Collapse
Affiliation(s)
- Ba Vuong Lê
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | | | - Christian Couture
- 3Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - Liva Checkmahomed
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | | | - Marie-Ève Hamelin
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
102
|
Middleton EA, Rondina MT, Schwertz H, Zimmerman GA. Amicus or Adversary Revisited: Platelets in Acute Lung Injury and Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2018; 59:18-35. [PMID: 29553813 PMCID: PMC6039872 DOI: 10.1165/rcmb.2017-0420tr] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets are essential cellular effectors of hemostasis and contribute to disease as circulating effectors of pathologic thrombosis. These are their most widely known biologic activities. Nevertheless, recent observations demonstrate that platelets have a much more intricate repertoire beyond these traditional functions and that they are specialized for contributions to vascular barrier integrity, organ repair, antimicrobial host defense, inflammation, and activities across the immune continuum. Paradoxically, on the basis of clinical investigations and animal models of disease, some of these newly discovered activities of platelets appear to contribute to tissue injury. Studies in the last decade indicate unique interactions of platelets and their precursor, the megakaryocyte, in the lung and implicate platelets as essential effectors in experimental acute lung injury and clinical acute respiratory distress syndrome. Additional discoveries derived from evolving work will be required to precisely define the contributions of platelets to complex subphenotypes of acute lung injury and to determine if these remarkable and versatile blood cells are therapeutic targets in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Elizabeth A. Middleton
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Matthew T. Rondina
- Division of General Internal Medicine, Department of Internal Medicine
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Hansjorg Schwertz
- Division of Vascular Surgery, Department of Surgery, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A. Zimmerman
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
103
|
Du F, Jiang P, He S, Song D, Xu F. Antiplatelet Therapy for Critically Ill Patients: A Pairwise and Bayesian Network Meta-Analysis. Shock 2018; 49:616-624. [PMID: 29176404 DOI: 10.1097/shk.0000000000001057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antiplatelet therapy is an attractive treatment option for critically ill patients. However, more evidence on the benefit of this therapy is required. We searched the PubMed and Embase databases from their inception to June 2017 for randomized controlled trials and observational studies that assess the effect of antiplatelet therapy in critically ill patients. Antiplatelet therapy resulted in significant decreases in hospital mortality (risk ratio [RR] 0.81, 95% confidence interval [CI], 0.68-0.97; P = 0. 025), intensive care unit (ICU) mortality (RR 0.78, 95% CI, 0.63-0.97; P = 0. 027), incidence of respiratory distress syndrome or acute lung injury (RR 0.73, 95% CI, 0.58-0.91; P = 0.006), and incidence of sepsis (RR 0.81, 95% CI, 0.68-0.97; P = 0.021). A predefined subgroup analysis according to patient type suggested that hospital mortality and ICU mortality benefits were seen only in septic patients (RR 0.71, 95% CI, 0.58-0.86; P < 0.0001) and (RR 0.65, 95% CI, 0.49-0.86; P = 0.002). By network meta-analysis, the predictive interval plot showed that patients treated with aspirin and clopidogrel had lower risk of hospital mortality as compared with control group. The assessment of rank probabilities using SUCRA plots indicated that aspirin presented the greatest likelihood of having lowest hospital mortality rate. The results of this meta-analysis suggest that antiplatelet therapy is useful for the treatment in critically ill patients, and this is primarily due to an effect on septic patients. Network meta-analysis shows that the probability of being the best antiplatelet therapy for critically ill patients was aspirin.
Collapse
Affiliation(s)
- Fangbing Du
- Department of Respiratory Medicine, Second People's Hospital of Hefei, Anhui, China
| | - Pan Jiang
- Department of Stomatology, The Third People Hospital of Hainan Province, Sanya, China
| | - Shengteng He
- Department of Stomatology, The Third People Hospital of Hainan Province, Sanya, China
| | - Dongming Song
- Department of Pediatrics, Mudanjiang Women and Children Hospital, Mudanjiang, China
| | - Feng Xu
- Department of ICU, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
104
|
Hottz ED, Bozza FA, Bozza PT. Platelets in Immune Response to Virus and Immunopathology of Viral Infections. Front Med (Lausanne) 2018; 5:121. [PMID: 29761104 PMCID: PMC5936789 DOI: 10.3389/fmed.2018.00121] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2018] [Indexed: 01/04/2023] Open
Abstract
Platelets are essential effector cells in hemostasis. Aside from their role in coagulation, platelets are now recognized as major inflammatory cells with key roles in the innate and adaptive arms of the immune system. Activated platelets have key thromboinflammatory functions linking coagulation to immune responses in various infections, including in response to virus. Recent studies have revealed that platelets exhibit several pattern recognition receptors (PRR) including those from the toll-like receptor, NOD-like receptor, and C-type lectin receptor family and are first-line sentinels in detecting and responding to pathogens in the vasculature. Here, we review the main mechanisms of platelets interaction with viruses, including their ability to sustain viral infection and replication, their expression of specialized PRR, and activation of thromboinflammatory responses against viruses. Finally, we discuss the role of platelet-derived mediators and platelet interaction with vascular and immune cells in protective and pathophysiologic responses to dengue, influenza, and human immunodeficiency virus 1 infections.
Collapse
Affiliation(s)
- Eugenio D Hottz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Departamento de Bioquimica, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Fernando A Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
105
|
Zhang HH, Yu WY, Li L, Wu F, Chen Q, Yang Y, Yu CH. Protective effects of diketopiperazines from Moslae Herba against influenza A virus-induced pulmonary inflammation via inhibition of viral replication and platelets aggregation. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:156-166. [PMID: 29309861 DOI: 10.1016/j.jep.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moslae Herba (MH) is broadly used as an antiviral, antipyretic and anticoagulant drug which effectively treats respiratory diseases including cough, asthma, throat, cold and flu. AIM OF THIS STUDY The excessive inflammation of the lungs is the hallmark of severe influenza A virus (IAV) infection, while platelet aggregation and its subsequent microvascular thrombosis can exacerbate IAV-induced lung injury. Thus, inhibition of platelet aggregation can be a potential target for IAV treatment. Previous studies focus on the flavonoids from MH and their anti-inflammatory activities, but the anticoagulant compounds and potential molecular mechanism of MH remains unclear. This study was to isolate and characterize diketopiperazines (DKPs) from MH and to explore the underlying anticoagulant mechanism on IAV infection models. MATERIALS AND METHODS EtOAc sub-extract separated from MH ethanolic extract was subjected to fractionation through column chromatography. The chemical structures of pure compounds were characterized by the spectral analysis. Antiviral activities of DKPs were assayed in IAV-infected Madin-Darby canine kidney (MDCK) cells and mice. Anticoagulant effects of DKPs were investigated on adenosine 5'-diphosphate (ADP)-induced acute pulmonary embolism and IAV-induced lung injury in vivo, as well as the inhibition on platelet activating factor (PAF), arachidonic acid (AA) and ADP-induced platelet aggregation in vitro. The serum levels of thromboxane B2 (TXB2) and 6-keto-PGF1α were detected by ELISA. The expressions of key proteins in CD41-mediated PI3K/AKT pathways were determined by western blotting analysis. RESULTS Six DKPs were, for the first time, isolated from MH and identified as cyclo(Tyr-Leu) (1), cyclo(Phe-Phe) (2), cyclo(Phe-Tyr) (3), cyclo(Ala-Ile) (4), cyclo(Ala-Leu) (5) and Bz-Phe-Phe-OMe (6). Among these DKPs, cyclo(Ala-Ile) and Bz-Phe-Phe-OMe possessed low cytotoxicities and significant inhibition against cytopathic effects induced by IAV (H1N1 and H3N2) replication in MDCK cells. Furthermore, cyclo(Ala-Ile) and Bz-Phe-Phe-OMe significantly alleviated IAV-induced platelet activation and lung inflammation in mice. They could reduce the expression of CD41 and the phosphorylation of PI3K and AKT in PLTs of IAV-infected mice. CONCLUSION These results suggested that cyclo(Ala-Ile) and Bz-Phe-Phe-OMe isolated from MH have antiviral and anticoagulant effects against IAV-induced PLT aggregation and lung inflammation via regulating CD41/PI3K/AKT pathway, and could be used as the potential agents for IAV treatment.
Collapse
Affiliation(s)
- Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Wen-Ying Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Lan Li
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China; First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qin Chen
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310009, China
| | - Yang Yang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| |
Collapse
|
106
|
Tinoco R, Carrette F, Henriquez ML, Fujita Y, Bradley LM. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:2690-2702. [PMID: 29491007 DOI: 10.4049/jimmunol.1701251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/04/2018] [Indexed: 11/19/2022]
Abstract
T cells mediating influenza viral control are instructed in lymphoid and nonlymphoid tissues to differentiate into memory T cells that confer protective immunity. The mechanisms by which influenza virus-specific memory CD4+ T cells arise have been attributed to changes in transcription factors, cytokines and cytokine receptors, and metabolic programming. The molecules involved in these biosynthetic pathways, including proteins and lipids, are modified to varying degrees of glycosylation, fucosylation, sialation, and sulfation, which can alter their function. It is currently unknown how the glycome enzymatic machinery regulates CD4+ T cell effector and memory differentiation. In a murine model of influenza virus infection, we found that fucosyltransferase enzymatic activity was induced in effector and memory CD4+ T cells. Using CD4+ T cells deficient in the Fut4/7 enzymes that are expressed only in hematopoietic cells, we found decreased frequencies of effector cells with reduced expression of T-bet and NKG2A/C/E in the lungs during primary infection. Furthermore, Fut4/7-/- effector CD4+ T cells had reduced survival with no difference in proliferation or capacity for effector function. Although Fut4/7-/- CD4+ T cells seeded the memory pool after primary infection, they failed to form tissue-resident cells, were dysfunctional, and were unable to re-expand after secondary infection. Our findings highlight an important regulatory axis mediated by cell-intrinsic fucosyltransferase activity in CD4+ T cell effectors that ensure the development of functional memory CD4+ T cells.
Collapse
Affiliation(s)
- Roberto Tinoco
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Florent Carrette
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Monique L Henriquez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Yu Fujita
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Linda M Bradley
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| |
Collapse
|
107
|
Ashar HK, Mueller NC, Rudd JM, Snider TA, Achanta M, Prasanthi M, Pulavendran S, Thomas PG, Ramachandran A, Malayer JR, Ritchey JW, Rajasekhar R, Chow VTK, Esmon CT, Teluguakula N. The Role of Extracellular Histones in Influenza Virus Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:135-148. [PMID: 29107075 PMCID: PMC5745522 DOI: 10.1016/j.ajpath.2017.09.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/31/2017] [Accepted: 09/21/2017] [Indexed: 01/14/2023]
Abstract
Although exaggerated host immune responses have been implicated in influenza-induced lung pathogenesis, the etiologic factors that contribute to these events are not completely understood. We previously demonstrated that neutrophil extracellular traps exacerbate pulmonary injury during influenza pneumonia. Histones are the major protein components of neutrophil extracellular traps and are known to have cytotoxic effects. Here, we examined the role of extracellular histones in lung pathogenesis during influenza. Mice infected with influenza virus displayed high accumulation of extracellular histones, with widespread pulmonary microvascular thrombosis. Occluded pulmonary blood vessels with vascular thrombi often exhibited endothelial necrosis surrounded by hemorrhagic effusions and pulmonary edema. Histones released during influenza induced cytotoxicity and showed strong binding to platelets within thrombi in infected mouse lungs. Nasal wash samples from influenza-infected patients also showed increased accumulation of extracellular histones, suggesting a possible clinical relevance of elevated histones in pulmonary injury. Although histones inhibited influenza growth in vitro, in vivo treatment with histones did not yield antiviral effects and instead exacerbated lung pathology. Blocking with antihistone antibodies caused a marked decrease in lung pathology in lethal influenza-challenged mice and improved protection when administered in combination with the antiviral agent oseltamivir. These findings support the pathogenic effects of extracellular histones in that pulmonary injury during influenza was exacerbated. Targeting histones provides a novel therapeutic approach to influenza pneumonia.
Collapse
Affiliation(s)
- Harshini K Ashar
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Nathan C Mueller
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Jennifer M Rudd
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Timothy A Snider
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Mallika Achanta
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Maram Prasanthi
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Sivasami Pulavendran
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Akhilesh Ramachandran
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Jerry R Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Jerry W Ritchey
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Rachakatla Rajasekhar
- Department of Anatomy, Arkansas College of Osteopathic Medicine, Fort Smith, Arkansas
| | - Vincent T K Chow
- Department of Microbiology and Immunology, School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, and Department of Pathology, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | |
Collapse
|
108
|
CD151, a novel host factor of nuclear export signaling in influenza virus infection. J Allergy Clin Immunol 2017; 141:1799-1817. [PMID: 29274410 DOI: 10.1016/j.jaci.2017.11.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/09/2017] [Accepted: 11/23/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Despite advances in our understanding of the mechanisms of influenza A virus (IAV) infection, the crucial virus-host interactions during the viral replication cycle still remain incomplete. Tetraspanin CD151 is highly expressed in the human respiratory tract, but its pathological role in IAV infection is unknown. OBJECTIVES We sought to characterize the functional role and mechanisms of action of CD151 in IAV infection of the upper and lower respiratory tracts with H1N1 and H3N2 strains. METHODS We used CD151-null mice in an in vivo model of IAV infection and clinical donor samples of in vitro-differentiated human nasal epithelial cells cultured at air-liquid interface. RESULTS As compared with wild-type infected mice, CD151-null infected mice exhibited a significant reduction in virus titer and improvement in survival that is associated with pronounced host antiviral response and inflammasome activation together with accelerated lung repair. Interestingly, we show that CD151 complexes newly synthesized viral proteins with host nuclear export proteins and stabilizes microtubule complexes, which are key processes necessary for the polarized trafficking of viral progeny to the host plasma membrane for assembly. CONCLUSIONS Our results provide new mechanistic insights into our understanding of IAV infection. We show that CD151 is a critical novel host factor of nuclear export signaling whereby the IAV nuclear export uses it to complement its own nuclear export proteins (a site not targeted by current therapy), making this regulation unique, and holds promise for the development of novel alternative/complementary strategies to reduce IAV severity.
Collapse
|
109
|
Alessi MC, Cenac N, Si-Tahar M, Riteau B. FPR2: A Novel Promising Target for the Treatment of Influenza. Front Microbiol 2017; 8:1719. [PMID: 28928730 PMCID: PMC5591951 DOI: 10.3389/fmicb.2017.01719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
The Formyl-peptide receptor-2 (FPR2) is a seven transmembrane G protein-coupled receptor, which plays an important role in sensing of bacteria and modulation of immune responses. FPR2 is also used by viruses for their own profit. Annexin A1, one of the multiple ligands of FPR2, is incorporated in the budding virus membrane of influenza A viruses (IAV). Thereby, once IAV infect a host cell, FPR2 is activated. FPR2-signaling leads to an increase in viral replication, a dysregulation of the host immune response and a severe disease. Conversely, experiments using FPR2 antagonists in a preclinical model of IAV infections in mice showed that blocking FPR2 protects animals from lethal infections. Thus, FPR2 represents a very attractive host target against influenza. In this review we will give an overview on the pathogenesis of influenza with a focus on the role of FPR2 and we will discuss the advantages of using FPR2 antagonists to treat the flu.
Collapse
Affiliation(s)
| | - Nicolas Cenac
- IRSD, INSERM, INRA, INP-ENVT, Université de Toulouse 3Toulouse, France
| | - Mustapha Si-Tahar
- INSERM, Université de Tours, Centre d'Étude des Pathologies Respiratoires, UMR 1100Tours, France
| | - Béatrice Riteau
- Aix Marseille Univ, INSERM, INRA, NORT, UMR 1260/1062Marseille, France
| |
Collapse
|
110
|
Antiviral activity of formyl peptide receptor 2 antagonists against influenza viruses. Antiviral Res 2017; 143:252-261. [DOI: 10.1016/j.antiviral.2017.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 11/18/2022]
|
111
|
Comprendre le poumon agressé. Actes du séminaire de recherche translationnelle de la Société de Réanimation de Langue Française (6 décembre 2016). MEDECINE INTENSIVE REANIMATION 2017. [PMCID: PMC7149235 DOI: 10.1007/s13546-017-1279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Le séminaire de recherche translationnelle 2016 organisé par la Société de Réanimation de Langue Française s’est focalisé sur les mécanismes de réponse à l’agression et de réparation pulmonaire. Le poumon représente une interface essentielle entre l’hôte et son environnement et est à ce titre soumis à des agressions constantes et multiples. La réanimation s’est en grande partie construite autour de la prise en charge de la défaillance respiratoire. Au-delà du traitement étiologique et du support ventilatoire, se pose la problématique récurrente du développement de thérapeutiques adjuvantes à visée immunomodulatrice. Le développement de telles thérapeutiques innovantes est conditionné par les avancées dans la compréhension de la physiopathologie de l’agression pulmonaire aiguë, ainsi que par la validation au lit du patient d’outils d’évaluation permettant de quantifier l’effet des interventions thérapeutiques.
Collapse
|
112
|
Ho SW, Teng YH, Yang SF, Yeh HW, Wang YH, Chou MC, Yeh CB. Association of Proton Pump Inhibitors Usage with Risk of Pneumonia in Dementia Patients. J Am Geriatr Soc 2017; 65:1441-1447. [PMID: 28321840 DOI: 10.1111/jgs.14813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To determine the association between usages of proton pump inhibitors (PPIs) and subsequent risk of pneumonia in dementia patients. DESIGN Retrospective cohort study. SETTING Taiwanese National Health Insurance Research Database. PARTICIPANTS The study cohort consisted of 786 dementia patients with new PPI usage and 786 matched dementia patients without PPI usage. MEASUREMENTS The study endpoint was defined as the occurrence of pneumonia. The Cox proportional hazard model was used to estimate the pneumonia risk. Defined daily dose methodology was applied to evaluate the cumulative and dose-response relationships of PPI. RESULTS Incidence of pneumonia was higher among patients with PPI usage (adjusted hazard ratio (HR) = 1.89; 95% CI = 1.51-2.37). Cox model analysis also demonstrated that age (adjusted HR = 1.05; 95% CI = 1.03-1.06), male gender (adjusted HR = 1.57; 95% CI = 1.25-1.98), underlying cerebrovascular disease (adjusted HR = 1.30; 95% CI = 1.04-1.62), chronic pulmonary disease (adjusted HR = 1.39; 95% CI = 1.09-1.76), congestive heart failure (adjusted HR = 1.54; 95% CI = 1.11-2.13), diabetes mellitus (adjusted HR = 1.54; 95% CI = 1.22-1.95), and usage of antipsychotics (adjusted HR = 1.29; 95% CI = 1.03-1.61) were independent risk factors for pneumonia. However, usage of cholinesterase inhibitors and histamine receptor-2 antagonists were shown to decrease pneumonia risk. CONCLUSION PPI usage in dementia patients is associated with an 89% increased risk of pneumonia.
Collapse
Affiliation(s)
- Sai-Wai Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ying-Hock Teng
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Han-Wei Yeh
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yu-Hsun Wang
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
113
|
Abstract
Virus–platelet interplay is complex. Diverse virus types have been shown to associate with numerous distinct platelet receptors. This association can benefit the virus or the host, and thus the platelet is somewhat of a renegade. Evidence is accumulating to suggest that viruses are capable of entering platelets. For at least one type of RNA virus (dengue virus), the platelet has the necessary post-translational and packaging machinery required for production of replicative viral progeny. As a facilitator of immunity, the platelet also participates in eradicating the virus by direct and indirect mechanisms involving presentation of the pathogen to the innate and adaptive immune systems, thus enhancing inflammation by release of cytokines and other agonists. Virus-induced thrombocytopenia is caused by tangential imbalance of thrombopoeisis, autoimmunity, and loss of platelet function and integrity.
Collapse
|
114
|
Sneeboer MMS, Fens N, van de Pol MA, Majoor CJ, Meijers JCM, Kamphuisen PW, Lutter R, Sterk PJ, Bel EHD. Loss of asthma control and activation of coagulation and fibrinolysis. Clin Exp Allergy 2016; 46:422-7. [PMID: 26509255 DOI: 10.1111/cea.12667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Epidemiologic studies have shown that patients with severe asthma have increased risk of pulmonary embolism, in particular patients with frequent asthma exacerbations. Therefore, we hypothesized that asthma exacerbations are associated with increased haemostatic activity. OBJECTIVE To investigate whether induced loss of asthma control is associated with changes in coagulation and fibrinolytic parameters in peripheral blood. METHODS We performed a prospective, inhaled steroid withdrawal study in 23 patients with moderate to moderately severe asthma, consisting of a baseline visit and a visit after loss of asthma control. During the visits, we measured asthma control questionnaire (ACQ), atopy, lung function, inflammatory markers (eosinophils and neutrophils), and haemostatic parameters in plasma. RESULTS Complete cessation of inhaled corticosteroids led to a loss of asthma control in 22 of 23 patients. We found increased asthma symptoms (ACQ 0.9 vs. 2.9, P < 0.01), significantly reduced lung function (forced expiratory volume in 1 s (FEV1) 3.51L vs. 3.13L, P < 0.01) and increased levels of eosinophils in plasma (0.26 × 10(E9)/L vs. 0.16 × 10(E9)/L, P = 0.03) in patients after loss of asthma control. However, we observed no significant changes in the coagulation and fibrinolysis parameters. CONCLUSION Loss of asthma control after cessation of inhaled corticosteroids does not lead to increased haemostatic activation in patients with moderate to moderately severe asthma. This suggests that more severe inflammation or additional risk factors are required for activation of coagulation or reduction of fibrinolysis in asthma.
Collapse
Affiliation(s)
- M M S Sneeboer
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - N Fens
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - M A van de Pol
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - C J Majoor
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - J C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands.,Department of Plasma Proteins, Sanquin Research, Amsterdam, The Netherlands
| | - P W Kamphuisen
- Department of Vascular Medicine, University Medical Center Groningen, The Netherlands
| | - R Lutter
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - P J Sterk
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - E H D Bel
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
115
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
116
|
Ko JH, Park GE, Lee JY, Lee JY, Cho SY, Ha YE, Kang CI, Kang JM, Kim YJ, Huh HJ, Ki CS, Jeong BH, Park J, Chung CR, Chung DR, Song JH, Peck KR. Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients. J Infect 2016; 73:468-475. [PMID: 27519621 PMCID: PMC7112644 DOI: 10.1016/j.jinf.2016.08.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/28/2016] [Accepted: 08/05/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND After the 2015 Middle East respiratory syndrome (MERS) outbreak in Korea, prediction of pneumonia development and progression to respiratory failure was emphasized in control of MERS outbreak. METHODS MERS-CoV infected patients who were managed in a tertiary care center during the 2015 Korean MERS outbreak were reviewed. To analyze predictive factors for pneumonia development and progression to respiratory failure, we evaluated clinical variables measured within three days from symptom onset. RESULTS A total of 45 patients were included in the study: 13 patients (28.9%) did not develop pneumonia, 19 developed pneumonia without respiratory failure (42.2%), and 13 progressed to respiratory failures (28.9%). The identified predictive factors for pneumonia development included age ≥45 years, fever ≥37.5 °C, thrombocytopenia, lymphopenia, CRP ≥ 2 mg/dL, and a threshold cycle value of PCR less than 28.5. For respiratory failure, the indicators included male, hypertension, low albumin concentration, thrombocytopenia, lymphopenia, and CRP ≥ 4 mg/dL (all P < 0.05). With ≥ two predictive factors for pneumonia development, 100% of patients developed pneumonia. Patients lacking the predictive factors did not progress to respiratory failure. CONCLUSION For successful control of MERS outbreak, MERS-CoV infected patients with ≥ two predictive factors should be intensively managed from the initial presentation.
Collapse
Affiliation(s)
- Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Ga Eun Park
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Ji Yeon Lee
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Ji Yong Lee
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Sun Young Cho
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Young Eun Ha
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Cheol-In Kang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Ji-Man Kang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jinkyeong Park
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chi Ryang Chung
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Doo Ryeon Chung
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Jae-Hoon Song
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea.
| |
Collapse
|
117
|
Cangemi R, Della Valle P, Calvieri C, Taliani G, Ferroni P, Falcone M, Carnevale R, Bartimoccia S, D'Angelo A, Violi F. Low-grade endotoxemia and clotting activation in the early phase of pneumonia. Respirology 2016; 21:1465-1471. [PMID: 27403788 DOI: 10.1111/resp.12854] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/01/2016] [Accepted: 05/08/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Community-acquired pneumonia (CAP) is associated with an increased risk of arterial and venous thrombosis but the underlying pathophysiological mechanisms are still unclear. We investigated if, in patients with CAP, a pro-thrombotic state does exist and its relationship with serum levels of endotoxins. METHODS A total of 104 consecutive patients with CAP were prospectively recruited and followed up until discharge. At admission and at discharge, serum endotoxins, systemic markers of clotting activation and zonulin, a marker of gut permeability, were analysed. Hospitalized patients matched for gender, age and comorbidities but without infections were used as control. RESULTS At admission, CAP patients showed higher plasma levels of F1+2 , a marker of thrombin generation (P = 0.023), and lower levels of protein C (PC; P < 0.001) and activated PC (aPC) (P < 0.001) compared with controls. At discharge, plasma levels of both PC and aPC significantly increased while F1+2 significantly decreased (P < 0.001). Baseline serum endotoxins and zonulin were higher in CAP patients than controls (P < 0.001) and significantly decreased at discharge; a significant correlation between serum endotoxins and zonulin was detected (R = 0.575; P < 0.001) CONCLUSION: This study provides the first evidence that CAP patients disclose an ongoing pro-thrombotic state and suggests a role for endotoxemia in determining enhanced thrombin generation.
Collapse
Affiliation(s)
- Roberto Cangemi
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Patrizia Della Valle
- Coagulation Service & Thrombosis Research Unit, Scientific Institute San Raffaele, Milano, Italy
| | - Camilla Calvieri
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Gloria Taliani
- Infectious and Tropical Diseases Unit, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Patrizia Ferroni
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS San Raffaele Pisana, Rome, Italy
| | - Marco Falcone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Simona Bartimoccia
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Armando D'Angelo
- Coagulation Service & Thrombosis Research Unit, Scientific Institute San Raffaele, Milano, Italy
| | - Francesco Violi
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy.
| | | |
Collapse
|
118
|
Galabov AS, Mileva M, Simeonova L, Gegova G. Combination activity of neuraminidase inhibitor oseltamivir and α-tocopherol in influenza virus A (H3N2) infection in mice. Antivir Chem Chemother 2016; 24:83-91. [PMID: 27341844 DOI: 10.1177/2040206616656263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Influenza is a highly contagious viral infection of the respiratory system. To attack two processes involved in flu pathogenesis-viral replication in the infected body and oxidative damages, we studied the combination effect of neuraminidase inhibitor oseltamivir and antioxidant α-tocopherol in experimental model of influenza. METHODS After inoculation of albino mice with 10 MLD50 (50% mouse lethal dose) of influenza virus A/Aichi/2/68 (H3N2), oseltamivir was applied orally at three doses, 2.5 mg/kg, 1.25 mg/kg, and 0.625 mg/kg, for five days post infection. α-Tocopherol (120 mg/kg, in sunflower oil) was administered intraperitoneally. Three schemes of α-tocopherol five-day course were tested: onset five or two days before infection, or on the virus inoculation day. RESULTS Strongly dose-dependent augmented antiviral effect of the combination α-tocopherol and 0.625 mg/kg oseltamivir was demonstrated when α-tocopherol was administered simultaneously with oseltamivir: a pronounced decrease in mortality rate (a 78% protection), and a lengthening of mean survival time by 3.2-4 days. Lung parameters showed a substantial decrease in infectious virus content (Δ logs = 3.8/4.1) and a marked diminishment of lung index and pathology. Combination α-tocopherol with 1.25 mg/kg oseltamivir manifested a marked protective effect, but the effect on lung parameters was less. The combination effect of α-tocopherol with 2.5 mg/kg oseltamivir did not surpass the monotherapeutic effect of oseltamivir. When α-tocopherol was applied in courses starting five or two days before infection, its combination with oseltamivir was ineffective. CONCLUSIONS Evidently, α-tocopherol could be considered as prospective component of influenza therapy in combination with oseltamivir.
Collapse
Affiliation(s)
- Angel S Galabov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lora Simeonova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Galina Gegova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
119
|
Qin C, Zhang H, Gu J, Xiao Z, Yang Q, Meng W. Dynamic monitoring of platelet activation and its role in post-dissection inflammation in a canine model of acute type A aortic dissection. J Cardiothorac Surg 2016; 11:86. [PMID: 27229863 PMCID: PMC4881169 DOI: 10.1186/s13019-016-0472-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 04/18/2016] [Indexed: 02/05/2023] Open
Abstract
Background To confirm the activation of platelets (PLT) and explore the role of activated PLT in post-dissection inflammation. Method An acute type A aortic dissection (AAD) canine model was established. Mean platelet volume/platelet count (MPV/PTC), platelet size distribution width (PDW), and inflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]) were measured between anesthetization and thoracotomy (T1), at the end of the operation (T2), and at 2 h (T3), 4 h (T4), and 6 h (T5) after the operation. Bivariate analysis was used to determine the correlations between the peak MPV/PTC, PDW, and inflammatory cytokines at T4. Result An AAD canine model was successfully established. Both MPV/PTC and PDW values were significantly higher at T3-T5 than at T1 (P < 0.05). Both were also significantly higher at T3-T5 in the dissection group than in the sham operation (SO) group (P < 0.05). Inflammatory cytokine levels were remarkably higher at T3-T5 than at T1, and were higher at T3-T5 in both the dissection and the SO group (P < 0.05). Bivariate analysis demonstrated positive correlations between MPV/PTC and both TNF-α (r = 0.826, P = 0.011) and IL-6 (r = 0.806, P = 0.016). Conclusion Activated PLT were identified after AAD, and played a critical role in the initiation of post-dissection inflammation.
Collapse
Affiliation(s)
- Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Lane outside the southern No. 37, Cheng du, Sichuan, People's Republic of China
| | - Hongwei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Lane outside the southern No. 37, Cheng du, Sichuan, People's Republic of China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Lane outside the southern No. 37, Cheng du, Sichuan, People's Republic of China
| | - Zhenghua Xiao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Lane outside the southern No. 37, Cheng du, Sichuan, People's Republic of China
| | - Qin Yang
- Department of Radiology, West China Hospital, Sichuan University, Lane outside the southern No. 37, Cheng du, Sichuan, People's Republic of China
| | - Wei Meng
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Lane outside the southern No. 37, Cheng du, Sichuan, People's Republic of China.
| |
Collapse
|
120
|
Yang Y, Tang H. Aberrant coagulation causes a hyper-inflammatory response in severe influenza pneumonia. Cell Mol Immunol 2016; 13:432-42. [PMID: 27041635 PMCID: PMC4947825 DOI: 10.1038/cmi.2016.1] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
Influenza A virus (IAV) infects the respiratory tract in humans and causes significant morbidity and mortality worldwide each year. Aggressive inflammation, known as a cytokine storm, is thought to cause most of the damage in the lungs during IAV infection. Dysfunctional coagulation is a common complication in pathogenic influenza, manifested by lung endothelial activation, vascular leak, disseminated intravascular coagulation and pulmonary microembolism. Importantly, emerging evidence shows that an uncontrolled coagulation system, including both the cellular (endothelial cells and platelets) and protein (coagulation factors, anticoagulants and fibrinolysis proteases) components, contributes to the pathogenesis of influenza by augmenting viral replication and immune pathogenesis. In this review, we focus on the underlying mechanisms of the dysfunctional coagulatory response in the pathogenesis of IAV.
Collapse
Affiliation(s)
- Yan Yang
- Division of Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hong Tang
- Division of Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.,Institute Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| |
Collapse
|
121
|
Tcherniuk S, Cenac N, Comte M, Frouard J, Errazuriz-Cerda E, Galabov A, Morange PE, Vergnolle N, Si-Tahar M, Alessi MC, Riteau B. Formyl Peptide Receptor 2 Plays a Deleterious Role During Influenza A Virus Infections. J Infect Dis 2016; 214:237-47. [PMID: 27034344 DOI: 10.1093/infdis/jiw127] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/25/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The pathogenesis of influenza A virus (IAV) infections is a multifactorial process that includes the replication capacity of the virus and a harmful inflammatory response to infection. Formyl peptide receptor 2 (FPR2) emerges as a central receptor in inflammatory processes controlling resolution of acute inflammation. Its role in virus pathogenesis has not been investigated yet. METHODS We used pharmacologic approaches to investigate the role of FPR2 during IAV infection in vitro and in vivo. RESULTS In vitro, FPR2 expressed on A549 cells was activated by IAV, which harbors its ligand, annexin A1, in its envelope. FPR2 activation by IAV promoted viral replication through an extracellular-regulated kinase (ERK)-dependent pathway. In vivo, activating FPR2 by administering the agonist WKYMVm-NH2 decreased survival and increased viral replication and inflammation after IAV infection. This effect was abolished by treating the mice with U0126, a specific ERK pathway inhibitor, showing that, in vivo, the deleterious role of FPR2 also occurs through an ERK-dependent pathway. In contrast, administration of the FPR2 antagonist WRW4 protected mice from lethal IAV infections. CONCLUSIONS These data show that viral replication and IAV pathogenesis depend on FPR2 signaling and suggest that FPR2 may be a promising novel strategy to treat influenza.
Collapse
Affiliation(s)
- Sergey Tcherniuk
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1062 INRA, UMR_INRA 1260, France Aix Marseille Université
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier
| | | | | | | | - Angel Galabov
- Bulgarian Academy of Sciences, Stephan Angeloff Institute of Microbiology, Sofia
| | - Pierre-Emmanuel Morange
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1062 INRA, UMR_INRA 1260, France Aix Marseille Université
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier
| | - Mustapha Si-Tahar
- Inserm U1100 - Centre d'études des pathologies respiratoires Université F. Rabelais, Tours, France
| | - Marie-Christine Alessi
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1062 INRA, UMR_INRA 1260, France Aix Marseille Université
| | - Béatrice Riteau
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1062 INRA, UMR_INRA 1260, France Aix Marseille Université
| |
Collapse
|
122
|
Jones LD, Jackson JW, Maggirwar SB. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction. PLoS One 2016; 11:e0151702. [PMID: 26986758 PMCID: PMC4795798 DOI: 10.1371/journal.pone.0151702] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/02/2016] [Indexed: 01/31/2023] Open
Abstract
The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND) is increasing. In these individuals, the integrity of the blood-brain barrier (BBB) is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L) is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT) mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1). As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND.
Collapse
Affiliation(s)
- Letitia D Jones
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Joseph W Jackson
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
123
|
Influenza Virus Infection Induces Platelet-Endothelial Adhesion Which Contributes to Lung Injury. J Virol 2015; 90:1812-23. [PMID: 26637453 DOI: 10.1128/jvi.02599-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023] Open
Abstract
Lung injury after influenza infection is characterized by increased permeability of the lung microvasculature, culminating in acute respiratory failure. Platelets interact with activated endothelial cells and have been implicated in the pathogenesis of some forms of acute lung injury. Autopsy studies have revealed pulmonary microthrombi after influenza infection, and epidemiological studies suggest that influenza vaccination is protective against pulmonary thromboembolism; however, the effect of influenza infection on platelet-endothelial interactions is unclear. We demonstrate that endothelial infection with both laboratory and clinical strains of influenza virus increased the adhesion of human platelets to primary human lung microvascular endothelial cells. Platelets adhered to infected cells as well as to neighboring cells, suggesting a paracrine effect. Influenza infection caused the upregulation of von Willebrand factor and ICAM-1, but blocking these receptors did not prevent platelet-endothelial adhesion. Instead, platelet adhesion was inhibited by both RGDS peptide and a blocking antibody to platelet integrin α5β1, implicating endothelial fibronectin. Concordantly, lung histology from infected mice revealed viral dose-dependent colocalization of viral nucleoprotein and the endothelial marker PECAM-1, while platelet adhesion and fibronectin deposition also were observed in the lungs of influenza-infected mice. Inhibition of platelets using acetylsalicylic acid significantly improved survival, a finding confirmed using a second antiplatelet agent. Thus, influenza infection induces platelet-lung endothelial adhesion via fibronectin, contributing to mortality from acute lung injury. The inhibition of platelets may constitute a practical adjunctive strategy to the treatment of severe infections with influenza.IMPORTANCE There is growing appreciation of the involvement of the lung endothelium in the pathogenesis of severe infections with influenza virus. We have recently shown that the virus can infect human lung endothelial cells, but the functional consequences of this infection are unknown (S. M. Armstrong, C. Wang, J. Tigdi, X. Si, C. Dumpit, S. Charles, A. Gamage, T. J. Moraes, and W. L. Lee, PLoS One 7:e47323, 2012, http://dx.doi.org/10.1371/journal.pone.0047323). Here, we show that this infection causes platelets to adhere to the lung endothelium. Importantly, blocking platelets using two distinct antiplatelet drugs improved survival in a mouse model of severe influenza infection. Thus, platelet inhibition may constitute a novel therapeutic strategy to improve the host response to severe infections with influenza.
Collapse
|