101
|
Panelli A, Grunow JJ, VERFUß MA, Bartels HG, Brass Z, Schaller SJ. Outcomes in critically ill patients after diaphragmatic stimulation on ventilator-induced diaphragmatic dysfunction: a systematic review. Eur J Phys Rehabil Med 2023; 59:772-781. [PMID: 38214045 PMCID: PMC10794987 DOI: 10.23736/s1973-9087.23.08031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION Mechanical ventilation (MV) is a lifesaving procedure for critically ill patients. Diaphragm activation and stimulation may counteract side effects, such as ventilator-induced diaphragm dysfunction (VIDD). The effects of stimulation on diaphragm atrophy and patient outcomes are reported in this systematic review. EVIDENCE ACQUISITION Studies investigating diaphragmatic stimulation versus standard of care in critically ill patients and evaluating clinical outcomes were extracted from a Medline database last on January 23, 2023, after registration in Prospero (CRD42021259353). Selected studies included the investigation of diaphragmatic stimulation versus standard of care in critically ill patients, an evaluation of the clinical outcomes. These included muscle atrophy, VIDD, weaning failure, mortality, quality of life, ventilation time, diaphragmatic function, length of stay in the Intensive Care Unit (ICU), and length of hospital stay. All articles were independently evaluated by two reviewers according to their abstract and title and, secondly, a full texts evaluation by two independent reviewers was performed. To resolve diverging evaluations, a third reviewer was consulted to reach a final decision. Data were extracted by the reviewers following the Oxford 2011 levels of evidence guidelines and summarized accordingly. EVIDENCE SYNTHESIS Seven studies were extracted and descriptively synthesized, since a metanalysis was not feasible. Patients undergoing diaphragm stimulation had moderate evidence of higher maximal inspiratory pressure (MIP), less atrophy, less mitochondrial respiratory dysfunction, less oxidative stress, less molecular atrophy, shorter MV time, shorter ICU length of stay, longer survival, and better SF-36 scores than control. CONCLUSIONS Evidence of the molecular and histological benefits of diaphragmatic stimulation is limited. The results indicate positive clinical effects of diaphragm activation with a moderate level of evidence for MIP and a low level of evidence for other outcomes. Diaphragm activation could be a therapeutic solution to avoid diaphragm atrophy, accelerate weaning, shorten MV time, and counteract VIDD; however, better-powered studies are needed to increase the level of evidence.
Collapse
Affiliation(s)
- Alessandro Panelli
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin, Berlin, Germany
| | - Julius J Grunow
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin, Berlin, Germany
| | - Michael A VERFUß
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin, Berlin, Germany
| | - Hermann G Bartels
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin, Berlin, Germany
| | - Zarina Brass
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Stefan J Schaller
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin, Berlin, Germany -
- School of Medicine, Department of Anesthesiology and Intensive Care, Klinikum rechts der Isar Hospital, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
102
|
Ito Y, Herrera MG, Hotz JC, Kyogoku M, Newth CJL, Bhalla AK, Takeuchi M, Khemani RG. Estimation of inspiratory effort using airway occlusion maneuvers in ventilated children: a secondary analysis of an ongoing randomized trial testing a lung and diaphragm protective ventilation strategy. Crit Care 2023; 27:466. [PMID: 38031116 PMCID: PMC10685539 DOI: 10.1186/s13054-023-04754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Monitoring respiratory effort in ventilated patients is important to balance lung and diaphragm protection. Esophageal manometry remains the gold standard for monitoring respiratory effort but is invasive and requires expertise for its measurement and interpretation. Airway pressures during occlusion maneuvers may provide an alternative, although pediatric data are limited. We sought to determine the correlation between change in esophageal pressure during tidal breathing (∆Pes) and airway pressure measured during three airway occlusion maneuvers: (1) expiratory occlusion pressure (Pocc), (2) airway occlusion pressure (P0.1), and (3) respiratory muscle pressure index (PMI) in children. We also sought to explore pediatric threshold values for these pressures to detect excessive or insufficient respiratory effort. METHODS Secondary analysis of physiologic data from children between 1 month and 18 years of age with acute respiratory distress syndrome enrolled in an ongoing randomized clinical trial testing a lung and diaphragm protective ventilation strategy (REDvent, R01HL124666). ∆Pes, Pocc, P0.1, and PMI were measured. Repeated measure correlations were used to investigate correlation coefficients between ∆Pes and the three measures, and linear regression equations were generated to identify potential therapeutic thresholds. RESULTS There were 653 inspiratory and 713 expiratory holds from 97 patients. Pocc had the strongest correlation with ∆Pes (r = 0.68), followed by PMI (r = 0.60) and P0.1 (r = 0.42). ∆Pes could be reliably estimated using the regression equation ∆Pes = 0.66 [Formula: see text] Pocc (R2 = 0.82), with Pocc cut-points having high specificity and moderate sensitivity to detect respective ∆Pes thresholds for high and low respiratory effort. There were minimal differences in the relationship between Pocc and ∆Pes based on age (infant, child, adolescent) or mode of ventilation (SIMV versus Pressure Support), although these differences were more apparent with P0.1 and PMI. CONCLUSIONS Airway occlusion maneuvers may be appropriate alternatives to esophageal pressure measurement to estimate the inspiratory effort in children, and Pocc represents the most promising target. TRIAL REGISTRATION NCT03266016; August 23, 2017.
Collapse
Affiliation(s)
- Yukie Ito
- Department of Intensive Care, Osaka Women's and Children's Hospital, Osaka, Japan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
| | - Matías G Herrera
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
- Department of Intensive Care, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Justin C Hotz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
| | - Miyako Kyogoku
- Department of Intensive Care, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Christopher J L Newth
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Anoopindar K Bhalla
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Muneyuki Takeuchi
- Department of Intensive Care, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Robinder G Khemani
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA.
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, USA.
| |
Collapse
|
103
|
Lin C, Chao WC, Pai KC, Yang TY, Wu CL, Chan MC. Prolonged use of neuromuscular blocking agents is associated with increased long-term mortality in mechanically ventilated medical ICU patients: a retrospective cohort study. J Intensive Care 2023; 11:55. [PMID: 37978572 PMCID: PMC10655355 DOI: 10.1186/s40560-023-00696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Neuromuscular blockade agents (NMBAs) can be used to facilitate mechanical ventilation in critically ill patients. Accumulating evidence has shown that NMBAs may be associated with intensive care unit (ICU)-acquired weakness and poor outcomes. However, the long-term impact of NMBAs on mortality is still unclear. METHODS We conducted a retrospective analysis using the 2015-2019 critical care databases at Taichung Veterans General Hospital, a referral center in central Taiwan, as well as the Taiwan nationwide death registry profile. RESULTS A total of 5709 ventilated patients were eligible for further analysis, with 63.8% of them were male. The mean age of enrolled subjects was 67.8 ± 15.8 years, and the one-year mortality was 48.3% (2755/5709). Compared with the survivors, the non-survivors had a higher age (70.4 ± 14.9 vs 65.4 ± 16.3, p < 0.001), Acute Physiology and Chronic Health Evaluation II score (28.0 ± 6.2 vs 24.7 ± 6.5, p < 0.001), a longer duration of ventilator use (12.6 ± 10.6 days vs 7.8 ± 8.5 days, p < 0.001), and were more likely to receive NMBAs for longer than 48 h (11.1% vs 7.8%, p < 0.001). After adjusting for age, sex, and relevant covariates, the use of NMBAs for longer than 48 h was found to be independently associated with an increased risk of mortality (adjusted HR: 1.261; 95% CI: 1.07-1.486). The analysis of effect modification revealed that this association was tended to be strong in patients with a Charlson Comorbidity Index of 3 or higher. CONCLUSIONS Our study demonstrated that prolonged use of NMBAs was associated with an increased risk of long-term mortality in critically ill patients requiring mechanical ventilation. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Chun Lin
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Cheng Chao
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
- Big Data Center, Chung Hsing University, Taichung, Taiwan
| | - Kai-Chih Pai
- College of Engineering, Tunghai University, Taichung, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chieh-Liang Wu
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Cheng Chan
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
104
|
Spiesshoefer J, Dreher M. On-Demand Diaphragm Pacing in Invasively Mechanically Ventilated Patients with Severe Hypoxemia in the ICU: New Hope in Acute Respiratory Distress Syndrome? Am J Respir Crit Care Med 2023; 208:952-955. [PMID: 37713291 PMCID: PMC10870858 DOI: 10.1164/rccm.202309-1596ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Affiliation(s)
- Jens Spiesshoefer
- Department of Pneumology and Intensive Care Medicine RWTH Aachen University Hospital Aachen, Germany
- Health Science Interdisciplinary Center Scuola Superiore Sant'Anna Pisa, Italy
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine RWTH Aachen University Hospital Aachen, Germany
| |
Collapse
|
105
|
He G, Han Y, Zhan Y, Yao Y, Zhou H, Zheng X. The combined use of parasternal intercostal muscle thickening fraction and P0.1 for prediction of weaning outcomes. Heart Lung 2023; 62:122-128. [PMID: 37480723 DOI: 10.1016/j.hrtlng.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND A variety of parameters and diaphragmatic ultrasound in ventilator weaning has been studied extensively, and the findings yield inconsistent conclusions. The parasternal intercostal muscle holds important substantial respiratory reserve capacity when the central drive is enhanced, the predictive value of combining parasternal intercostal muscle ultrasound parameters with P0.1(airway occlusion pressure at 100 msec) in assessing ventilator weaning outcomes is still unknown. OBJECTIVES Our study aimed to evaluate the predictive efficacy of parasternal intercostal muscle ultrasound in conjunction with P0.1 in determining weaning failure. METHODS We recruited patients who had been admitted to ICU and had been receiving mechanical ventilation for over two days. All patients underwent a half-hour spontaneous breathing trial (SBT) with low-level pressure support ventilation (PSV). They were positioned semi-upright for parasternal intercostal muscle ultrasound evaluations, including parasternal intercostal muscle thickness (PIMT), and parasternal intercostal muscle thickening fraction (PIMTF); P0.1 was obtained from the ventilator. Weaning failure was defined as the need for non-invasive positive pressure ventilation or re-intubation within 48 h post-weaning. RESULTS Of the 56 enrolled patients with a mean age of 63.04 ± 15.80 years, 13 (23.2%) experienced weaning failure. There were differences in P0.1 (P = .001) and PIMTF (P = .017) between the two groups, but also in patients with a diaphragm thickness ≥ 2 mm. The predictive threshold values were PIMTF ≥ 13.15% and P0.1 ≥ 3.9 cmH2O for weaning failure. The AUROC for predicting weaning failure was 0.721 for PIMTF, 0.792 for P0.1, and 0.869 for the combination of PIMTF and P0.1. CONCLUSIONS The parasternal intercostal muscle thickening fraction and P0.1 are independently linked to weaning failure, especially in patients with normal diaphragm thickness. The combination of parasternal intercostal muscle thickening fraction and P0.1 can serve as a valuable tool for the precise clinical prediction of weaning outcomes. TRIAL REGISTRATION Chinese Clinical Trial Registry website (ChiCTR2200065422).
Collapse
Affiliation(s)
- Guojun He
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Yijiao Han
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Yasheng Zhan
- Department of Critical Care Medicine, Jinhua People's Hospital, Jinhua, Zhejiang 321000, PR China
| | - Yake Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| | - Xia Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| |
Collapse
|
106
|
Zhang J, Feng J, Jia J, Wang X, Zhou J, Liu L. Research progress on the pathogenesis and treatment of ventilator-induced diaphragm dysfunction. Heliyon 2023; 9:e22317. [PMID: 38053869 PMCID: PMC10694316 DOI: 10.1016/j.heliyon.2023.e22317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Prolonged controlled mechanical ventilation (CMV) can cause diaphragm fiber atrophy and inspiratory muscle weakness, resulting in diaphragmatic contractile dysfunction, called ventilator-induced diaphragm dysfunction (VIDD). VIDD is associated with higher rates of in-hospital deaths, nosocomial pneumonia, difficulty weaning from ventilators, and increased costs. Currently, appropriate clinical strategies to prevent and treat VIDD are unavailable, necessitating the importance of exploring the mechanisms of VIDD and suitable treatment options to reduce the healthcare burden. Numerous animal studies have demonstrated that ventilator-induced diaphragm dysfunction is associated with oxidative stress, increased protein hydrolysis, disuse atrophy, and calcium ion disorders. Therefore, this article summarizes the molecular pathogenesis and treatment of ventilator-induced diaphragm dysfunction in recent years so that it can be better served clinically and is essential to reduce the duration of mechanical ventilation use, intensive care unit (ICU) length of stay, and the medical burden.
Collapse
Affiliation(s)
- Jumei Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
107
|
Fu M, Hu Z, Yu G, Luo Y, Xiong X, Yang Q, Song W, Yu Y, Yang T. Predictors of extubation failure in newborns: a systematic review and meta-analysis. Ital J Pediatr 2023; 49:133. [PMID: 37784184 PMCID: PMC10546653 DOI: 10.1186/s13052-023-01538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
Extubation failure (EF) is a significant concern in mechanically ventilated newborns, and predicting its occurrence is an ongoing area of research. To investigate the predictors of EF in newborns undergoing planned extubation, we conducted a systematic review and meta-analysis. A systematic literature search was conducted in PubMed, Web of Science, Embase, and Cochrane Library for studies published in English from the inception of each database to March 2023. The PRISMA guidelines were followed in all phases of this systematic review. The Risk of Bias Assessment for Nonrandomized Studies tool was used to assess methodological quality. Thirty-four studies were included, 10 of which were overall low risk of bias, 15 of moderate risk of bias, and 9 of high risk of bias. The studies reported 43 possible predictors in six broad categories (intrinsic factors; maternal factors; diseases and adverse conditions of the newborn; treatment of the newborn; characteristics before and after extubation; and clinical scores and composite indicators). Through a qualitative synthesis of 43 predictors and a quantitative meta-analysis of 19 factors, we identified five definite factors, eight possible factors, and 22 unclear factors related to EF. Definite factors included gestational age, sepsis, pre-extubation pH, pre-extubation FiO2, and respiratory severity score. Possible factors included age at extubation, anemia, inotropic use, mean airway pressure, pre-extubation PCO2, mechanical ventilation duration, Apgar score, and spontaneous breathing trial. With only a few high-quality studies currently available, well-designed and more extensive prospective studies investigating the predictors affecting EF are still needed. In the future, it will be important to explore the possibility of combining multiple predictors or assessment tools to enhance the accuracy of predicting extubation outcomes in clinical practice.
Collapse
Affiliation(s)
- Maoling Fu
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Road, Wuhan, Hubei Province, China
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenjing Hu
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Road, Wuhan, Hubei Province, China
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Genzhen Yu
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Road, Wuhan, Hubei Province, China.
| | - Ying Luo
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Road, Wuhan, Hubei Province, China
| | - Xiaoju Xiong
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Road, Wuhan, Hubei Province, China
| | - Qiaoyue Yang
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Road, Wuhan, Hubei Province, China
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenshuai Song
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Road, Wuhan, Hubei Province, China
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqi Yu
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Road, Wuhan, Hubei Province, China
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Yang
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Road, Wuhan, Hubei Province, China
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
108
|
Kim GH, Kim JW, Kim KH, Kang H, Moon JY, Shin YM, Park S. FT-GAT: Graph neural network for predicting spontaneous breathing trial success in patients with mechanical ventilation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107673. [PMID: 37336152 DOI: 10.1016/j.cmpb.2023.107673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND OBJECTIVES Intensive care unit (ICU) physicians perform weaning procedures considering complex clinical situations and weaning protocols; however, liberating critical patients from mechanical ventilation (MV) remains challenging. Therefore, this study aims to aid physicians in deciding the early liberation of patients from MV by developing an artificial intelligence model that predicts the success of spontaneous breathing trials (SBT). METHODS We retrospectively collected data of 652 critical patients (SBT success: 641, SBT failure: 400) who received MV at the Chungbuk National University Hospital (CBNUH) ICU from July 2020 to July 2022, including mixed and trauma ICUs. Patients underwent SBTs according to the CBNUH weaning protocol or physician's decision, and SBT success was defined as extubation performed by the physician on the SBT day. Additionally, our dataset comprised 11 numerical and 2 categorical features that can be obtained for any ICU patient, such as vital signs and MV setting values. To predict SBT success, we analyzed tabular data using a graph neural network-based approach. Specifically, the graph structure was designed considering feature correlation, and a novel deep learning model, called feature tokenizer graph attention network (FT-GAT), was developed for graph analysis. FT-GAT transforms the input features into high-dimensional embeddings and analyzes the graph via the attention mechanism. RESULTS The quantitative evaluation results indicated that FT-GAT outperformed conventional models and clinical indicators by achieving the following model performance (AUROC): FT-GAT (0.80), conventional models (0.69-0.79), and clinical indicators (0.65-0.66) CONCLUSIONS: Through timely detection critical patients who can succeed in SBTs, FT-GAT can help prevent long-term use of MV and potentially lead to improvement in patient outcomes.
Collapse
Affiliation(s)
- Geun-Hyeong Kim
- Medical AI Research Team, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, 28644, Rep. of Korea
| | - Jae-Woo Kim
- Medical AI Research Team, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, 28644, Rep. of Korea
| | - Ka Hyun Kim
- Medical AI Research Team, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, 28644, Rep. of Korea
| | - Hyeran Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju-si, Chungcheongbuk-do, 28644, Rep. of Korea
| | - Jae Young Moon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, 35015, Rep. of Korea
| | - Yoon Mi Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju-si, Chungcheongbuk-do, 28644, Rep. of Korea.
| | - Seung Park
- Department of Biomedical Engineering, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, 28644, Rep. of Korea.
| |
Collapse
|
109
|
Andreas MN, Boehm AK, Tang P, Moosburner S, Klein O, Daneshgar A, Gaßner JMGV, Raschzok N, Haderer L, Wulsten D, Rückert JC, Spuler S, Pratschke J, Sauer IM, Hillebrandt KH. Development and systematic evaluation of decellularization protocols in different application models for diaphragmatic tissue engineering. BIOMATERIALS ADVANCES 2023; 153:213493. [PMID: 37418932 DOI: 10.1016/j.bioadv.2023.213493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Tissue engineered bioscaffolds based on decellularized composites have gained increasing interest for treatment of various diaphragmatic impairments, including muscular atrophies and diaphragmatic hernias. Detergent-enzymatic treatment (DET) constitutes a standard strategy for diaphragmatic decellularization. However, there is scarce data on comparing DET protocols with different substances in distinct application models in their ability to maximize cellular removal while minimizing extracellular matrix (ECM) damage. METHODS We decellularized diaphragms of male Sprague Dawley rats with 1 % or 0.1 % sodium dodecyl sulfate (SDS) and 4 % sodium deoxycholate (SDC) by orbital shaking (OS) or retrograde perfusion (RP) through the vena cava. We evaluated decellularized diaphragmatic samples by (1) quantitative analysis including DNA quantification and biomechanical testing, (2) qualitative and semiquantitative analysis by proteomics, as well as (3) qualitative assessment with macroscopic and microscopic evaluation by histological staining, immunohistochemistry and scanning electron microscopy. RESULTS All protocols produced decellularized matrices with micro- and ultramorphologically intact architecture and adequate biomechanical performance with gradual differences. The proteomic profile of decellularized matrices contained a broad range of primal core and ECM-associated proteins similar to native muscle. While no outstanding preference for one singular protocol was determinable, SDS-treated samples showed slightly beneficial properties in comparison to SDC-processed counterparts. Both application modalities proved suitable for DET. CONCLUSION DET with SDS or SDC via orbital shaking or retrograde perfusion constitute suitable methods to produce adequately decellularized matrices with characteristically preserved proteomic composition. Exposing compositional and functional specifics of variously treated grafts may enable establishing an ideal processing strategy to sustain valuable tissue characteristics and optimize consecutive recellularization. This aims to design an optimal bioscaffold for future transplantation in quantitative and qualitative diaphragmatic defects.
Collapse
Affiliation(s)
- Marco N Andreas
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Agnes K Boehm
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Peter Tang
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Simon Moosburner
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Oliver Klein
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Assal Daneshgar
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Joseph M G V Gaßner
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nathanael Raschzok
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Luna Haderer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dag Wulsten
- Julius-Wolff-Institut für Biomechanik und Muskuloskeletale Regeneration, Augustenburgerplatz 1, 13353 Berlin, Germany
| | - Jens-Carsten Rückert
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Simone Spuler
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Johann Pratschke
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany
| | - Igor M Sauer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany.
| | - Karl H Hillebrandt
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
110
|
Bonny V, Joffre J, Gabarre P, Urbina T, Missri L, Ladoire M, Gasperment M, Baudel JL, Guidet B, Dumas G, Maury E, Brochard L, Ait-Oufella H. Sonometric assessment of cough predicts extubation failure: SonoWean-a proof-of-concept study. Crit Care 2023; 27:368. [PMID: 37749612 PMCID: PMC10521471 DOI: 10.1186/s13054-023-04653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Extubation failure is associated with increased mortality. Cough ineffectiveness may be associated with extubation failure, but its quantification for patients undergoing weaning from invasive mechanical ventilation (IMV) remains challenging. METHODS Patients under IMV for more than 24 h completing a successful spontaneous T-tube breathing trial (SBT) were included. At the end of the SBT, we performed quantitative sonometric assessment of three successive coughing efforts using a sonometer. The mean of the 3-cough volume in decibels was named Sonoscore. RESULTS During a 1-year period, 106 patients were included. Median age was 65 [51-75] years, mainly men (60%). Main reasons for IMV were acute respiratory failure (43%), coma (25%) and shock (17%). Median duration of IMV at enrollment was 4 [3-7] days. Extubation failure occurred in 15 (14%) patients. Baseline characteristics were similar between success and failure extubation groups, except percentage of simple weaning which was lower and MV duration which was longer in extubation failure patients. Sonoscore was significantly lower in patients who failed extubation (58 [52-64] vs. 75 [70-78] dB, P < 0.001). After adjustment on MV duration and comorbidities, Sonoscore remained associated with extubation failure. Sonoscore was predictive of extubation failure with an area under the ROC curve of 0.91 (IC95% [0.83-0.99], P < 0.001). A threshold of Sonoscore < 67.1 dB predicted extubation failure with a sensitivity of 0.93 IC95% [0.70-0.99] and a specificity of 0.82 IC95% [0.73-0.90]. CONCLUSION Sonometric assessment of cough strength might be helpful to identify patients at risk of extubation failure in patients undergoing IMV.
Collapse
Affiliation(s)
- Vincent Bonny
- Service de Médecine Intensive Réanimation, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France
- Sorbonne Université, Paris, France
| | - Jeremie Joffre
- Service de Médecine Intensive Réanimation, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France
- Sorbonne Université, Paris, France
| | - Paul Gabarre
- Service de Médecine Intensive Réanimation, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France
| | - Tomas Urbina
- Service de Médecine Intensive Réanimation, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France
| | - Louai Missri
- Service de Médecine Intensive Réanimation, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France
- Sorbonne Université, Paris, France
| | - Mathilde Ladoire
- Service de Médecine Intensive Réanimation, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France
| | - Maxime Gasperment
- Service de Médecine Intensive Réanimation, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France
| | - Jean-Luc Baudel
- Service de Médecine Intensive Réanimation, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France
| | - Bertrand Guidet
- Service de Médecine Intensive Réanimation, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France
- Sorbonne Université, Paris, France
| | - Guillaume Dumas
- Service de Médecine Intensive-Réanimation, CHU Grenoble-Alpes, INSERM U1042-HP2, Université Grenoble-Alpes, Grenoble, France
| | - Eric Maury
- Service de Médecine Intensive Réanimation, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France
- Sorbonne Université, Paris, France
| | - Laurent Brochard
- Unity Health Toronto, Keenan Research Centre, Interdepartmental Division of Critical Care Medicine, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, 508783, Canada
| | - Hafid Ait-Oufella
- Service de Médecine Intensive Réanimation, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France.
- Sorbonne Université, Paris, France.
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France.
| |
Collapse
|
111
|
Pu H, Doig GS, Lv Y, Wu X, Yang F, Zhang S, Liang Z, Zhou Y, Kang Y. Modifiable risk factors for ventilator associated diaphragmatic dysfunction: a multicenter observational study. BMC Pulm Med 2023; 23:343. [PMID: 37700263 PMCID: PMC10498609 DOI: 10.1186/s12890-023-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Diaphragmatic dysfunction is known to be associated with difficulties weaning from invasive mechanical ventilation and is related to worse patient outcomes yet our understanding of how to prevent diaphragmatic dysfunction remains incomplete. We examined potentially modifiable risk factors for diaphragmatic dysfunction and attempted to estimate benefits attributable to altering these modifiable risk factors. METHODS This prospective multicenter observational study was undertaken in the general ICUs of two tertiary care teaching hospitals. Critically ill adults expected to receive invasive mechanical ventilation for at least 48 h were enrolled. Diaphragm function was assessed by ultrasound each study day, with dysfunction defined as thickening fraction less than 20%. RESULTS From January to December 2019, 856 patients were screened and 126 patients were enrolled. Overall, 40.5% (51/126) of patients experienced diaphragmatic dysfunction during invasive mechanical ventilation. Patients with diaphragmatic dysfunction were more likely to develop ventilator associated pneumonia (risk difference [RD] + 12.9%, 95% Confidence Interval [CI] 1.4 to 24.4%, P = 0.028), were more likely to experience extubation failure (RD + 8.5%, 95% CI 0.4 to 16.6%, P = 0.039) and required a longer duration of invasive mechanical ventilation (RD + 1.3 days, 95% CI 0.1 to 2.5 days, P = 0.035). They also required a longer hospital stay (RD + 1.2 days, 95% CI 0.04 to 2.4 days, P = 0.041) and were more likely to die before hospital discharge (RD + 18.1%, 95% CI 3.7 to 32.5%, P = 0.014). Multivariable analysis considered the impact of age, sex, pre-existing nutritional status, caloric intake, amino acid intake, acute disease severity, modes of mechanical ventilation, measures of respiratory status, sedation, pain control and baseline diaphragm thickness. Only SOFA score (P = 0.008) and early amino acid intake (P = 0.001) remained significant independent risk factors for the onset of diaphragmatic dysfunction. Causal path modeling suggested early amino acid intake may significantly reduce diaphragmatic dysfunction (RRR 29%, 95% CI 10% to 48%, P = 0.003) and may also reduce mortality (RRR 49%, 95% CI 25% to 73%, P < 0.0001). CONCLUSIONS Amino acid intake during the first 24 h of ICU stay may represent an important, modifiable risk factor for diaphragmatic dysfunction and may have a direct causal effect on mortality. We recommend additional research on this topic.
Collapse
Affiliation(s)
- Hong Pu
- Department of Critical Care Medicine, West China Medical School, West China Hospital, Sichuan University, Chengdu, PR China
| | - Gordon S Doig
- Northern Clinical School Intensive Care Research Unit, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Yu Lv
- Healthcare-Associated Infection Control Center, Sichuan Academy of Medical Sciences, School of Medicine, Sichuan People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xiaoxiao Wu
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences, School of Medicine, Sichuan People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Fu Yang
- Department of Critical Care Medicine, West China Medical School, West China Hospital, Sichuan University, Chengdu, PR China
| | - Shurong Zhang
- Department of Critical Care Medicine, West China Medical School, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zongan Liang
- Department of Respiratory and Critical Care Medicine, West China Medical School, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yan Zhou
- Department of Critical Care Medicine, West China Medical School, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yan Kang
- Department of Critical Care Medicine, West China Medical School, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
112
|
Medrinal C, Machefert M, Lamia B, Bonnevie T, Gravier FE, Hilfiker R, Prieur G, Combret Y. Transcutaneous electrical diaphragmatic stimulation in mechanically ventilated patients: a randomised study. Crit Care 2023; 27:338. [PMID: 37649092 PMCID: PMC10469422 DOI: 10.1186/s13054-023-04597-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Few specific methods are available to reduce the risk of diaphragmatic dysfunction for patients under mechanical ventilation. The number of studies involving transcutaneous electrical stimulation of the diaphragm (TEDS) is increasing but none report results for diaphragmatic measurements, and they lack power. We hypothesised that the use of TEDS would decrease diaphragmatic dysfunction and improve respiratory muscle strength in patients in ICU. METHODS We conducted a controlled trial to assess the impact of daily active electrical stimulation versus sham stimulation on the prevention of diaphragm dysfunction during the weaning process from mechanical ventilation. The evaluation was based on ultrasound measurements of diaphragm thickening fraction during spontaneous breathing trials. We also measured maximal inspiratory muscle pressure (MIP), peak cough flow (PEF) and extubation failure. RESULTS Sixty-six patients were included and randomised using a 1:1 ratio. The mean number of days of mechanical ventilation was 10 ± 6.8. Diaphragm thickening fraction was > 30% at the SBT for 67% of participants in the TEDS group and 54% of the Sham group (OR1.55, 95% CI 0.47-5.1; p = 0.47). MIP and PEF were similar in the TEDS and Sham groups (respectively 35.5 ± 11.9 vs 29.7 ± 11.7 cmH20; p = 0.469 and 83.2 ± 39.5 vs. 75.3 ± 34.08 L/min; p = 0.83). Rate of extubation failure was not different between groups. CONCLUSION TEDS did not prevent diaphragm dysfunction or improve inspiratory muscle strength in mechanically ventilated patients. TRIAL REGISTRATION Prospectively registered on the 20th November 2019 on ClinicalTrials.gov Identifier NCT04171024.
Collapse
Affiliation(s)
- Clément Medrinal
- Université Paris-Saclay, UVSQ, Erphan, 78000, Versailles, France.
- Intensive Care Unit Department, Le Havre Hospital, Avenue Pierre Mendes France, 76290, Montivilliers, France.
| | - Margaux Machefert
- Université Paris-Saclay, UVSQ, Erphan, 78000, Versailles, France
- Physiotherapy Department, Le Havre Hospital, Avenue Pierre Mendes France, 76290, Montivilliers, France
| | - Bouchra Lamia
- Normandie Univ, UNIROUEN, EA3830-GRHV, 76 000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), 76 000, Rouen, France
- Pulmonology Department, Le Havre Hospital, Avenue Pierre Mendes France, 76290, Montivilliers, France
- Pulmonology, Respiratory Department, Rouen University Hospital, Rouen, France
| | - Tristan Bonnevie
- Normandie Univ, UNIROUEN, EA3830-GRHV, 76 000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), 76 000, Rouen, France
- Adir Association, 76230, Bois Guillaume, France
| | - Francis-Edouard Gravier
- Normandie Univ, UNIROUEN, EA3830-GRHV, 76 000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), 76 000, Rouen, France
- Adir Association, 76230, Bois Guillaume, France
| | - Roger Hilfiker
- Research and Independent Studies in Private Physiotherapy (RISE), 3902, Brig, Switzerland
| | - Guillaume Prieur
- Intensive Care Unit Department, Le Havre Hospital, Avenue Pierre Mendes France, 76290, Montivilliers, France
- Pulmonology Department, Le Havre Hospital, Avenue Pierre Mendes France, 76290, Montivilliers, France
| | - Yann Combret
- Université Paris-Saclay, UVSQ, Erphan, 78000, Versailles, France
- Intensive Care Unit Department, Le Havre Hospital, Avenue Pierre Mendes France, 76290, Montivilliers, France
- Pulmonology Department, Le Havre Hospital, Avenue Pierre Mendes France, 76290, Montivilliers, France
| |
Collapse
|
113
|
Morakami FK, Mezzaroba AL, Larangeira AS, Queiroz Cardoso LT, Marçal Camillo CA, Carvalho Grion CM. Early Tracheostomy May Reduce the Length of Hospital Stay. Crit Care Res Pract 2023; 2023:8456673. [PMID: 37637470 PMCID: PMC10457168 DOI: 10.1155/2023/8456673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction There is evidence that prolonged invasive mechanical ventilation has negative consequences for critically ill patients and that performing tracheostomy (TQT) could help to reduce these consequences. The ideal period for performing TQT is still not clear in the literature since few studies have compared clinical aspects between patients undergoing early or late TQT. Objective To compare the mortality rate, length of stay in the intensive care unit, length of hospital stay, and number of days free of mechanical ventilation in patients undergoing TQT before or after ten days of orotracheal intubation. Methods A retrospective cohort study carried out by collecting data from patients admitted to an intensive care unit between January 2008 and December 2017. Patients who underwent TQT were divided into an early TQT group (i.e., time to TQT ≤ 10 days) or late TQT (i.e., time to TQT > 10 days) and the clinical outcomes of the two groups were compared. Results Patients in the early TQT group had a shorter ICU stay than the late TQT group (19 ± 16 vs. 32 ± 22 days, p < 0.001), a shorter stay in the hospital (42 ± 32 vs. 52 ± 50 days, p < 0.001), a shorter duration of mechanical ventilation (17 ± 14 vs. 30 ± 18 days, p < 0.001), and a higher proportion of survivors in the ICU outcome (57% vs. 46%, p < 0.001). Conclusion Tracheostomy performed within 10 days of mechanical ventilation provides several benefits to the patient and should be considered by the multidisciplinary team as a part of their clinical practice.
Collapse
Affiliation(s)
| | - Ana Luiza Mezzaroba
- Universidade Estadual de Londrina, Rua Robert Koch, n° 60, Vila Operária, Londrina, Paraná, Brazil
| | | | | | | | | |
Collapse
|
114
|
Takahashi Y, Morisawa T, Okamoto H, Nakanishi N, Matsumoto N, Saitoh M, Takahashi T, Fujiwara T. Diaphragm Dysfunction and ICU-Acquired Weakness in Septic Shock Patients with or without Mechanical Ventilation: A Pilot Prospective Observational Study. J Clin Med 2023; 12:5191. [PMID: 37629233 PMCID: PMC10455261 DOI: 10.3390/jcm12165191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sepsis is a risk factor for diaphragm dysfunction and ICU-acquired weakness (ICU-AW); however, the impact of mechanical ventilation (MV) on these relationships has not been thoroughly investigated. This study aimed to compare the incidence of diaphragm dysfunction and ICU-AW in patients with septic shock, with and without MV. We conducted a single-center prospective observational study that included consecutive patients diagnosed with septic shock admitted to the ICU between March 2021 and February 2022. Ultrasound measurements of diaphragm thickness and manual measurements of limb muscle strength were repeated after ICU admission. The incidences of diaphragm dysfunction and ICU-AW, as well as their associations with clinical outcomes, were compared between patients with MV and without MV (non-MV). Twenty-four patients (11 in the MV group and 13 in the non-MV group) were analyzed. At the final measurements in the MV group, eight patients (72.7%) had diaphragm dysfunction, and six patients (54.5%) had ICU-AW. In the non-MV group, 10 patients (76.9%) had diaphragm dysfunction, and three (23.1%) had ICU-AW. No association was found between diaphragm dysfunction and clinical outcomes. Patients with ICU-AW in the MV group had longer ICU and hospital stays. Among patients with septic shock, the incidence of diaphragm dysfunction was higher than that of ICU-AW, irrespective of the use of MV. Further studies are warranted to examine the association between diaphragm dysfunction and clinical outcomes.
Collapse
Affiliation(s)
- Yuta Takahashi
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.T.); (T.F.)
- Department of Rehabilitation, St. Luke’s International Hospital, Tokyo 104-8560, Japan
| | - Tomoyuki Morisawa
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo 113-8421, Japan; (M.S.); (T.T.)
| | - Hiroshi Okamoto
- Department of Critical Care Medicine, St. Luke’s International Hospital, Tokyo 104-8560, Japan;
| | - Nobuto Nakanishi
- Division of Disaster and Emergency Medicine, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Noriko Matsumoto
- Department of Nutrition, St. Luke’s International Hospital, Tokyo 104-8560, Japan;
| | - Masakazu Saitoh
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo 113-8421, Japan; (M.S.); (T.T.)
| | - Tetsuya Takahashi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo 113-8421, Japan; (M.S.); (T.T.)
| | - Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.T.); (T.F.)
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo 113-8421, Japan; (M.S.); (T.T.)
| |
Collapse
|
115
|
Wang L, Muhetaer Y, Zhu L, Wang Q, Wu W. Is it reasonable to predict weaning by measuring diaphragm activity under ultrasound especially its reduction of excursion? Crit Care 2023; 27:309. [PMID: 37550661 PMCID: PMC10408102 DOI: 10.1186/s13054-023-04585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Affiliation(s)
- Linli Wang
- Department of Critical Care Medicine, Zhongshan Hospital Affiliated to Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yaxiaerjiang Muhetaer
- Department of Critical Care Medicine, Zhongshan Hospital Affiliated to Fudan University, 180 Fenglin Road, Shanghai, China
| | - Ling Zhu
- Department of Critical Care Medicine, Zhongshan Hospital Affiliated to Fudan University, 180 Fenglin Road, Shanghai, China
| | - Qian Wang
- Emergency Department, Easthospital Affiliated to Tongji University, 1800 Yuntai Road, Shanghai, China
| | - Wei Wu
- Department of Critical Care Medicine, Zhongshan Hospital Affiliated to Fudan University, 180 Fenglin Road, Shanghai, China.
| |
Collapse
|
116
|
Tang R, Zhou Y, Mei S, Xu Q, Feng J, Xing S, Gao Y, Qin S, He Z. Fibrotic extracellular vesicles contribute to mechanical ventilation-induced pulmonary fibrosis development by activating lung fibroblasts via JNK signalling pathway: an experimental study. BMJ Open Respir Res 2023; 10:e001753. [PMID: 37620111 PMCID: PMC10450055 DOI: 10.1136/bmjresp-2023-001753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Recent research has revealed that mechanical ventilation (MV) could initiate ventilator-induced lung injury along with the initiation of the process of pulmonary fibrosis (PF), leading to MV-induced PF (MVPF). However, the underlying mechanism remains unclear. This study aimed to explore the role of MV-induced extracellular vesicles (MV-EVs) and the c-Jun N-terminal kinase (JNK) signalling pathway in the pathogenesis of MVPF in vivo and in vitro. The process of MV is accompanied by the secretion of MV-EVs, which could induce lung fibroblast activation. Furthermore, single-cell RNA-sequencing analysis revealed that the JNK pathway in lung fibroblasts was activated after MV initiation. Inhibiting the JNK pathway could both restrain MV-EV-induced lung fibroblast activation in vitro or reduce the severity of MVPF in vivo. In conclusion, this study demonstrated that MV-EVs contribute to MVPF progression by activating lung fibroblasts via the JNK signalling pathway and that inhibiting the secretion of EV and the activation of the JNK signalling pathway is a promising strategy for treating MVPF.
Collapse
Affiliation(s)
- Ri Tang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Zhou
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuya Mei
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhua Feng
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaojie Qin
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
117
|
Lee Y, Son S, Kim DK, Park MW. Association of Diaphragm Thickness and Respiratory Muscle Strength With Indices of Sarcopenia. Ann Rehabil Med 2023; 47:307-314. [PMID: 37644714 PMCID: PMC10475812 DOI: 10.5535/arm.23081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE To evaluate the relationship between respiratory muscle strength, diaphragm thickness (DT), and indices of sarcopenia. METHODS This study included 45 healthy elderly volunteers (21 male and 24 female) aged 65 years or older. Sarcopenia indices, including hand grip strength (HGS) and body mass index-adjusted appendicular skeletal muscle (ASM/BMI), were measured using a hand grip dynamometer and bioimpedance analysis, respectively. Calf circumference (CC) and gait speed were also measured. Maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) were obtained using a spirometer, as a measure of respiratory muscle strength. DT was evaluated through ultrasonography. The association between indices of sarcopenia, respiratory muscle strength, and DT was evaluated using Spearman's rank correlation test, and univariate and multiple regression analysis. RESULTS ASM/BMI (r=0.609, p<0.01), CC (r=0.499, p<0.01), HGS (r=0.759, p<0.01), and gait speed (r=0.319, p<0.05) were significantly correlated with DT. In the univariate linear regression analysis, MIP was significantly associated with age (p=0.003), DT (p<0.001), HGS (p=0.002), CC (p=0.013), and gait speed (p=0.026). MEP was significantly associated with sex (p=0.001), BMI (p=0.033), ASM/BMI (p=0.003), DT (p<0.001), HGS (p<0.001), CC (p=0.001) and gait speed (p=0.004). In the multiple linear regression analysis, age (p=0.001), DT (p<0.001), and ASM/BMI (p=0.008) showed significant association with MIP. DT (p<0.001) and gait speed (p=0.050) were associated with MEP. CONCLUSION Our findings suggest that respiratory muscle strength is associated with DT and indices of sarcopenia. Further prospective studies with larger sample sizes are needed to confirm these findings.
Collapse
Affiliation(s)
- Yookyung Lee
- Department of Physical and Rehabilitation Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea
| | - Sunhan Son
- Department of Physical and Rehabilitation Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Don-Kyu Kim
- Department of Physical and Rehabilitation Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea
| | - Myung Woo Park
- Department of Physical and Rehabilitation Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
118
|
De Meyer GR, Flamey L, Adriaensens I, Van der Aerschot M, Van de Walle H, Vanmarsenille I, Jorens PG, Goligher EC, Saldien V, Schepens T. The Relationship Between Esophageal Pressure and Diaphragm Thickening Fraction in Spontaneously Breathing Sedated Children: A Feasibility Study. Pediatr Crit Care Med 2023; 24:652-661. [PMID: 37092829 DOI: 10.1097/pcc.0000000000003248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
OBJECTIVES Diaphragm ultrasound is a novel alternative to esophageal pressure measurements in the evaluation of diaphragm function and activity, but data about its reliability in a pediatric setting are lacking. We aimed to compare the esophageal pressure swing (∆P es , gold standard) with the diaphragmatic thickening fraction (DTF) as a measure of inspiratory effort in sedated children. Additionally, we studied the effect of positive end-expiratory pressure (PEEP) on the end-expiratory thickness of the diaphragm (DT ee ). DESIGN Prospective open-label non-randomized interventional physiological cohort study. SETTING Operating room in tertiary academic hospital. PATIENTS Children 28 days to 13 years old scheduled for elective surgery with general anesthesia, spontaneously breathing through a laryngeal mask airway, were eligible for inclusion. Exclusion criteria were disorders or previous surgery of the diaphragm, anticipated difficult airway or acute cardiopulmonary disease. All measurements were performed prior to surgery. INTERVENTIONS Patients were subjected to different levels of respiratory load, PEEP and anesthetic depth in a total of seven respiratory conditions. MEASUREMENTS AND MAIN RESULTS The esophageal pressure and diaphragm thickening fraction were simultaneously recorded for five breaths at each respiratory condition. The relation between ∆P es and DTF was studied in a mixed model. We analyzed 407 breaths in 13 patients. Both DTF ( p = 0.03) and ∆Pes ( p = 0.002) could detect respiratory activity, and ∆P es and DTF were associated across respiratory conditions ( p < 0.001; R2 = 31%). With increasing inspiratory load, ∆P es increased significantly, while DTF did not ( p = 0.08). Additionally, DT ee did not differ significantly between 10, 5, and 0 cm H 2 O PEEP ( p = 0.08). CONCLUSIONS In spontaneously breathing sedated children and across different respiratory conditions, DTF could differentiate minimal or no inspiratory effort from substantial inspiratory effort and was associated with ∆P es . Increased efforts resulted in higher ∆P es but not larger DTF.
Collapse
Affiliation(s)
- Gregory R De Meyer
- Department of Anaesthesiology, Antwerp University Hospital, Edegem, Belgium
- Department of Critical Care Medicine, Antwerp University Hospital, Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Antwerp Surgical Training, Anatomy and Research Center, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Loïc Flamey
- Department of Anaesthesiology, Antwerp University Hospital, Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Ine Adriaensens
- Department of Anaesthesiology, Antwerp University Hospital, Edegem, Belgium
| | - Marjan Van der Aerschot
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hanne Van de Walle
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Ignace Vanmarsenille
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Philippe G Jorens
- Department of Critical Care Medicine, Antwerp University Hospital, Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Vera Saldien
- Department of Anaesthesiology, Antwerp University Hospital, Edegem, Belgium
- Antwerp Surgical Training, Anatomy and Research Center, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Tom Schepens
- Department of Critical Care Medicine, Antwerp University Hospital, Edegem, Belgium
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
119
|
Liberati C, Byrne BJ, Fuller DD, Croft C, Pitts T, Ehrbar J, Leon-Astudillo C, Smith BK. Diaphragm pacing and independent breathing in individuals with severe Pompe disease. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1184031. [PMID: 37583873 PMCID: PMC10423945 DOI: 10.3389/fresc.2023.1184031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023]
Abstract
Introduction Pompe disease is an inherited disease characterized by a deficit in acid-α-glucosidase (GAA), an enzyme which degrades lysosomal glycogen. The phrenic-diaphragm motor system is affected preferentially, and respiratory failure often occurs despite GAA enzyme replacement therapy. We hypothesized that the continued use of diaphragm pacing (DP) might improve ventilator-dependent subjects' respiratory outcomes and increase ventilator-free time tolerance. Methods Six patients (3 pediatric) underwent clinical DP implantation and started diaphragm conditioning, which involved progressively longer periods of daily, low intensity stimulation. Longitudinal respiratory breathing pattern, diaphragm electromyography, and pulmonary function tests were completed when possible, to assess feasibility of use, as well as diaphragm and ventilatory responses to conditioning. Results All subjects were eventually able to undergo full-time conditioning via DP and increase their maximal tolerated time off-ventilator, when compared to pre-implant function. Over time, 3 of 6 subjects also demonstrated increased or stable minute ventilation throughout the day, without positive-pressure ventilation assistance. Discussion Respiratory insufficiency is one of the main causes of death in patients with Pompe disease. Our results indicate that DP in Pompe disease was feasible, led to few adverse events and stabilized breathing for up to 7 years.
Collapse
Affiliation(s)
- Cristina Liberati
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Barry J. Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL, United States
| | - Chasen Croft
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Teresa Pitts
- Department of Speech, Language and Hearing Sciences, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Center Investigator, University of Missouri, Columbia, MO, United States
| | - Jessica Ehrbar
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | | | - Barbara K. Smith
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
120
|
Shah N, Katira BH. Role of cardiopulmonary interactions in development of ventilator-induced lung injury-Experimental evidence and clinical Implications. Front Physiol 2023; 14:1228476. [PMID: 37534365 PMCID: PMC10391157 DOI: 10.3389/fphys.2023.1228476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Ventilator-induced lung injury (VILI) impacts outcomes in ARDS and optimization of ventilatory strategies improves survival. Decades of research has identified various mechanisms of VILI, largely focusing on airspace forces of plateau pressure, tidal volume and driving pressure. Experimental evidence indicates the role of adverse cardiopulmonary interaction during mechanical ventilation, contributing to VILI genesis mostly by modulating pulmonary vascular dynamics. Under passive mechanical ventilation, high transpulmonary pressure increases afterload on right heart while high pleural pressure reduces the RV preload. Together, they can result in swings of pulmonary vascular flow and pressure. Altered vascular flow and pressure result in increased vascular shearing and wall tension, in turn causing direct microvascular injury accompanied with permeability to water, proteins and cells. Moreover, abrupt decreases in airway pressure, may result in sudden overperfusion of the lung and result in similar microvascular injury, especially when the endothelium is stretched or primed at high positive end-expiratory pressure. Microvascular injury is universal in VILI models and presumed in the diagnosis of ARDS; preventing such microvascular injury can reduce VILI and impact outcomes in ARDS. Consequently, developing cardiovascular targets to reduce macro and microvascular stressors in the pulmonary circulation can potentially reduce VILI. This paper reviews the role of cardiopulmonary interaction in VILI genesis.
Collapse
|
121
|
Jenkins TO, MacBean V, Poulsen MK, Karbing DS, Rees SE, Patel BV, Polkey MI. The metabolic cost of inspiratory muscle training in mechanically ventilated patients in critical care. Intensive Care Med Exp 2023; 11:41. [PMID: 37415048 DOI: 10.1186/s40635-023-00522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Diaphragmatic dysfunction is well documented in patients receiving mechanical ventilation. Inspiratory muscle training (IMT) has been used to facilitate weaning by strengthening the inspiratory muscles, yet the optimal approach remains uncertain. Whilst some data on the metabolic response to whole body exercise in critical care exist, the metabolic response to IMT in critical care is yet to be investigated. This study aimed to quantify the metabolic response to IMT in critical care and its relationship to physiological variables. METHODS We conducted a prospective observational study on mechanically ventilated patients ventilated for ≥ 72 h and able to participate in IMT in a medical, surgical, and cardiothoracic intensive care unit. 76 measurements were taken on 26 patients performing IMT using an inspiratory threshold loading device at 4 cmH2O, and at 30, 50 and 80% of their negative inspiratory force (NIF). Oxygen consumption (VO2) was measured continuously using indirect calorimetry. RESULTS First session mean (SD) VO2 was 276 (86) ml/min at baseline, significantly increasing to 321 (93) ml/min, 333 (92) ml/min, 351(101) ml/min and 388 (98) ml/min after IMT at 4 cmH2O and 30, 50 and 80% NIF, respectively (p = 0.003). Post hoc comparisons revealed significant differences in VO2 between baseline and 50% NIF and baseline and 80% NIF (p = 0.048 and p = 0.001, respectively). VO2 increased by 9.3 ml/min for every 1 cmH2O increase in inspiratory load from IMT. Every increase in P/F ratio of 1 decreased the intercept VO2 by 0.41 ml/min (CI - 0.58 to - 0.24 p < 0.001). NIF had a significant effect on the intercept and slope, with every 1 cmH2O increase in NIF increasing intercept VO2 by 3.28 ml/min (CI 1.98-4.59 p < 0.001) and decreasing the dose-response slope by 0.15 ml/min/cmH2O (CI - 0.24 to - 0.05 p = 0.002). CONCLUSIONS IMT causes a significant load-dependent increase in VO2. P/F ratio and NIF impact baseline VO2. The dose-response relationship of the applied respiratory load during IMT is modulated by respiratory strength. These data may offer a novel approach to prescription of IMT. TAKE HOME MESSAGE The optimal approach to IMT in ICU is uncertain; we measured VO2 at different applied respiratory loads to assess whether VO2 increased proportionally with load and found VO2 increased by 9.3 ml/min for every 1 cmH2O increase in inspiratory load from IMT. Baseline NIF has a significant effect on the intercept and slope, participants with a higher baseline NIF have a higher resting VO2 but a less pronounced increase in VO2 as the inspiratory load increases; this may offer a novel approach to IMT prescription. Trial registration ClinicalTrials.gov, registration number: NCT05101850. Registered on 28 September 2021, https://clinicaltrials.gov/ct2/show/NCT05101850.
Collapse
Affiliation(s)
- Timothy O Jenkins
- Rehabilitation and Therapies Department, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK.
- College of Health, Medicine and Life Sciences, Department of Health Sciences, Brunel University London, London, UK.
| | - Vicky MacBean
- College of Health, Medicine and Life Sciences, Department of Health Sciences, Brunel University London, London, UK
| | - Mathias Krogh Poulsen
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dan Stieper Karbing
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Stephen Edward Rees
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Brijesh V Patel
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Imperial College, London, UK
- Department of Critical Care, Royal Brompton Hospital, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Michael I Polkey
- Department of Respiratory Medicine, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
122
|
Razi O, Teixeira AM, Tartibian B, Zamani N, Knechtle B. Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise. Mol Cell Biochem 2023; 478:1533-1559. [PMID: 36411399 PMCID: PMC9684932 DOI: 10.1007/s11010-022-04610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease-2019 (COVID-19) is associated with cytokine storm and is characterized by acute respiratory distress syndrome (ARDS) and pneumonia problems. The respiratory system is a place of inappropriate activation of the immune system in people with multiple sclerosis (MS), and this may cause damage to the lung and worsen both MS and infections.The concerns for patients with multiple sclerosis are because of an enhance risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MS patients pose challenges in this pandemic situation, because of the regulatory defect of autoreactivity of the immune system and neurological and respiratory tract symptoms. In this review, we first indicate respiratory issues associated with both diseases. Then, the main mechanisms inducing lung damages and also impairing the respiratory muscles in individuals with both diseases is discussed. At the end, the leading role of physical exercise on mitigating respiratory issues inducing mechanisms is meticulously evaluated.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Ana Maria Teixeira
- Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
123
|
Decavèle M, Bureau C, Campion S, Nierat MC, Rivals I, Wattiez N, Faure M, Mayaux J, Morawiec E, Raux M, Similowski T, Demoule A. Interventions Relieving Dyspnea in Intubated Patients Show Responsiveness of the Mechanical Ventilation-Respiratory Distress Observation Scale. Am J Respir Crit Care Med 2023; 208:39-48. [PMID: 36973007 DOI: 10.1164/rccm.202301-0188oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Rationale: Breathing difficulties are highly stressful. In critically ill patients, they are associated with an increased risk of posttraumatic manifestations. Dyspnea, the corresponding symptom, cannot be directly assessed in noncommunicative patients. This difficulty can be circumvented using observation scales such as the mechanical ventilation-respiratory distress observation scale (MV-RDOS). Objective: To investigate the performance and responsiveness of the MV-RDOS to infer dyspnea in noncommunicative intubated patients. Methods: Communicative and noncommunicative patients exhibiting breathing difficulties under mechanical ventilation were prospectively included and assessed using a dyspnea visual analog scale, MV-RDOS, EMG activity of alae nasi and parasternal intercostals, and EEG signatures of respiratory-related cortical activation (preinspiratory potentials). Inspiratory-muscle EMG and preinspiratory cortical activities are surrogates of dyspnea. Assessments were conducted at baseline, after adjustment of ventilator settings, and, in some cases, after morphine administration. Measurements and Main Results: Fifty patients (age, 67 [(interquartile interval [IQR]), 61-76] yr; Simplified Acute Physiology Score II, 52 [IQR, 35-62]) were included, 25 of whom were noncommunicative. Relief occurred in 25 (50%) patients after ventilator adjustments and in 21 additional patients after morphine administration. In noncommunicative patients, MV-RDOS score decreased from 5.5 (IQR, 4.2-6.6) at baseline to 4.2 (IQR, 2.1-4.7; P < 0.001) after ventilator adjustments and 2.5 (IQR, 2.1-4.2; P = 0.024) after morphine administration. MV-RDOS and alae nasi/parasternal EMG activities were positively correlated (ρ = 0.41 and 0.37, respectively). MV-RDOS scores were higher in patients with EEG preinspiratory potentials (4.9 [IQR, 4.2-6.3] vs. 4.0 [IQR, 2.1-4.9]; P = 0.002). Conclusions: The MV-RDOS seems able to detect and monitor respiratory symptoms reasonably well in noncommunicative intubated patients. Clinical trial registered with www.clinicaltrials.gov (NCT02801838).
Collapse
Affiliation(s)
- Maxens Decavèle
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Service de Médecine Intensive et Réanimation (Département R3S) and
| | - Côme Bureau
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Service de Médecine Intensive et Réanimation (Département R3S) and
| | - Sébastien Campion
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Département d'Anesthésie Réanimation, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris Sorbonne Université, site Pitié-Salpêtrière, Paris, France; and
| | - Marie-Cécile Nierat
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Isabelle Rivals
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Equipe de Statistique Appliquée, Ecole Supérieure de Physique et de Chimie Industrielles Paris, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Nicolas Wattiez
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Morgane Faure
- Service de Médecine Intensive et Réanimation (Département R3S) and
| | - Julien Mayaux
- Service de Médecine Intensive et Réanimation (Département R3S) and
| | - Elise Morawiec
- Service de Médecine Intensive et Réanimation (Département R3S) and
| | - Mathieu Raux
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Département d'Anesthésie Réanimation, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris Sorbonne Université, site Pitié-Salpêtrière, Paris, France; and
| | - Thomas Similowski
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Département d'Anesthésie Réanimation, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris Sorbonne Université, site Pitié-Salpêtrière, Paris, France; and
| | - Alexandre Demoule
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Service de Médecine Intensive et Réanimation (Département R3S) and
| |
Collapse
|
124
|
Alay GH, Tatlisuluoglu D, Turan G. Evaluation of IntelliVent-ASV® and PS-SIMV Mode Using Ultrasound (US) Measurements in Terms of Diaphragm Atrophy. Cureus 2023; 15:e40244. [PMID: 37309540 PMCID: PMC10257811 DOI: 10.7759/cureus.40244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Mechanical ventilation is a life-saving intervention for critically ill patients, but it can also lead to diaphragm atrophy, which may prolong the duration of mechanical ventilation and the length of stay in the intensive care unit. IntelliVent-ASV® (Hamilton Medical, Rhäzüns, Switzerland) is a new mode of ventilation that has been developed to reduce diaphragm atrophy by promoting spontaneous breathing efforts. In this study, we aimed to evaluate the effectiveness of IntelliVent-ASV® and pressure support-synchronized intermittent mandatory ventilation (PS-SIMV) mode in reducing diaphragm atrophy by measuring diaphragm thickness using ultrasound (US) imaging. METHODS We enrolled 60 patients who required mechanical ventilation due to respiratory failure and were randomized into two groups: IntelliVent-ASV® and PS-SIMV. We measured the diaphragm thickness using US imaging at admission and on the seventh day of mechanical ventilation. RESULTS Our results showed that diaphragm thickness decreased significantly in the PS-SIMV group but remained unchanged in the IntelliVent-ASV® group. The difference in diaphragm thickness between the two groups was statistically significant on the seventh day of mechanical ventilation. CONCLUSIONS IntelliVent-ASV® may reduce diaphragm atrophy by promoting spontaneous breathing efforts. Our study suggests that this new mode of ventilation may be a promising approach to preventing diaphragm atrophy in mechanically ventilated patients. Further studies using invasive measures of diaphragm function are warranted to confirm these findings.
Collapse
Affiliation(s)
- Gulcin Hilal Alay
- Intensive Care Unit, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, TUR
| | - Derya Tatlisuluoglu
- Intensive Care Unit, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, TUR
| | - Guldem Turan
- Intensive Care Unit, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, TUR
| |
Collapse
|
125
|
Dianti J, Morris IS, Urner M, Schmidt M, Tomlinson G, Amato MBP, Blanch L, Rubenfeld G, Goligher EC. Linking Acute Physiology to Outcomes in the ICU: Challenges and Solutions for Research. Am J Respir Crit Care Med 2023; 207:1441-1450. [PMID: 36705985 DOI: 10.1164/rccm.202206-1216ci] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023] Open
Abstract
ICU clinicians rely on bedside physiological measurements to inform many routine clinical decisions. Because deranged physiology is usually associated with poor clinical outcomes, it is tempting to hypothesize that manipulating and intervening on physiological parameters might improve outcomes for patients. However, testing these hypotheses through mathematical models of the relationship between physiology and outcomes presents a number of important methodological challenges. These models reflect the theories of the researcher and can therefore be heavily influenced by one's assumptions and background beliefs. Model building must therefore be approached with great care and forethought, because failure to consider relevant sources of measurement error, confounding, coupling, and time dependency or failure to assess the direction of causality for associations of interest before modeling may give rise to spurious results. This paper outlines the main challenges in analyzing and interpreting these models and offers potential solutions to address these challenges.
Collapse
Affiliation(s)
- Jose Dianti
- Interdepartmental Division of Critical Care Medicine
- University Health Network/Sinai Health System
| | - Idunn S Morris
- Interdepartmental Division of Critical Care Medicine
- University Health Network/Sinai Health System
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia
| | - Martin Urner
- Interdepartmental Division of Critical Care Medicine
- Department of Anesthesiology and Pain Medicine
| | | | - George Tomlinson
- Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Ontario, Canada
| | - Marcelo B P Amato
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Lluis Blanch
- Critical Care Center, Institut d'Investigacio i Innovacio Parc Taulí I3PT-CERCA, Parc Taulí Hospital Universitari, Universitat Autonoma de Barcelona, Sabadell, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autonoma de Barcelona, Parc Taulí 1, Sabadell, Spain
| | - Gordon Rubenfeld
- Interdepartmental Division of Critical Care Medicine
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; and
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine
- University Health Network/Sinai Health System
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
126
|
Bittner E, Sheridan R. Acute Respiratory Distress Syndrome, Mechanical Ventilation, and Inhalation Injury in Burn Patients. Surg Clin North Am 2023; 103:439-451. [PMID: 37149380 PMCID: PMC10028407 DOI: 10.1016/j.suc.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Respiratory failure occurs with some frequency in seriously burned patients, driven by a combination of inflammatory and infection factors. Inhalation injury contributes to respiratory failure in some burn patients via direct mucosal injury and indirect inflammation. In burn patients, respiratory failure leading to acute respiratory distress syndrome, with or without inhalation injury, is effectively managed using principles evolved for non-burn critically ill patients.
Collapse
Affiliation(s)
- Edward Bittner
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA; Department of Anesthesia, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Robert Sheridan
- Department of Surgery, Massachusetts General Hospital and Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA.
| |
Collapse
|
127
|
Plante V, Poirier C, Guay H, Said C, Sauthier M, Al-Omar S, Harrington K, Emeriaud G. Elevated Diaphragmatic Tonic Activity in PICU Patients: Age-Specific Definitions, Prevalence, and Associations. Pediatr Crit Care Med 2023; 24:447-457. [PMID: 36883829 DOI: 10.1097/pcc.0000000000003193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES Tonic diaphragmatic activity (tonic Edi, i.e., sustained diaphragm activation throughout expiration) reflects diaphragmatic effort to defend end-expiratory lung volumes. Detection of such elevated tonic Edi may be useful in identifying patients who need increased positive end-expiratory pressure. We aimed to: 1) identify age-specific definitions for elevated tonic Edi in ventilated PICU patients and 2) describe the prevalence and factors associated with sustained episodes of high tonic Edi. DESIGN Retrospective study using a high-resolution database. SETTING Single-center tertiary PICU. PATIENTS Four hundred thirty-one children admitted between 2015 and 2020 with continuous Edi monitoring. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We characterized our definition of tonic Edi using data from the recovery phase of respiratory illness (i.e., final 3 hr of Edi monitoring, excluding patients with significant persistent disease or with diaphragm pathology). High tonic Edi was defined as population data exceeding the 97.5th percentile, which for infants younger than 1 year was greater than 3.2 μV and for older children as greater than 1.9 μV. These thresholds were then used to identify patients with episodes of sustained elevated tonic Edi in the first 48 hours of ventilation (acute phase). Overall, 62 of 200 (31%) of intubated patients and 138 of 222 (62%) of patients on noninvasive ventilation (NIV) had at least one episode of high tonic Edi. These episodes were independently associated with the diagnosis of bronchiolitis (intubated patients: adjusted odds [aOR], 2.79 [95% CI, 1.12-7.11]); NIV patients: aOR, 2.71 [1.24-6.0]). There was also an association with tachypnea and, in NIV patients, more severe hypoxemia. CONCLUSIONS Our proposed definition of elevated tonic Edi quantifies abnormal diaphragmatic activity during expiration. Such a definition may help clinicians to identify those patients using abnormal effort to defend end-expiratory lung volume. In our experience, high tonic Edi episodes are frequent, especially during NIV and in patients with bronchiolitis.
Collapse
Affiliation(s)
- Virginie Plante
- Division of Pediatric Intensive Care, Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, QC, Canada
| | - Clarice Poirier
- Division of Pediatric Intensive Care, Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, QC, Canada
| | - Hélène Guay
- Division of Pediatric Intensive Care, Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, QC, Canada
| | - Carla Said
- Division of Pediatric Intensive Care, Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, QC, Canada
- Department of Mathematics, Université Paris-Saclay, Paris, France
| | - Michael Sauthier
- Division of Pediatric Intensive Care, Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, QC, Canada
| | - Sally Al-Omar
- Division of Pediatric Intensive Care, Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, QC, Canada
| | - Karen Harrington
- Division of Pediatric Intensive Care, Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, QC, Canada
| | - Guillaume Emeriaud
- Division of Pediatric Intensive Care, Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
128
|
Baedorf-Kassis EN, Glowala J, Póka KB, Wadehn F, Meyer J, Talmor D. Reverse triggering neural network and rules-based automated detection in acute respiratory distress syndrome. J Crit Care 2023; 75:154256. [PMID: 36701820 PMCID: PMC10173144 DOI: 10.1016/j.jcrc.2023.154256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE Dyssynchrony may cause lung injury and is associated with worse outcomes in mechanically ventilated patients. Reverse triggering (RT) is a common type of dyssynchrony presenting with several phenotypes which may directly cause lung injury and be difficult to identify. Due to these challenges, automated software to assist in identification is needed. MATERIALS AND METHODS This was a prospective observational study using a training set of 15 patients and a validation dataset of 13 patients. RT events were manually identified and compared with "rules-based" programs (with and without esophageal manometry and reverse triggering with breath stacking), and were used to train a neural network artificial intelligence (AI) program. RT phenotypes were identified using previously defined rules. Performance of the programs was compared via sensitivity, specificity, positive predictive value (PPV) and F1 score. RESULTS 33,244 breaths were manually analyzed, with 8718 manually identified as reverse-triggers. The rules-based and AI programs yielded excellent specificity (>95% in all programs) and F1 score (>75% in all programs). RT with breath stacking (24.4%) and mid-cycle RT (37.8%) were the most common phenotypes. CONCLUSIONS Automated detection of RT demonstrated good performance, with the potential application of these programs for research and clinical care.
Collapse
Affiliation(s)
- Elias N Baedorf-Kassis
- Division of Pulmonary and Critical Care Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Jakub Glowala
- Division of Pulmonary and Critical Care Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | - Daniel Talmor
- Division of Pulmonary and Critical Care Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
129
|
Shimatani T, Kyogoku M, Ito Y, Takeuchi M, Khemani RG. Fundamental concepts and the latest evidence for esophageal pressure monitoring. J Intensive Care 2023; 11:22. [PMID: 37217973 DOI: 10.1186/s40560-023-00671-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Transpulmonary pressure is an essential physiologic concept as it reflects the true pressure across the alveoli, and is a more precise marker for lung stress. To calculate transpulmonary pressure, one needs an estimate of both alveolar pressure and pleural pressure. Airway pressure during conditions of no flow is the most widely accepted surrogate for alveolar pressure, while esophageal pressure remains the most widely measured surrogate marker for pleural pressure. This review will cover important concepts and clinical applications for esophageal manometry, with a particular focus on how to use the information from esophageal manometry to adjust or titrate ventilator support. The most widely used method for measuring esophageal pressure uses an esophageal balloon catheter, although these measurements can be affected by the volume of air in the balloon. Therefore, when using balloon catheters, it is important to calibrate the balloon to ensure the most appropriate volume of air, and we discuss several methods which have been proposed for balloon calibration. In addition, esophageal balloon catheters only estimate the pleural pressure over a certain area within the thoracic cavity, which has resulted in a debate regarding how to interpret these measurements. We discuss both direct and elastance-based methods to estimate transpulmonary pressure, and how they may be applied for clinical practice. Finally, we discuss a number of applications for esophageal manometry and review many of the clinical studies published to date which have used esophageal pressure. These include the use of esophageal pressure to assess lung and chest wall compliance individually which can provide individualized information for patients with acute respiratory failure in terms of setting PEEP, or limiting inspiratory pressure. In addition, esophageal pressure has been used to estimate effort of breathing which has application for ventilator weaning, detection of upper airway obstruction after extubation, and detection of patient and mechanical ventilator asynchrony.
Collapse
Affiliation(s)
- Tatsutoshi Shimatani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, Japan.
- Department of Critical Care Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
| | - Miyako Kyogoku
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Osaka, Izumi, Japan
- Department of Critical Care Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yukie Ito
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Osaka, Izumi, Japan
| | - Muneyuki Takeuchi
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Osaka, Izumi, Japan
- Department of Critical Care Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Robinder G Khemani
- Pediatric ICU, Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, 4650 Sunset Blvd., CA, Los Angeles, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 1975, USA
| |
Collapse
|
130
|
Mendelson AA, Erickson D, Villar R. The role of the microcirculation and integrative cardiovascular physiology in the pathogenesis of ICU-acquired weakness. Front Physiol 2023; 14:1170429. [PMID: 37234410 PMCID: PMC10206327 DOI: 10.3389/fphys.2023.1170429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Skeletal muscle dysfunction after critical illness, defined as ICU-acquired weakness (ICU-AW), is a complex and multifactorial syndrome that contributes significantly to long-term morbidity and reduced quality of life for ICU survivors and caregivers. Historically, research in this field has focused on pathological changes within the muscle itself, without much consideration for their in vivo physiological environment. Skeletal muscle has the widest range of oxygen metabolism of any organ, and regulation of oxygen supply with tissue demand is a fundamental requirement for locomotion and muscle function. During exercise, this process is exquisitely controlled and coordinated by the cardiovascular, respiratory, and autonomic systems, and also within the skeletal muscle microcirculation and mitochondria as the terminal site of oxygen exchange and utilization. This review highlights the potential contribution of the microcirculation and integrative cardiovascular physiology to the pathogenesis of ICU-AW. An overview of skeletal muscle microvascular structure and function is provided, as well as our understanding of microvascular dysfunction during the acute phase of critical illness; whether microvascular dysfunction persists after ICU discharge is currently not known. Molecular mechanisms that regulate crosstalk between endothelial cells and myocytes are discussed, including the role of the microcirculation in skeletal muscle atrophy, oxidative stress, and satellite cell biology. The concept of integrated control of oxygen delivery and utilization during exercise is introduced, with evidence of physiological dysfunction throughout the oxygen delivery pathway - from mouth to mitochondria - causing reduced exercise capacity in patients with chronic disease (e.g., heart failure, COPD). We suggest that objective and perceived weakness after critical illness represents a physiological failure of oxygen supply-demand matching - both globally throughout the body and locally within skeletal muscle. Lastly, we highlight the value of standardized cardiopulmonary exercise testing protocols for evaluating fitness in ICU survivors, and the application of near-infrared spectroscopy for directly measuring skeletal muscle oxygenation, representing potential advancements in ICU-AW research and rehabilitation.
Collapse
Affiliation(s)
- Asher A. Mendelson
- Section of Critical Care Medicine, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dustin Erickson
- Section of Critical Care Medicine, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rodrigo Villar
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
131
|
Mankowski RT, Wohlgemuth SE, Bresciani G, Martin AD, Arnaoutakis G, Martin T, Jeng E, Ferreira L, Machuca T, Rackauskas M, Smuder AJ, Beaver T, Leeuwenburgh C, Smith BK. Intraoperative Hemi-Diaphragm Electrical Stimulation Demonstrates Attenuated Mitochondrial Function without Change in Oxidative Stress in Cardiothoracic Surgery Patients. Antioxidants (Basel) 2023; 12:antiox12051009. [PMID: 37237876 DOI: 10.3390/antiox12051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Mechanical ventilation during cardiothoracic surgery is life-saving but can lead to ventilator-induced diaphragm dysfunction (VIDD) and prolong ventilator weaning and hospital length of stay. Intraoperative phrenic nerve stimulation may preserve diaphragm force production to offset VIDD; we also investigated changes in mitochondrial function after stimulation. During cardiothoracic surgeries (n = 21), supramaximal, unilateral phrenic nerve stimulation was performed every 30 min for 1 min. Diaphragm biopsies were collected after the last stimulation and analyzed for mitochondrial respiration in permeabilized fibers and protein expression and enzymatic activity of biomarkers of oxidative stress and mitophagy. Patients received, on average, 6.2 ± 1.9 stimulation bouts. Stimulated hemidiaphragms showed lower leak respiration, maximum electron transport system (ETS) capacities, oxidative phosphorylation (OXPHOS), and spare capacity compared with unstimulated sides. There were no significant differences between mitochondrial enzyme activities and oxidative stress and mitophagy protein expression levels. Intraoperative phrenic nerve electrical stimulation led to an acute decrease of mitochondrial respiration in the stimulated hemidiaphragm, without differences in biomarkers of mitophagy or oxidative stress. Future studies warrant investigating optimal stimulation doses and testing post-operative chronic stimulation effects on weaning from the ventilator and rehabilitation outcomes.
Collapse
Affiliation(s)
- Robert T Mankowski
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32611, USA
| | | | - Guilherme Bresciani
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - A Daniel Martin
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - George Arnaoutakis
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Tomas Martin
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Eric Jeng
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Leonardo Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Tiago Machuca
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | | | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Thomas Beaver
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | | | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
132
|
Simmonds A, Smolen J, Ciurash M, Alexander K, Alwatari Y, Wolfe L, Whelan JF, Bennett J, Leichtle SW, Aboutanos MB, Rodas EB. Early surgical stabilization of rib fractures for flail chest is associated with improved patient outcomes: An ACS-TQIP review. J Trauma Acute Care Surg 2023; 94:532-537. [PMID: 36949054 DOI: 10.1097/ta.0000000000003809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
BACKGROUND Rib fractures are a common in thoracic trauma. Increasingly, patients with flail chest are being treated with surgical stabilization of rib fractures (SSRF). We performed a retrospective review of the Trauma Quality Improvement Program database to determine if there was a difference in outcomes between patients undergoing early SSRF (≤3 days) versus late SSRF (>3 days). METHODS Patients with flail chest in Trauma Quality Improvement Program were identified by CPT code, assessing those who underwent SSRF between 2017 and 2019. We excluded those younger than 18 years and Abbreviated Injury Scale head severity scores greater than 3. Patients were grouped based on SSRF before and after hospital Day 3. These patients were case matched based on age, Injury Severity Score, Abbreviated Injury Scale head and chest, body mass index, Glasgow Coma Scale, and five modified frailty index. All data were examined using χ2, one-way analysis of variance, and Fisher's exact test within SPSS version 28.0. RESULTS For 3 years, 20,324 patients were noted to have flail chest, and 3,345 (16.46%) of these patients underwent SSRF. After case matching, 209 patients were found in each group. There were no significant differences between reported major comorbidities. Patients with early SSRF had fewer unplanned intubations (6.2% vs. 12.0%; p = 0.04), fewer median ventilator days (6 days Q1: 3 to Q3: 10.5 vs. 9 Q1: 4.25 to Q3: 14; p = 0.01), shorter intensive care unit length of stay (6 days Q1: 4 to Q3: 11 vs. 11 Q1: 6 to Q3: 17; p < 0.01), and hospital length of stay (15 days Q1: 11.75 to Q3: 22.25 vs. 20 Q1: 15.25 - Q3: 27, p < 0.01. Early plating was associated with lower rates of deep vein thrombosis and ventilator-acquired pneumonia. CONCLUSION In trauma-accredited centers, patients with flail chest who underwent early SSRF (<3 days) had better outcomes, including fewer unplanned intubations, decreased ventilator days, shorter intensive care unit LOS and HLOS, and fewer DVTs, and ventilator-associated pneumonia. LEVEL OF EVIDENCE Therapeutic/Care Management; Level IV.
Collapse
Affiliation(s)
- Alexander Simmonds
- From the Division of Acute Care Surgery, Department of Surgery (A.S., K.A., Y.A., L.W., J.F.W., J.B., S.W.L., M.B.A., E.B.R.), Virginia Commonwealth University, and Virginia Commonwealth University School of Medicine (J.S., M.C.), Richmond, Virginia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Duyndam A, Smit J, Heunks L, Molinger J, IJland M, van Rosmalen J, van Dijk M, Tibboel D, Ista E. Reference values of diaphragmatic dimensions in healthy children aged 0-8 years. Eur J Pediatr 2023:10.1007/s00431-023-04920-6. [PMID: 36939879 DOI: 10.1007/s00431-023-04920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
Diaphragmatic thickness (Tdi) and diaphragm thickening fraction (dTF) are widely used parameters in ultrasound studies of the diaphragm in mechanically ventilated children, but normal values for healthy children are scarce. We determined reference values of Tdi and dTF using ultrasound in healthy children aged 0-8 years old and assessed their reproducibility. In a prospective, observational cohort, Tdi and dTF were measured on ultrasound images across four age groups comprising at least 30 children per group: group 1 (0-6 months), group 2 (7 months-1 year), group 3 (2-4 years) and group 4 (5-8 years). Ultrasound images of 137 healthy children were included. Mean Tdi at inspiration was 2.07 (SD 0.40), 2.09 (SD 0.40), 1.69 (SD 0.30) and 1.72 (SD 0.30) mm for groups 1, 2, 3 and 4, respectively. Mean Tdi at expiration was 1.64 (SD 0.30), 1.67 (SD 0.30), 1.38 (SD 0.20) and 1.42 (SD 0.20) mm for groups 1, 2, 3 and 4, respectively. Mean Tdi at inspiration and mean Tdi at expiration for groups 1 and 2 were significantly greater than those for groups 3 and 4 (both p < 0.001). Mean dTF was 25.4% (SD 10.4), 25.2% (SD 8.3), 22.8% (SD 10.9) and 21.3% (SD 7.1) for group 1, 2, 3 and 4, respectively. The intraclass correlation coefficients (ICC) representing the level of inter-rater reliability between two examiners performing the ultrasounds was 0.996 (95% CI 0.982-0.999). ICC of the inter-rater reliability between the raters in 11 paired assessments was 0.989 (95% CI 0.973-0.995). Conclusion: Ultrasound measurements of Tdi and dTF were highly reproducible in healthy children aged 0-8 years. Trial registration: ClinicalTrials.gov identifier (NCT number): NCT04589910. What is Known: • Diaphragmatic thickness and diaphragm thickening fraction are widely used parameters in ultrasound studies of the diaphragm in mechanically ventilated children, but normal values for healthy children to compare these with are scarce. What is New: • We determined normal values of diaphragmatic thickness and diaphragm thickening fraction using ultrasound in 137 healthy children aged 0-8 years old. The diaphragmatic thickness of infants up to 1 year old was significantly greater than that of children from 2 to 8 years old. Diaphragmatic thickness decreased with an increase in body surface area. These normal values in healthy children can be used to assess changes in respiratory muscle thickness in mechanically ventilated children.
Collapse
Affiliation(s)
- Anita Duyndam
- Department of Pediatric Surgery and Intensive Care, Erasmus , Sophia Children's Hospital, MC, Rotterdam, the Netherlands.
| | - Joke Smit
- Department of Pediatric Surgery and Intensive Care, Erasmus , Sophia Children's Hospital, MC, Rotterdam, the Netherlands
| | - Leo Heunks
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jeroen Molinger
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Division of Critical Care, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Marloes IJland
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Monique van Dijk
- Department of Pediatric Surgery and Intensive Care, Erasmus , Sophia Children's Hospital, MC, Rotterdam, the Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery and Intensive Care, Erasmus , Sophia Children's Hospital, MC, Rotterdam, the Netherlands.,Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Erwin Ista
- Department of Pediatric Surgery and Intensive Care, Erasmus , Sophia Children's Hospital, MC, Rotterdam, the Netherlands
| |
Collapse
|
134
|
Formenti P, Miori S, Galimberti A, Umbrello M. The Effects of Positive End Expiratory Pressure and Lung Volume on Diaphragm Thickness and Thickening. Diagnostics (Basel) 2023; 13:diagnostics13061157. [PMID: 36980465 PMCID: PMC10047794 DOI: 10.3390/diagnostics13061157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction: Diaphragm dysfunction is common in patients undergoing mechanical ventilation. The application of positive end-expiratory pressure (PEEP) and the varying end-expiratory lung volume cause changes in diaphragm geometry. We aimed to assess the impact of the level of PEEP and lung inflation on diaphragm thickness, thickening fraction and displacement. Methods: An observational study in a mixed medical and surgical ICU was conducted. The patients underwent a PEEP-titration trial with the application of three random levels of PEEP: 0 cmH2O (PEEP0), 8 cmH2O (PEEP8) and 15 cmH2O (PEEP15). At each step, the indices of respiratory effort were assessed, together with arterial blood and diaphragm ultrasound; end-expiratory lung volume was measured. Results: 14 patients were enrolled. The tidal volume, diaphragm displacement and thickening fraction were significantly lower with higher levels of PEEP, while both the expiratory and inspiratory thickness increased with higher PEEP levels. The inspiratory effort, as evaluated by the esophageal pressure swing, was unchanged. Both the diaphragm thickening fraction and displacement were significantly correlated with inspiratory effort in the whole dataset. For both measurements, the correlation was stronger at lower levels of PEEP. The difference in the diaphragm thickening fraction during tidal breathing between PEEP 15 and PEEP 0 was negatively related to the change in the functional residual capacity and the change in alveolar dead space. Conclusions: Different levels of PEEP significantly modified the diaphragmatic thickness and thickening fraction, showing a PEEP-induced decrease in the diaphragm contractile efficiency. When using ultrasound to assess diaphragm size and function, the potential effect of lung inflation should be taken into account.
Collapse
Affiliation(s)
- Paolo Formenti
- SC Anestesia e Rianimazione I, ASST Santi Paolo e Carlo-Polo Universitario, Ospedale San Paolo, 20142 Milan, Italy
| | - Sara Miori
- SC Anestesia e Rianimazione I, Ospedale Santa Chiara, APSS, 30014 Trento, Italy
| | - Andrea Galimberti
- SC Anestesia Rianimazione e Terapia Intensiva ASST Nord Milano Ospedale Bassini, 20092 Cinisello Balsamo, Italy
| | - Michele Umbrello
- SC Anestesia e Rianimazione II, ASST Santi Paolo e Carlo-Polo Universitario, Ospedale San Carlo Borromeo, 20148 Milan, Italy
| |
Collapse
|
135
|
Santana PV, Cardenas LZ, de Albuquerque ALP. Diaphragm Ultrasound in Critically Ill Patients on Mechanical Ventilation—Evolving Concepts. Diagnostics (Basel) 2023; 13:diagnostics13061116. [PMID: 36980423 PMCID: PMC10046995 DOI: 10.3390/diagnostics13061116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Mechanical ventilation (MV) is a life-saving respiratory support therapy, but MV can lead to diaphragm muscle injury (myotrauma) and induce diaphragmatic dysfunction (DD). DD is relevant because it is highly prevalent and associated with significant adverse outcomes, including prolonged ventilation, weaning failures, and mortality. The main mechanisms involved in the occurrence of myotrauma are associated with inadequate MV support in adapting to the patient’s respiratory effort (over- and under-assistance) and as a result of patient-ventilator asynchrony (PVA). The recognition of these mechanisms associated with myotrauma forced the development of myotrauma prevention strategies (MV with diaphragm protection), mainly based on titration of appropriate levels of inspiratory effort (to avoid over- and under-assistance) and to avoid PVA. Protecting the diaphragm during MV therefore requires the use of tools to monitor diaphragmatic effort and detect PVA. Diaphragm ultrasound is a non-invasive technique that can be used to monitor diaphragm function, to assess PVA, and potentially help to define diaphragmatic effort with protective ventilation. This review aims to provide clinicians with an overview of the relevance of DD and the main mechanisms underlying myotrauma, as well as the most current strategies aimed at minimizing the occurrence of myotrauma with special emphasis on the role of ultrasound in monitoring diaphragm function.
Collapse
Affiliation(s)
- Pauliane Vieira Santana
- Intensive Care Unit, AC Camargo Cancer Center, São Paulo 01509-011, Brazil
- Correspondence: (P.V.S.); (A.L.P.d.A.)
| | - Letícia Zumpano Cardenas
- Intensive Care Unit, Physical Therapy Department, AC Camargo Cancer Center, São Paulo 01509-011, Brazil
| | - Andre Luis Pereira de Albuquerque
- Pulmonary Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
- Sírio-Libanês Teaching and Research Institute, Hospital Sírio Libanês, São Paulo 01308-060, Brazil
- Correspondence: (P.V.S.); (A.L.P.d.A.)
| |
Collapse
|
136
|
Koopman AA, van Dijk J, Oppersma E, Blokpoel RGT, Kneyber MCJ. Surface electromyography to quantify neuro-respiratory drive and neuro-mechanical coupling in mechanically ventilated children. Respir Res 2023; 24:77. [PMID: 36915106 PMCID: PMC10010013 DOI: 10.1186/s12931-023-02374-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The patient's neuro-respiratory drive, measured as electrical activity of the diaphragm (EAdi), quantifies the mechanical load on the respiratory muscles. It correlates with respiratory effort but requires a dedicated esophageal catheter. Transcutaneous (surface) monitoring of respiratory muscle electromyographic (sEMG) signals may be considered a suitable alternative to EAdi because of its non-invasive character, with the additional benefit that it allows for simultaneously monitoring of other respiratory muscles. We therefore sought to study the neuro-respiratory drive and timing of inspiratory muscles using sEMG in a cohort of children enrolled in a pediatric ventilation liberation trial. The neuro-mechanical coupling, relating the pressure generated by the inspiratory muscles to the sEMG signals of these muscles, was also calculated. METHODS This is a secondary analysis of data from a randomized cross-over trial in ventilated patients aged < 5 years. sEMG recordings of the diaphragm and parasternal intercostal muscles (ICM), esophageal pressure tracings and ventilator scalars were simultaneously recorded during continuous spontaneous ventilation and pressure controlled-intermittent mandatory ventilation, and at three levels of pressure support. Neuro-respiratory drive, timing of diaphragm and ICM relative to the mechanical ventilator's inspiration and neuro-mechanical coupling were quantified. RESULTS Twenty-nine patients were included (median age: 5.9 months). In response to decreasing pressure support, both amplitude of sEMG (diaphragm: p = 0.001 and ICM: p = 0.002) and neuro-mechanical efficiency indices increased (diaphragm: p = 0.05 and ICM: p < 0.001). Poor correlations between neuro-respiratory drive and respiratory effort were found, with R2: 0.088 [0.021-0.152]. CONCLUSIONS sEMG allows for the quantification of the electrical activity of the diaphragm and ICM in mechanically ventilated children. Both neuro-respiratory drive and neuro-mechanical efficiency increased in response to lower inspiratory assistance. There was poor correlation between neuro-respiratory drive and respiratory effort. TRIAL REGISTRATION ClinicalTrials.gov ID NCT05254691. Registered 24 February 2022, registered retrospectively.
Collapse
Affiliation(s)
- Alette A Koopman
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Jefta van Dijk
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Eline Oppersma
- Cardiovascular and Respiratory Physiology Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Robert G T Blokpoel
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Martin C J Kneyber
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Critical Care, Anaesthesiology, Peri-Operative & Emergency Medicine (CAPE), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
137
|
Sepsis-Associated Muscle Wasting: A Comprehensive Review from Bench to Bedside. Int J Mol Sci 2023; 24:ijms24055040. [PMID: 36902469 PMCID: PMC10003568 DOI: 10.3390/ijms24055040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Sepsis-associated muscle wasting (SAMW) is characterized by decreased muscle mass, reduced muscle fiber size, and decreased muscle strength, resulting in persistent physical disability accompanied by sepsis. Systemic inflammatory cytokines are the main cause of SAMW, which occurs in 40-70% of patients with sepsis. The pathways associated with the ubiquitin-proteasome and autophagy systems are particularly activated in the muscle tissues during sepsis and may lead to muscle wasting. Additionally, expression of muscle atrophy-related genes Atrogin-1 and MuRF-1 are seemingly increased via the ubiquitin-proteasome pathway. In clinical settings, electrical muscular stimulation, physiotherapy, early mobilization, and nutritional support are used for patients with sepsis to prevent or treat SAMW. However, there are no pharmacological treatments for SAMW, and the underlying mechanisms are still unknown. Therefore, research is urgently required in this field.
Collapse
|
138
|
Vadivelu S, Khera D, Choudhary B, Toteja N, Sureka B, Singh K, Singh S. Evaluation of Diaphragmatic Thickness and Dysfunction by Ultrasonography in Mechanically Ventilated Children for Assessment of Extubation Success. Indian Pediatr 2023. [DOI: 10.1007/s13312-023-2837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
139
|
Ureyen Ozdemir E, Buyuk GN, Acar D, Elmas B, Yilmaz G, Özcan NN, Keskin HL, Moraloglu Tekin Ö. The relationship between diaphragm thickness and the severity of the disease in pregnant patients with Covid-19. Taiwan J Obstet Gynecol 2023; 62:275-279. [PMID: 36965895 PMCID: PMC9729641 DOI: 10.1016/j.tjog.2022.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE We aimed to investigate whether there is a relationship between diaphragm thickness and disease severity in Covid-19 pregnant subgroups. MATERIAL AND METHODS In this prospective study 100 pregnant patients were enrolled. Thickness of the diaphragm muscle at end-expiration was measured using B-Mode US. Hemoglobin,WBC, NLR, procalcitonin and LDH levels were measured. RESULTS There was a statistically significant difference between the groups in terms of diaphragm thickness, and the diaphragm thickness was thinner in the severe disease group (p < 0.001). There was no statistically significant difference between the groups with mild to moderate disease severity (p = 0.708). CONCLUSION Covid-19 patients who developed serious infection has thinner diaphragms than those who did not. Low diaphragm muscle thickness at the outset of Covid-19 disease, may predispose to poor clinical outcomes. Diaphragmatic ultrasound may be a promising tool to evaluate the risk of Covid-19 disease severity.
Collapse
Affiliation(s)
- Eda Ureyen Ozdemir
- Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey.
| | - Gul Nihal Buyuk
- Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey.
| | - Dilek Acar
- Department of Radiology, Ministry of Health Ankara City Hospital, Ankara, Turkey.
| | - Burak Elmas
- Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey.
| | - Gamze Yilmaz
- Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey.
| | - Namik Nebi Özcan
- Department of Anesthesia and Reanimation, Ministry of Health Ankara City Hospital, Ankara, Turkey.
| | - Hüseyin Levent Keskin
- Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey.
| | - Özlem Moraloglu Tekin
- Department of Obstetrics and Gynecology, Ministry of Health Ankara City Hospital, Ankara, Turkey.
| |
Collapse
|
140
|
Diaphragm function in patients with sepsis and septic shock: A longitudinal ultrasound study. Aust Crit Care 2023; 36:239-246. [PMID: 35272911 DOI: 10.1016/j.aucc.2022.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Previous literature on the determinants of diaphragm dysfunction in septic patients is limited. The goal of this study is to assess diaphragm dysfunction in terms of its prevalence and its potential associated factors in septic intensive care unit (ICU) patients. METHODS This prospective and observational study was conducted between June 2015 and July 2019. Ultrasound measures of diaphragm thickness were performed daily on septic patients. The primary outcome was the prevalence of diaphragm dysfunction at baseline and during the ICU stay. The secondary outcome was the diaphragm thickness. Possible associated factors were prospectively recorded. RESULTS Fifty patients were enrolled in the study. The prevalence of diaphragm dysfunction was 58%. No diaphragm atrophy was found during the ICU stay. Diaphragm dysfunction was associated with the alteration of consciousness, intra-abdominal sepsis, hypnotics and opioids, and mechanical ventilation. Administration of hypnotics, opioids, and steroids was associated with a decreased diaphragm thickening fraction. Diaphragm dysfunction had no impact on patient outcomes. CONCLUSIONS Our data reveal a high prevalence of diaphragm dysfunction in septic patients at the onset of sepsis. Administration of hypnotics, opioids, and steroids was associated with the alteration of diaphragm function as well as intra-abdominal sepsis.
Collapse
|
141
|
Soundoulounaki S, Sylligardos E, Akoumianaki E, Sigalas M, Kondili E, Georgopoulos D, Trahanias P, Vaporidi K. Neural Network-Enabled Identification of Weak Inspiratory Efforts during Pressure Support Ventilation Using Ventilator Waveforms. J Pers Med 2023; 13:jpm13020347. [PMID: 36836581 PMCID: PMC9966968 DOI: 10.3390/jpm13020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
During pressure support ventilation (PSV), excessive assist results in weak inspiratory efforts and promotes diaphragm atrophy and delayed weaning. The aim of this study was to develop a classifier using a neural network to identify weak inspiratory efforts during PSV, based on the ventilator waveforms. Recordings of flow, airway, esophageal and gastric pressures from critically ill patients were used to create an annotated dataset, using data from 37 patients at 2-5 different levels of support, computing the inspiratory time and effort for every breath. The complete dataset was randomly split, and data from 22 patients (45,650 breaths) were used to develop the model. Using a One-Dimensional Convolutional Neural Network, a predictive model was developed to characterize the inspiratory effort of each breath as weak or not, using a threshold of 50 cmH2O*s/min. The following results were produced by implementing the model on data from 15 different patients (31,343 breaths). The model predicted weak inspiratory efforts with a sensitivity of 88%, specificity of 72%, positive predictive value of 40%, and negative predictive value of 96%. These results provide a 'proof-of-concept' for the ability of such a neural-network based predictive model to facilitate the implementation of personalized assisted ventilation.
Collapse
Affiliation(s)
- Stella Soundoulounaki
- Department of Intensive Care Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil Sylligardos
- Institute of Computer Science, Foundation for Research and Technology—Hellas (FORTH), 70013 Heraklion, Greece
- Department of Computer Science, University of Crete, 70013 Heraklion, Greece
| | - Evangelia Akoumianaki
- Department of Intensive Care Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Markos Sigalas
- Institute of Computer Science, Foundation for Research and Technology—Hellas (FORTH), 70013 Heraklion, Greece
| | - Eumorfia Kondili
- Department of Intensive Care Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Georgopoulos
- Department of Intensive Care Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Panos Trahanias
- Institute of Computer Science, Foundation for Research and Technology—Hellas (FORTH), 70013 Heraklion, Greece
- Department of Computer Science, University of Crete, 70013 Heraklion, Greece
| | - Katerina Vaporidi
- Department of Intensive Care Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Correspondence:
| |
Collapse
|
142
|
Espiñeira I, Alzate D, Araos J, Pellegrino F, Tunesi M, Jensen M, Donati PA. Propofol versus sodium thiopentone for the treatment of status epilepticus and refractory status epilepticus in dogs. N Z Vet J 2023; 71:128-132. [PMID: 36688794 DOI: 10.1080/00480169.2023.2172089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIMS To compare the effect on mortality and length of hospital stay of propofol with that of sodium thiopentone for the management of dogs with status epilepticus (SE) and refractory status epilepticus (RSE). METHODS In this cohort study, medical records of a veterinary referral clinic in Argentina were retrospectively searched for dogs that were hospitalised and required induction of therapeutic coma (TC) with either propofol or sodium thiopentone for the management of SE or RSE of any cause. A logistic regression model was performed to evaluate the association between the type of anaesthetic used and in-hospital mortality adjusting for the type of epilepsy (idiopathic, structural, or reactive). Kaplan-Meier estimated survival curves for the length of hospital stay by the type of anaesthetic drug were compared using the log-rank test (deaths were considered censored events). Cox proportional hazards regression was used to estimate hazard ratios for time to hospital discharge, unadjusted and adjusted for type of epilepsy. RESULTS A total of 24 dogs with SE were included in the study: eight treated with propofol and 16 treated with sodium thiopentone. Four dogs treated with propofol (proportion = 0.50; 95% CI = 0.15-0.84), and eight treated with sodium thiopentone (proportion = 0.50; 95% CI = 0.50-0.74) died during hospitalisation. The median hospitalisation time was 43 (IQR 24-56) hours for dogs that were treated with propofol and 72 (IQR 64-96) hours for dogs that were treated with sodium thiopentone. There was no evidence of a difference in the median duration of TC in dogs treated with propofol (12 (IQR 8-24) hours) or with sodium thiopentone (12 (IQR 7.5-20) hours; p = 0.946). In the logistic regression model, no evidence of association between the anaesthetic protocol for the management of RSE and in-hospital mortality, adjusted for the type of epilepsy, was found (OR 1.09 (95% CI = 0.17-6.87); p = 0.925). Cox regression analysis revealed a difference in the time to hospital discharge, adjusted by the type of epilepsy, between treatment groups (HR = 0.05 (95% CI = 0.01-0.54); p = 0.013). CONCLUSIONS AND CLINICAL RELEVANCE The time spent in hospital before discharge was longer in dogs with RSE treated with sodium thiopentone compared to those treated with propofol. However, as the sample size was very small, the results obtained in the present study should be analysed with caution. Further studies including a greater number of dogs are required.
Collapse
Affiliation(s)
- I Espiñeira
- UCICOOP, Buenos Aires, Argentina.,Small Animal Clinic, Faculty of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - D Alzate
- Canines and Felines Animal Hospital, Medellín, Colombia
| | - J Araos
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - F Pellegrino
- Department of Anatomy, Faculty of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - M Tunesi
- UCICOOP, Buenos Aires, Argentina
| | - M Jensen
- UCICOOP, Buenos Aires, Argentina
| | - P A Donati
- UCICOOP, Buenos Aires, Argentina.,Department of Anaesthesiology and Algiology, Faculty of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
143
|
Ribeiro F, Alves PKN, Bechara LRG, Ferreira JCB, Labeit S, Moriscot AS. Small-Molecule Inhibition of MuRF1 Prevents Early Disuse-Induced Diaphragmatic Dysfunction and Atrophy. Int J Mol Sci 2023; 24:ijms24043637. [PMID: 36835047 PMCID: PMC9965746 DOI: 10.3390/ijms24043637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
In clinical conditions such as diaphragm paralysis or mechanical ventilation, disuse-induced diaphragmatic dysfunction (DIDD) is a condition that poses a threat to life. MuRF1 is a key E3-ligase involved in regulating skeletal muscle mass, function, and metabolism, which contributes to the onset of DIDD. We investigated if the small-molecule mediated inhibition of MuRF1 activity (MyoMed-205) protects against early DIDD after 12 h of unilateral diaphragm denervation. Wistar rats were used in this study to determine the compound's acute toxicity and optimal dosage. For potential DIDD treatment efficacy, diaphragm contractile function and fiber cross-sectional area (CSA) were evaluated. Western blotting investigated potential mechanisms underlying MyoMed-205's effects in early DIDD. Our results indicate 50 mg/kg bw MyoMed-205 as a suitable dosage to prevent early diaphragmatic contractile dysfunction and atrophy following 12 h of denervation without detectable signs of acute toxicity. Mechanistically, treatment did not affect disuse-induced oxidative stress (4-HNE) increase, whereas phosphorylation of (ser632) HDAC4 was normalized. MyoMed-205 also mitigated FoxO1 activation, inhibited MuRF2, and increased phospho (ser473) Akt protein levels. These findings may suggest that MuRF1 activity significantly contributes to early DIDD pathophysiology. Novel strategies targeting MuRF1 (e.g., MyoMed-205) have potential therapeutic applications for treating early DIDD.
Collapse
Affiliation(s)
- Fernando Ribeiro
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Paula K. N. Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luiz R. G. Bechara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Julio C. B. Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: ; Tel.: +55-11-3091-0946
| |
Collapse
|
144
|
Truong D, Abo S, Whish-Wilson GA, D'Souza AN, Beach LJ, Mathur S, Mayer KP, Ntoumenopoulos G, Baldwin C, El-Ansary D, Paris MT, Mourtzakis M, Morris PE, Pastva AM, Granger CL, Parry SM, Sarwal A. Methodological and Clinimetric Evaluation of Inspiratory Respiratory Muscle Ultrasound in the Critical Care Setting: A Systematic Review and Meta-Analysis. Crit Care Med 2023; 51:e24-e36. [PMID: 36661463 PMCID: PMC11210606 DOI: 10.1097/ccm.0000000000005739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Significant variations exist in the use of respiratory muscle ultrasound in intensive care with no society-level consensus on the optimal methodology. This systematic review aims to evaluate, synthesize, and compare the clinimetric properties of different image acquisition and analysis methodologies. DATA SOURCES Systematic search of five databases up to November 24, 2021. STUDY SELECTION Studies were included if they enrolled at least 50 adult ICU patients, reported respiratory muscle (diaphragm or intercostal) ultrasound measuring either echotexture, muscle thickness, thickening fraction, or excursion, and evaluated at least one clinimetric property. Two independent reviewers assessed titles, abstracts, and full text against eligibility. DATA EXTRACTION Study demographics, ultrasound methodologies, and clinimetric data. DATA SYNTHESIS Sixty studies, including 5,025 patients, were included with 39 studies contributing to meta-analyses. Most commonly measured was diaphragm thickness (DT) or diaphragm thickening fraction (DTF) using a linear transducer in B-mode, or diaphragm excursion (DE) using a curvilinear transducer in M-mode. There are significant variations in imaging methodology and acquisition across all studies. Inter- and intrarater measurement reliabilities were generally excellent, with the highest reliability reported for DT (ICC, 0.98; 95% CI, 0.94-0.99). Pooled data demonstrated acceptable to excellent accuracy for DT, DTF, and DE to predicting weaning outcome after 48 to 72 hours postextubation (DTF AUC, 0.79; 95% CI, 0.73-0.85). DT imaging was responsive to change over time. Only three eligible studies were available for intercostal muscles. Intercostal thickening fraction was shown to have excellent accuracy of predicting weaning outcome after 48-hour postextubation (AUC, 0.84; 95% CI, 0.78-0.91). CONCLUSIONS Diaphragm muscle ultrasound is reliable, valid, and responsive in ICU patients, but significant variation exists in the imaging acquisition and analysis methodologies. Future work should focus on developing standardized protocols for ultrasound imaging and consider further research into the role of intercostal muscle imaging.
Collapse
Affiliation(s)
- Dominic Truong
- Department of Physiotherapy, The University of Melbourne, Parkville, VIC, Australia
| | - Shaza Abo
- Department of Physiotherapy, The University of Melbourne, Parkville, VIC, Australia
| | | | - Aruska N D'Souza
- Department of Physiotherapy, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Lisa J Beach
- Department of Physiotherapy, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Sunita Mathur
- School of Rehabilitation Therapy, Queen's University, Kingston, ON, Canada
| | - Kirby P Mayer
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY
| | | | - Claire Baldwin
- Caring Futures Institute and College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia
| | - Doa El-Ansary
- Department of Surgery, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Michael T Paris
- School of Kinesiology, University of Western Ontario, London, ON, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Marina Mourtzakis
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Peter E Morris
- Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama, Birmingham, AL
| | | | - Catherine L Granger
- Department of Physiotherapy, The University of Melbourne, Parkville, VIC, Australia
- Department of Physiotherapy, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Selina M Parry
- Department of Physiotherapy, The University of Melbourne, Parkville, VIC, Australia
| | - Aarti Sarwal
- Atrium Wake Forest School of Medicine, Winston Salem, NC
| |
Collapse
|
145
|
Yarnell CJ, Johnson A, Dam T, Jonkman A, Liu K, Wunsch H, Brochard L, Celi LA, De Grooth HJ, Elbers P, Mehta S, Munshi L, Fowler RA, Sung L, Tomlinson G. Do Thresholds for Invasive Ventilation in Hypoxemic Respiratory Failure Exist? A Cohort Study. Am J Respir Crit Care Med 2023; 207:271-282. [PMID: 36150166 DOI: 10.1164/rccm.202206-1092oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Invasive ventilation is a significant event for patients with respiratory failure. Physiologic thresholds standardize the use of invasive ventilation in clinical trials, but it is unknown whether thresholds prompt invasive ventilation in clinical practice. Objectives: To measure, in patients with hypoxemic respiratory failure, the probability of invasive ventilation within 3 hours after meeting physiologic thresholds. Methods: We studied patients admitted to intensive care receiving FiO2 of 0.4 or more via nonrebreather mask, noninvasive positive pressure ventilation, or high-flow nasal cannula, using data from the Medical Information Mart for Intensive Care (MIMIC)-IV database (2008-2019) and the Amsterdam University Medical Centers Database (AmsterdamUMCdb) (2003-2016). We evaluated 17 thresholds, including the ratio of arterial to inspired oxygen, the ratio of saturation to inspired oxygen ratio, composite scores, and criteria from randomized trials. We report the probability of invasive ventilation within 3 hours of meeting each threshold and its association with covariates using odds ratios (ORs) and 95% credible intervals (CrIs). Measurements and Main Results: We studied 4,726 patients (3,365 from MIMIC, 1,361 from AmsterdamUMCdb). Invasive ventilation occurred in 28% (1,320). In MIMIC, the highest probability of invasive ventilation within 3 hours of meeting a threshold was 20%, after meeting prespecified neurologic or respiratory criteria while on vasopressors, and 19%, after a ratio of arterial to inspired oxygen of <80 mm Hg. In AmsterdamUMCdb, the highest probability was 34%, after vasopressor initiation, and 25%, after a ratio of saturation to inspired oxygen of <90. The probability after meeting the threshold from randomized trials was 9% (MIMIC) and 13% (AmsterdamUMCdb). In MIMIC, a race/ethnicity of Black (OR, 0.75; 95% CrI, 0.57-0.96) or Asian (OR, 0.6; 95% CrI, 0.35-0.95) compared with White was associated with decreased probability of invasive ventilation after meeting a threshold. Conclusions: The probability of invasive ventilation within 3 hours of meeting physiologic thresholds was low and associated with patient race/ethnicity.
Collapse
Affiliation(s)
- Christopher J Yarnell
- Interdepartmental Division of Critical Care Medicine.,Institute of Health Policy, Management and Evaluation, and.,Division of Respirology
| | | | - Tariq Dam
- Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Annemijn Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kuan Liu
- Institute of Health Policy, Management and Evaluation, and
| | - Hannah Wunsch
- Interdepartmental Division of Critical Care Medicine.,Institute of Health Policy, Management and Evaluation, and.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine.,Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Leo Anthony Celi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; and
| | - Harm-Jan De Grooth
- Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Paul Elbers
- Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Sangeeta Mehta
- Interdepartmental Division of Critical Care Medicine.,Division of Respirology
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine.,Division of Respirology
| | - Robert A Fowler
- Interdepartmental Division of Critical Care Medicine.,Institute of Health Policy, Management and Evaluation, and.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Haematology/Oncology.,Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - Lillian Sung
- Institute of Health Policy, Management and Evaluation, and.,Division of Haematology/Oncology
| | - George Tomlinson
- Institute of Health Policy, Management and Evaluation, and.,Department of Medicine, University Health Network and Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
146
|
Shi Z, van den Berg M, Bogaards S, Conijn S, Paul M, Beishuizen A, Heunks L, Ottenheijm CAC. Replacement Fibrosis in the Diaphragm of Mechanically Ventilated Critically Ill Patients. Am J Respir Crit Care Med 2023; 207:351-354. [PMID: 36178289 PMCID: PMC12042655 DOI: 10.1164/rccm.202208-1608le] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Zhonghua Shi
- Sanbo Brain HospitalCapital Medical UniversityBeijing,
China
- Amsterdam UMCAmsterdam, the Netherlands
| | | | | | | | | | | | - Leo Heunks
- Amsterdam UMCAmsterdam, the Netherlands
- Erasmus MCRotterdam, the Netherlands
| | | |
Collapse
|
147
|
van Diepen A, Bakkes THGF, De Bie AJR, Turco S, Bouwman RA, Woerlee PH, Mischi M. Evaluation of the accuracy of established patient inspiratory effort estimation methods during mechanical support ventilation. Heliyon 2023; 9:e13610. [PMID: 36852019 PMCID: PMC9958297 DOI: 10.1016/j.heliyon.2023.e13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
There is a clinical need for monitoring inspiratory effort to prevent lung- and diaphragm injury in patients who receive supportive mechanical ventilation in an Intensive Care Unit. Different pressure-based techniques are available to estimate this inspiratory effort at the bedside, but the accuracy of their effort estimation is uncertain since they are all based on a simplified linear model of the respiratory system, which omits gas compressibility of air, and the viscoelasticity and nonlinearities of the respiratory system. The aim of this in-silico study was to provide an overview of the pressure-based estimation techniques and to evaluate their accuracy using a more sophisticated model of the respiratory system and ventilator. The influence of the following parameters on the accuracy of the pressure-based estimation techniques was evaluated using the in-silico model: 1) the patient's respiratory mechanics 2) PEEP and the inspiratory pressure of the ventilator 3) gas compressibility of air 4) viscoelasticity of the respiratory system 5) the strength of the inspiratory effort. The best-performing technique in terms of accuracy was the whole breath occlusion. The average error and maximum error were the lowest for all patient archetypes. We found that the error was related to the expansion of gas in the breathing set and lungs and respiratory compliance. However, concerns exist that other factors not included in the model, such as a changed muscle-force relation during an occlusion, might influence the true accuracy. The estimation techniques based on the esophageal pressure showed an error related to the viscoelastic element in the model which leads to a higher error than the occlusion. The error of the esophageal pressure-based techniques is therefore highly dependent on the pathology of the patient and the settings of the ventilator and might change over time while a patient recovers or becomes more ill.
Collapse
Affiliation(s)
- A van Diepen
- Department of Electrical Engineering, Technische Universiteit Eindhoven, De Zaale, Eindhoven, 5612AZ, Noord-Brabant, the Netherlands
| | - T H G F Bakkes
- Department of Electrical Engineering, Technische Universiteit Eindhoven, De Zaale, Eindhoven, 5612AZ, Noord-Brabant, the Netherlands
| | - A J R De Bie
- Catharina Hospital, Michelangelolaan 2, Eindhoven, 5623 EJ, Noord-Brabant, the Netherlands
| | - S Turco
- Department of Electrical Engineering, Technische Universiteit Eindhoven, De Zaale, Eindhoven, 5612AZ, Noord-Brabant, the Netherlands
| | - R A Bouwman
- Department of Electrical Engineering, Technische Universiteit Eindhoven, De Zaale, Eindhoven, 5612AZ, Noord-Brabant, the Netherlands.,Catharina Hospital, Michelangelolaan 2, Eindhoven, 5623 EJ, Noord-Brabant, the Netherlands
| | - P H Woerlee
- Department of Electrical Engineering, Technische Universiteit Eindhoven, De Zaale, Eindhoven, 5612AZ, Noord-Brabant, the Netherlands
| | - M Mischi
- Department of Electrical Engineering, Technische Universiteit Eindhoven, De Zaale, Eindhoven, 5612AZ, Noord-Brabant, the Netherlands
| |
Collapse
|
148
|
Frat JP, Marchasson L, Arrivé F, Coudroy R. High-flow nasal cannula oxygen therapy in acute hypoxemic respiratory failure and COVID-19-related respiratory failure. JOURNAL OF INTENSIVE MEDICINE 2023; 3:20-26. [PMID: 36756183 PMCID: PMC9534601 DOI: 10.1016/j.jointm.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Although standard oxygen face masks are first-line therapy for patients with acute hypoxemic respiratory failure, high-flow nasal cannula oxygen therapy has gained major popularity in intensive care units. The physiological effects of high-flow oxygen counterbalance the physiological consequences of acute hypoxemic respiratory failure by lessening the deleterious effects of intense and prolonged inspiratory efforts generated by patients. Its simplicity of application for physicians and nurses and its comfort for patients are other arguments for its use in this setting. Although clinical studies have reported a decreased risk of intubation with high-flow oxygen compared with standard oxygen, its survival benefit is uncertain. A more precise definition of acute hypoxemic respiratory failure, including a classification of severity based on oxygenation levels, is needed to better compare the efficiencies of different non-invasive oxygenation support methods (standard oxygen, high-flow oxygen, and non-invasive ventilation). Additionally, the respective role of each non-invasive oxygenation support method needs to be established through further clinical trials in acute hypoxemic respiratory failure, especially in severe forms.
Collapse
Affiliation(s)
- Jean-Pierre Frat
- Centre Hospitalier Universitaire de Poitiers, Médecine Intensive Réanimation, Poitiers 86021, France
- Centre d'Investigation Clinique 1402 ALIVE, INSERM, Université de Poitiers, Poitiers 86021, France
| | - Laura Marchasson
- Centre Hospitalier Universitaire de Poitiers, Médecine Intensive Réanimation, Poitiers 86021, France
| | - François Arrivé
- Centre Hospitalier Universitaire de Poitiers, Médecine Intensive Réanimation, Poitiers 86021, France
| | - Rémi Coudroy
- Centre Hospitalier Universitaire de Poitiers, Médecine Intensive Réanimation, Poitiers 86021, France
- Centre d'Investigation Clinique 1402 ALIVE, INSERM, Université de Poitiers, Poitiers 86021, France
| |
Collapse
|
149
|
Kim T, Huh S, Chung JH, Kim YS, Yun RY, Park O, Lee SE. Clinical values of diaphragmatic movement in patients with chronic obstructive pulmonary disease. BMC Pulm Med 2023; 23:33. [PMID: 36703157 PMCID: PMC9881315 DOI: 10.1186/s12890-022-02220-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/02/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The limitation of activity due to dyspnea in chronic obstructive pulmonary disease (COPD) patients is affected by diaphragmatic dysfunction and reduced lung function. This study aimed to analyze the association between diaphragm function variables and forced expiratory volume in the first second (FEV1) and to estimate the clinical significance of diaphragm function in the correlation between COPD severity and lung function. METHODS This prospective, single-center, cross-sectional observational study enrolled 60 COPD patients in a respiratory outpatient clinic. Data for baseline characteristics and the dyspnea scale were collected. Participants underwent a pulmonary function test (PFT), a 6-minute walk test (6MWT), and diaphragm function by ultrasonography. RESULTS The right excursion at forced breathing showed the most significant correlation with FEV1 (r = 0.370, p = 0.004). The cutoff value was 6.7 cm of the right diaphragmatic excursion at forced breathing to identify the FEV1 above 50% group. In the group with a right diaphragmatic excursion at forced breathing < 6.7 cm, modified Medical Research Council (mMRC), St. George's Respiratory Questionnaire and the total distance of 6MWT showed no difference between groups with FEV1 under and above 50% (p > 0.05). In the group with ≥ 6.7 cm, mMRC and the total distance of 6MWT showed a significant difference between FEV1 under and above 50% (p = 0.014, 456.7 ± 69.7 m vs. 513.9 ± 60.3 m, p = 0.018, respectively). CONCLUSION The right diaphragmatic forced excursion was closely related to FEV1, and analysis according to the right diaphragmatic forced excursion-based cut-off value showed a significant difference between both groups. When the diaphragm function was maintained, there was a lot of difference in the 6MWT's factors according to the FEV1 value. Our data suggest that diaphragmatic function should be performed when interpreting PFT.
Collapse
Affiliation(s)
- Taehwa Kim
- grid.412591.a0000 0004 0442 9883Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital and Pusan National University School of Medicine, Geumo-ro 20, Beomeo-ri, Yangsan-si, Gyeongsangnam-do 50612 Republic of Korea ,grid.412591.a0000 0004 0442 9883BioMedical Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Sungchul Huh
- grid.412591.a0000 0004 0442 9883Department of Rehabilitation Medicine, Rehabilitation Hospital, Pusan National University Yangsan, Yangsan, South Korea
| | - Jae Heun Chung
- grid.412591.a0000 0004 0442 9883Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital and Pusan National University School of Medicine, Geumo-ro 20, Beomeo-ri, Yangsan-si, Gyeongsangnam-do 50612 Republic of Korea ,grid.412591.a0000 0004 0442 9883BioMedical Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Yun Seong Kim
- grid.412591.a0000 0004 0442 9883Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital and Pusan National University School of Medicine, Geumo-ro 20, Beomeo-ri, Yangsan-si, Gyeongsangnam-do 50612 Republic of Korea ,grid.412591.a0000 0004 0442 9883BioMedical Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Ra Yu Yun
- grid.412591.a0000 0004 0442 9883Department of Rehabilitation Medicine, Rehabilitation Hospital, Pusan National University Yangsan, Yangsan, South Korea ,grid.262229.f0000 0001 0719 8572Pusan National University School of Medicine, Yangsan, South Korea
| | - Onyu Park
- grid.412591.a0000 0004 0442 9883College of Nursing, Pusan National University, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Seung Eun Lee
- grid.412591.a0000 0004 0442 9883Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital and Pusan National University School of Medicine, Geumo-ro 20, Beomeo-ri, Yangsan-si, Gyeongsangnam-do 50612 Republic of Korea ,grid.412591.a0000 0004 0442 9883BioMedical Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| |
Collapse
|
150
|
Núñez-Seisdedos MN, Valcárcel-Linares D, Gómez-González MT, Lázaro-Navas I, López-González L, Pecos-Martín D, Rodríguez-Costa I. Inspiratory muscle strength and function in mechanically ventilated COVID-19 survivors 3 and 6 months after intensive care unit discharge. ERJ Open Res 2023; 9:00329-2022. [PMID: 36659933 PMCID: PMC9571163 DOI: 10.1183/23120541.00329-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
Background Knowledge regarding the long-term impact of invasive mechanical ventilation on the inspiratory muscles and functional outcomes in COVID-19 survivors is limited. Methods In this single-centre prospective cohort study, we evaluated invasively ventilated patients with COVID-19 pneumonia 3 and 6 months post-intensive care unit (ICU) discharge. Outcomes included: maximal inspiratory pressure (MIP), ultrasound parameters for diaphragm function, 6-min walk distance (6MWD), dyspnoea and quality of life. We evaluated associations between MIP and duration of mechanical ventilation with follow-up outcomes. Results 50 COVID-19 survivors discharged from ICU between 15 October 2020 and 1 April 2021 were enrolled. Overall, survivors showed a recovery trajectory over time. However, impaired MIP remained in 24 (48%) and 12 (24%) at 3 and 6 months, respectively. Diaphragm dysfunction was not observed. At 3 months, 23 (46%) had impaired functional capacity versus 10 (20%) at 6 months. Dyspnoea persisted in 44 (88%) patients at 3 months and 38 (76%) at 6 months. Quality of life was slightly decreased at 3 months with further improvements at 6 months. MIP was correlated to 6MWD, 6MWD % predicted, dyspnoea across follow-up, and quality of life at 3 months. The duration of invasive ventilation was correlated with 6MWD and 6MWD % predicted. Conclusion In invasively ventilated COVID-19 survivors, inspiratory muscle strength impairments persisted 6 months after ICU discharge, while maintaining normal diaphragm function. Decreased functional capacity, dyspnoea and slightly reduced health status were observed. Early screening of survivors is of utmost importance to identify those with impairments and at risk of delayed or incomplete recovery.
Collapse
Affiliation(s)
- Maria Natividad Núñez-Seisdedos
- Physiotherapy Department, Ramón y Cajal University Hospital, Madrid, Spain,Corresponding author: Maria Natividad Núñez-Seisdedos ()
| | | | | | - Irene Lázaro-Navas
- Physiotherapy Department, Ramón y Cajal University Hospital, Madrid, Spain
| | | | | | | |
Collapse
|