101
|
Bloch S, Zwicker S, Bostanci N, Sjöling Å, Boström EA, Belibasakis GN, Schäffer C. Immune response profiling of primary monocytes and oral keratinocytes to different Tannerella forsythia strains and their cell surface mutants. Mol Oral Microbiol 2018; 33:155-167. [PMID: 29235255 DOI: 10.1111/omi.12208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
Abstract
The oral pathogen Tannerella forsythia possesses a unique surface (S-) layer with a complex O-glycan containing a bacterial sialic acid mimic in the form of either pseudaminic acid or legionaminic acid at its terminal position. We hypothesize that different T. forsythia strains employ these stereoisomeric sugar acids for interacting with the immune system and resident host tissues in the periodontium. Here, we show how T. forsythia strains ATCC 43037 and UB4 displaying pseudaminic acid and legionaminic acid, respectively, and selected cell surface mutants of these strains modulate the immune response in monocytes and human oral keratinocytes (HOK) using a multiplex immunoassay. When challenged with T. forsythia, monocytes secrete proinflammatory cytokines, chemokines and vascular endothelial growth factor (VEGF) with the release of interleukin-1β (IL-1β) and IL-7 being differentially regulated by the two T. forsythia wild-type strains. Truncation of the bacteria's O-glycan leads to significant reduction of IL-1β and regulates macrophage inflammatory protein-1. HOK infected with T. forsythia produce IL-1Ra, chemokines and VEGF. Although the two wild-type strains elicit preferential immune responses for IL-8, both truncation of the O-glycan and deletion of the S-layer result in significantly increased release of IL-8, granulocyte-macrophage colony-stimulating factor and monocyte chemoattractant protein-1. Through immunofluorescence and confocal laser scanning microscopy of infected HOK we additionally show that T. forsythia is highly invasive and tends to localize to the perinuclear region. This indicates, that the T. forsythia S-layer and attached sugars, particularly pseudaminic acid in ATCC 43037, contribute to dampening the response of epithelial tissues to initial infection and hence play a pivotal role in orchestrating the bacterium's virulence.
Collapse
Affiliation(s)
- S Bloch
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - S Zwicker
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - N Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Å Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - E A Boström
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - G N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - C Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
102
|
Lee PH, Chu PM, Hsieh PL, Yang HW, Chueh PJ, Huang YF, Liao YW, Yu CC. Glabridin inhibits the activation of myofibroblasts in human fibrotic buccal mucosal fibroblasts through TGF-β/smad signaling. ENVIRONMENTAL TOXICOLOGY 2018; 33:248-255. [PMID: 29119715 DOI: 10.1002/tox.22512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 05/20/2023]
Abstract
Oral submucous fibrosis (OSF) has been recognized as one of the oral potentially malignant disorders. Areca nut chewing is implicated in this pathological fibrosis, and it causes chronic inflammation and persistent activation of myofibroblasts. As yet, existing treatments only provide temporary symptomatic relief and there is a lack of an effective intervention to cure OSF. Therefore, development of approaches to ameliorate myofibroblast activities becomes a crucial objective to prevent the malignant progression of OSF. In this study, we examined the inhibitory effect of glabridin, an isoflavane extracted from licorice root, on the myofibroblast characteristics in human fibrotic buccal mucosal fibroblasts (fBMFs). Our results showed that myofibroblast activities, including collagen gel contractility, migration, invasion and wound healing abilities were reduced after exposure of glabridin in a dose-dependent manner. Most importantly, we demonstrated that the arecoline-induced myofiroblast activities were abolished by glabridin treatment. Additionally, the expression of the myofibroblast marker α-smooth muscle actin and other fibrogenic marker, type I collagen, in fBMFs were dose-dependently downregulated. Moreover, we showed that the production of TGF-β was suppressed by glabridin in fBMFs and the protein expression of phospho-Smad2 was decreased as well. In summary, our data suggested that glabridin repressed the myofibroblast features in fBMFs via TGF-β/Smad2 signaling pathway. Glabridin also prevented the arecoline-increased myofibroblast activities, and could serve as a natural anti-fibrosis compound for OSF.
Collapse
Affiliation(s)
- Ping-Hui Lee
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy and Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Wen Yang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Feng Huang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
103
|
Azuma MM, Balani P, Boisvert H, Gil M, Egashira K, Yamaguchi T, Hasturk H, Duncan M, Kawai T, Movila A. Endogenous acid ceramidase protects epithelial cells from Porphyromonas gingivalis-induced inflammation in vitro. Biochem Biophys Res Commun 2018; 495:2383-2389. [PMID: 29278706 PMCID: PMC5765770 DOI: 10.1016/j.bbrc.2017.12.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023]
Abstract
Ceramidases are a group of enzymes that degrade pro-inflammatory ceramide by cleaving a fatty acid to form anti-inflammatory sphingosine lipid. Thus far, acid, neutral and alkaline ceramidase isozymes have been described. However, the expression patterns of ceramidase isoforms as well as their role in periodontal disease pathogenesis remain unknown. In this study, expression patterns of ceramidase isoforms were quantified by real-time PCR and immunohistochemistry in gingival samples of patients with periodontitis and healthy subjects, as well as in EpiGingivalTM-3D culture and OBA-9 gingival epithelial cells both of which were stimulated with or without the presence of live Porphyromonas gingivalis (ATCC 33277 strain). A significantly lower level of acid ceramidase expression was detected in gingival tissues from periodontal patients compared to those from healthy subjects. In addition, acid-ceramidase expression in EpiGingival™ 3D culture and OBA-9 cells was suppressed by stimulation with P. gingivalis in vitro. No significant fluctuation was detected for neutral or alkaline ceramidases in either gingival samples or cell cultures. Next, to elucidate the role of acid ceramidase in P. gingivalis-induced inflammation in vitro, OBA-9 cells were transduced with adenoviral vector expressing the human acid ceramidase (Ad-ASAH1) gene or control adenoviral vector (Ad-control). In response to stimulation with P. gingivalis, ASAH1-over-expressing OBA-9 cells showed significantly lower mRNA expressions of caspase-3 as well as the percentage of Annexin V-positive cells, when compared with OBA-9 cells transduced with Ad-control vector. Furthermore, in response to stimulation with P. gingivalis, ASAH1-over-expressing OBA-9 cells produced less TNF-α, IL-6, and IL1β pro-inflammatory cytokines than observed in OBA-9 cells transduced with Ad-control vector. Collectively, our data show the novel discovery of anti-inflammatory and anti-apoptotic effects of acid ceramidase in host cells exposed to periodontal bacteria, and the attenuation of the expression of host-protective acid ceramidase in periodontal lesions.
Collapse
Affiliation(s)
| | - Pooja Balani
- The Forsyth Institute, Cambridge, MA, USA; Harvard University School of Dental Medicine, Boston, MA, USA
| | | | - Mindy Gil
- The Forsyth Institute, Cambridge, MA, USA; Harvard University School of Dental Medicine, Boston, MA, USA
| | - Kenji Egashira
- The Forsyth Institute, Cambridge, MA, USA; Lion Corporation, Research & Development Headquarter, Odawara, Kanagawa, Japan
| | - Tsuguno Yamaguchi
- The Forsyth Institute, Cambridge, MA, USA; Lion Corporation, Research & Development Headquarter, Odawara, Kanagawa, Japan
| | - Hatice Hasturk
- The Forsyth Institute, Cambridge, MA, USA; Harvard University School of Dental Medicine, Boston, MA, USA
| | | | - Toshihisa Kawai
- NOVA Southeastern University, College of Dental Medicine, Fort Lauderdale, FL, USA
| | - Alexandru Movila
- The Forsyth Institute, Cambridge, MA, USA; Harvard University School of Dental Medicine, Boston, MA, USA; NOVA Southeastern University, College of Dental Medicine, Fort Lauderdale, FL, USA.
| |
Collapse
|
104
|
Lee PH, Hsieh PL, Liao YW, Yu CC. Inhibitory effect of GMI, an immunomodulatory protein from Ganoderma microsporum, on myofibroblast activity and proinflammatory cytokines in human fibrotic buccal mucosal fibroblasts. ENVIRONMENTAL TOXICOLOGY 2018; 33:32-40. [PMID: 28984080 DOI: 10.1002/tox.22489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Oral submucous fibrosis (OSF) has been indicated as one of the oral potentially malignant disorders. Epidemiological studies have attributed this pathological fibrosis to the habit of areca nuts chewing, which causes chronic inflammation and persistent activation of myofibroblasts in the oral cavity. Hence, it is crucial to find an effective intervention to ameliorate inflammation in order to prevent the malignant progression of OSF. In this study, we assessed the anti-inflammatory effect of the immunomodulatory protein, GMI, extracted from Ganoderma microsporum on the expression proinflammatory cytokines and the myofibroblast characteristics in human fibrotic buccal mucosal fibroblasts (fBMFs). Our results demonstrated that the expression level of interleukin (IL)-6 and IL-8 were decreased after exposure of GMI and the myofibroblast activities, including collagen gel contraction, migration, invasion, and wound healing abilities were inhibited as well. Furthermore, we confirmed these findings in the arecoline-stimulated BMFs. Consistent with the above findings, the expression of the myofibroblast marker α-smooth muscle actin and other fibrogenic markers, such as type I collagen, fibronectin, and vimentin in fBMFs were all reduced in a dose-dependent manner. Collectively, our data suggested that GMI suppressed the proinflammatory cytokines and myofibroblast features in fBMFs, and could serve as a promising and natural antifibrosis agent.
Collapse
Affiliation(s)
- Ping-Hui Lee
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
105
|
Widyarman AS, Drestia AM, Bachtiar EW, Bachtiar BM. The Anti-inflammatory Effects of Glycerol-supplemented Probiotic Lactobacillus reuteri on Infected Epithelial cells In vitro. Contemp Clin Dent 2018; 9:298-303. [PMID: 29875577 PMCID: PMC5968699 DOI: 10.4103/ccd.ccd_53_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: One of the most interesting effects of probiotics is their ability to modulate the immune system through the induction of cytokines and to enhance the host immune response. Aims: The purpose of this study was to evaluate the anti-inflammatory effect of glycerol-supplemented Lactobacillus reuteri on the transcription level of interleukin (IL)-8 and human-beta-defensin (hBD)-2 expressed by epithelial cells after exposure to bacteria. Materials and Methods: The confluent-cultured HaCat cell line (105 cells/mL) was exposed to Streptococcus mutans ATCC-25175 and Porphyromonas gingivalis ATCC-33277 (107 colony-forming units [CFU]/mL) for 24 h and challenged with probiotic L. reuteri ATCC-55730 (107 CFU/mL) supplemented with glycerol. Subsequently, the transcription levels of IL-8 and hBD-2 in HaCat cells were analyzed using reverse-transcription polymerase chain reaction (RT-PCR). In addition, cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. All the obtained data were statistically analyzed using the one-way analysis of variance test, with P < 0.05 set as the level of significance. Results: The MTT assays confirmed no cytotoxic effects of glycerol-supplemented L. reuteri on HaCat cells (viability >90%). mRNA expression of IL-8 and hBD-2 increased after exposure to both bacteria. The presence of glycerol-supplemented L. reuteri significantly reduced the expression of IL-8 and hBD-2 on HaCat cells (P < 0.05). Conclusion: Glycerol-supplemented L. reuteri reduced the expression of IL-8 and hBD-2, and the results may be proof of principle for a probiotic approach to combating inflammation. However, further studies are needed to validate this probiotic effect.
Collapse
Affiliation(s)
- Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | - Aradhea Monica Drestia
- Microbiology Center of Research and Education, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | - Endang Winiati Bachtiar
- Departement of Oral Biology, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia
| | - Boy M Bachtiar
- Departement of Oral Biology, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
106
|
Activation of the Innate Immune System by Treponema denticola Periplasmic Flagella through Toll-Like Receptor 2. Infect Immun 2017; 86:IAI.00573-17. [PMID: 29084899 DOI: 10.1128/iai.00573-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022] Open
Abstract
Treponema denticola is an indigenous oral spirochete that inhabits the gingival sulcus or periodontal pocket. Increased numbers of oral treponemes within this environment are associated with localized periodontal inflammation, and they are also part of an anaerobic polymicrobial consortium responsible for endodontic infections. Previous studies have indicated that T. denticola stimulates the innate immune system through Toll-like receptor 2 (TLR2); however, the pathogen-associated molecular patterns (PAMPs) responsible for T. denticola activation of the innate immune system are currently not well defined. In this study, we investigated the role played by T. denticola periplasmic flagella (PF), unique motility organelles of spirochetes, in stimulating an innate immune response. Wild-type T. denticola stimulated the production of the cytokines tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, and IL-12 by monocytes from human peripheral blood mononuclear cells, while its isogenic nonmotile mutant lacking PF resulted in significantly diminished cytokine stimulation. In addition, highly purified PF were able to dose dependently stimulate cytokine TNF-α, IL-1β, IL-6, IL-10, and IL-12 production in human monocytes. Wild-type T. denticola and the purified PF triggered activation of NF-κB through TLR2, as determined using a variety of TLR-transfected human embryonic 293 cell lines, while the PF-deficient mutants lacked the ability to stimulate, and the complemented PF-positive T. denticola strain restored the activation. These findings suggest that T. denticola stimulates the innate immune system in a TLR2-dependent fashion and that PF are a key bacterial component involved in this process.
Collapse
|
107
|
Delitto AE, Rocha F, Decker AM, Amador B, Sorenson HL, Wallet SM. MyD88-mediated innate sensing by oral epithelial cells controls periodontal inflammation. Arch Oral Biol 2017; 87:125-130. [PMID: 29289808 DOI: 10.1016/j.archoralbio.2017.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Periodontal diseases are a class of non-resolving inflammatory diseases, initiated by a pathogenic subgingival biofilm, in a susceptible host, which if left untreated can result in soft and hard tissue destruction. Oral epithelial cells are the first line of defense against microbial infection within the oral cavity, whereby they can sense the environment through innate immune receptors including toll-like receptors (TLRs). Therefore, oral epithelial cells directly and indirectly contribute to mucosal homeostasis and inflammation, and disruption of this homeostasis or over-activation of innate immunity can result in initiation and/or exacerbation of localized inflammation as observed in periodontal diseases. Dynamics of TLR signaling outcomes are attributable to several factors including the cell type on which it engaged. Indeed, our previously published data indicates that oral epithelial cells respond in a unique manner when compared to canonical immune cells stimulated in a similar fashion. Thus, the objective of this study was to evaluate the role of oral epithelial cell innate sensing on periodontal disease, using a murine poly-microbial model in an epithelial cell specific knockout of the key TLR-signaling molecule MyD88 (B6K5Cre.MyD88plox). Following knockdown of MyD88 in the oral epithelium, mice were infected with Porphorymonas gingivalis and Aggregatibacter actinomycetemcomitans by oral lavage 4 times per week, every other week for 6 weeks. Loss of oral epithelial cell MyD88 expression resulted in exacerbated bone loss, soft tissue morphological changes, soft tissue infiltration, and soft tissue inflammation following polymicrobial oral infection. Most interestingly while less robust, loss of oral epithelial cell MyD88 also resulted in mild but statistically significant soft tissue inflammation and bone loss even in the absence of a polymicrobial infection. Together these data demonstrate that oral epithelial cell MyD88-dependent TLR signaling regulates the immunological balance within the oral cavity under conditions of health and disease.
Collapse
Affiliation(s)
- Andrea E Delitto
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Fernanda Rocha
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Ann M Decker
- Department of Periodontology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Byron Amador
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Heather L Sorenson
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
108
|
Nonaka K, Kajiura Y, Bando M, Sakamoto E, Inagaki Y, Lew JH, Naruishi K, Ikuta T, Yoshida K, Kobayashi T, Yoshie H, Nagata T, Kido J. Advanced glycation end-products increase IL-6 and ICAM-1 expression via RAGE, MAPK and NF-κB pathways in human gingival fibroblasts. J Periodontal Res 2017; 53:334-344. [DOI: 10.1111/jre.12518] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
Affiliation(s)
- K. Nonaka
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - Y. Kajiura
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - M. Bando
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - E. Sakamoto
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - Y. Inagaki
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - J. H. Lew
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - K. Naruishi
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - T. Ikuta
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - K. Yoshida
- Department of Oral Healthcare Education; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - T. Kobayashi
- General Dentistry and Clinical Education Unit; Niigata University Medical and Dental Hospital; Niigata Japan
- Division of Periodontology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - H. Yoshie
- Division of Periodontology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - T. Nagata
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - J. Kido
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| |
Collapse
|
109
|
Esteban-Fernández A, Zorraquín-Peña I, González de Llano D, Bartolomé B, Moreno-Arribas MV. The role of wine and food polyphenols in oral health. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
110
|
Montero J, López-Valverde N, Ferrera MJ, López-Valverde A. Changes in crevicular cytokines after application of melatonin in patients with periodontal disease. J Clin Exp Dent 2017; 9:e1081-e1087. [PMID: 29075409 PMCID: PMC5650209 DOI: 10.4317/jced.53934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/09/2017] [Indexed: 12/02/2022] Open
Abstract
Background A clinical trial was designed to evaluate the effects of topical application of melatonin on the crevicular fluid levels of interleukins and prostaglandins and to evaluate changes in clinical parameters. Material and Methods A consecutive sample of 90 patients were recruited from the Health Centre of Pinos Puente in Granada, Spain and divided into 3 groups: 30 patients with diabetes and periodontal disease, who were given melatonin; 30 patients with diabetes and periodontal disease, who were given a placebo, and 30 healthy individuals with no history of systemic disease or clinical signs of periodontal disease, who were also given a placebo. The 30 patients with diabetes and periodontitis were treated with topical application of melatonin (1% orabase cream formula) for 20 days by. The rest of the patients with diabetes and periodontitis and healthy subjects were treated with a placebo of orabase cream. We measured the gingival index by exploring the percentage of standing teeth bleeding on probing. The periodontogram was performed with a Florida Probe. Results In the diabetic patients who were given topical melatonin, there was a statistically significant decrease in the two clinical parameters. By contrast, in diabetic patients who were given the topical placebo, there was no statistically significant variation. Conclusions In patients with diabetes and periodontal disease, treatment with topical melatonin was associated with a significant improvement in the gingival index and in pocket depth, and a statistically significant reduction in concentrations of interleukin-1β, interleukin-6 and prostaglandin E2 in gingival crevicular fluid. Key words:Melatonin, periodontal disease, diabetes mellitus, interleukin-1β, interleukin-6, prostaglandin E2.
Collapse
Affiliation(s)
- Javier Montero
- Departament of Surgery, Faculty of Medicine, Scholl of dentistry, University of Salamanca, Spain
| | - Nansi López-Valverde
- Departament of Surgery, Faculty of Medicine, Scholl of dentistry, University of Salamanca, Spain
| | - María-José Ferrera
- Pinos Puente Health Centre, Granada-Metropolitan Health District, Granada, Spain
| | - Antonio López-Valverde
- Departament of Surgery, Faculty of Medicine, Scholl of dentistry, University of Salamanca, Spain
| |
Collapse
|
111
|
Sheibak N, Heidari Z, Mahmoudzadeh-Sagheb H. Quantitative Parameters of Interdental Gingiva in Chronic Periodontitis Patients with IFN-γ Gene Polymorphism. Prague Med Rep 2017; 118:37-48. [PMID: 28364573 DOI: 10.14712/23362936.2017.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Chronic periodontitis (CP), an infectious disease resulting in inflammation within the periodontal tissue, is the main cause of adult tooth loss. CP is a multi-factorial disorder and the interaction between multiple genetic and environmental factors results in the manifestation of this disease. Recent researches in periodontitis has focused on cytokine gene polymorphisms that play important role in periodontal inflammation, but few studies investigated histological change that occur during CP in the supporting tissue of teeth. The aims of this study were to investigate the association of IFN-γ +874 A/T polymorphisms and quantitative parameters of interdental gingiva in CP patients. The study samples were interdental gingiva biopsies from 60 individuals including 38 patients and 22 healthy subjects. After determination of IFN-γ +874 A/T gene polymorphism by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR), patients were divided in three subgroups: 10 AA, 18 AT and 10 TT. After slides preparation, quantitative parameters were estimated by Cavalieri's point-counting method. Statistical analyses were performed using Mann-Whitney and Kruskal-Wallis test to compare differences between groups. The volume density (Vv) of epithelium, connective tissue and its components were significantly different between the control and CP groups (P<0.05). Statistically significant differences in the Vv of collagenous and non-collagenous matrix of interdental gingiva between AA, AT and TT groups were found (P<0.05). Result of present study shows that IFN-γ +874 A/T is strongly associated with some quantitative parameters of connective tissue constituents of interdental papilla in CP patients.
Collapse
Affiliation(s)
- Nadia Sheibak
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Heidari
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran. .,Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Hamidreza Mahmoudzadeh-Sagheb
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
112
|
Chatzopoulos GS, Doufexi AE, Kouvatsi A. Clinical response to non-surgical periodontal treatment in patients with interleukin-6 and interleukin-10 polymorphisms. Med Oral Patol Oral Cir Bucal 2017. [PMID: 28624837 PMCID: PMC5549518 DOI: 10.4317/medoral.21795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Genetic polymorphisms are commonly associated with altered transcriptional activity and possibly make individuals more susceptible to periodontal disease development, increased disease severity and poor treatment outcome. The study aimed to determine the effect of Interleukin-6 (IL-6) -572 G/C (rs1800796) and IL-10 -592 C/A (rs1800872) polymorphisms on the outcomes of non-surgical periodontal therapy in a Caucasian population. Material and Methods Sixty-eight patients with chronic periodontal disease were grouped according to their genotype: IL-6, IL-10, IL-6 and IL-10 susceptible (SCP) and non-susceptible (NSCP). All individuals were clinically evaluated at the first visit, and blood sample were collected from patients after checking the inclusion and exclusion criteria of the study. All patients received non-surgical periodontal therapy from a single-blinded periodontist. Clinical periodontal measurements were repeated 45 days after therapy. Results This population mean aged 47.63 years included 52.2% females and 58.2% non-smokers. Following DNA separation and genotyping, 65.7% of patients were homozygous carriers of the IL-6 - 572G; 49.3% were carriers of the IL-10 -592A- allele (AA and CA genotypes); and 35.8% carried SCP genotypes for both polymorphisms. The clinical parameters after therapy were not associated with the genotype status. The multiple logistic regression analysis did not show any statistically significant association between the genotypes and the variables tested. Conclusions Within the limitations of this longitudinal study, it can be suggested that IL-6 -572 G/C and IL-10 -592 C/A polymorphisms as well as their combination do not influence the outcome of nonsurgical periodontal therapy in Caucasian patients diagnosed with chronic periodontal disease. Key words:Gene polymorphism, genetics, interleukins, periodontal disease, treatment outcome.
Collapse
Affiliation(s)
- G-S Chatzopoulos
- Advanced Education Program in Periodontology, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA,
| | | | | |
Collapse
|
113
|
Secretory leukocyte protease inhibitor regulates human periodontal ligament cell production of pro-inflammatory cytokines. Inflamm Res 2017; 66:823-831. [PMID: 28597116 PMCID: PMC5529494 DOI: 10.1007/s00011-017-1062-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/05/2017] [Accepted: 06/02/2017] [Indexed: 01/09/2023] Open
Abstract
Objective Regulation of immune-like cell properties of periodontal ligament (PDL) cells is not understood. We investigate the importance of secretory leukocyte protease inhibitor (SLPI) for production of pro-inflammatory cytokines in human PDL cells. Materials and methods PDL cells were isolated from teeth extracted for orthodontic reasons. Cellular location of SLPI was investigated by immunocytochemistry. Cytokine transcript and protein expression were assessed by quantitative real-time RT-PCR and Western blotting. SLPI gene activity was knocked-down by siRNA. NF-κB signaling was assessed by measuring IκBα, and phosphorylated p65 and p105 protein expression. Results PDL cells showed cytoplasmic expression of SLPI. Cellular expression level of SLPI negatively correlated to LPS-induced stimulation of IL-6 and MCP-1. Both SLPI gene activity and protein were reduced by about 70% in PDL cells treated with SLPI siRNA compared to cells treated with non-coding construct. Treatment with SLPI siRNA was associated with up-regulation of both basal and LPS-stimulated IL-6, MCP-1 and TLRs mRNA expression. The up-regulation of MCP-1 transcript in SLPI siRNA-treated cells was confirmed on protein level. SLPI siRNA-treatment enhanced the phosphorylated NF-κB p105 protein expression. Conclusions SLPI regulates PDL cell pro-inflammatory cytokine expression and modulates NF-κB signaling, suggesting that SLPI governs the immune cell-like properties of PDL cells.
Collapse
|
114
|
Sundaramoorthy A, Hemachandran K, Ramachandran C, Keshavarao S, AL CJ, Karuppaiya V, Gopalakrishnan AV. Ninjurin 1 gene asp110ala genetic variants as a susceptibility factor in nerve damage leprosy patients of India. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
115
|
Sun C, Liu F, Cen S, Chen L, Wang Y, Sun H, Deng H, Hu R. Tensile strength suppresses the osteogenesis of periodontal ligament cells in inflammatory microenvironments. Mol Med Rep 2017; 16:666-672. [PMID: 28560407 PMCID: PMC5482070 DOI: 10.3892/mmr.2017.6644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate the role of orthodontic force in osteogenesis differentiation, matrix deposition and mineralization in periodontal ligament cells (PDLCs) cells in inflammatory microenvironments. The mesenchymal origin of PDLCs was confirmed by vimentin and cytokeratin staining. PDLCs were exposed to inflammatory cytokines (5 ng/ml IL‑1β and 10 ng/ml TNF‑α) and/or tensile strength (0.5 Hz, 12% elongation) for 12, 24 or 48 h. Cell proliferation and tensile strength‑induced cytokine expression were assessed by MTT assay and ELISA, respectively. Runt‑related transcription factor 2 (RUNX2) and type I collagen (COL‑I) expression were analysed by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Additionally, alkaline phosphatase activity was measured, and the mineralization profile was evaluated by alizarin red S staining. PDLCs exposed to tensile strength in inflammatory microenvironments exhibited reduced proliferation and mineralization potential. Treatment with the inflammatory cytokines IL‑1β and TNF‑α increased RUNX2 expression levels; however, decreased COL‑I expression levels, indicating that bone formation and matrix deposition involve different mechanisms in PDL tissues. Notably, RUNX2 and COL‑I expression levels were decreased in PDLCs exposed to a combination of an inflammatory environment and loading strength. The decreased osteogenic potential in an inflammatory microenvironment under tensile strength suggests that orthodontic force may amplify periodontal destruction in orthodontic patients with periodontitis.
Collapse
Affiliation(s)
- Chaofan Sun
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Fen Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Shendan Cen
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Lijiao Chen
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yi Wang
- Faculty of Dentistry, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Hao Sun
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hui Deng
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Rongdang Hu
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
116
|
Theodoro LH, Longo M, Novaes VCN, Miessi DMJ, Ferro-Alves ML, Ervolino E, de Almeida JM, Garcia VG. Low-level laser and antimicrobial photodynamic therapy on experimental periodontitis in rats submitted to chemotherapy by 5-fluorouracil. Support Care Cancer 2017; 25:3261-3271. [PMID: 28488051 DOI: 10.1007/s00520-017-3738-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/24/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effects of low-level laser therapy (LLLT) and antimicrobial photodynamic therapy (aPDT) as adjuvant to mechanical treatment of experimental periodontitis (EP) in adult rats submitted to 5-fluorouracil (5-FU) chemotherapy. METHODS EP was induced through ligature around the left mandibular first molar for 7 days. The ligature was removed and the animals separated into groups: EP, no treatment; 5FU, systemic administration of 5-FU (80 and 40 mg/kg); 5FU/scaling and root planing (SRP), systemic application of 5-FU and SRP; 5FU/SRP/LLLT, systemic application of 5-FU, SRP, and LLLT (660 nm, 0.035 W; 29.4 J/cm2); and 5FU/SRP/aPDT, systemic application of 5-FU, SRP, and aPDT (methylene blue irrigation and LLLT). The animals were euthanized 7, 15, and 30 days after treatments. Histological sections from mandibles were processed for histomorphometric and immunohistochemical analysis (TRAP, RANKL, OPG, TNF-α, IL-6, IL-10). The alveolar bone loss (BL) area in the furcation region of the mandibular first molar was analyzed histometrically. RESULTS There was less bone loss in 5FU/SRP/aPDT compared with 5FU at 7 days (p < 0.05). The immunohistochemical analysis showed no significant difference for TRAP and osteoprotegerin, but lower RANKL immunolabeling was observed in the 5FU/SRP/LLLT and 5FU/SRP/aPDT groups compared with the 5FU group at 15 days. There was lower TNF-α and IL-6 immunolabeling in the 5FU/SRP/LLLT and 5FU/SRP/aPDT groups and higher IL-10 immunolabeling in 5FU/SRP/aPDT at 30 days. CONCLUSION LLLT and aPDT adjuvant to SRP minimized the effects of 5-FU on periodontal disease. Furthermore, aPDT promoted greater benefits in bone loss control and inflammatory response.
Collapse
Affiliation(s)
- Leticia Helena Theodoro
- Division of Periodontology, Department of Surgery and Integrated Clinic, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil.
| | - Mariéllen Longo
- Division of Periodontology, Department of Surgery and Integrated Clinic, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Vivian Cristina Noronha Novaes
- Division of Periodontology, Department of Surgery and Integrated Clinic, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Daniela Maria Janjacomo Miessi
- Division of Periodontology, Department of Surgery and Integrated Clinic, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Marcio Luiz Ferro-Alves
- Division of Periodontology, Department of Surgery and Integrated Clinic, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Edilson Ervolino
- Division of Histology and Embryology, Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Juliano Milanezi de Almeida
- Division of Periodontology, Department of Surgery and Integrated Clinic, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Valdir Gouveia Garcia
- Division of Periodontology, Department of Surgery and Integrated Clinic, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| |
Collapse
|
117
|
Khalid W, Varghese SS, Sankari M, Jayakumar ND. Comparison of Serum Levels of Endothelin-1 in Chronic Periodontitis Patients Before and After Treatment. J Clin Diagn Res 2017; 11:ZC78-ZC81. [PMID: 28571268 PMCID: PMC5449924 DOI: 10.7860/jcdr/2017/24518.9698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/09/2017] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Endothelin-1 (ET-1) is a potent vasoconstrictive peptide with multi functional activity in various systemic diseases. Previous studies indicate the detection of ET-1 in gingival tissues and gingival crevicular fluid. AIM The aim of this study was to estimate the serum ET-1 levels in clinically healthy subjects and subjects with chronic periodontitis, before and after treatment, and correlate it with the clinical parameters. MATERIALS AND METHODS A total of 44 patients were included in the study. Group I comprised of 20 subjects with clinically healthy periodontium. Group II comprised of 24 subjects with chronic periodontitis. Group III comprised of same Group II subjects following periodontal management. Serum samples were collected from the subjects and an Enzyme Linked Immunosorbent Assay (ELISA) was done to estimate the ET-1 levels. The ET-1 levels were then correlated among the three groups with the clinical parameters namely, Plaque Index (PI), Sulcus Bleeding Index (SBI), probing pocket depth, clinical attachment loss and Periodontally Inflamed Surface Area (PISA). The independent t-test and paired t-test were used for comparison of clinical parameters and Pearson's correlation coefficient test was used for correlating the ET-1 levels. RESULTS ET-1 levels in chronic periodontitis subjects were significantly higher compared to healthy subjects (p<0.001). However, the clinical parameters did not statistically correlate with the ET-1 levels. There was a significant decrease in ET-1 levels following treatment (p<0.001). CONCLUSION Serum ET-1 is increased in chronic periodontitis and reduces after periodontal therapy. Further studies are required to establish ET-1 as a biomarker for periodontal disease.
Collapse
Affiliation(s)
- Waleed Khalid
- Periodontist and Implantologist, The Dental Studio, Chennai, India
| | - Sheeja S Varghese
- Professor, Department of Periodontics and Implantology, Saveetha Dental College, Chennai, India
| | - M. Sankari
- Professor, Department of Periodontics and Implantology, Saveetha Dental College, Chennai, India
| | - ND. Jayakumar
- Professor, Department of Periodontics and Implantology, Saveetha Dental College, Chennai, India
| |
Collapse
|
118
|
Cicek Ari V, Ilarslan YD, Erman B, Sarkarati B, Tezcan I, Karabulut E, Oz SG, Tanriover MD, Sengun D, Berker E. Statins and IL-1β, IL-10, and MPO Levels in Gingival Crevicular Fluid: Preliminary Results. Inflammation 2017; 39:1547-57. [PMID: 27290718 DOI: 10.1007/s10753-016-0390-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Statins possess a wide variety of pleiotropic properties that are independent of their lipid-lowering abilities such as attenuating inflammation, oxidative stress, coagulation, platelet aggregation and stimulating bone formation. The aim of the study is to evaluate the effect of statins on clinical periodontal parameters and gingival crevicular fluid (GCF) levels of IL-1β, IL-10, and myeloperoxidase (MPO) in inflammatory periodontal diseases. Seventy-nine subjects with hyperlipidemia and 48 systemically healthy controls (C) were included. Hyperlipidemic patients were either given a diet (HD) or prescribed statin (HS). Patients were classified into three subgroups as those who were periodontally healthy (h), who had gingivitis (g), or who had chronic periodontitis (p). Blood samples were collected for the measurement of lipid profiles. Plaque index (PI), gingival index (GI), probing pocket depth (PD), clinical attachment level (CAL), and percentage of bleeding on probing (BOP) were recorded. Gingival crevicular fluid levels of IL-1β, IL-10, and MPO were measured in order to determine the anti-inflammatory and antioxidant effects of statins. Probing depth values of the HSp group were significantly lower than those of the Cp group. Percentage of BOP of the HSg group was significantly lower than those of the HDg and Cg groups. While the IL-1β level of the HSp group was significantly lower than that of the HDp group, IL-10 levels of the HSg group were significantly higher than those of the HDg group. MPO levels were significantly lower in the HSg group when compared to those in the HDg and Cg groups. Statin use decreased the IL-1β and MPO levels and enhanced IL-10 in GCF. It can be suggested that statins may attenuate periodontal inflammation and progression of periodontal inflammation.
Collapse
Affiliation(s)
- Vuslat Cicek Ari
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, 3rd Floor, Sihhiye, 06100, Ankara, Turkey
| | - Yagmur Deniz Ilarslan
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, 3rd Floor, Sihhiye, 06100, Ankara, Turkey.
| | - Baran Erman
- Pediatric Immunology Division, Ihsan Doğramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Bahram Sarkarati
- Scientific Industrial and Technological Application and Research Center, Abant Izzet Baysal University, Bolu, Turkey
| | - Ilhan Tezcan
- Pediatric Immunology Division, Ihsan Doğramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Serife Gul Oz
- Department of Internal Medicine, Faculty of Medicine, Section of General Internal Medicine, Hacettepe University, Ankara, Turkey
| | - Mine Durusu Tanriover
- Department of Internal Medicine, Faculty of Medicine, Section of General Internal Medicine, Hacettepe University, Ankara, Turkey
| | - Dilek Sengun
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, 3rd Floor, Sihhiye, 06100, Ankara, Turkey
| | - Ezel Berker
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, 3rd Floor, Sihhiye, 06100, Ankara, Turkey
| |
Collapse
|
119
|
Tang Q, Chen LL, Wei F, Sun WL, Lei LH, Ding PH, Tan JY, Chen XT, Wu YM. Effect of 15-Deoxy-Δ 12,14-prostaglandin J 2Nanocapsules on Inflammation and Bone Regeneration in a Rat Bone Defect Model. Chin Med J (Engl) 2017; 130:347-356. [PMID: 28139520 PMCID: PMC5308019 DOI: 10.4103/0366-6999.198924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of the major metabolites from prostaglandin D2 in arachidonic acid metabolic pathway, has potential anti-inflammatory properties. The objective of this study was to explore the effects of 15d-PGJ2-loaded poly(D,L-lactide-co-glycolide) nanocapsules (15d-PGJ2-NC) on inflammatory responses and bone regeneration in local bone defect. METHODS The study was conducted on 96 Wistar rats from June 2014 to March 2016. Saline, unloaded nanoparticles, free 15d-PGJ2or 15d-PGJ2-NC, were delivered through a collagen vehicle inside surgically created transcortical defects in rat femurs. Interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels in the surrounding soft tissue were analyzed by Western blot and in the defect by quantitative real-time polymerase chain reaction over 14 days. Simultaneously, bone morphogenetic protein-6 (BMP-6) and platelet-derived growth factor-B (PDGF-B) messenger RNA (mRNA) in the defect were examined. New bone formation and EphrinB2 and osteoprotegerin (OPG) protein expression in the cortical defect were observed by Masson's Trichrome staining and immunohistochemistry over 28 days. Data were analyzed by one-way analysis of variance. Least-significant difference and Dunnett's T3 methods were used with a bilateral P< 0.05. RESULTS Application of l5d-PGJ2-NC (100 μg/ml) in the local bone defect significantly decreased IL-6, IL-1β, and TNF-α mRNA and protein, compared with saline-treated controls (P < 0.05). l5d-PGJ2-NC upregulated BMP-6 and PDGF-B mRNA (P < 0.05). New bone formation was observed in the cortical defect in l5d-PGJ2-NC-treated animals from 7th day onward (P < 0.001). Expression of EphrinB2 and OPG presented early on day 3 and persisted through day 28 in 15d-PGJ2-NC group (P < 0.05). CONCLUSION Stable l5d-PGJ2-NC complexes were prepared that could attenuate IL-6, IL-1β, and TNF-α expression, while increasing new bone formation and growth factors related to bone regeneration.
Collapse
Affiliation(s)
- Qi Tang
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Li-Li Chen
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Fen Wei
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Wei-Lian Sun
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Li-Hong Lei
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Pei-Hui Ding
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jing-Yi Tan
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Xiao-Tao Chen
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yan-Min Wu
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
120
|
Khonsuphap P, Pavasant P, Irwandi RA, Leethanakul C, Vacharaksa A. Epithelial Cells Secrete Interferon-γ Which Suppresses Expression of Receptor Activator of Nuclear Factor Kappa-B Ligand in Human Mandibular Osteoblast-Like Cells. J Periodontol 2017; 88:e65-e74. [DOI: 10.1902/jop.2016.160476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Pakchisa Khonsuphap
- Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University
| | - Prasit Pavasant
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University
| | - Rizky Aditya Irwandi
- Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University
| | - Chidchanok Leethanakul
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkla, Thailand
| | - Anjalee Vacharaksa
- Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University
| |
Collapse
|
121
|
Identification and Characterization of MicroRNA Differentially Expressed in Macrophages Exposed to Porphyromonas gingivalis Infection. Infect Immun 2017; 85:IAI.00771-16. [PMID: 28069815 DOI: 10.1128/iai.00771-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs involved in the regulation of several processes associated with inflammatory diseases and infection. Bacterial infection modulates miRNA expression to subvert any innate immune response. In this study we analyzed, using microarray analysis, the bacterial modulation of miRNAs in bone marrow-derived macrophages (BMMs) in which activity was induced by infection with Porphyromonas gingivalis The expression of several miRNAs was modulated 3 h postinfection (at a multiplicity of infection of 25). A bioinformatic analysis was performed to further identify pathways related to the innate immune host response under the influence of selected miRNAs. To assess the effects of the miRNAs identified on cytokine secretion (tumor necrosis factor alpha [TNF-α] and interleukin-10 [IL-10]), BMMs were transfected with selected miRNA mimics and inhibitors. Transfection with mmu-miR-155 and mmu-miR-2137 did not modify TNF-α secretion, while their inhibitors increased it. Inhibitors of mmu-miR-2137 and mmu-miR-7674 increased the secretion of the anti-inflammatory factor IL-10. In P. gingivalis-infected BMMs, mmu-miR-155-5p significantly decreased TNF-α secretion while inhibitor of mmu-miR-2137 increased IL-10 secretion. In vivo, in a mouse model of P. gingivalis-induced calvarial bone resorption, injection of mmu-miR-155-5p or anti-mmu-miR-2137 reduced the size of the lesion significantly. Furthermore, anti-mmu-miR-2137 significantly reduced inflammatory cell infiltration, osteoclast activity, and bone loss. Bioinformatic analysis demonstrated that pathways related to cytokine- and chemokine-related pathways but also osteoclast differentiation may be involved in the effects observed. This study contributes further to our understanding of P. gingivalis-induced modulation of miRNAs and their physiological effects. It highlights the potential therapeutic merits of targeting mmu-miR-155-5p and mmu-miR-2137 to control inflammation induced by P. gingivalis infection.
Collapse
|
122
|
Nishikawa Y, Kajiura Y, Lew JH, Kido JI, Nagata T, Naruishi K. Calprotectin Induces IL-6 and MCP-1 Production via Toll-Like Receptor 4 Signaling in Human Gingival Fibroblasts. J Cell Physiol 2017; 232:1862-1871. [PMID: 27925202 DOI: 10.1002/jcp.25724] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/29/2016] [Indexed: 11/07/2022]
Abstract
Calprotectin, a heterodimer of S100A8 and S100A9 molecules, is associated with inflammatory diseases such as inflammatory bowel disease. We have reported that calprotectin levels in gingival crevicular fluids of periodontitis patients are significantly higher than in healthy subjects. However, the functions of calprotectin in pathophysiology of periodontitis are still unknown. The aim of this study is to investigate the effects of calprotectin on the productivity of inflammatory cytokines in human gingival fibroblasts (HGFs). The HGFs cell line CRL-2014® (ATCC) were cultured, and total RNAs were collected to examine the expression of TLR2/4 and RAGE mRNA using RT-PCR. After the cells were treated with S100A8, S100A9, and calprotectin, supernatants were collected and the levels of IL-6 and MCP-1 were measured using ELISA methods. To examine the intracellular signals involved in calprotectin-induced cytokine production, several chemical inhibitors were used. Furthermore, after the siRNA-mediated TLR4 down-regulated cells were treated with S100A8, S100A9, and calprotectin, the levels of IL-6 and MCP-1 were also measured. HGFs showed greater expression of TLR4 mRNA, but not TLR2 and RAGE mRNA compared with human oral epithelial cells. Calprotectin increased significantly the production of MCP-1 and IL-6 in HGFs, and the cytokine productions were significantly suppressed in the cells treated with MAPKs, NF-κB, and TLR4 inhibitors. Furthermore, calprotectin-mediated MCP-1 and IL-6 production were significantly suppressed in TLR4 down-regulated cells. Taken together, calprotectin induces IL-6 and MCP-1 production in HGFs via TLR4 signaling that involves MAPK and NF-κB, resulting in the progression of periodontitis. J. Cell. Physiol. 232: 1862-1871, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yasufumi Nishikawa
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yukari Kajiura
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Jung Hwan Lew
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Jun-Ichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshihiko Nagata
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koji Naruishi
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
123
|
Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia. Sci Rep 2016; 6:39096. [PMID: 27974831 PMCID: PMC5156907 DOI: 10.1038/srep39096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is characterized by inflammation associated with the colonization of different oral pathogens. We here aimed to investigate how bacteria and host cells shape their environment in order to limit inflammation and tissue damage in the presence of the pathogen. Human dental follicle stem cells (hDFSCs) were co-cultured with gram-negative P. intermedia and T. forsythia and were quantified for adherence and internalization as well as migration and interleukin secretion. To delineate hDFSC-specific effects, gingival epithelial cells (Ca9-22) were used as controls. Direct effects of hDFSCs on neutrophils (PMN) after interaction with bacteria were analyzed via chemotactic attraction, phagocytic activity and NET formation. We show that P. intermedia and T. forsythia adhere to and internalize into hDFSCs. This infection decreased the migratory capacity of the hDFSCs by 50%, did not disturb hDFSC differentiation potential and provoked an increase in IL-6 and IL-8 secretion while leaving IL-10 levels unaltered. These environmental modulations correlated with reduced PMN chemotaxis, phagocytic activity and NET formation. Our results suggest that P. intermedia and T. forsythia infected hDFSCs maintain their stem cell functionality, reduce PMN-induced tissue and bone degradation via suppression of PMN-activity, and at the same time allow for the survival of the oral pathogens.
Collapse
|
124
|
Bodet C, Chandad F, Grenier D. Anti-inflammatory Activity of a High-molecular-weight Cranberry Fraction on Macrophages Stimulated by Lipopolysaccharides from Periodontopathogens. J Dent Res 2016; 85:235-9. [PMID: 16498070 DOI: 10.1177/154405910608500306] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease affecting oral tissues. The continuous, high production of cytokines by host cells triggered by periodontopathogens is thought to be responsible for the destruction of tooth-supporting tissues. Macrophages play a critical role in this host inflammatory response to periodontopathogens. The aim of this study was to investigate the effect of non-dialyzable material prepared from cranberry juice concentrate on the pro-inflammatory cytokine response of macrophages induced by lipopolysaccharides (LPS) from Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum subsp. nucleatum, Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Escherichia coli. Interleukin-1 beta (IL-1β), IL-6, IL-8, tumor necrosis factor alpha (TNF-α), and Regulated on Activation Normal T-cell Expressed and Secreted (RANTES) production by macrophages treated with the cranberry fraction prior to stimulation by LPS was evaluated by ELISA. Our results clearly indicate that the cranberry fraction was a potent inhibitor of the pro-inflammatory cytokine and chemokine responses induced by LPS. This suggests that cranberry constituents may offer perspectives for the development of a new therapeutic approach to the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- C Bodet
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
125
|
Gmiterek A, Kłopot A, Wójtowicz H, Trindade SC, Olczak M, Olczak T. Immune response of macrophages induced by Porphyromonas gingivalis requires HmuY protein. Immunobiology 2016; 221:1382-1394. [DOI: 10.1016/j.imbio.2016.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/30/2016] [Accepted: 07/21/2016] [Indexed: 11/29/2022]
|
126
|
Akram Z, Abduljabbar T, Sauro S, Daood U. Effect of photodynamic therapy and laser alone as adjunct to scaling and root planing on gingival crevicular fluid inflammatory proteins in periodontal disease: A systematic review. Photodiagnosis Photodyn Ther 2016; 16:142-153. [DOI: 10.1016/j.pdpdt.2016.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 08/28/2016] [Accepted: 09/08/2016] [Indexed: 01/06/2023]
|
127
|
Abstract
Human Immunodeficiency Virus (HIV) transmission through genital and rectal mucosa has led to intensive study of mucosal immune responses to HIV and to the development of a vaccine administered locally. However, HIV transmission through the oral mucosa is a rare event. The oral mucosa represents a physical barrier and contains immunological elements to prevent the invasion of pathogenic organisms. This particular defense differs between micro-compartments represented by the salivary glands, oral mucosa, and palatine tonsils. Secretory immunity of the salivary glands, unique features of cellular structure in the oral mucosa and palatine tonsils, the high rate of oral blood flow, and innate factors in saliva may all contribute to the resistance to HIV/Simian Immunodeficiency Virus (SIV) oral mucosal infection. In the early stage of HIV infection, humoral and cellular immunity and innate immune functions in oral mucosa are maintained. However, these particular immune responses may all be impaired as a result of chronic HIV infection. A better understanding of oral mucosal immune mechanisms should lead to improved prevention of viral and bacterial infections, particularly in immunocompromised persons with Acquired Immune Deficiency Syndrome (AIDS), and to the development of a novel strategy for a mucosal AIDS vaccine, as well as vaccines to combat other oral diseases, such as dental caries and periodontal diseases.
Collapse
Affiliation(s)
- F X Lü
- California National Primate Research Center and Center for Comparative Medicine, University of California Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
128
|
Essential Oils from Ugandan Medicinal Plants: In Vitro Cytotoxicity and Effects on IL-1 β-Induced Proinflammatory Mediators by Human Gingival Fibroblasts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5357689. [PMID: 27807462 PMCID: PMC5078667 DOI: 10.1155/2016/5357689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/18/2016] [Indexed: 12/15/2022]
Abstract
The study investigated cytotoxicity of essential oils from four medicinal plants (Bidens pilosa, Ocimum gratissimum, Cymbopogon nardus, and Zanthoxylum chalybeum) on human gingival fibroblasts and their effects on proinflammatory mediators' secretion. Cytotoxicity of essential oils was investigated using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Effects of essential oils at subcytotoxicity concentrations on interleukin- (IL-) 6, IL-8, and prostaglandin E2 (PGE2) secretions by gingival fibroblasts treated with IL-1β (300 pg/mL) were evaluated by ELISA and EIA. IC50 values of the essential oils ranged from 26 μg/mL to 50 μg/mL. Baseline and IL-1β-induced secretion of PGE2 was inhibited by treatment with essential oil from O. gratissimum. Essential oils from B. pilosa and C. nardus had synergistic effects with IL-1β on PGE2 seceretion. In conclusion, the study suggests that essential oil from O. gratissimum decreases gingival fibroblasts secretion of PGE2, while essential oils from B. pilosa and C. nardus increase PGE2 secretion. Essential oil from Z. chalybeum was the most cytotoxic, while oil from C. nardus was the least cytotoxic. Although the clinical significance of these findings remains to be determined, it may be suggested that essential oil from O. gratissimum, applied at subcytotoxicity concentrations, could reduce the participation of gingival fibroblasts in the gingival inflammation and tissue destruction associated with periodontitis.
Collapse
|
129
|
Kim HD, Shin MS, Kim HT, Kim MS, Ahn YB. Incipient periodontitis and salivary molecules among Korean adults: association and screening ability. J Clin Periodontol 2016; 43:1032-1040. [DOI: 10.1111/jcpe.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Hyun-Duck Kim
- Department of Preventive and Social Dentistry; School of Dentistry; Seoul National University; Seoul Korea
- Dental Research Institute; School of Dentistry; Seoul National University; Seoul Korea
| | - Myung-Seop Shin
- Department of Preventive and Social Dentistry; School of Dentistry; Seoul National University; Seoul Korea
| | - Hyun-Tae Kim
- Department of Preventive and Social Dentistry; School of Dentistry; Seoul National University; Seoul Korea
| | - Mi-Sun Kim
- Department of Preventive and Social Dentistry; School of Dentistry; Seoul National University; Seoul Korea
| | - Yoo-Been Ahn
- Department of Preventive and Social Dentistry; School of Dentistry; Seoul National University; Seoul Korea
| |
Collapse
|
130
|
Lipopolysaccharide and IL-1β coordinate a synergy on cytokine production by upregulating MyD88 expression in human gingival fibroblasts. Mol Immunol 2016; 79:47-54. [PMID: 27697591 DOI: 10.1016/j.molimm.2016.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 11/20/2022]
Abstract
Both lipopolysaccharide (LPS) and interleukin (IL)-1β activate the MyD88-dependent signaling pathways to stimulate proinflammatory cytokine expression. However, it remains unknown how LPS and IL-1β interact with each other to coordinate the stimulation. In this study, we sought to investigate the interaction between LPS and IL-1β on MyD88-dependent signaling pathways in human gingival fibroblasts (HGFs). Results showed that LPS derived from Porphyromonas gingivalis (Pg LPS) and IL-1β cooperatively stimulated mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NFκB) signaling pathways, and subsequent expression of proinflammatory cytokine expression. Furthermore, our results showed that Pg LPS and IL-1β exerted a synergy on MyD88 expression and knockdown of MyD88 expression by small interfering RNA diminished the synergistic effect of Pg LPS and IL-1β on IL-6 expression, suggesting that upregulation of MyD88 is involved in the coordinated stimulation by Pg LPS and IL-1β of proinflammatory cytokine expression. Finally, our results showed that pharmacological inhibitors for MAPK and NFκB significantly reduced IL-6 secretion stimulated by Pg LPS and IL-1β, indicating that the MyD88-dependent MAPK and NFκB signaling pathways are essential for the upregulation of proinflammatory cytokine expression by Pg LPS and IL-1β. Taken together, this study showed that LPS and IL-1β coordinate a synergy on cytokine production by upregulating MyD88 expression in HGFs.
Collapse
|
131
|
Agosto LM, Hirnet JB, Michaels DH, Shaik-Dasthagirisaheb YB, Gibson FC, Viglianti G, Henderson AJ. Porphyromonas gingivalis-mediated signaling through TLR4 mediates persistent HIV infection of primary macrophages. Virology 2016; 499:72-81. [PMID: 27639573 PMCID: PMC5126732 DOI: 10.1016/j.virol.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022]
Abstract
Periodontal infections contribute to HIV-associated co-morbidities in the oral cavity and provide a model to interrogate the dysregulation of macrophage function, inflammatory disease progression, and HIV replication during co-infections. We investigated the effect of Porphyromonas gingivalis on the establishment of HIV infection in monocyte-derived macrophages. HIV replication in macrophages was significantly repressed in the presence of P. gingivalis. This diminished viral replication was due partly to a decrease in the expression of integrated HIV provirus. HIV repression depended upon signaling through TLR4 as knock-down of TLR4 with siRNA rescued HIV expression. Importantly, HIV expression was reactivated upon removal of P. gingivalis. Our observations suggest that exposure of macrophages to Gram-negative bacteria influence the establishment and maintenance of HIV persistence in macrophages through a TLR4-dependent mechanism.
Collapse
Affiliation(s)
- Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA.
| | - Juliane B Hirnet
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel H Michaels
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA
| | | | - Frank C Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Gregory Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Andrew J Henderson
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA; Department of Microbiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
132
|
de Oliveira PA, de Pizzol-Júnior JP, Longhini R, Sasso-Cerri E, Cerri PS. Cimetidine Reduces Interleukin-6, Matrix Metalloproteinases-1 and -9 Immunoexpression in the Gingival Mucosa of Rat Molars With Induced Periodontal Disease. J Periodontol 2016; 88:100-111. [PMID: 27587368 DOI: 10.1902/jop.2016.160132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Histamine seems to act, via H2 receptor, on inflammatory processes by stimulating interleukin (IL)-6 and matrix metalloproteinase (MMP) release. As cimetidine is an H2 receptor antagonist, the authors hypothesize that this antiulcer drug reduces IL-6, MMP-1, and MMP-9 immunoexpression in gingiva with induced periodontal disease (PD). To confirm a possible modulatory role of IL-6 on MMPs, the relationship between IL-6/MMP-1 and IL-6/MMP-9 immunoexpression was evaluated. METHODS Forty-six male rats were distributed into the cimetidine group (CimG: received daily intraperitoneal injections of 100 mg/kg of body weight of cimetidine) or the saline group (SG). PD was induced by cotton ligature around the maxillary left first molars (PDSG and PDCimG). The right molars were used as controls (SG and CimG). After 7, 15, 30, and 50 days, maxillary fragments were processed for paraffin embedding or for transmission electron microscopy. Tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in the alveolar process surface and number of IL-6, MMP-1, and MMP-9-immunolabeled cells in the gingival mucosa were quantified. Statistical analyses were performed (P ≤0.05). RESULTS In PDSG and PDCimG, gingival mucosa exhibited few collagen fibers among numerous inflammatory cells. In PDCimG, the number of TRAP-positive osteoclasts and IL-6, MMP-1, and MMP-9-immunolabeled cells was significantly lower than in PDSG at all periods. A positive correlation between IL-6/MMP-1 and IL-6/MMP-9 was detected in PDSG and PDCimG. CONCLUSION Cimetidine decreases bone loss through reduction of osteoclast number and induces reduction of IL-6, MMP-1, and MMP-9 immunoexpression, reinforcing the idea that the beneficial effect of cimetidine in PD may be due to reduction of IL-6 immunolabeling in the inflamed gingival mucosa.
Collapse
Affiliation(s)
| | - José Paulo de Pizzol-Júnior
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil.,Department of Morphology, Dental School, Laboratory of Histology and Embryology, University Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Renata Longhini
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Estela Sasso-Cerri
- Department of Morphology, Dental School, Laboratory of Histology and Embryology, University Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Paulo Sérgio Cerri
- Department of Morphology, Dental School, Laboratory of Histology and Embryology, University Estadual Paulista, Araraquara, São Paulo, Brazil
| |
Collapse
|
133
|
Li X, Wang X, Zheng M, Luan QX. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts. Exp Cell Res 2016; 347:212-221. [DOI: 10.1016/j.yexcr.2016.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/16/2016] [Accepted: 08/07/2016] [Indexed: 10/21/2022]
|
134
|
Papadopoulos G, Shaik-Dasthagirisaheb YB, Huang N, Viglianti GA, Henderson AJ, Kantarci A, Gibson FC. Immunologic environment influences macrophage response to Porphyromonas gingivalis. Mol Oral Microbiol 2016; 32:250-261. [PMID: 27346827 DOI: 10.1111/omi.12168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2016] [Indexed: 02/03/2023]
Abstract
Macrophages adapt both phenotypically and functionally to the cytokine balance in host tissue microenvironments. Recent studies established that macrophages contribute an important yet poorly understood role in the development of infection-elicited oral bone loss. We hypothesized that macrophage adaptation to inflammatory signals encountered before pathogen interaction would significantly influence the subsequent immune response of these cells to the keystone oral pathobiont Porphyromonas gingivalis. Employing classically activated (M1) and alternatively activated (M2) murine bone-marrow-derived macrophage (BMDMø), we observed that immunologic activation of macrophages before P. gingivalis challenge dictated phenotype-specific changes in the expression of inflammation-associated molecules important to sensing and tuning host response to bacterial infection including Toll-like receptors 2 and 4, CD14, CD18 and CD11b (together comprising CR3), major histocompatibility complex class II, CD80, and CD86. M2 cells responded to P. gingivalis with higher expression of tumor necrosis factor-α, interleukin-6, monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, regulated on activation normal T cell expressed and secreted, and KC than M1 cells. M1 BMDMø expressed higher levels of interleukin-10 to P. gingivalis than M2 BMDMø. Functionally, we observed that M2 BMDMø bound P. gingivalis more robustly than M1 BMDMø. These data describe an important contribution of macrophage skewing in the subsequent development of the cellular immune response to P. gingivalis.
Collapse
Affiliation(s)
- G Papadopoulos
- Section of infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Y B Shaik-Dasthagirisaheb
- Section of infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - N Huang
- Section of infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - G A Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - A J Henderson
- Section of infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - A Kantarci
- Department of Applied Oral Sciences, Forsyth Institute, Cambridge, MA, USA
| | - F C Gibson
- Section of infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
135
|
Ben Lagha A, Grenier D. Black tea theaflavins attenuate Porphyromonas gingivalis virulence properties, modulate gingival keratinocyte tight junction integrity and exert anti-inflammatory activity. J Periodontal Res 2016; 52:458-470. [PMID: 27549582 DOI: 10.1111/jre.12411] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Over the last 10 years, bioactive plant food compounds have received considerable attention in regard to their beneficial effects against periodontal disease. In this study, we investigated the effects of black tea theaflavins (TFs) on the virulence properties of Porphyromonas gingivalis and gingival keratinocyte tight junction integrity. In addition, the effects of black tea TFs on the nuclear factor-κB (NF-κB) signaling pathway and proinflammatory cytokine/matrix metalloproteinase (MMP) secretion by monocytes/macrophages were assessed. MATERIAL AND METHODS Virulence factor gene expression in P. gingivalis was investigated by quantitative real-time PCR. A fluorescence assay was used to determine P. gingivalis adherence to, and invasion of, a gingival keratinocyte monolayer. Tight junction integrity of gingival keratinocytes was assessed by determination of transepithelial electrical resistance. Proinflammatory cytokine and MMP secretion by P. gingivalis-stimulated macrophages was quantified by ELISA. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to monitor NF-κB activation. Gelatin degradation was monitored using a fluorogenic assay. RESULTS Black tea TFs dose-dependently inhibited the expression of genes encoding the major virulence factors of P. gingivalis and attenuated its adherence to gingival keratinocytes. A treatment of gingival keratinocytes with black tea TFs significantly enhanced tight junction integrity and prevented P. gingivalis-mediated tight junction damage as well as bacterial invasion. Black tea TFs reduced the secretion of interleukin (IL)-1β, tumor necrosis factor-α, IL-6, chemokine (C-X-C) ligand 8, MMP-3, MMP-8 and MMP-9 by P. gingivalis-stimulated macrophages and attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. Lastly, black tea TFs inhibited gelatin degradation by MMP-9. CONCLUSION This study provides clear evidence that black tea TFs represent promising multifunctional therapeutic agents for prevention and treatment of periodontal disease.
Collapse
Affiliation(s)
- A Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| | - D Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| |
Collapse
|
136
|
Sun J, Nemoto E, Hong G, Sasaki K. Modulation of stromal cell-derived factor 1 alpha (SDF-1α) and its receptor CXCR4 in Porphyromonas gingivalis-induced periodontal inflammation. BMC Oral Health 2016; 17:26. [PMID: 27449062 PMCID: PMC4957851 DOI: 10.1186/s12903-016-0250-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/12/2016] [Indexed: 01/07/2023] Open
Abstract
Background The production of chemokines by tissue resident cells during inflammation is considered one of the main mechanisms involved in the formation of inflammatory infiltrates. Fibroblasts are the main resident cell type in gingival and periodontal ligament tissues, and their ability to produce chemokine stromal cell-derived factor 1 alpha (SDF-1α) and its receptor CXCR4 under stimulation by gram negative bacteria, Porphyromonas gingivalis, commonly found in periodontal infections was investigated. Methods Western blots were used to assess SDF-1α and CXCR4 protein expression levels in human gingival fibroblast cells (HGF-1) induced by Lipopolysaccharide (LPS) from P. gingivalis in the presence or absence of LY294002, a highly selective inhibitor of PI-3K/Akt. RT-PCR and quantitative Real-time PCR was performed using gingival mRNAs from periodontitis patients. Immunohistochemistry was performed to analyze the expression and subcellular localization of SDF-1α and CXCR4, together with NF-kβ phosphorylation, in specimens from patients with periodontitis and in an experimental rat periodontitis model. Results We found that P. gingivalis LPS up-regulated SDF-1α and CXCR4 protein levels and elevated phosphorylation of the SDF-1α-responsive NF-kβ and Akt at 24 h in HGF-1 cells. SDF-1α and CXCR4 mRNA and protein expression levels were high in all patients with periodontitis. In the P. gingivalis-induced rat experimental periodontitis model, SDF-1α and CXCR4 immunoreactivity was higher in gingival and periodontal ligament tissues compared to the control. Conclusion Our data showed that PI-3K/Akt is an upstream participant in the P. gingivalis LPS-mediated induction of SDF-1α. Taken together, these results suggest that the chemokine SDF-1α and its receptor CXCR4 contribute to P. gingivalis-induced periodontal inflammation.
Collapse
Affiliation(s)
- Jiang Sun
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, 935 Changjiang Road, Shahekou District, Dalian, 116021, China. .,Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Guang Hong
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
137
|
Kennedy R, Lappin DF, Dixon PM, Bennett D, Riggio MP. Gingival Toll-like receptor and cytokine messenger RNA levels in equine periodontitis and oral health. Equine Vet J 2016; 49:294-299. [PMID: 27270960 DOI: 10.1111/evj.12597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Abstract
REASONS FOR PERFORMING STUDY Equine periodontitis is a common and painful condition. However, the disease often goes unnoticed by owners and is thus a major welfare concern. The aetiopathogenesis of the condition remains poorly understood and has been investigated in few studies. The innate immune system is known to play an important role in human periodontitis, but its role in equine periodontitis has not been examined. OBJECTIVES To quantify the messenger (m)RNA levels of Toll-like receptors (TLRs) and cytokines in gingival tissue from orally healthy horses and those affected by periodontitis. STUDY DESIGN Observational study. METHODS Gingival tissue samples were taken post-mortem from 13 horses with no clinical signs of oral disease and 20 horses with periodontitis. mRNA levels of TLR2, TLR4 and TLR9 and cytokines interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), IL-4, IL-6, IL-10, IL-12, IL-17 and interferon-γ (IFN-γ) were determined using quantitative real-time PCR. The statistical significance of results was assessed using appropriate t tests. RESULTS mRNA levels of all TLRs and cytokines were upregulated in equine periodontitis. Significant increases in mRNA levels of TLR2, TLR9, IL-4, IL-10, IL-12 (P≤0.05) and IFN-γ (P≤0.01) were observed for both unweighted and age-weighted analyses of diseased gingival tissue samples compared with healthy gingival samples. In comparisons of samples of periodontitis lesions with healthy gingival control samples from the same horse, significant increases in mRNA levels of TLR4, TLR9, IL-10, IFN-γ (P≤0.05), TLR2, IL-1β and IL-12p35 (P≤0.01) were observed. CONCLUSIONS This study has provided an initial insight into the involvement of the immune system in equine periodontitis. Increased mRNA levels of TLR2, TLR4 and TLR9 indicate substantial microbial challenge in diseased gingival tissue. A mixed Th1/Th2/Th17 cytokine response is produced in equine periodontitis. Further studies are required to more fully characterise the role of the innate immune system in this disease.
Collapse
Affiliation(s)
- R Kennedy
- Infection and Immunity Research Group, Dental School, University of Glasgow, UK
| | - D F Lappin
- Infection and Immunity Research Group, Dental School, University of Glasgow, UK
| | - P M Dixon
- Division of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, UK
| | - D Bennett
- School of Veterinary Medicine, University of Glasgow, UK
| | - M P Riggio
- Infection and Immunity Research Group, Dental School, University of Glasgow, UK
| |
Collapse
|
138
|
Stadler AF, Angst PDM, Arce RM, Gomes SC, Oppermann RV, Susin C. Gingival crevicular fluid levels of cytokines/chemokines in chronic periodontitis: a meta-analysis. J Clin Periodontol 2016; 43:727-45. [PMID: 27027257 DOI: 10.1111/jcpe.12557] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2016] [Indexed: 12/14/2022]
Abstract
AIMS To compare gingival crevicular fluid (GCF) cytokines/chemokines levels between periodontally healthy subjects and subjects diagnosed with chronic periodontitis (ChP), before and after non-surgical periodontal treatment, and to establish their predictive value for periodontal disease progression. METHODS Studies indexed in MEDLINE and EMBASE published in English, Portuguese and Spanish were eligible for this review. Database searches up to December 2015, and manual search of the reference list from reviews and selected articles was performed. Only studies providing data on GCF cytokines/chemokines levels in subjects diagnosed with ChP and periodontally healthy controls were included. Cross-sectional, case series, single-arm clinical studies, randomized controlled trials and prospective/retrospective cohort studies were included. Meta-analyses were conducted for those cytokines/chemokines with at least three available studies. RESULTS GCF levels of IL-1β, IL-6, IFN-γ and MCP-1/CCL2 were significantly higher in subjects diagnosed with ChP than periodontally healthy subjects. A significant decrease in GCF levels of IL-1β and IL-17 was observed after non-surgical periodontal treatment, whereas a significant increase was observed for IL-4. CONCLUSION Evidence for significant differences between periodontal health and ChP was observed for a few cytokines and one chemokine. No conclusions could be drawn with regards to increased risk of disease progression.
Collapse
Affiliation(s)
- Amanda F Stadler
- Section of Periodontology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Patrícia D M Angst
- Section of Periodontology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roger M Arce
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Sabrina C Gomes
- Section of Periodontology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rui V Oppermann
- Section of Periodontology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiano Susin
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
139
|
Savage JR, Pulsipher A, Rao NV, Kennedy TP, Prestwich GD, Ryan ME, Lee WY. A Modified Glycosaminoglycan, GM-0111, Inhibits Molecular Signaling Involved in Periodontitis. PLoS One 2016; 11:e0157310. [PMID: 27308827 PMCID: PMC4911086 DOI: 10.1371/journal.pone.0157310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/30/2016] [Indexed: 01/08/2023] Open
Abstract
Background Periodontitis is characterized by microbial infection, inflammation, tissue breakdown, and accelerated loss of alveolar bone matrix. Treatment targeting these multiple stages of the disease provides ways to treat or prevent periodontitis. Certain glycosaminoglycans (GAGs) block multiple inflammatory mediators as well as suppress bacterial growth, suggesting that these GAGs may be exploited as a therapeutic for periodontitis. Methods We investigated the effects of a synthetic GAG, GM-0111, on various molecular events associated with periodontitis: growth of Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) pathogenic bacteria associated with periodontitis; activation of pro-inflammatory signaling through TLR2 and TLR4 in mouse macrophage RAW 264.7 cells and heterologously expressed HEK 293 cells; osteoclast formation and bone matrix resorption in cultured mouse pre-osteoclasts. Results (1) GM-0111 suppressed the growth of P. gingivalis and A. actinomycetemcomitans even at 1% (w/v) solution. The antibacterial effects of GM-0111 were stronger than hyaluronic acid (HA) or xylitol in P. gingivalis at all concentrations and comparable to xylitol in A. actinomycetemcomitans at ≥2% (w/v) solution. We also observed that GM-0111 suppressed biofilm formation of P. gingivalis and these effects were much stronger than HA. (2) GM-0111 inhibited TLR-mediated pro-inflammatory cellular signaling both in macrophage and HEK 293 cells with higher selectivity for TLR2 than TLR4 (IC50 of 1–10 ng/mL vs. > 100 μg/mL, respectively). (3) GM-0111 blocked RANKL-induced osteoclast formation (as low as 300 ng/mL) and bone matrix resorption. While GM-0111 showed high affinity binding to RANKL, it did not interfere with RANKL/RANK/NF-κB signaling, suggesting that GM-0111 inhibits osteoclast formation by a RANKL-RANK-independent mechanism. Conclusions We report that GM-0111 inhibits multiple molecular events involved in periodontitis, spanning from the early pro-inflammatory TLR signaling, to pathways activated at the later stage component of bone loss.
Collapse
Affiliation(s)
- Justin R. Savage
- GlycoMira Therapeutics, Inc. Salt Lake City, UT, 84108, United States of America
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. Salt Lake City, UT, 84108, United States of America
| | - Narayanam V. Rao
- GlycoMira Therapeutics, Inc. Salt Lake City, UT, 84108, United States of America
| | - Thomas P. Kennedy
- GlycoMira Therapeutics, Inc. Salt Lake City, UT, 84108, United States of America
- Pulmonary Diseases Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, United States of America
| | - Glenn D. Prestwich
- GlycoMira Therapeutics, Inc. Salt Lake City, UT, 84108, United States of America
- Department of Medicinal Chemistry and Center for Therapeutic Biomaterials, University of Utah, Salt Lake City, UT, 84108, United States of America
| | - Maria E. Ryan
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, United States of America
| | - Won Yong Lee
- GlycoMira Therapeutics, Inc. Salt Lake City, UT, 84108, United States of America
- * E-mail:
| |
Collapse
|
140
|
Eagle I, Benavides E, Eber R, Kolenic G, Jung Y, Van Poznak C, Taichman LS. Periodontal health in breast cancer patients on aromatase inhibitors versus postmenopausal controls: a longitudinal analysis. J Clin Periodontol 2016; 43:659-67. [PMID: 27062507 DOI: 10.1111/jcpe.12562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2016] [Indexed: 10/22/2022]
Abstract
AIM This study was conducted to determine periodontal changes in postmenopausal breast cancer (BCa) survivors using aromatase inhibitors (AI) as compared to postmenopausal women without BCa. METHODS An 18-month prospective examination of periodontal health in postmenopausal women (29 receiving AI therapy; 29 women without BCa) was conducted at University of Michigan. Comprehensive periodontal examinations including alveolar bone height (ABH) were conducted at baseline, 6, 12, and 18 months. Bisphosphonate, vitamin D, and calcium supplementation were collected via chart review. Linear mixed models were utilized to investigate the relationship between AI and periodontal measures. RESULTS Aromatase inhibitor users had significantly deeper probing depths, more dental plaque and clinical attachment loss as compared to controls at the 6, 12, and 18 month study visits (p < 0.05). ABH loss was seen over time within the AI group. The linear mixed model showed a significant effect of time as well as an interaction between aromatase inhibitor use and calcium supplement status. AI users taking calcium experienced less ABH loss over the study than AI users not taking calcium (p = 0.005). CONCLUSION Aromatase inhibitor therapy has a negative impact on the periodontal health of postmenopausal BCa patients. Calcium supplementation appears to mitigate ABH loss in women on AI.
Collapse
Affiliation(s)
- Iwonka Eagle
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Erika Benavides
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Robert Eber
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Giselle Kolenic
- Division of Obstetrics and Gynecology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Catherine Van Poznak
- Hematology and Oncology Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - L Susan Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
141
|
|
142
|
Han P, Lloyd T, Chen Z, Xiao Y. Proinflammatory Cytokines Regulate Cementogenic Differentiation of Periodontal Ligament Cells by Wnt/Ca(2+) Signaling Pathway. J Interferon Cytokine Res 2016; 36:328-37. [PMID: 27074616 DOI: 10.1089/jir.2015.0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontal inflammation can inhibit cell differentiation of periodontal ligament cells (PDLCs), resulting in decreased bone/cementum regeneration ability. The Wnt signaling pathway, including canonical Wnt/β-catenin signaling and noncanonical Wnt/Ca(2+) signaling, plays essential roles in cell proliferation and differentiation during tooth development. However, little is still known whether noncanonical Wnt/Ca(2+) signaling cascade could regulate cementogenic/osteogenic differentiation capability of PDLCs within an inflammatory environment. Therefore, in this study, human PDLCs (hPDLCs) and their cementogenic differentiation potential were investigated in the presence of cytokines. The data demonstrated that both cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) inhibited cell proliferation, relative alkaline phosphatase activity, bone/cementum-related gene/protein expression, and canonical Wnt pathway-related gene/protein expression in hPDLCs. Interestingly, both cytokines upregulated the noncanonical Wnt/Ca(2+) signaling-related gene and protein expression in hPDLCs. When the Wnt/Ca(2+) pathway was blocked by Ca(2+)/calmodulin-dependent protein kinase II inhibitor KN93, even in the presence of IL-6 and TNF-α, cementogenesis could be stimulated in hPDLCs. Our data indicate that the Wnt/Ca(2+) pathway plays an inhibitory role on PDLC cementogenic differentiation in inflammatory microenvironments. Therefore, targeting the Wnt/Ca(2+) pathway may provide a novel therapeutic approach to improve periodontal regeneration for periodontal diseases.
Collapse
Affiliation(s)
- Pingping Han
- 1 Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia .,2 Tissue Engineering and Microfluidic Laboratory, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane, Australia
| | - Tain Lloyd
- 3 School of Biomedical Sciences, The University of Queensland , Brisbane, Australia
| | - Zetao Chen
- 1 Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia
| | - Yin Xiao
- 1 Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia
| |
Collapse
|
143
|
Tsai TH, Huang WC, Ying HT, Kuo YH, Shen CC, Lin YK, Tsai PJ. Wild Bitter Melon Leaf Extract Inhibits Porphyromonas gingivalis-Induced Inflammation: Identification of Active Compounds through Bioassay-Guided Isolation. Molecules 2016; 21:454. [PMID: 27058519 PMCID: PMC6273076 DOI: 10.3390/molecules21040454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/15/2023] Open
Abstract
Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify the anti-inflammatory active compounds using heat-killed P. gingivalis-stimulated human monocytic THP-1 cells in vitro. Five major fractions were collected from the ethanol/ethyl acetate extract of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) leaves and evaluated for their anti-inflammatory activity against P. gingivalis. Among the test fractions, Fraction 5 effectively decreased heat-killed P. gingivalis-induced interleukin (IL)-8 and was subjected to separation and purification by using chromatographic techniques. Two cucurbitane triterpenoids were isolated from the active fraction and identified as 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol (1) and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (2) by comparing spectral data. Treatments of both compounds in vitro potently suppressed P. gingivalis-induced IL-8, IL-6, and IL-1β levels and the activation of mitogen-activated protein kinase (MAPK) in THP-1 cells. Both compounds effectively inhibited the mRNA levels of IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in P. gingivalis-stimulated gingival tissue of mice. These findings imply that 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al could be used for the development of novel therapeutic approaches against P. gingivalis infections.
Collapse
Affiliation(s)
- Tzung-Hsun Tsai
- Department of Dentistry, Keelung Chang-Gung Memorial Hospital, Keelung 204, Taiwan.
| | - Wen-Cheng Huang
- Department of Pediatrics, Taipei Tzu-Chi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| | - How-Ting Ying
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Chien-Chang Shen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Peitou, Taipei 112, Taiwan.
| | - Yin-Ku Lin
- Department of Chinese Internal Medicine, Keelung Chang-Gung Memorial Hospital, Keelung 204, Taiwan.
| | - Po-Jung Tsai
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| |
Collapse
|
144
|
Morand DN, Davideau JL, Clauss F, Jessel N, Tenenbaum H, Huck O. Cytokines during periodontal wound healing: potential application for new therapeutic approach. Oral Dis 2016; 23:300-311. [PMID: 26945691 DOI: 10.1111/odi.12469] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/12/2016] [Accepted: 03/01/2016] [Indexed: 12/15/2022]
Abstract
Regeneration of periodontal tissues is one of the main goals of periodontal therapy. However, current treatment, including surgical approach, use of membrane to allow maturation of all periodontal tissues, or use of enamel matrix derivatives, presents limitations in their indications and outcomes leading to the development of new tissue engineering strategies. Several cytokines are considered as key molecules during periodontal destruction process. However, their role during each phase of periodontal wound healing remains unclear. Control and modulation of the inflammatory response and especially, release of cytokines or activation/inhibition in a time- and spatial-controlled manner may be a potential perspective for periodontal tissue engineering. The aim of this review was to summarize the specific role of several cytokines during periodontal wound healing and the potential therapeutic interest of inflammatory modulation for periodontal regeneration especially related to the expression sequence of cytokines.
Collapse
Affiliation(s)
- D N Morand
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - J-L Davideau
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - F Clauss
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - N Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - H Tenenbaum
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - O Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| |
Collapse
|
145
|
Ponnaiyan D, Jegadeesan V. Cyclosporine A: Novel concepts in its role in drug-induced gingival overgrowth. Dent Res J (Isfahan) 2016; 12:499-506. [PMID: 26759584 PMCID: PMC4696350 DOI: 10.4103/1735-3327.170546] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cyclosporine is a selective immunosuppressant that has a variety of applications in medical practice. Like phenytoin and the calcium channel blockers, the drug is associated with gingival overgrowth. This review considers the pharmacokinetics, pharmacodynamics, and unwanted effects of cyclosporine, in particular the action of the drug on the gingival tissues. In addition, elucidates the current concepts in mechanisms of cyclosporine-induced gingival overgrowth. Clinical and cell culture studies suggest that the mechanism of gingival overgrowth is a result of the interaction between the drug and its metabolites with susceptible gingival fibroblasts. Plaque-induced gingival inflammation appears to enhance this interaction. However, understanding of the pathogenesis of gingival overgrowth is incomplete at best. Hence, it would be pertinent to identify and explore possible risk factors relating to both prevalence and severity of drug-induced gingival overgrowth. Newer molecular approaches are needed to clearly establish the pathogenesis of gingival overgrowth and to provide novel information for the design of future preventive and therapeutic modalities.
Collapse
Affiliation(s)
- Deepa Ponnaiyan
- Department of Periodontics, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Visakan Jegadeesan
- Department of Oral and Maxillofacial Surgery, MIOT Hospitals, Manapakkam, Chennai, Tamil Nadu, India
| |
Collapse
|
146
|
ET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment. Mediators Inflamm 2016; 2016:8467849. [PMID: 26884650 PMCID: PMC4738707 DOI: 10.1155/2016/8467849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM) for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment.
Collapse
|
147
|
Aroonrerk N, Niyomtham N, Yingyoungnarongkul BE. Anti-Inflammation of N-Benzyl-4-Bromobenzamide in Lipopolysaccharide-Induced Human Gingival Fibroblasts. Med Princ Pract 2016; 25:130-6. [PMID: 26536614 PMCID: PMC5588337 DOI: 10.1159/000442164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To evaluate the effect of N-benzyl-4-bromobenzamide (NBBA) on lipopolysaccharide (LPS)-induced IL-6 and prostaglandin E2 (PGE2) production in human gingival fibroblasts (HGFs). MATERIAL AND METHODS The benzamide compound was synthesized. The condition for IL-6 production of HGFs after induction with LPS was optimized. The HGFs were incubated with NBBA (10 µg/ml) for 30 min before LPS (1 μg/ml) was added. After 24 h of incubation time, the culture media were harvested and their IL-6 and PGE2 contents were determined using an enzyme-linked immunosorbent assay. Prednisolone (PDS) and NS-398 were used as positive controls. Statistical analysis of the IL-6 and PGE2 contents was performed using the ANOVA test followed by the Tukey multiple-comparisons test to compare replicate means. p < 0.001 was considered statistically significant. RESULTS The maximum IL-6 production was achieved when HGFs were exposed to 1 μg/ml of LPS for 24 h, which was inhibited by the IL-6 immunosuppressant PDS. The benzamide compound, NBBA, exhibited a potent anti-IL-6 activity with inhibition of 35.6 ± 0.5%, significantly different from in the LPS-induced HGFs (p < 0.001). In addition, it inhibited 75.6 ± 0.52% PGE2 production. Cell viability was not significantly affected by treatment with NBBA at a concentration <10 µg/ml (p < 0.001). CONCLUSIONS NBBA exhibited an inhibitory effect on the production of IL-6 and PGE2 in LPS-induced HGFs. It could serve as a compound with inhibiting inflammatory activity in periodontal disease.
Collapse
Affiliation(s)
- Nuntana Aroonrerk
- Department of Stomatology, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
- *Dr. Nuntana Aroonrerk, Department of Stomatology, Faculty of Dentistry, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110 (Thailand), E-Mail
| | - Nattisa Niyomtham
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Boon-ek Yingyoungnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| |
Collapse
|
148
|
Akagi H, Imamura Y, Makita Y, Nakamura H, Hasegawa N, Fujiwara SI, Wang PL. Evaluation of Collagen Type-1 Production and Anti-Inflammatory Activities of Human Placental Extracts in Human Gingival Fibroblasts. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | | | | | | | | | - Pao-Li Wang
- Department of Bacteriology, Osaka Dental University
| |
Collapse
|
149
|
Singhal S, Pradeep AR, Kanoriya D, Garg V. Human soluble receptor for advanced glycation end products and tumor necrosis factor-α as gingival crevicular fluid and serum markers of inflammation in chronic periodontitis and type 2 diabetes. J Oral Sci 2016; 58:547-553. [DOI: 10.2334/josnusd.16-0017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Sandeep Singhal
- Department of Periodontology, Government Dental College and Research Institute
| | - Avani R. Pradeep
- Department of Periodontology, Government Dental College and Research Institute
| | - Dharmendra Kanoriya
- Department of Periodontology, Government Dental College and Research Institute
| | - Vibhuti Garg
- Department of Periodontology, Government Dental College and Research Institute
| |
Collapse
|
150
|
Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, Hernández M, Gamonal J. Host response mechanisms in periodontal diseases. J Appl Oral Sci 2015. [PMID: 26221929 PMCID: PMC4510669 DOI: 10.1590/1678-775720140259] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.
Collapse
Affiliation(s)
- Nora Silva
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Loreto Abusleme
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Denisse Bravo
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolás Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jocelyn Garcia-Sesnich
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Hernández
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jorge Gamonal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|