101
|
Roberts W. Air pollution and skin disorders. Int J Womens Dermatol 2021; 7:91-97. [PMID: 33537398 PMCID: PMC7838324 DOI: 10.1016/j.ijwd.2020.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022] Open
Abstract
Air pollution is being shown to play an increasing causation role in our most common skin diseases. Acne, hyperpigmentation, atopic dermatitis, and psoriasis have been shown to be influenced by air pollution. It is important for pollution to be added as a risk factor for these skin disorders, and thus we must discuss mitigating its negative affects with patients. Air pollution is the contamination of outdoor (ambient) and indoor (household) environments by any chemical, physical, or biological agent that modifies the natural characteristics of the atmosphere. Nearly all (90%) of the world's population experience daily pollution. In 2019, air pollution was considered by the World Health Organization to be the biggest environmental health risk to humans, responsible for killing more than 7 million people prematurely every year. Preliminary studies link air pollution to COVID-19 deaths, as there were high death tolls in some of the most globally polluted areas. Air pollution affects many organ systems such as cardiovascular, pulmonary, central nervous, reproductive, and integumentary systems. In this study, we detail the current evidence linking specific skin and health disorders to air pollution.
Collapse
Affiliation(s)
- Wendy Roberts
- Generational and Cosmetic Dermatology, Rancho Mirage, CA, United States
| |
Collapse
|
102
|
SOUZA MMD, RODRIGUES JVS, GONÇALVES MECABRERIZO, ROSSATO ACP, STEIN MCRVOMS, POLI MCF, THEODORO LH, NAKAMUNE ACDMS. Gender influence on antioxidant capacity and oxidative damage in saliva of children with autism spectrum disorder: a preliminary study. REVISTA DE ODONTOLOGIA DA UNESP 2021. [DOI: 10.1590/1807-2577.05721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Introduction Autism is a complex neurological disorder with multifactorial causes, which compromises physical, psychological, emotional and social skills. This disorder also impairs dental care and patient oral health. Saliva can be easily obtained using a non-invasive technique and has been used in the diagnosis and screening of many pathologies. Total antioxidant capacity of saliva is reduced in the presence of caries in children and has been studied as a possible marker for autism. However, data on salivary antioxidants in children with autism spectrum disorder (ASD) is scarce. Objective This preliminary study evaluated the existence of gender influence on non-enzymatic antioxidant capacity and protein oxidative damage in the saliva of children with this disorder. Our hypothesis is that there are gender differences in these biochemical parameters in children with austim. Material and method Whole saliva samples were collected by aspiration between 8:00-11:00 am from 12 girls and 12 boys aged 5 to 15 years, with previous diagnosis for this disorder. Total antioxidant capacity, uric acid, protein concentration and oxidative damage to proteins were analyzed by spectrophotometry. Values were presented as mean ± standard deviation and tested for adherence to normality (Shapiro-Wilk test). The data were then compared using the Mann-Whitney test, considering a 5% significance level. Result There was no significant difference between groups for all analyzed parameters (P>0.05). Conclusion Based on the results obtained, we concluded that gender does not influence the levels of oxidative stress markers in the saliva of children with ASD.
Collapse
|
103
|
Nanostructured lipid carriers loaded with curcuminoids: Physicochemical characterization, in vitro release, ex vivo skin penetration, stability and antioxidant activity. Eur J Pharm Sci 2020; 155:105533. [DOI: 10.1016/j.ejps.2020.105533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/31/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
|
104
|
Structural and functional characterization of the glutathione peroxidase-like thioredoxin peroxidase from the fungus Trichoderma reesei. Int J Biol Macromol 2020; 167:93-100. [PMID: 33259843 DOI: 10.1016/j.ijbiomac.2020.11.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 11/22/2022]
Abstract
Glutathione peroxidases (GPx) are a family of enzymes with the ability to reduce organic and inorganic hydroperoxides to the corresponding alcohols using glutathione or thioredoxin as an electron donor. Here, we report the functional and structural characterization of a GPx identified in Trichoderma reesei (TrGPx). TrGPx was recombinantly expressed in a bacterial host and purified using affinity. Using a thioredoxin coupled assay, TrGPx exhibited activity of 28 U and 12.5 U in the presence of the substrates H2O2 and t-BOOH, respectively, and no activity was observed when glutathione was used. These results indicated that TrGPx is a thioredoxin peroxidase and hydrolyses H2O2 better than t-BOOH. TrGPx kinetic parameters using a pyrogallol assay resulted at Kmapp = 11.7 mM, Vmaxapp = 10.9 IU/μg TrGPx, kcat = 19 s-1 and a catalytic efficiency of 1.6 mM-1 s-1 to H2O2 as substrate. Besides that, TrGPx demonstrated an optimum pH ranging from 9.0-12.0 and a half-life of 36 min at 80 °C. TrGPx 3D-structure was obtained in a reduced state and non-catalytic conformation. The overall fold is similar to the other phospholipid-hydroperoxide glutathione peroxidases. These data contribute to understand the antioxidant mechanism in fungi and provide information for using antioxidant enzymes in biotechnological applications.
Collapse
|
105
|
Atefi N, Behrangi E, Mozafarpoor S, Seirafianpour F, Peighambari S, Goodarzi A. N-acetylcysteine and coronavirus disease 2019: May it work as a beneficial preventive and adjuvant therapy? A comprehensive review study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2020; 25:109. [PMID: 33824674 PMCID: PMC8019127 DOI: 10.4103/jrms.jrms_777_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Coronaviruses are major pathogens of respiratory system causing different disorders, including the common cold, Middle East respiratory syndrome, and severe acute respiratory syndrome. Today's global pandemic coronavirus disease 2019 (COVID-19) has high mortality rate, with an approximate of 20% in some studies, and is 30-60 times more fatal than the common annual influenza, However, there is still no gold standard treatment for it. N-acetylcysteine (NAC) is a well-known multi-potential drug with hypothetically probable acceptable effect on COVID-related consequences, which we completely focused in this comprehensive review. MATERIALS AND METHODS PubMed, Scopus, Science Direct, and Google Scholar have been searched. Study eligibility criteria: efficacy of NAC in various subclasses of pathogenic events which may occur during COVID-19 infection. Efficacy of NAC for managing inflammatory or any symptoms similar to symptoms of COVID-19 was reviewed and symptom improvements were assessed. RESULTS Randomized clinical trials introduced NAC as an antioxidant glutathione analog and detoxifying agent promoted for different medical conditions and pulmonary disorders to alleviate influenza and reduce mortality by 50% in influenza-infected animals. The beneficial effects of NAC on viral disorders, including Epstein-Barr virus, HIV and hepatitis, and well-known vital organ damages were also exist and reported. CONCLUSION We classified the probable effects of NAC as oxidative-regulatory and apoptotic-regulatory roles, antiviral activities, anti-inflammatory roles, preventive and therapeutic roles in lung disorders and better oxygenation functions, supportive roles in intensive care unit admitted patients and in sepsis, positive role in other comorbidities and nonpulmonary end-organ damages or failures and even in primary COVID-associated cutaneous manifestations. Based on different beneficial effects of NAC, it could be administered as a potential adjuvant therapy for COVID-19 considering patient status, contraindications, and possible drug-related adverse events.
Collapse
Affiliation(s)
- Najmolsadat Atefi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Behrangi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mozafarpoor
- Department of Dermatology, Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnoosh Seirafianpour
- Department of General Medicine, Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran
| | - Shadi Peighambari
- Department of Internal Medicine, San Joaquin General Hospital, CA, USA
| | - Azadeh Goodarzi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
106
|
Bissonnette R, Stein Gold L, Rubenstein DS, Tallman AM, Armstrong A. Tapinarof in the treatment of psoriasis: A review of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor-modulating agent. J Am Acad Dermatol 2020; 84:1059-1067. [PMID: 33157177 DOI: 10.1016/j.jaad.2020.10.085] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
Tapinarof, a novel, first-in-class, small-molecule topical therapeutic aryl hydrocarbon receptor (AhR)-modulating agent, is in clinical development for the treatment of psoriasis and atopic dermatitis. The efficacy of tapinarof in psoriasis is attributed to its specific binding and activation of AhR, a ligand-dependent transcription factor, leading to the downregulation of proinflammatory cytokines, including interleukin 17, and regulation of skin barrier protein expression to promote skin barrier normalization. AhR signaling regulates gene expression in immune cells and skin cells and has critical roles in the regulation of skin homeostasis. Tapinarof-mediated AhR signaling underlies the mechanistic basis for the significant efficacy and acceptable tolerability observed in early-phase clinical trials of tapinarof cream in the treatment of psoriasis.
Collapse
Affiliation(s)
| | | | | | | | - April Armstrong
- Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
107
|
Barrea L, Megna M, Cacciapuoti S, Frias-Toral E, Fabbrocini G, Savastano S, Colao A, Muscogiuri G. Very low-calorie ketogenic diet (VLCKD) in patients with psoriasis and obesity: an update for dermatologists and nutritionists. Crit Rev Food Sci Nutr 2020; 62:398-414. [PMID: 32969257 DOI: 10.1080/10408398.2020.1818053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Psoriasis is a chronic skin immune-mediated disease with systemic pro-inflammatory activation; both genetic and lifestyles factors contribute to its pathogenesis and severity. In this context, nutrition plays a significant role, per se, in psoriasis' pathogenesis. Obesity is another important risk factor for psoriasis, and weight reduction may improve psoriasis' clinical severity. The excess body weight, particularly visceral fat mass, can affect both drug's pharmacokinetics and pharmacodynamics. Therefore, psoriasis and obesity share a certain degree of synergy, and the chronic inflammatory state represents the basis of this vicious cycle. Evidence reported that nutrition has different impact on the clinical severity of psoriasis, though some specific diets have been more investigated in clinical studies compared to others. Diets with systemic anti-inflammatory properties seem to have a higher effect on improving the clinical severity of psoriasis. Of interest, very-low-calorie ketogenic diet (VLCKD), through the production of ketone bodies, has been associated with both a significant reduction of body weight and inflammatory state. VLCKD leading to both weight loss and reduction of systemic inflammation may decrease the exacerbation of the clinical manifestations or even it may block the trigger of psoriatic disease. This dietary pattern could represent a potential first-line treatment in psoriatic patients with obesity. The review aims to summarize the current evidence regarding VLCKD and psoriasis with specific reference to antioxidant and anti-inflammatory effects of this dietary pattern.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Department of Clinical Medicine and Surgery, Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Matteo Megna
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Sara Cacciapuoti
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Evelyn Frias-Toral
- Research Committee, SOLCA Guayaquil, Guayaquil, Ecuador.,Clinical Research Associate Professor for Palliative Care Residency, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Department of Clinical Medicine and Surgery, Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Department of Clinical Medicine and Surgery, Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Department of Clinical Medicine and Surgery, Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, University Medical School of Naples, Naples, Italy
| |
Collapse
|
108
|
Hebert AA. Oxidative stress as a treatment target in atopic dermatitis: The role of furfuryl palmitate in mild-to-moderate atopic dermatitis. Int J Womens Dermatol 2020; 6:331-333. [PMID: 33015298 PMCID: PMC7522904 DOI: 10.1016/j.ijwd.2020.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
|
109
|
Babbush KM, Babbush RA, Khachemoune A. Treatment of melasma: a review of less commonly used antioxidants. Int J Dermatol 2020; 60:166-173. [PMID: 32815582 DOI: 10.1111/ijd.15133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022]
Abstract
Melasma, a common cause for seeking dermatologic care, is a chronic condition of skin hyperpigmentation. With a poorly understood pathogenesis, and no universal cure, melasma is a challenge for many dermatologists. For decades, there has been investigation into the role of oxidative stress in melasma. In this literature review, we introduce the role of oxidative stress in melasma and discuss the function of various topical and oral antioxidant therapies for patients suffering from melasma. Numerous studies have shown efficacy of various antioxidant therapies for treatment of hyperpigmentation, and in this review, we focus primarily on those with less widespread use. Vitamin E, niacinamide, polypodium leucotomos, pycnogenol, grape seed extract, amino fruit acids, phytic acid, zinc, silymarin, Korean red ginseng powder, plant extracts, and parsley all have well-demonstrated evidence of antioxidant properties, and these substances have been studied in the context of skin hyperpigmentation. Although there is conflicting evidence of their therapeutic efficacy, the use of these naturally occurring substances is promising for patients and medical providers seeking alternative therapeutic options.
Collapse
Affiliation(s)
- Kayla M Babbush
- Division of Dermatology, Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Remy A Babbush
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Amor Khachemoune
- Department of Dermatology, State University of New York Downstate, Brooklyn, NY, USA.,Department of Dermatology, Veterans Health Administration, Brooklyn, NY, USA
| |
Collapse
|
110
|
Xia DN, Tan YQ, Yang JY, Zhou G. Omega-3 polyunsaturated fatty acids: a promising approach for the management of oral lichen planus. Inflamm Res 2020; 69:989-999. [PMID: 32770320 DOI: 10.1007/s00011-020-01388-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Oral lichen planus (OLP) is a T-cell-mediated inflammatory disease with a risk of malignant transformation. Although the etiology of OLP is still uncertain, growing evidence suggests that oral microbiota, antigen-specific, and non-specific mechanisms are involved in the pathogenesis of OLP. Antigen-specific mechanisms include antigen presentation, T-cell activation, nuclear factor-kappa B signaling pathway, and cytokine secretion, while non-specific mechanisms consist of matrix metalloproteinases (MMP)-9 upregulation, psychological pressure, oxidative damage, aberrant expression of microRNAs (miRNAs), and autophagy. Till now, there is no cure for OLP, and the main purpose of OLP therapy is symptomatic control. FINDING Seafood and its derivative omega-3 polyunsaturated fatty acids (n-3 PUFAs) can suppress antigen presentation, T-cell activation, and nuclear factor-kappa B signaling pathway, modulate the overexpressed inflammatory cytokines, inhibit the expression of MMP-9, as well as regulate the expression of miRNAs and autophagy. And they are possible agents for ameliorating psychological disorder and oxidative damage. Moreover, n-3 PUFAs supplementation has a beneficial effect on preventing tumorigenesis. CONCLUSION n-3 PUFAs consumption may provide a non-toxic, inexpensive administration for OLP.
Collapse
Affiliation(s)
- Duo-Na Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Jing-Ya Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China. .,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
111
|
Wang F, Huang S, Xia H, Yao S. Specialized pro-resolving mediators: It's anti-oxidant stress role in multiple disease models. Mol Immunol 2020; 126:40-45. [PMID: 32750537 DOI: 10.1016/j.molimm.2020.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Oxidative stress-related injury is a negative state caused by the imbalance between oxidation and antioxidant effects in the internal environment of the body. Oxidative stress has been confirmed to be an important factor in aging and a variety of diseases and the inhibition of inappropriate oxidative stress responses are important for maintaining normal physiological functions. Recently, considerable attention has been focused on specialized pro-resolving mediators(SPMs). SPMs are endogenous mediators derived from polyunsaturated fatty acids, which have multiple protective effects such as anti-inflammation, pro-resolution, and promoting tissue damage repair, etc. Moreover, the role of SPMs on oxidative stress has been extensively researched and provides a possible treatment method. In the current study, we review the positive role of SPMs in oxidative stress-related disease and outline the possible involved mechanism, thus providing the theoretical support for a better understanding of the roles of SPMs in oxidative stress and the theoretical basis for finding targets for the oxidative stress-related diseases.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
112
|
Cannabidiol protects keratinocyte cell membranes following exposure to UVB and hydrogen peroxide. Redox Biol 2020; 36:101613. [PMID: 32863232 PMCID: PMC7327251 DOI: 10.1016/j.redox.2020.101613] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Keratinocytes, the major cell type of the epidermis, are particularly sensitive to environmental factors including exposure to sunlight and chemical agents. Since oxidative stress may arise as a result of these factors, compounds are actively sought that can act as protective agents. Recently, cannabidiol (CBD), a phytocannabinoid found in Cannabis Sativa L., has gained increased interest due to its anti-inflammatory and antioxidant properties, and absence of psychoactive effects. This prompted us to analyze the protective effects of CBD on keratinocytes exposed to UVB irradiation and hydrogen peroxide. Here we show, using liquid chromatography mass spectrometry, that CBD was able to penetrate keratinocytes, and accumulated within the cellular membrane. CBD reduced redox balance shift, towards oxidative stress, caused by exposure UVB/hydrogen peroxide, estimated by superoxide anion radical generation and total antioxidant status and consequently lipid peroxidation level. CBD was found to protect keratinocytes by preventing changes in the composition of the cellular membrane, associated with UVB/hydrogen peroxide damages which included reduced polyunsaturated fatty acid levels, increased sialic acid and lipid peroxidation products (malondialdehyde and 8-isoprostanes) levels. This maintains cell membranes integrity and prevents the release of lactate dehydrogenase. In addition, CBD prevented UVB/hydrogen peroxide-induced reduction of keratinocyte size and zeta potential, and also decreased activity of ATP-binding cassette membrane transporters. Together, these findings suggest that CBD could be a potential protective agent for keratinocytes against the harmful effects of irradiation and chemical environmental factors that cause oxidative stress. UVB/H2O2 stimulates keratinocytes membrane penetration by CBD. CBD protects cells against UVB/H2O2 induced redox imbalance. CBD maintains membrane integrity by preventing its component modifications. CBD decreases activity of ATP-binding cassette membrane transporters. CBD could be a potential keratinocytes protector against the harmful factors.
Collapse
|
113
|
Dos Anjos Oliveira Ferreira L, de Paula Barros de Melo C, Saito P, Iwanaga CC, Nakamura CV, Casagrande R, da Conceição Torrado Truiti M. Nectandra cuspidata fraction and the isolated polyphenols protect fibroblasts and hairless mice skin from UVB-induced inflammation and oxidative stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111824. [PMID: 32126496 DOI: 10.1016/j.jphotobiol.2020.111824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Excessive exposure to UVB radiation can lead to oxidative and inflammatory damage that compromises the cutaneous integrity. The application on the skin of photochemoprotective products is considered a relevant approach for the prevention of oxidative damage. In this study the in vitro and in vivo photochemoprotective effects of antioxidant plant materials obtained from the leaves of Nectandra cuspidata Nees following UVB irradiation were evaluated. The cytoprotective effect, reactive oxygen species (ROS) production and lipid peroxidation (LPO) were assessed in L-929 fibroblasts treated with the ethyl acetate fraction (EAF) or isolated compounds (epicatechin, isovitexin and vitexin) before or after irradiation with UVB (500 mJ/cm2). EAF substantially reduced the dead of cells and inhibited the UVB-induced ROS production and LPO in both treatments, compared with the irradiated untreated fibroblasts, presenting effects similar or better than pure compounds. The in vivo photochemoprotective effects of a topical emulsion containing 1% EAF (F2) were evaluated in hairless mice exposed to UVB. F2 improved all evaluated parameters in the skin of animals, inhibited ROS production, increased antioxidant defenses by decreasing reduced glutathione (GSH) and catalase depletion, reduced the activities of metalloproteinases (MMP-2 and MMP-9) and myeloperoxidase, decreased epidermal thickness and skin edema, and inhibited the appearance of sunburn cells as well as the recruitment of neutrophils and mast cell inflammatory infiltrates. These findings show that EAF presents high photochemoprotective effects, and that a topical formulation containing it may have potential for skin care.
Collapse
Affiliation(s)
- Lilian Dos Anjos Oliveira Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Cristina de Paula Barros de Melo
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, Paraná, Brazil
| | - Priscila Saito
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, Paraná, Brazil
| | - Camila Cristina Iwanaga
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Rúbia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, Paraná, Brazil
| | - Maria da Conceição Torrado Truiti
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
114
|
Sharma S, Naura AS. Potential of phytochemicals as immune-regulatory compounds in atopic diseases: A review. Biochem Pharmacol 2020; 173:113790. [PMID: 31911090 DOI: 10.1016/j.bcp.2019.113790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
Atopic diseases (atopic dermatitis, asthma and allergic rhinitis) affects a huge number of people around the world and their incidence rate is on rise. Atopic dermatitis (AD) is more prevalent in paediatric population which sensitizes an individual to develop allergic rhinitis and asthma later in life. The complex pathogenesis of these allergic diseases though involves numerous cellular signalling pathways but redox imbalance has been reported to be critical for induction/perpetuation of inflammatory process under such conditions. The realm of complementary and alternative medicine has gained greater attention because of the reported anti-oxidant/anti-inflammatory properties. Several case studies of treating atopic diseases with homeopathic remedies have provided positive results. Likewise, pre-clinical studies suggest that various natural compounds suppress allergic response via exhibiting their anti-oxidant potential. Despite the reported beneficial effects of phytochemicals in experimental model system, the clinical success has not been documented so far. It appears that poor absorption and bioavailability of natural compounds may be one of the reasons for realizing their full potential. The current paper throws light on impact of phytochemicals in the redox linked cellular and signalling pathways that may be critical in manifestation of atopic diseases. Further, an effort has been made to identify the gaps in the area so that future strategies could be evolved to exploit the medicinal value of various phytochemicals for an improved efficiency.
Collapse
Affiliation(s)
- Sukriti Sharma
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
115
|
Yin S, Wang Y, Liu N, Yang M, Hu Y, Li X, Fu Y, Luo M, Sun J, Yang X. Potential skin protective effects after UVB irradiation afforded by an antioxidant peptide from Odorrana andersonii. Biomed Pharmacother 2019; 120:109535. [DOI: 10.1016/j.biopha.2019.109535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/28/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023] Open
|
116
|
Mitran MI, Nicolae I, Tampa M, Mitran CI, Caruntu C, Sarbu MI, Ene CD, Matei C, Georgescu SR, Popa MI. Reactive Carbonyl Species as Potential Pro-Oxidant Factors Involved in Lichen Planus Pathogenesis. Metabolites 2019; 9:E213. [PMID: 31623383 PMCID: PMC6836031 DOI: 10.3390/metabo9100213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
The constant generation of reactive carbonyl species (RCSs) by lipid peroxidation during aerobic metabolism denotes their involvement in cell homeostasis. Skin represents the largest organ of the body that is exposed to lipid peroxidation. Previous studies have suggested the involvement of oxidative stress in the development of lichen planus (LP), a chronic inflammatory skin condition with a complex pathogenesis. The aim of our study is to investigate a panel of pro-oxidants (4-hydroxy-nonenal (4-HNE), thiobarbituric acid reactive substances (TBARS), and malondialdehyde (MDA)), the total antioxidant status (TAS), and thiol-disulfide homeostasis parameters (TDHP), including total thiol (TT), native thiol (NT), disulfides (DS), DS/NT ratio, DS/TT ratio, and NT/TT ratio. The comparative determinations of serum levels of 4-HNE, TBARS, and MDA in patients with LP (n = 31) and controls (n = 26) show significant differences between the two groups (4-HNE: 7.81 ± 1.96 µg/mL vs. 6.15 ± 1.17 µg/mL, p < 0.05, TBARS: 4.23 ± 0.59 µmol/L vs. 1.99 ± 0.23 µmol/L, p < 0.05, MDA: 32.3 ± 6.26 ng/mL vs. 21.26 ± 2.36 ng/mL). The serum levels of TAS are lower in LP patients compared to the control group (269.83 ± 42.63 µmol/L vs. 316.46 ± 28.76 µmol/L, p < 0.05). The serum levels of TDHP are altered in LP patients compared to controls (NT: 388.10 ± 11.32 µmol/L vs. 406.85 ± 9.32., TT: 430.23 ± 9.93 µmol/L vs. 445.88 ± 9.01 µmol/L, DS: 21.06 ± 1.76 µmol/L vs. 19.52 ± 0.77µmol/L). Furthermore, a negative association between pro-oxidants and TAS is identified (4-HNE - rho = -0.83, p < 0.01, TBARS - rho = -0.63, p < 0.01, and MDA - rho = -0.69, p < 0.01). Understanding the mechanisms by which bioactive aldehydes exert their biological effects on the skin could help define effective therapeutical strategies to counteract the cytotoxic effects of these reactive metabolic intermediates.
Collapse
Affiliation(s)
- Madalina Irina Mitran
- Department of Microbiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| | - Ilinca Nicolae
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
| | - Mircea Tampa
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Iulia Mitran
- Department of Microbiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| | - Constantin Caruntu
- Department of Physiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Prof. N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania.
| | - Maria Isabela Sarbu
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | | | - Clara Matei
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Simona Roxana Georgescu
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Mircea Ioan Popa
- Department of Microbiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| |
Collapse
|
117
|
Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J Control Release 2019; 300:114-140. [PMID: 30853528 DOI: 10.1016/j.jconrel.2019.03.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022]
Abstract
Antioxidants (AOs) play a crucial role in the protection and maintenance of health and are also integral ingredients in beauty products. Unfortunately, most of them are sensitive due to their instability and insolubility. The use of liposomes to protect AOs and expand their applicability to cosmeceuticals, thereby, is one of the most effective solutions. Notwithstanding their offered advantages for the delivery of AOs, liposomes, in their production and application, present many challenges. Here, we provide a critical review of the major problems complicating the development of liposomes for AO delivery. Along with issues related to preparation techniques and encapsulation efficiency, the loss of protective function and inefficiency of skin permeability are the main disadvantages of liposomes. Corresponding development strategies for resolving these problems, with their respective advantages and drawbacks, are introduced, discussed in some depth, and summarized in these pages as well. Advanced liposomes have a vital role to play in the development and delivery of AOs in practical cosmeceutical product applications.
Collapse
|
118
|
Peptides for Skin Protection and Healing in Amphibians. Molecules 2019; 24:molecules24020347. [PMID: 30669405 PMCID: PMC6359409 DOI: 10.3390/molecules24020347] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/04/2023] Open
Abstract
Amphibian skin is not to be considered a mere tegument; it has a multitude of functions related to respiration, osmoregulation, and thermoregulation, thus allowing the individuals to survive and thrive in the terrestrial environment. Moreover, amphibian skin secretions are enriched with several peptides, which defend the skin from environmental and pathogenic insults and exert many other biological effects. In this work, the beneficial effects of amphibian skin peptides are reviewed, in particular their role in speeding up wound healing and in protection from oxidative stress and UV irradiation. A better understanding of why some species seem to resist several environmental insults can help to limit the ongoing amphibian decline through the development of appropriate strategies, particularly against pathologies such as viral and fungal infections.
Collapse
|
119
|
Eugenol as a Promising Molecule for the Treatment of Dermatitis: Antioxidant and Anti-inflammatory Activities and Its Nanoformulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8194849. [PMID: 30647816 PMCID: PMC6311755 DOI: 10.1155/2018/8194849] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
Abstract
Contact dermatitis produces an inflammatory reaction primarily via stimulation of keratinocytes and cells of the immune system, which promote the release of cytokines, reactive oxygen species (ROS), and other chemical mediators. Eugenol (EUG, phenylpropanoid of essential oils) has attracted attention due to its anti-inflammatory properties, as well as antioxidant effect. On the other hand, it is volatile and insoluble and is a skin irritant. In this case, nanostructured systems have been successfully employed as a drug carrier for skin diseases since they improve both biological and pharmaceutical properties of active compounds. The cytotoxic, antioxidant, and anti-inflammatory effects of EUG were assessed in human neutrophils and keratinocytes. Additionally, polymeric nanocarries (NCEUG) were prepared to improve the chemical and irritant characteristics of EUG. EUG presented apparent safety and antioxidant and anti-inflammatory effects on human neutrophils, but presented cytotoxic effects on keratinocytes. However, the nanocapsules were able to reduce its cytotoxicity. An in vivo experiment of irritant contact dermatitis (ICD) in mice induced by TPA showed that NCEUG reduced significantly the ear edema in mice when compared to the EUG solution, as well as the leukocyte infiltration and IL-6 level, possibly due to better skin permeation and irritancy blockage. These findings suggest that EUG is a promising bioactive molecule, and its nanoencapsulation seems to be an interesting approach for the treatment of ICD.
Collapse
|
120
|
Perillaldehyde Inhibits AHR Signaling and Activates NRF2 Antioxidant Pathway in Human Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9524657. [PMID: 29643980 PMCID: PMC5832143 DOI: 10.1155/2018/9524657] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/11/2017] [Indexed: 12/29/2022]
Abstract
The skin covers the outer surface of the body, so the epidermal keratinocytes within it are susceptible to reactive oxygen species (ROS) generated by environmental pollutants such as benzo(a)pyrene (BaP), a potent activator of aryl hydrocarbon receptor (AHR). Antioxidant activity is generally mediated by the nuclear factor-erythroid 2-related factor-2 (NRF2) and heme oxygenase-1 (HO1) axis in human keratinocytes. Perillaldehyde is the main component of Perilla frutescens, which is a medicinal antioxidant herb traditionally consumed in East Asia. However, the effect of perillaldehyde on the AHR/ROS and/or NRF2/HO1 pathways remains unknown. In human keratinocytes, we found that perillaldehyde (1) inhibited BaP-induced AHR activation and ROS production, (2) inhibited BaP/AHR-mediated release of the CCL2 chemokine, and (3) activated the NRF2/HO1 antioxidant pathway. Perillaldehyde is thus potentially useful for managing inflammatory skin diseases or disorders related to oxidative stress.
Collapse
|
121
|
Effects of Glutathione S-Transferase Gene Polymorphisms and Antioxidant Capacity per Unit Albumin on the Pathogenesis of Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6232397. [PMID: 28951769 PMCID: PMC5603134 DOI: 10.1155/2017/6232397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To study the effects of GSTM1, GSTT1 gene polymorphisms, and organism antioxidant capacity and related indicators such as antioxidant capacity per unit of albumin (AC/ALB) on chronic obstructive pulmonary disease (COPD). METHODS Using polymerase chain reaction technology, GSTM1 and GSTT1 gene polymorphisms were detected in 33 COPD patients and 33 healthy people. The total antioxidant capacity (TAC) found in serum was determined using the I2/KI potentiometric, KMnO4 microtitration, and H2O2 potentiometric methods. The AC/ALB was defined as the TAC divided by the serum albumin concentration. Logistic regression analysis was carried out with biochemical screening indices, which was found to be closely related with the incidence of COPD. RESULTS The GSTM1 and GSTT1 gene deletion rate in the COPD group was significantly higher than that in the control group (P < 0.05). The differences in serum TAC between the COPD and control groups, GSTM1 (+) and GSTM1 (-) groups, and GSTT1 (+) and GSTT1 (-) groups were statistically significant (P < 0.001). In addition, there was a significant difference in the AC/ALB between the COPD and control groups (P < 0.05). Logistic regression analysis showed that the incidence of COPD was closely related to the AC/ALB (P < 0.05). CONCLUSIONS GSTM1 and GSTT1 gene polymorphisms are closely correlated with the pathogenesis of COPD, while the AC/ALB plays a decisive role in the occurrence and development of COPD.
Collapse
|
122
|
Ozsurekci Y, Aykac K. Oxidative Stress Related Diseases in Newborns. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2768365. [PMID: 27403229 PMCID: PMC4926016 DOI: 10.1155/2016/2768365] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 11/18/2022]
Abstract
We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases.
Collapse
Affiliation(s)
- Yasemin Ozsurekci
- Department of Pediatric Infectious Diseases, Hacettepe University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Kubra Aykac
- Department of Pediatric Infectious Diseases, Hacettepe University, Faculty of Medicine, 06100 Ankara, Turkey
| |
Collapse
|