101
|
Establishment of isogenic induced pluripotent stem cells with or without pathogenic mutation for understanding the pathogenesis of myeloproliferative neoplasms. Exp Hematol 2023; 118:12-20. [PMID: 36511286 DOI: 10.1016/j.exphem.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Identification and functional characterization of disease-associated genetic traits are crucial for understanding the pathogenesis of hematologic malignancies. Various in vitro and in vivo models, including cell lines, primary cells, and animal models, have been established to examine these genetic alterations. However, their nonphysiologic conditions, diverse genetic backgrounds, and species-specific differences often limit data interpretation. To evaluate somatic mutations in myeloproliferative neoplasms (MPNs), we used CRISPR/Cas9 combined with the piggyBac transposon system to establish isogenic induced pluripotent stem (iPS) cell lines with or without JAK2V617F mutation, a driver mutation of MPNs. We induced hematopoietic stem/progenitor cells (HSPCs) from these iPS cells and observed phenotypic differences during hematopoiesis using fluorescence-activated cell sorting analysis. HSPCs with pathogenic mutations exhibited cell-autonomous erythropoiesis and megakaryopoiesis, which are hallmarks in the bone marrow of patients with MPNs. Furthermore, we used these HSPCs as a model to validate therapeutic compounds and showed that interferon alpha selectively inhibited erythropoiesis and megakaryopoiesis in mutant HSPCs. These results demonstrate that genome editing is feasible for establishing isogenic iPS cells, studying genetic elements to understand the pathogenesis of MPNs, and evaluating therapeutic compounds against MPNs.
Collapse
|
102
|
Zhang L, Fu RF. [How I diagnose and treat essential thrombocythemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:26-31. [PMID: 36987719 PMCID: PMC10067378 DOI: 10.3760/cma.j.issn.0253-2727.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 03/30/2023]
Affiliation(s)
- L Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - R F Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
103
|
Mosale Seetharam S, Liu Y, Wu J, Fechter L, Murugesan K, Maecker H, Gotlib J, Zehnder J, Paulmurugan R, Krishnan A. Enkurin: A novel marker for myeloproliferative neoplasms from platelet, megakaryocyte, and whole blood specimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523111. [PMID: 36712071 PMCID: PMC9881897 DOI: 10.1101/2023.01.07.523111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Impaired protein homeostasis, though well established in age-related disorders, has been linked in recent research with the pathogenesis of myeloproliferative neoplasms (MPNs). As yet, however, little is known about MPN-specific modulators of proteostasis, thus impeding our ability for increased mechanistic understanding and discovery of additional therapeutic targets. Loss of proteostasis, in itself, is traced to dysregulated mechanisms in protein folding and intracellular calcium signaling at the endoplasmic reticulum (ER). Here, using ex vivo and in vitro systems (including CD34 + cultures from patient bone marrow, and healthy cord/peripheral blood specimens), we extend our prior data from MPN patient platelet RNA sequencing, and discover select proteostasis-associated markers at RNA and/or protein levels in each of platelets, parent megakaryocytes, and whole blood specimens. Importantly, we identify a novel role in MPNs for enkurin ( ENKUR ), a calcium mediator protein, implicated originally only in spermatogenesis. Our data reveal consistent ENKUR downregulation at both RNA and protein levels across MPN patient specimens and experimental models, with a concomitant upregulation of a cell cycle marker, CDC20 . Silencing of ENKUR by shRNA in CD34 + derived megakaryocytes further confirm this association with CDC20 at both RNA and protein levels; and indicate a likely role for the PI3K/Akt pathway. The inverse association of ENKUR and CDC20 expression was further confirmed upon treatment with thapsigargin (an agent that causes protein misfolding in the ER by selective loss of calcium) in both megakaryocyte and platelet fractions at RNA and protein levels. Together, our work sheds light on enkurin as a novel marker of MPN pathogenesis beyond the genetic alterations; and indicates further mechanistic investigation into a role for dysregulated calcium homeostasis, and ER and protein folding stress in MPN transformation. VISUAL ABSTRACT Key Points Enkurin, a calcium adaptor protein, is identified as a novel marker of pathogenesis in MPNs.MPN megakaryocyte and platelet expression of enkurin at RNA and protein levels is inversely associated with a cell differentiation cycle gene, CDC20.Likely role for dysregulated calcium homeostasis, and ER and protein folding stress in MPN transformation.
Collapse
Affiliation(s)
| | - Yi Liu
- Department of Radiology, Stanford University, Stanford, CA
| | - Jason Wu
- High-Throughput Bioscience Center (HTBC), Stanford University School of Medicine, Stanford, CA
| | - Lenn Fechter
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | | | - Holden Maecker
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - James Zehnder
- Department of Pathology, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Anandi Krishnan
- Department of Pathology, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
104
|
Misaka T, Kimishima Y, Yokokawa T, Ikeda K, Takeishi Y. Clonal hematopoiesis and cardiovascular diseases: role of JAK2V617F. J Cardiol 2023; 81:3-9. [PMID: 35165011 DOI: 10.1016/j.jjcc.2022.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
Bone marrow-derived hematopoietic and immune cells play important roles in the onset and progression of cardiovascular diseases. Recent genetic analyses have discovered that clonal expansion of bone marrow hematopoietic stem/progenitor cells carrying somatic gene mutations is common and is increasing with age in healthy individuals who do not show any hematologic disorders, termed as clonal hematopoiesis. It is emergingly recognized that clonal hematopoiesis is a significant risk factor for cardiovascular diseases rather than a cumulative incidence risk of blood cancers. JAK2V617F, a gain-of-function mutation, has been identified as one of the most important mutations in clonal hematopoiesis as well as the most frequent driver mutation in myeloproliferative neoplasms. Hematopoietic cell clones harboring JAK2V617F are causally associated with the pathogenesis of cardiovascular diseases. Here, we will review the key of JAK2V617F-mediated clonal hematopoiesis including identification, prevalence, and biological impacts, linking to cardiovascular diseases and the related mechanisms. Clonal hematopoiesis with JAK2V617F may be a novel therapeutic target for cardiovascular diseases, connected to precision medicines by detecting its presence.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Yusuke Kimishima
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Tetsuro Yokokawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
105
|
Huo L, Xie J, Wang Q, Shen H, Ding Z, Wen L, Zeng Z, Xu Y, Ruan C, Chen S, Xue M. Insights from a rare myeloproliferative neoplasm with coexisting BCR-ABL1 fusion gene, CALR, and TET2 mutations treated with nilotinib and ruxolitinib. Clin Case Rep 2023; 11:e6801. [PMID: 36703773 PMCID: PMC9871410 DOI: 10.1002/ccr3.6801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/04/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) with concurrent BCR-ABL1 fusion gene and CALR mutation are especially rare. We report a patient with coexisting BCR-ABL1 fusion gene, CALR, and TET2 mutations who was treated with the combination of the second-generation TKI nilotinib and JAK1/JAK2 inhibitor ruxolitinib.
Collapse
Affiliation(s)
- Li Huo
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jundan Xie
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qian Wang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hongjie Shen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zixuan Ding
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lijun Wen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhao Zeng
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yi Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Suning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Mengxing Xue
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
106
|
Novel Molecular Insights into Leukemic Evolution of Myeloproliferative Neoplasms: A Single Cell Perspective. Int J Mol Sci 2022; 23:ijms232315256. [PMID: 36499582 PMCID: PMC9740017 DOI: 10.3390/ijms232315256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal disorders originated by the serial acquisition of somatic mutations in hematopoietic stem/progenitor cells. The major clinical entities are represented by polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), that are caused by driver mutations affecting JAK2, MPL or CALR. Disease progression is related to molecular and clonal evolution. PV and ET can progress to secondary myelofibrosis (sMF) but can also evolve to secondary acute myeloid leukemia (sAML). PMF is associated with the highest frequency of leukemic transformation, which represents the main cause of death. sAML is associated with a dismal prognosis and clinical features that differ from those of de novo AML. The molecular landscape distinguishes sAML from de novo AML, since the most frequent hits involve TP53, epigenetic regulators, spliceosome modulators or signal transduction genes. Single cell genomic studies provide novel and accurate information about clonal architecture and mutation acquisition order, allowing the reconstruction of clonal dynamics and molecular events that accompany leukemic transformation. In this review, we examine our current understanding of the genomic heterogeneity in MPNs and how it affects disease progression and leukemic transformation. We focus on molecular events elicited by somatic mutations acquisition and discuss the emerging findings coming from single cell studies.
Collapse
|
107
|
Ge H, Wang C, Tian C, Diao Y, Wang W, Ma X, Zhang J, Li H, Zhao Z, Zhu L. Efficacy of WWQ-131, a highly selective JAK2 inhibitor, in mouse models of myeloproliferative neoplasms. Biomed Pharmacother 2022; 156:113884. [DOI: 10.1016/j.biopha.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/02/2022] Open
|
108
|
Wang Z, Liu W, Wang D, Yang E, Li Y, Li Y, Sun Y, Wang M, Lv Y, Hu X. TET2 Mutation May Be More Valuable in Predicting Thrombosis in ET Patients Compared to PV Patients: A Preliminary Report. J Clin Med 2022; 11:jcm11226615. [PMID: 36431092 PMCID: PMC9699342 DOI: 10.3390/jcm11226615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Thrombosis is a common complication of myeloproliferative neoplasm (MPN), and it is a major cause of disability and death. With the development of next-generation gene-sequencing technology, the relationship between non-driver mutations and thrombotic risk factors has also attracted considerable attention. To analyze the risk factors of thrombosis in patients with essential thrombocythemia (ET) and polycythemia vera (PV), we retrospectively analyzed the clinical data of 125 MPN patients (75 ET and 50 PV) and performed a multivariate analysis of the risk factors of thrombosis using a Cox proportional risk model. Among the 125 patients, 35 (28.0%) had thrombotic events, and the incidence of thrombotic events was 21.3% and 38.0% in ET and PV patients, respectively. In ET patients, the multivariate analysis showed that a TET2 mutation and history of remote thrombosis were independent risk factors for thrombosis in ET patients, with an HR of 4.1 (95% CI: 1.40-12.01; p = 0.01) for TET2 mutation and 6.89 (95% CI: 1.45-32.68; p = 0.015) for a history of remote thrombosis. In PV patients, the multivariate analysis presented the neutrophil-to-lymphocyte ratio (NLR) (HR: 4.77, 95% CI: 1.33-17.16; p = 0.017) and a history of remote thrombosis (HR: 1.67, 95% CI: 1.03-1.32; p = 0.014) as independent risk factors for thrombosis, with no significant change in the risk of thrombosis in patients with TET2 mutations. A further analysis of the clinical characteristics and coagulation occurring in ET patients with a TET2 mutation revealed that the values of age and D-dimer were significantly higher and antithrombin III was significantly lower in TET2-mutated ET patients compared to TET2-unmutated patients. In summary, TET2 mutation may be more valuable in predicting thrombosis in ET patients than in PV patients. ET patients with a TET2 mutation are older and present differences in coagulation compared to TET2-unmutated patients.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weiyi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Dehao Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Erpeng Yang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujin Li
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yumeng Li
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Sun
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingjing Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yan Lv
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Correspondence: (Y.L.); (X.H.)
| | - Xiaomei Hu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Correspondence: (Y.L.); (X.H.)
| |
Collapse
|
109
|
Al-Rifai R, Vandestienne M, Lavillegrand JR, Mirault T, Cornebise J, Poisson J, Laurans L, Esposito B, James C, Mansier O, Hirsch P, Favale F, Braik R, Knosp C, Vilar J, Rizzo G, Zernecke A, Saliba AE, Tedgui A, Lacroix M, Arrive L, Mallat Z, Taleb S, Diedisheim M, Cochain C, Rautou PE, Ait-Oufella H. JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm. Nat Commun 2022; 13:6592. [PMID: 36329047 PMCID: PMC9633755 DOI: 10.1038/s41467-022-34469-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
JAK2V617F mutation is associated with an increased risk for athero-thrombotic cardiovascular disease, but its role in aortic disease development and complications remains unknown. In a cohort of patients with myeloproliferative neoplasm, JAK2V617F mutation was identified as an independent risk factor for dilation of both the ascending and descending thoracic aorta. Using single-cell RNA-seq, complementary genetically-modified mouse models, as well as pharmacological approaches, we found that JAK2V617F mutation was associated with a pathogenic pro-inflammatory phenotype of perivascular tissue-resident macrophages, which promoted deleterious aortic wall remodeling at early stages, and dissecting aneurysm through the recruitment of circulating monocytes at later stages. Finally, genetic manipulation of tissue-resident macrophages, or treatment with a Jak2 inhibitor, ruxolitinib, mitigated aortic wall inflammation and reduced aortic dilation and rupture. Overall, JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm.
Collapse
Affiliation(s)
- Rida Al-Rifai
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Marie Vandestienne
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Jean-Rémi Lavillegrand
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Tristan Mirault
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France ,Service de médecine vasculaire, Hopital Européen G. Pompidou, Paris, France
| | - Julie Cornebise
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Johanne Poisson
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France ,Service de gériatrie, Hopital Européen G. Pompidou, Paris, France ,grid.462374.00000 0004 0620 6317Centre de recherche sur l’inflammation, Inserm, Paris, France
| | - Ludivine Laurans
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Bruno Esposito
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Chloé James
- Université de Bordeaux, UMR1034, Inserm, Biology of Cardiovascular Diseases, CHU de Bordeaux, Laboratoire d’Hématologie, Pessac, France
| | - Olivier Mansier
- Université de Bordeaux, UMR1034, Inserm, Biology of Cardiovascular Diseases, CHU de Bordeaux, Laboratoire d’Hématologie, Pessac, France
| | - Pierre Hirsch
- grid.412370.30000 0004 1937 1100Laboratoire d’Hématologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Fabrizia Favale
- grid.412370.30000 0004 1937 1100Laboratoire d’Hématologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Rayan Braik
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Camille Knosp
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Jose Vilar
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Giuseppe Rizzo
- grid.411760.50000 0001 1378 7891Institute of Experimental Biomedicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Alma Zernecke
- grid.411760.50000 0001 1378 7891Institute of Experimental Biomedicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- grid.498164.6Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Alain Tedgui
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Maxime Lacroix
- grid.412370.30000 0004 1937 1100Service de radiologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Lionel Arrive
- grid.412370.30000 0004 1937 1100Service de radiologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Ziad Mallat
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Soraya Taleb
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Marc Diedisheim
- grid.411784.f0000 0001 0274 3893GlandOmics, 41700 Cheverny, & Department of Diabetology, AP-HP, Hôpital Cochin, Paris, France
| | - Clément Cochain
- grid.411760.50000 0001 1378 7891Institute of Experimental Biomedicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Pierre-Emmanuel Rautou
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France ,grid.462374.00000 0004 0620 6317Centre de recherche sur l’inflammation, Inserm, Paris, France ,grid.411599.10000 0000 8595 4540AP-HP, Hôpital Beaujon, Service d’Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| | - Hafid Ait-Oufella
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France. .,Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France.
| |
Collapse
|
110
|
Larsen MK, Skov V, Kjær L, Møller‐Palacino NA, Pedersen RK, Andersen M, Ottesen JT, Cordua S, Poulsen HE, Dahl M, Knudsen TA, Eickhardt‐Dalbøge CS, Koschmieder S, Pedersen KM, Çolak Y, Bojesen SE, Nordestgaard BG, Stiehl T, Hasselbalch HC, Ellervik C. Clonal haematopoiesis of indeterminate potential and impaired kidney function-A Danish general population study with 11 years follow-up. Eur J Haematol 2022; 109:576-585. [PMID: 36054308 PMCID: PMC9804367 DOI: 10.1111/ejh.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/08/2022] [Indexed: 01/05/2023]
Abstract
The myeloproliferative neoplasms are associated with chronic kidney disease but whether clonal haematopoiesis of indeterminate potential (CHIP) is associated with impaired kidney function is unknown. In the Danish General Suburban Population Study (N = 19 958) from 2010 to 2013, 645 individuals were positive for JAK2V617F (N = 613) or CALR (N = 32) mutations. Mutation-positive individuals without haematological malignancy were defined as having CHIP (N = 629). We used multiple and inverse probability weighted (IPW)-adjusted linear regression analysis to estimate adjusted mean (95% confidence interval) differences in estimated glomerular filtration rate (eGFR; ml/min/1.73 m2 ) by mutation status, variant allele frequency (VAF%), blood cell counts, and neutrophil-to-lymphocyte ratio (NLR). We performed 11-year longitudinal follow-up of eGFR in all individuals. Compared to CHIP-negative individuals, the mean differences in eGFR were -5.6 (-10.3, -0.8, p = .02) for CALR, -11.9 (-21.4, -2.4, p = 0.01) for CALR type 2, and -10.1 (-18.1, -2.2, p = .01) for CALR with VAF ≥ 1%. The IPW-adjusted linear regression analyses showed similar results. NLR was negatively associated with eGFR. Individuals with CALR type 2 had a worse 11-year longitudinal follow-up on eGFR compared to CHIP-negative individuals (p = .004). In conclusion, individuals with CALR mutations, especially CALR type 2, had impaired kidney function compared to CHIP-negative individuals as measured by a lower eGFR at baseline and during 11-year follow-up.
Collapse
Affiliation(s)
- Morten K. Larsen
- Department of HaematologyZealand University HospitalRoskildeDenmark,Department Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Vibe Skov
- Department of HaematologyZealand University HospitalRoskildeDenmark
| | - Lasse Kjær
- Department of HaematologyZealand University HospitalRoskildeDenmark
| | | | | | - Morten Andersen
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| | - Johnny T. Ottesen
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| | - Sabrina Cordua
- Department of HaematologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Henrik E. Poulsen
- Department Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Department of EndocrinologyCopenhagen University Hospital, Bispebjerg Frederiksberg HospitalCopenhagenDenmark,Department of CardiologyCopenhagen University Hospital, Nordsjællands HospitalHillerødDenmark
| | - Morten Dahl
- Department Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Department of Clinical BiochemistryZealand University HospitalKøgeDenmark
| | - Trine A. Knudsen
- Department of HaematologyZealand University HospitalRoskildeDenmark,Department Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christina Schjellerup Eickhardt‐Dalbøge
- Department of HaematologyZealand University HospitalRoskildeDenmark,Department Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Steffen Koschmieder
- Department of Haematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of MedicineRWTH Aachen UniversityAachenGermany
| | - Kasper M. Pedersen
- Department Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Department of Clinical Biochemistry and the Copenhagen General Population StudyCopenhagen University Hospital, Herlev and Gentofte HospitalHerlevDenmark
| | - Yunus Çolak
- Department Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Department of Clinical Biochemistry and the Copenhagen General Population StudyCopenhagen University Hospital, Herlev and Gentofte HospitalHerlevDenmark,Department of Respiratory MedicineCopenhagen University Hospital, Herlev and Gentofte HospitalDenmark
| | - Stig E. Bojesen
- Department Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Department of Clinical Biochemistry and the Copenhagen General Population StudyCopenhagen University Hospital, Herlev and Gentofte HospitalHerlevDenmark
| | - Børge G. Nordestgaard
- Department Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Department of Clinical Biochemistry and the Copenhagen General Population StudyCopenhagen University Hospital, Herlev and Gentofte HospitalHerlevDenmark
| | - Thomas Stiehl
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark,Institute for Computational Biomedicine ‐ Disease ModellingFaculty of Medicine, RWTH Aachen UniversityAachenGermany
| | - Hans C. Hasselbalch
- Department of HaematologyZealand University HospitalRoskildeDenmark,Department Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christina Ellervik
- Department Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Department of Data SupportRegion ZealandDenmark,Department of PathologyHarvard Medical SchoolBostonUSA
| |
Collapse
|
111
|
Clonogenic assays improve determination of variant allele frequency of driver mutations in myeloproliferative neoplasms. Ann Hematol 2022; 101:2655-2663. [PMID: 36269400 DOI: 10.1007/s00277-022-05000-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/01/2022] [Indexed: 11/27/2022]
Abstract
Molecular diagnostics moves more into focus as technology advances. In patients with myeloproliferative neoplasms (MPN), identification and monitoring of the driver mutations have become an integral part of diagnosis and monitoring of the disease. In some patients, none of the known driver mutations (JAK2V617F, CALR, MPL) is found, and they are termed "triple negative" (TN). Also, whole-blood variant allele frequency (VAF) of driver mutations may not adequately reflect the VAF in the stem cells driving the disease. We reasoned that colony forming unit (CFU) assay-derived clonogenic cells may be better suited than next-generation sequencing (NGS) of whole blood to detect driver mutations in TN patients and to provide a VAF of disease-driving cells. We have included 59 patients carrying the most common driver mutations in the establishment or our model. Interestingly, cloning efficiency correlated with whole blood VAF (p = 0.0048), suggesting that the number of disease-driving cells correlated with VAF. Furthermore, the clonogenic VAF correlated significantly with the NGS VAF (p < 0.0001). This correlation was lost in patients with an NGS VAF <15%. Further analysis showed that in patients with a VAF <15% by NGS, clonogenic VAF was higher than NGS VAF (p = 0.003), suggesting an enrichment of low numbers of disease-driving cells in CFU assays. However, our approach did not enhance the identification of driver mutations in 5 TN patients. A significant correlation of lactate dehydrogenase (LDH) serum levels with both CFU- and NGS-derived VAF was found. Our results demonstrate that enrichment for clonogenic cells can improve the detection of MPN driver mutations in patients with low VAF and that LDH levels correlate with VAF.
Collapse
|
112
|
The accumulation of miR-125b-5p is indispensable for efficient erythroblast enucleation. Cell Death Dis 2022; 13:886. [PMID: 36270980 PMCID: PMC9586935 DOI: 10.1038/s41419-022-05331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Erythroblast enucleation is a precisely regulated but not clearly understood process. Polycythemia shows pathological erythroblast enucleation, and we discovered a low miR-125b-5p level in terminal erythroblasts of patients with polycythemia vera (PV) compared to those of healthy controls. Exogenous upregulation of miR-125b-5p levels restored the enucleation rate to normal levels. Direct downregulation of miR-125b-5p in mouse erythroblasts simulated the enucleation issue found in patients with PV, and miR-125b-5p accumulation was found in enucleating erythroblasts, collectively suggesting the importance of miR-125b-5p accumulation for erythroblast enucleation. To elucidate the role of miR-125b-5p in enucleation, gain- and loss-of-function studies were performed. Overexpression of miR-125b-5p improved the enucleation of erythroleukemia cells and primary erythroblasts. Infused erythroblasts with higher levels of miR-125b-5p also exhibited accelerated enucleation. In contrast, miR-125b-5p inhibitors significantly suppressed erythrocyte enucleation. Intracellular imaging revealed that in addition to cytoskeletal assembly and nuclear condensation, miR-125b-5p overexpression resulted in mitochondrial reduction and depolarization. Real-time PCR, western blot analysis, luciferase reporter assays, small molecule inhibitor supplementation and gene rescue assays revealed that Bcl-2, as a direct target of miR-125b-5p, was one of the key mediators of miR-125b-5p during enucleation. Following suppression of Bcl-2, the activation of caspase-3 and subsequent activation of ROCK-1 resulted in cytoskeletal rearrangement and enucleation. In conclusion, this study is the first to reveal the pivotal role of miR-125b-5p in erythroblast enucleation.
Collapse
|
113
|
Paes J, Silva GAV, Tarragô AM, Mourão LPDS. The Contribution of JAK2 46/1 Haplotype in the Predisposition to Myeloproliferative Neoplasms. Int J Mol Sci 2022; 23:12582. [PMID: 36293440 PMCID: PMC9604447 DOI: 10.3390/ijms232012582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Haplotype 46/1 (GGCC) consists of a set of genetic variations distributed along chromosome 9p.24.1, which extend from the Janus Kinase 2 gene to Insulin like 4. Marked by four jointly inherited variants (rs3780367, rs10974944, rs12343867, and rs1159782), this haplotype has a strong association with the development of BCR-ABL1-negative myeloproliferative neoplasms (MPNs) because it precedes the acquisition of the JAK2V617F variant, a common genetic alteration in individuals with these hematological malignancies. It is also described as one of the factors that increases the risk of familial MPNs by more than five times, 46/1 is associated with events related to inflammatory dysregulation, splenomegaly, splanchnic vein thrombosis, Budd-Chiari syndrome, increases in RBC count, platelets, leukocytes, hematocrit, and hemoglobin, which are characteristic of MPNs, as well as other findings that are still being elucidated and which are of great interest for the etiopathological understanding of these hematological neoplasms. Considering these factors, the present review aims to describe the main findings and discussions involving the 46/1 haplotype, and highlights the molecular and immunological aspects and their relevance as a tool for clinical practice and investigation of familial cases.
Collapse
Affiliation(s)
- Jhemerson Paes
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
| | - George A. V. Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
- Fundação Oswaldo Cruz–Instituto Leônidas e Maria Deane (Fiocruz), Manaus 69027-070, AM, Brazil
| | - Andréa M. Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| | - Lucivana P. de Souza Mourão
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| |
Collapse
|
114
|
Mughal TI, Pemmaraju N, Bejar R, Gale RP, Bose P, Kiladjian JJ, Prchal J, Royston D, Pollyea D, Valent P, Brümmendorf TH, Skorski T, Patnaik M, Santini V, Fenaux P, Kucine N, Verstovsek S, Mesa R, Barbui T, Saglio G, Van Etten RA. Perspective: Pivotal translational hematology and therapeutic insights in chronic myeloid hematopoietic stem cell malignancies. Hematol Oncol 2022; 40:491-504. [PMID: 35368098 DOI: 10.1002/hon.2987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
Abstract
Despite much of the past 2 years being engulfed by the devastating consequences of the SAR-CoV-2 pandemic, significant progress, even breathtaking, occurred in the field of chronic myeloid malignancies. Some of this was show-cased at the 15th Post-American Society of Hematology (ASH) and the 25th John Goldman workshops on myeloproliferative neoplasms (MPN) held on 9th-10th December 2020 and 7th-10th October 2021, respectively. The inaugural Post-ASH MPN workshop was set out in 2006 by John Goldman (deceased) and Tariq Mughal to answer emerging translational hematology and therapeutics of patients with these malignancies. Rather than present a resume of the discussions, this perspective focuses on some of the pivotal translational hematology and therapeutic insights in these diseases.
Collapse
Affiliation(s)
- Tariq I Mughal
- Tufts University School of Medicine, Boston, Massachusetts, USA
- University of Buckingham, Buckingham, UK
| | - Naveen Pemmaraju
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Rafael Bejar
- University of California San Diego, La Jolla, California, USA
| | | | - Prithviraj Bose
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | | | - Josef Prchal
- Huntsman Cancer Center, Salt Lake City, Utah, USA
| | - Daniel Royston
- John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Daniel Pollyea
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter Valent
- Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Tomasz Skorski
- Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Valeria Santini
- Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Pierre Fenaux
- Hospital St Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Srdan Verstovsek
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Ruben Mesa
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, Texas, USA
| | - Tiziano Barbui
- Fondazione per la Ricerca Ospedale Maggiore di Bergamo, Bergamo, Italy
| | | | - Richard A Van Etten
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| |
Collapse
|
115
|
Komatsu N, Hashimoto Y, Baba T, Otsuka M, Akimoto T, Fernandez J. Safety and efficacy of anagrelide in Japanese post-marketing surveillance, with subgroup analyses on the effect of previous cytoreductive therapies, age, and starting dose. Int J Hematol 2022; 116:570-578. [PMID: 35624199 PMCID: PMC9515010 DOI: 10.1007/s12185-022-03380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND In Japan, anagrelide has been approved for use in patients with essential thrombocythemia. Here, the safety and efficacy of anagrelide was assessed in clinical practice as post-marketing surveillance. Subgroup analyses were conducted to compare patients (1) with or without a history of cytoreductive therapy (CRT), (2) <60 or ≥60 years of age, and (3) with an anagrelide starting dose of ≤0.5 mg/day or 1.0 mg/day. METHODS Data were collected for all patients who received anagrelide, with an observation period of 12 months after treatment initiation. RESULTS Of the 648 patients, 54.3% experienced adverse drug reactions (ADRs). The most commonly reported ADRs were headaches, palpitations, and anemia. No significant difference was observed in overall ADRs across patient subgroups. A significantly higher incidence of headaches was observed in patients < 60 years versus those ≥ 60 years (P < 0.001). The incidence of anemia and serious ADRs were significantly higher in patients ≥ 60 years, and those with a history of CRT (P < 0.05). The discontinuation rate at 6 months was significantly lower in patients started at the lower anagrelide dose (P < 0.05). Platelet counts decreased in all analyzed groups. CONCLUSIONS This surveillance showed that anagrelide has a tolerable safety and efficacy profile.
Collapse
Affiliation(s)
- Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Laboratory for the Development of Therapies Against MPN, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, 113-8421, Tokyo, Japan.
- Department of Advanced Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Yoshinori Hashimoto
- Department of Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Laboratory for the Development of Therapies Against MPN, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, 113-8421, Tokyo, Japan
- Department of Advanced Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Hematology, Tottori Prefectural Central Hospital, 730 ezu, Tottori City, Tottori, 680-0901, Japan
| | - Terumi Baba
- Japan Medical Office, Japan Pharma Business Unit, Takeda Pharmaceutical Company Limited, 1-1, Nihonbashi-Honcho 2-chome, Chuo-ku, Tokyo, 680-0901, Japan
| | - Manami Otsuka
- Japan Medical Office, Japan Pharma Business Unit, Takeda Pharmaceutical Company Limited, 1-1, Nihonbashi-Honcho 2-chome, Chuo-ku, Tokyo, 680-0901, Japan
| | - Takafumi Akimoto
- Japan Medical Office, Japan Pharma Business Unit, Takeda Pharmaceutical Company Limited, 1-1, Nihonbashi-Honcho 2-chome, Chuo-ku, Tokyo, 680-0901, Japan
| | - Jovelle Fernandez
- Japan Medical Office, Japan Pharma Business Unit, Takeda Pharmaceutical Company Limited, 1-1, Nihonbashi-Honcho 2-chome, Chuo-ku, Tokyo, 680-0901, Japan
| |
Collapse
|
116
|
Masarova L. EXABS-116-MPN Extended Abstract: Novel Therapies for PV. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22 Suppl 2:S18-S20. [PMID: 36163714 DOI: 10.1016/s2152-2650(22)00647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Lucia Masarova
- University of Texas, MD Anderson Cancer Center, Holcombe Blvd 1515, Houston, TX 77033, USA
| |
Collapse
|
117
|
Bassan VL, Barretto GD, de Almeida FC, Palma PVB, Binelli LS, da Silva JPL, Fontanari C, Castro RC, de Figueiredo Pontes LL, Frantz FG, de Castro FA. Philadelphia-negative myeloproliferative neoplasms display alterations in monocyte subpopulations frequency and immunophenotype. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:223. [PMID: 36175590 PMCID: PMC9522456 DOI: 10.1007/s12032-022-01825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/06/2022]
Abstract
Philadelphia-negative myeloproliferative neoplasms (MPN) are clonal hematological diseases associated with driver mutations in JAK2, CALR, and MPL genes. Moreover, several evidence suggests that chronic inflammation and alterations in stromal and immune cells may contribute to MPN’s pathophysiology. We evaluated the frequency and the immunophenotype of peripheral blood monocyte subpopulations in patients with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). Peripheral blood monocytes from PV (n = 16), ET (n = 16), and MF (n = 15) patients and healthy donors (n = 10) were isolated and submitted to immunophenotyping to determine the frequency of monocyte subpopulations and surface markers expression density. Plasma samples were used to measure the levels of soluble CD163, a biomarker of monocyte activity. PV, ET, and MF patients presented increased frequency of intermediate and non-classical monocytes and reduced frequency of classical monocytes compared to controls. Positivity for JAK2 mutation was significantly associated with the percentage of intermediate monocytes. PV, ET, and MF patients presented high-activated monocytes, evidenced by higher HLA-DR expression and increased soluble CD163 levels. The three MPN categories presented increased frequency of CD56+ aberrant monocytes, and PV and ET patients presented reduced frequency of CD80/86+ monocytes. Therefore, alterations in monocyte subpopulations frequency and surface markers expression pattern may contribute to oncoinflammation and may be associated with the pathophysiology of MPN.
Collapse
Affiliation(s)
- Vitor Leonardo Bassan
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Gabriel Dessotti Barretto
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Felipe Campos de Almeida
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Patrícia Vianna Bonini Palma
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil
| | - Larissa Sarri Binelli
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil.,Department of Medical Images, Hematology and Clinical Oncology, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14015-010, Brazil
| | - João Paulo Lettieri da Silva
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil.,Department of Medical Images, Hematology and Clinical Oncology, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14015-010, Brazil
| | - Caroline Fontanari
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Ricardo Cardoso Castro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Lorena Lôbo de Figueiredo Pontes
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil.,Department of Medical Images, Hematology and Clinical Oncology, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14015-010, Brazil
| | - Fabiani Gai Frantz
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Fabíola Attié de Castro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| |
Collapse
|
118
|
Patel SB, Kuznetsova V, Matkins VR, Franceski AM, Bassal MA, Welner RS. Ex Vivo Expansion of Phenotypic and Transcriptomic Chronic Myeloid Leukemia Stem Cells. Exp Hematol 2022; 115:1-13. [PMID: 36115580 DOI: 10.1016/j.exphem.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
Despite decades of research, standard therapies remain ineffective for most leukemias, pushing toward an essential unmet need for targeted drug screens. Moreover, preclinical drug testing is an important consideration for success of clinical trials without affecting non-transformed stem cells. Using the transgenic chronic myeloid leukemia (CML) mouse model, we determine that leukemic stem cells (LSCs) are transcriptionally heterogenous with a preexistent drug-insensitive signature. To test targeting of potentially important pathways, we establish ex vivo expanded LSCs that have long-term engraftment and give rise to multilineage hematopoiesis. Expanded LSCs share transcriptomic signatures with primary LSCs including enrichment in Wnt, JAK-STAT, MAPK, mTOR and transforming growth factor β signaling pathways. Drug testing on expanded LSCs show that transforming growth factor β and Wnt inhibitors had significant effects on the viability of LSCs, but not leukemia-exposed healthy HSCs. This platform allows testing of multiple drugs at the same time to identify vulnerabilities of LSCs.
Collapse
Affiliation(s)
- Sweta B Patel
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL; Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Valeriya Kuznetsova
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL
| | - Victoria R Matkins
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL
| | - Alana M Franceski
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA; Cancer Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Robert S Welner
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL.
| |
Collapse
|
119
|
Rahman MFU, Yang Y, Le BT, Dutta A, Posyniak J, Faughnan P, Sayem MA, Aguilera NS, Mohi G. Interleukin-1 contributes to clonal expansion and progression of bone marrow fibrosis in JAK2V617F-induced myeloproliferative neoplasm. Nat Commun 2022; 13:5347. [PMID: 36100596 PMCID: PMC9470702 DOI: 10.1038/s41467-022-32928-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation is frequently associated with myeloproliferative neoplasms (MPN), but the role of inflammation in the pathogenesis of MPN remains unclear. Expression of the proinflammatory cytokine interleukin-1 (IL-1) is elevated in patients with MPN as well as in Jak2V617F knock-in mice. Here, we show that genetic deletion of IL-1 receptor 1 (IL-1R1) normalizes peripheral blood counts, reduces splenomegaly and ameliorates bone marrow fibrosis in homozygous Jak2V617F mouse model of myelofibrosis. Deletion of IL-1R1 also significantly reduces Jak2V617F mutant hematopoietic stem/progenitor cells. Exogenous administration of IL-1β enhances myeloid cell expansion and accelerates the development of bone marrow fibrosis in heterozygous Jak2V617F mice. Furthermore, treatment with anti-IL-1R1 antibodies significantly reduces leukocytosis and splenomegaly, and ameliorates bone marrow fibrosis in homozygous Jak2V617F mice. Collectively, these results suggest that IL-1 signaling plays a pathogenic role in MPN disease progression, and targeting of IL-1R1 could be a useful strategy for the treatment of myelofibrosis.
Collapse
Affiliation(s)
- Mohammed Ferdous-Ur Rahman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Yue Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bao T Le
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Avik Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Julia Posyniak
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Patrick Faughnan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mohammad A Sayem
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nadine S Aguilera
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Golam Mohi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- University of Virginia Cancer Center, Charlottesville, VA, 22908, USA.
| |
Collapse
|
120
|
Rai S, Grockowiak E, Hansen N, Luque Paz D, Stoll CB, Hao-Shen H, Mild-Schneider G, Dirnhofer S, Farady CJ, Méndez-Ferrer S, Skoda RC. Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK2-V617F driven myeloproliferative neoplasm. Nat Commun 2022; 13:5346. [PMID: 36100613 PMCID: PMC9470591 DOI: 10.1038/s41467-022-32927-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2022] [Indexed: 12/17/2022] Open
Abstract
Interleukin-1β (IL-1β) is a master regulator of inflammation. Increased activity of IL-1β has been implicated in various pathological conditions including myeloproliferative neoplasms (MPNs). Here we show that IL-1β serum levels and expression of IL-1 receptors on hematopoietic progenitors and stem cells correlate with JAK2-V617F mutant allele fraction in peripheral blood of patients with MPN. We show that the source of IL-1β overproduction in a mouse model of MPN are JAK2-V617F expressing hematopoietic cells. Knockout of IL-1β in hematopoietic cells of JAK2-V617F mice reduces inflammatory cytokines, prevents damage to nestin-positive niche cells and reduces megakaryopoiesis, resulting in decrease of myelofibrosis and osteosclerosis. Inhibition of IL-1β in JAK2-V617F mutant mice by anti-IL-1β antibody also reduces myelofibrosis and osteosclerosis and shows additive effects with ruxolitinib. These results suggest that inhibition of IL-1β with anti-IL-1β antibody alone or in combination with ruxolitinib could have beneficial effects on the clinical course in patients with myelofibrosis.
Collapse
Affiliation(s)
- Shivam Rai
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Elodie Grockowiak
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Nils Hansen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Damien Luque Paz
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Cedric B Stoll
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Gabriele Mild-Schneider
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Stefan Dirnhofer
- Department of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | | | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland.
| |
Collapse
|
121
|
Hernández-Boluda JC, Pastor-Galán I, Arellano-Rodrigo E, Raya JM, Pérez-Encinas M, Ayala R, Ferrer-Marín F, Velez P, Mora E, Fox ML, Hernández-Rivas JM, Xicoy B, Mata-Vázquez MI, García-Fortes M, Pérez-López R, Angona A, Cuevas B, Senín A, Ramírez MJ, Ramírez-Payer A, Gómez-Casares MT, Martínez-Valverde C, Magro E, Steegmann JL, Durán MA, García-Hernández C, Gasior M, de Villambrosia SG, Alvarez-Larrán A, Pereira A. Predictors of thrombosis and bleeding in 1613 myelofibrosis patients from the Spanish Registry of Myelofibrosis. Br J Haematol 2022; 199:529-538. [PMID: 36089912 DOI: 10.1111/bjh.18440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 12/01/2022]
Abstract
Available data have proved insufficient to develop consensus recommendations on the prevention of thrombosis and bleeding in myelofibrosis (MF). We evaluated the incidence and risk factors of vascular complications in 1613 patients from the Spanish Myelofibrosis Registry. Over a total of 6981 patient-years at risk, 6.4% of the study population had at least one thrombotic event after MF diagnosis, amounting to an incidence rate of 1.65 per 100 patient-years. Prior history of thrombosis, the JAK2 mutation, and the intermediate-2/high-risk International Prognostic Scoring System (IPSS) categories conferred an increased thrombotic risk after adjustment for the risk-modifying effect of anti-thrombotic and cytoreductive treatments. History of thrombosis and the JAK2 mutation allowed us to pinpoint a group of patients at higher risk of early thrombosis. No decreased incidence of thrombosis was observed while patients were on anti-thrombotic or cytoreductive treatment. An increased risk of venous thrombosis was found during treatment with immunomodulatory agents. A total of 5.3% of patients had at least one episode of major bleeding, resulting in an incidence rate of 1.5 events per 100 patient-years. Patients in the intermediate-2/high-risk IPSS categories treated with anti-coagulants had an almost sevenfold increased risk of major bleeding. These findings should prove useful for guiding decision-making in clinical practice.
Collapse
Affiliation(s)
| | - Irene Pastor-Galán
- Hematology Department, Hospital Clínico Universitario-INCLIVA, Valencia, Spain
| | | | - José-María Raya
- Hematology Department, Hospital Universitario de Canarias, Tenerife, Spain
| | - Manuel Pérez-Encinas
- Hematology Department, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Francisca Ferrer-Marín
- Hematology Department, Hospital Morales Meseguer, Universidad Católica San Antonio de Murcia, Centro de Investigación Biomédica en Red de Enfermedades Raras, Murcia, Spain
| | - Patricia Velez
- Hematology Department, Hospital del Mar, Barcelona, Spain
| | - Elvira Mora
- Hematology Department, Hospital Universitario La Fe, Valencia, Spain
| | - María-Laura Fox
- Hematology Department, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Blanca Xicoy
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català d'Oncologia, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - María García-Fortes
- Hematology Department, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Raúl Pérez-López
- Hematology Department, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Anna Angona
- Hematology Department, Hospital Josep Trueta, Institut Català d'Oncologia, Girona, Spain
| | - Beatriz Cuevas
- Hematology Department, Hospital Universitario de Burgos, Burgos, Spain
| | - Alicia Senín
- Hematology Department, Hospital Duran i Reynals, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - María-José Ramírez
- Hematology Department, Hospital General Jerez de la Frontera, Cádiz, Spain
| | | | | | | | - Elena Magro
- Hematology Department, Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | | | | | | | | | | | - Alberto Alvarez-Larrán
- Hematology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Arturo Pereira
- Department of Hemotherapy and Hemostasis, Hospital Clínic, Barcelona, Spain
| | | |
Collapse
|
122
|
Effect of fluconazole on the pharmacokinetics of a single dose of fedratinib in healthy adults. Cancer Chemother Pharmacol 2022; 90:325-334. [PMID: 36001108 PMCID: PMC9399588 DOI: 10.1007/s00280-022-04464-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/07/2022] [Indexed: 11/13/2022]
Abstract
Purpose Fedratinib is an orally administered Janus kinase (JAK) 2–selective inhibitor for the treatment of adult patients with intermediate-2 or high-risk primary or secondary myelofibrosis. In vitro, fedratinib is predominantly metabolized by cytochrome P450 (CYP) 3A4 and to a lesser extent by CYP2C19. Coadministration of fedratinib with CYP3A4 inhibitors is predicted to increase systemic exposure to fedratinib. This study evaluated the effect of multiple doses of the dual CYP3A4 and CYP2C19 inhibitor, fluconazole, on the pharmacokinetics of a single dose of fedratinib. Methods In this non-randomized, fixed-sequence, open-label study, healthy adult participants first received a single oral dose of fedratinib 100 mg on day 1. Participants then received fluconazole 400 mg on day 10 and fluconazole 200 mg once daily on days 11–23, with a single oral dose of fedratinib 100 mg on day 18. Pharmacokinetic parameters were calculated for fedratinib administered with and without fluconazole. Results A total of 16 participants completed the study and were included in the pharmacokinetic population. Coadministration of fedratinib with fluconazole increased maximum observed plasma concentration (Cmax) and area under the plasma concentration–time curve from time 0 to the last quantifiable concentration (AUC0–t) of fedratinib by 21% and 56%, respectively, compared with fedratinib alone. Single oral doses of fedratinib 100 mg administered with or without fluconazole were well tolerated. Conclusions Systemic exposure after a single oral dose of fedratinib was increased by up to 56% when fedratinib was coadministered with fluconazole compared with fedratinib alone. Trial registry: Clinicaltrials.gov NCT04702464.
Collapse
|
123
|
Ngoc NT, Hau BB, Vuong NB, Xuan NT. JAK2 rs10974944 is associated with both V617F-positive and negative myeloproliferative neoplasms in a Vietnamese population: A potential genetic marker. Mol Genet Genomic Med 2022; 10:e2044. [PMID: 35996819 PMCID: PMC9544219 DOI: 10.1002/mgg3.2044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
The JAK2 gene encodes for a non‐receptor tyrosine kinase that plays a key role in the JAK/STAT signaling transfer pathway. Genetic polymorphisms of this gene have been indicated to be associated with myeloproliferative neoplasm‐associated thrombosis in recent studies. This research aimed to evaluate the association between the variant rs10974944 and different types of Myeloproliferative neoplasms disorders in the Vietnamese population. DNA samples were obtained from 172 essential thrombocythemia patients, 14 primary myelofibrosis patients, 76 polycythemia vera patients, and 192 healthy controls. The JAK2 rs10974944 and V617F genotypes were identified by the polymerase chain reaction‐restriction fragment length polymorphism genotyping and Sanger sequencing methods. Results showed that there was a strong association between rs10974944 and Myeloproliferative neoplasms phenotype (p < .0001) and the most significant association was observed in the recessive model of the mutant allele (G). The G allele carriers had a 1.74, 2.86, and 3.03 higher risk of getting essential thrombocythemia, primary myelofibrosis, and polycythemia vera, respectively. Interestingly, this effect of rs10974944 seemed to be independent of the JAK2 V617F genotype. The distribution of rs10974944 genotypes were significantly different between V617F‐positive and negative groups (p = .008). Moreover, the GG genotype of rs10974944 was observed to be associated with the risk of getting Myeloproliferative neoplasms both in JAK2 V617F‐positive group, and for the first time in JAK2 V617F‐negative patients. A systematic meta‐analysis in different populations strengthened the evidence regarding the correlation between rs10974944 and myeloproliferative neoplasm disorders. To sum up, our results suggested that rs10974944 can be used as a predisposition screening marker for predicting Myeloproliferative neoplasms susceptibility.
Collapse
Affiliation(s)
- Nguyen Thy Ngoc
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Bui Bich Hau
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Ba Vuong
- 103 Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Thi Xuan
- Vietnam Academy of Science and Technology, Institute of Genome Research, Hanoi, Vietnam
| |
Collapse
|
124
|
Pozzi G, Carubbi C, Gobbi G, Tagliaferri S, Mirandola P, Vitale M, Masselli E. Tracking fibrosis in myeloproliferative neoplasms by CCR2 expression on CD34+ cells. Front Oncol 2022; 12:980379. [PMID: 36072806 PMCID: PMC9444005 DOI: 10.3389/fonc.2022.980379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
In myeloproliferative neoplasm (MPNs), bone marrow fibrosis - mainly driven by the neoplastic megakaryocytic clone - dictates a more severe disease stage with dismal prognosis and higher risk of leukemic evolution. Therefore, accurate patient allocation into different disease categories and timely identification of fibrotic transformation are mandatory for adequate treatment planning. Diagnostic strategy still mainly relies on clinical/laboratory assessment and bone marrow histopathology, which, however, requires an invasive procedure and frequently poses challenges also to expert hemopathologists. Here we tested the diagnostic accuracy of the detection, by flow cytometry, of CCR2+CD34+ cells to discriminate among MPN subtypes with different degrees of bone marrow fibrosis. We found that the detection of CCR2 on MPN CD34+ cells has a very good diagnostic accuracy for the differential diagnosis between “true” ET and prePMF (AUC 0.892, P<0.0001), and a good diagnostic accuracy for the differential diagnosis between prePMF and overtPMF (AUC 0.817, P=0.0089). Remarkably, in MPN population, the percentage of CCR2-expressing cells parallels the degree of bone marrow fibrosis. In ET/PV patients with a clinical picture suggestive for transition into spent phase, we demonstrated that only patients with confirmed secondary MF showed significantly higher levels of CCR2+CD34+ cells. Overall, flow cytometric CCR2+CD34+ cell detection can be envisioned in support of conventional bone marrow histopathology in compelling clinical scenarios, with the great advantage of being extremely rapid. For patients in follow-up, its role can be conceived as an initial patient screening for subsequent bone marrow biopsy when disease evolution is suspected.
Collapse
Affiliation(s)
- Giulia Pozzi
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Cecilia Carubbi
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Giuliana Gobbi
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Sara Tagliaferri
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Marco Vitale
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
- Parma University Hospital, (AOU-PR), Parma, Italy
- *Correspondence: Elena Masselli, ; Marco Vitale,
| | - Elena Masselli
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
- Parma University Hospital, (AOU-PR), Parma, Italy
- *Correspondence: Elena Masselli, ; Marco Vitale,
| |
Collapse
|
125
|
Mascarenhas J. Pacritinib for the treatment of patients with myelofibrosis and thrombocytopenia. Expert Rev Hematol 2022; 15:671-684. [PMID: 35983661 DOI: 10.1080/17474086.2022.2112565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Myelofibrosis (MF) is a rare myeloproliferative neoplasm characterized by a complex symptom profile, cytopenias, splenomegaly, and potential for leukemic progression. Severe thrombocytopenia is common in patients with MF and correlates with poor prognosis; however, until recently, treatment options for these patients were limited. Pacritinib, a potent Janus kinase (JAK) 2/interleukin-1 receptor-associated kinase 1 (IRAK1) inhibitor, has demonstrated significant reduction in splenomegaly, improved symptom control, and a manageable safety profile in patients with MF regardless of the severity of thrombocytopenia. AREAS COVERED : This review will outline the pacritinib drug profile and summarize key efficacy and safety data, focusing on the 200 mg twice daily dose from phase 2 and 3 studies that formed the basis for the recent US Food and Drug Administration approval of pacritinib in patients with MF and severe thrombocytopenia (platelet counts <50 x 109/L). EXPERT OPINION Pacritinib, with its unique mechanism of action targeting both JAK2 and IRAK1, offers patients with MF and severe thrombocytopenia a new treatment option, providing consistent disease and symptom control. Adverse events are easily manageable. Further analyses to identify ideal patient characteristics for pacritinib and other JAK inhibitors along with studies of pacritinib combinations are warranted, including in related myeloid malignancies.
Collapse
Affiliation(s)
- John Mascarenhas
- Tisch Cancer Institute, Division of Hematology/Oncology Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
126
|
Considerations to comprehensive care for the older individual with myelofibrosis. Best Pract Res Clin Haematol 2022; 35:101371. [DOI: 10.1016/j.beha.2022.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
|
127
|
Contemporary and future strategies in polycythemia vera. Best Pract Res Clin Haematol 2022; 35:101370. [DOI: 10.1016/j.beha.2022.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022]
|
128
|
Hernández-Boluda JC, Czerw T. Transplantation algorithm for myelofibrosis in 2022 and beyond. Best Pract Res Clin Haematol 2022; 35:101369. [DOI: 10.1016/j.beha.2022.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
|
129
|
The 2 faces of ERK2 in MPNs. Blood 2022; 140:298-300. [PMID: 35900786 DOI: 10.1182/blood.2022016536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
|
130
|
Hsu CC, Wang YH, Chen YY, Chen YJ, Lu CH, Wu YY, Yang YR, Tsou HY, Li CP, Huang CE, Chen CC. The Genomic Landscape in Philadelphia-Negative Myeloproliferative Neoplasm Patients with Second Cancers. Cancers (Basel) 2022; 14:cancers14143435. [PMID: 35884495 PMCID: PMC9316742 DOI: 10.3390/cancers14143435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with myeloproliferative neoplasms (MPNs) are characterized by systemic inflammation. With the indolent nature of the diseases, second cancers (SCs) have emerged as a challenging issue in afflicted patients. Epidemiological studies have confirmed the excessive risk of SCs in MPNs, but little is known about their molecular basis. To explore further, we used whole exome sequencing to explore the genetic changes in the granulocytes of 26 paired MPN patients with or without SC. We noticed that MPN−SC patients harbor genomic variants of distinct genes, among which a unique pattern of co-occurrence or mutual exclusiveness could be identified. We also found that mutated genes in MPN−SC samples were enriched in immune-related pathways and inflammatory networks, an observation further supported by their increased plasma levels of TGF-β and IL-23. Noteworthily, variants of KRT6A, a gene capable of mediating tumor-associate macrophage activity, were more commonly detected in MPN−SC patients. Analysis through OncodriveCLUST disclosed that KRT6A replaces JAK2V617F as the more prominent disease driver in MPN−SC, whereas a major mutation in this gene (KRT6A c.745T>C) in our patients is linked to human carcinoma and predicted to be pathogenic in COSMIC database. Overall, we demonstrate that inflammation could be indispensable in MPN−SC pathogenesis.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Ying-Hsuan Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Yi-Yang Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Ying-Ju Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Chang-Hsien Lu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
- College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Yu-Ying Wu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Yao-Ren Yang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Hsing-Yi Tsou
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Chian-Pei Li
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Cih-En Huang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
- College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
- Correspondence: (C.-E.H.); (C.-C.C.)
| | - Chih-Cheng Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
- College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
- Correspondence: (C.-E.H.); (C.-C.C.)
| |
Collapse
|
131
|
Campbell AG, Seelig DM, Beckman JD, Minor KM, Heinrich DA, Friedenberg SG, Modiano JF, Furrow E. Targeted sequencing of candidate gene regions for myelofibrosis in dogs. J Vet Intern Med 2022; 36:1237-1247. [PMID: 35815881 PMCID: PMC9308436 DOI: 10.1111/jvim.16476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/12/2022] [Indexed: 12/31/2022] Open
Abstract
Background Myelofibrosis often lacks an identifiable cause in dogs. In humans, most primary myelofibrosis cases develop secondary to driver mutations in JAK2, CALR, or MPL. Objectives To determine the prevalence of variants in JAK2, CALR, or MPL candidate regions in dogs with myelofibrosis and in healthy dogs. Animals Twenty‐six dogs with myelofibrosis that underwent bone marrow biopsy between 2010 and 2018 and 25 control dogs matched for age, sex, and breed. Methods Cross‐sectional study. Amplicon sequencing of JAK2 exons 12 and 14, CALR exon 9, and MPL exon 10 was performed on formalin‐fixed, decalcified, paraffin‐embedded bone marrow (myelofibrosis) or peripheral blood (control) DNA. Somatic variants were categorized as likely‐benign or possibly‐pathogenic based on predicted impact on protein function. Within the myelofibrosis group, hematologic variables and survival were compared by variant status (none, likely‐benign only, and ≥1 possibly‐pathogenic). The effect of age on variant count was analyzed using linear regression. Results Eighteen of 26 (69%) myelofibrosis cases had somatic variants, including 9 classified as possibly‐pathogenic. No somatic variants were detected in controls. Within the myelofibrosis group, hematologic variables and survival did not differ by variant status. The number of somatic variants per myelofibrosis case increased with age (estimate, 0.69; SE, 0.29; P = .03). Conclusions and Clinical Importance Somatic variants might initiate or perpetuate myelofibrosis in dogs. Our findings suggest the occurrence of clonal hematopoiesis in dogs, with increasing incidence with age, as observed in humans.
Collapse
Affiliation(s)
- Amelia G Campbell
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Davis M Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Joan D Beckman
- Division of Hematology, Oncology and Transplantation, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katie M Minor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Daniel A Heinrich
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota, USA
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eva Furrow
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
132
|
Pastor-Galán I, Martín I, Ferrer B, Hernández-Boluda JC. Impact of molecular profiling on the management of patients with myelofibrosis. Cancer Treat Rev 2022; 109:102435. [PMID: 35839532 DOI: 10.1016/j.ctrv.2022.102435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
Myelofibrosis (MF) is a chronic myeloproliferative neoplasm (MPN) characterized by a highly heterogeneous clinical course, which can be complicated by severe constitutional symptoms, massive splenomegaly, progressive bone marrow failure, cardiovascular events, and development of acute leukemia. Constitutive signaling through the JAK-STAT pathway plays a fundamental role in its pathogenesis, generally due to activating mutations of JAK2, CALR and MPL genes (i.e., the MPN driver mutations), present in most MF patients. Next Generation Sequencing (NGS) panel testing has shown that additional somatic mutations can already be detected at the time of diagnosis in more than half of patients, and that they accumulate along the disease course. These mutations, mostly affecting epigenetic modifiers or spliceosome components, may cooperate with MPN drivers to favor clonal dominance or influence the clinical phenotype, and some, such as high molecular risk mutations, correlate with a more aggressive clinical course with poor treatment response. The current main role of molecular profiling in clinical practice is prognostication, principally for selecting high-risk patients who may be candidates for transplantation, the only curative treatment for MF to date. To this end, contemporary prognostic models incorporating molecular data are useful tools to discriminate different risk categories. Aside from certain clinical situations, decisions regarding medical treatment are not based on patient molecular profiling, yet this approach may become more relevant in novel treatment strategies, such as the use of vaccines against the mutant forms of JAK2 or CALR, or drugs directed against actionable molecular targets.
Collapse
Affiliation(s)
| | - Iván Martín
- Hospital Clínico Universitario-INCLIVA, Valencia, Spain
| | - Blanca Ferrer
- Hospital Clínico Universitario-INCLIVA, Valencia, Spain
| | | |
Collapse
|
133
|
Lysine-Specific Demethylase 1 (LSD1/KDM1A) Inhibition as a Target for Disease Modification in Myelofibrosis. Cells 2022; 11:cells11132107. [PMID: 35805191 PMCID: PMC9265913 DOI: 10.3390/cells11132107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/04/2023] Open
Abstract
Myelofibrosis (MF) is the most symptomatic form of myeloproliferative neoplasm and carries the worst outcome. Allogeneic hematopoietic stem cell transplantation is the only therapy with potential for cure at present, but is limited by significant mortality and morbidity. JAK inhibition is the mainstay of treatment for intermediate- and high-risk MF. Ruxolitinib is the most widely used JAK1/2 inhibitor and provides durable effects in controlling symptom burden and spleen volumes. Nevertheless, ruxolitinib may not adequately address the underlying disease biology. Its effects on mutant allele burden, bone marrow fibrosis, and the prevention of leukemic transformation are minimal. Multiple small molecules are being tested in multiple phase 2 and 3 studies as either monotherapy or in combination with JAK2 inhibitors. In this review, the role of LSD1/KDM1A inhibition as a potential disease-modification strategy in patients with myelofibrosis is described and discussed.
Collapse
|
134
|
Mori Y, Araki M, Morishita S, Imai M, Edahiro Y, Ito M, Ochiai T, Shirane S, Hashimoto Y, Yasuda H, Ando J, Ando M, Komatsu N. Clinical features of acquired erythrocytosis: Low levels of serum erythropoietin in a subset of non-neoplastic erythrocytosis patients. Cancer Med 2022; 12:1079-1089. [PMID: 35775283 PMCID: PMC9883404 DOI: 10.1002/cam4.4958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Acquired erythrocytosis can be classified into polycythemia vera (PV) and non-neoplastic erythrocytosis (NNE). The vast majority of PV patients harbor JAK2 mutations, but differentiating JAK2 mutation-negative PV from NNE is challenging due to a lack of definitive molecular markers. METHODS We studied the clinical features of 121 patients with erythrocytosis of which 47 (38.8%) were JAK2 mutation-positive and also fulfilled the diagnostic criteria for PV, and 67 (55.4%) JAK2 mutation-negative erythrocytosis patients who were diagnosed as NNE. Diagnosis was strictly based on driver mutation analysis and central pathology review. RESULTS No JAK2 mutation-negative PV patients were found in our cohort. The NNE group showed significantly younger (p < 0.01) age with higher frequency of smoking (p < 0.001), alcohol consumption (p < 0.001), and diabetes mellitus (p < 0.05), whereas the PV group (n = 47) showed significantly higher white blood cell count, platelet count, and lactate dehydrogenase (p < 0.001). Although serum erythropoietin (EPO) levels were significantly higher in NNE compared to PV (p < 0.001), approximately 40% of the NNE patients had EPO levels below the lower range of normal, fulfilling a minor diagnostic criterion of PV and raising the possibility of PV misdiagnosis. CONCLUSION Low EPO levels in JAK2 mutation-negative erythrocytosis may not be a reliable diagnostic criterion for distinguishing PV from NNE.
Collapse
Affiliation(s)
- Yosuke Mori
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Marito Araki
- Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Soji Morishita
- Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Misa Imai
- Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan
| | - Yoko Edahiro
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan,Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Masafumi Ito
- Department of PathologyJapanese Red Cross Aichi Medical Center Nagoya Daiichi HospitalNagoyaJapan
| | - Tomonori Ochiai
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan,Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Shuichi Shirane
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan,Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Yoshinori Hashimoto
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan,Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Hajime Yasuda
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Jun Ando
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan,Department of Cell Therapy and Transfusion MedicineJuntendo University Graduate School of MedicineTokyoJapan
| | - Miki Ando
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Norio Komatsu
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan,Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan,PharmaEssentia Japan KKTokyoJapan
| |
Collapse
|
135
|
Pemmaraju N, Verstovsek S, Mesa R, Gupta V, Garcia JS, Scandura JM, Oh ST, Passamonti F, Döhner K, Mead AJ. Defining disease modification in myelofibrosis in the era of targeted therapy. Cancer 2022; 128:2420-2432. [PMID: 35499819 PMCID: PMC9322520 DOI: 10.1002/cncr.34205] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/02/2023]
Abstract
The development of targeted therapies for the treatment of myelofibrosis highlights a unique issue in a field that has historically relied on symptom relief, rather than survival benefit or modification of disease course, as key response criteria. There is, therefore, a need to understand what constitutes disease modification of myelofibrosis to advance appropriate drug development and therapeutic pathways. Here, the authors discuss recent clinical trial data of agents in development and dissect the potential for novel end points to act as disease modifying parameters. Using the rationale garnered from latest clinical and scientific evidence, the authors propose a definition of disease modification in myelofibrosis. With improved overall survival a critical outcome, alongside the normalization of hematopoiesis and improvement in bone marrow fibrosis, there will be an increasing need for surrogate measures of survival for use in the early stages of trials. As such, the design of future clinical trials will require re-evaluation and updating to incorporate informative parameters and end points with standardized definitions and methodologies.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of LeukemiaUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Srdan Verstovsek
- Department of LeukemiaUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ruben Mesa
- UT Health San Antonio Cancer CenterSan AntonioTexasUSA
| | - Vikas Gupta
- Princess Margaret Cancer CentreUniversity of TorontoTorontoOntarioCanada
| | | | - Joseph M. Scandura
- Department of MedicineHematology‐OncologyWeill Cornell Medicine and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Stephen T. Oh
- Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Konstanze Döhner
- Department of Internal Medicine IIIUniversity HospitalUlmGermany
| | - Adam J. Mead
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
136
|
Production and Characterization of Peptide Antibodies to the C-Terminal of Frameshifted Calreticulin Associated with Myeloproliferative Diseases. Int J Mol Sci 2022; 23:ijms23126803. [PMID: 35743246 PMCID: PMC9223637 DOI: 10.3390/ijms23126803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Myeloproliferative Neoplasms (MPNs) constitute a group of rare blood cancers that are characterized by mutations in bone marrow stem cells leading to the overproduction of erythrocytes, leukocytes, and thrombocytes. Mutations in calreticulin (CRT) genes may initiate MPNs, causing a novel variable polybasic stretch terminating in a common C-terminal sequence in the frameshifted CRT (CRTfs) proteins. Peptide antibodies to the mutated C-terminal are important reagents for research in the molecular mechanisms of MPNs and for the development of new diagnostic assays and therapies. In this study, eight peptide antibodies targeting the C-terminal of CRTfs were produced and characterised by modified enzyme-linked immunosorbent assays using resin-bound peptides. The antibodies reacted to two epitopes: CREACLQGWTE for SSI-HYB 385-01, 385-02, 385-03, 385-04, 385-07, 385-08, and 385-09 and CLQGWT for SSI-HYB 385-06. For the majority of antibodies, the residues Cys1, Trp9, and Glu11 were essential for reactivity. SSI-HYB 385-06, with the highest affinity, recognised recombinant CRTfs produced in yeast and the MARIMO cell line expressing CRTfs when examined in Western immunoblotting. Moreover, SSI-HYB 385-06 occasionally reacted to CRTfs from MPN patients when analysed by flow cytometry. The characterized antibodies may be used to understand the role of CRTfs in the pathogenesis of MPNs and to design and develop new diagnostic assays and therapeutic targets.
Collapse
|
137
|
Solli CN, Chamat-Hedemand S, Elming H, Ngo A, Kjær L, Skov V, Sørensen AL, Ellervik C, Fuchs A, Sigvardsen PE, Kühl JT, Kofoed KF, Nordestgaard BG, Hasselbalch H, Bruun NE. Coronary artery- and aortic valve calcifications in patients with Philadelphia-negative myeloproliferative neoplasms. Int J Cardiol 2022; 364:112-118. [PMID: 35716942 DOI: 10.1016/j.ijcard.2022.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Patients with the hematological cancers Philadelphia-negative Myeloproliferative Neoplasms (MPNs) have an increased risk of cardiovascular disease. However, whether MPNs have an increased burden of cardiac calcification has not been thoroughly investigated. Our aim is to investigate whether patients with MPNs have an increased burden of cardiac calcification that could help explain their increased risk of cardiovascular disease. METHODS AND RESULTS We recruited 161 patients (mean age 65 years, 52% men) with an MPN diagnosis between 2016 and 2018. Coronary artery calcium score (CACS) and aortic valve calcification (AVC) were measured by cardiac computer tomography, and detailed information on cardiovascular risk factors was recorded. MPNs were matched on age and sex, with 805 controls from the Copenhagen General Population Study. A CACS>400 was present in 26% of MPNs and 19% of controls (p = 0.031). AVC was present in 58% of MPNs and 34% of controls (p < 0.0001). After adjustment for cardiovascular risk factors, the odds ratio (OR) of a CACS>400 was 1.9 (95% CI 1.2-3.1, p = 0.008) in MPNs compared to controls, and the OR of AVC was 4.4 (95% CI 2.9-6.9, p < 0.0001) in MPNs compared to controls. CONCLUSION Patients with MPNs have a significantly higher prevalence of a CACS >400 and AVC, compared to controls from the general population. The association between MPN and a CACS>400 or AVC remains significant after adjustment for cardiovascular risk factors. These novel data support the hypothesis that MPNs have an increased burden of cardiac calcifications, independent of other cardiovascular risk factors.
Collapse
Affiliation(s)
- Camilla Nordheim Solli
- Dept. of Cardiology, Zealand University Hospital, 4000 Roskilde, Region Zealand, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Sandra Chamat-Hedemand
- Dept. of Cardiology, Zealand University Hospital, 4000 Roskilde, Region Zealand, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Elming
- Dept. of Cardiology, Zealand University Hospital, 4000 Roskilde, Region Zealand, Denmark
| | - Anh Ngo
- Dept. of Cardiology, Zealand University Hospital, 4000 Roskilde, Region Zealand, Denmark
| | - Lasse Kjær
- Dept. of Hematology, Zealand University Hospital, 4000 Roskilde, Region Zealand, Denmark
| | - Vibe Skov
- Dept. of Hematology, Zealand University Hospital, 4000 Roskilde, Region Zealand, Denmark
| | | | - Christina Ellervik
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Dept. of Data Support, Region Zealand, Sorø, Denmark
| | - Andreas Fuchs
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Dept. of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Per Ejlstrup Sigvardsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Dept. of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Jørgen Tobias Kühl
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Dept. of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Klaus Fuglsang Kofoed
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Dept. of Cardiology, Rigshospitalet, Copenhagen, Denmark; Dept. of Radiology, Rigshospitalet, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Dept. of Clinical Biochemistry, the Copenhagen General Population Study, Herlev- Gentofte Hospital, Herlev, Denmark
| | - Hans Hasselbalch
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Dept. of Hematology, Zealand University Hospital, 4000 Roskilde, Region Zealand, Denmark
| | - Niels Eske Bruun
- Dept. of Cardiology, Zealand University Hospital, 4000 Roskilde, Region Zealand, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Faculty of Health and Medical Sciences, Aalborg University, Aalborg, Denmark
| |
Collapse
|
138
|
Bone Marrow Fibrosis at Diagnosis and during the Course of Disease Is Associated with TP53 Mutations and Adverse Prognosis in Primary Myelodysplastic Syndrome. Cancers (Basel) 2022; 14:cancers14122984. [PMID: 35740649 PMCID: PMC9221530 DOI: 10.3390/cancers14122984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary To understand the role of bone marrow fibrosis and its molecular changes in myelodysplastic syndrome, we retrospectively analyzed data from 814 patients. Older age, lower hemoglobin, unfavorable karyotype and higher BM blast were more often observed in patients with moderate/severe fibrosis. Cases with bone marrow fibrosis had reduced overall survival. TP53, U2AF1 and KMT2D mutations were more frequent in patients with moderate/severe fibrosis. In addition, 15.1% of patients progressed to moderate/severe fibrosis during the follow-up interval. The clinical features, mutation landscape and prognosis of patients with progressed fibrosis were similar to those patients with moderate/severe fibrosis at diagnosis. We concluded that bone marrow fibrosis was associated with reduced overall survival in primary MDS and correlated with TP53 mutations both at the time of initial diagnosis and during the course of the disease. Abstract The prognostic significance of bone marrow fibrosis (MF) grade in patients with myelodysplastic syndrome (MDS) is still debated and the molecular changes remain unclear. In our large cohort, a normal reticulum was found in 211 (25.9%) patients, whereas MF1, MF2 and MF3 were detected in 478 (58.7%), 90 (11.1%) and 35 (4.3%) patients at initial diagnosis, respectively. Patients with MF often correlated with some poor prognostic characteristics, including older age, anemia, unfavorable karyotype, higher BM blast and a higher IPSS-R category. For the entire cohort, the median OS was not reached, 30, 16 and 15 months for patients with MF 0, 1, 2 and 3, respectively. After adjusting for IPSS-R, the hazard ratio for mortality was 1.56 (95% CI, 1.18–2.06) for patients with MF1, 2.29 (95% CI, 1.61–3.27) for patients with MF2 and 2.75 (95% CI, 1.69–4.49) for patients with MF3 compared with those with MF0. The mutational landscape of 370 patients showed that TP53, U2AF1 and KMT2D mutations were more frequent in patients with MF2-3. In addition, of the 408 patients with MF0-1, 62 patients (15.1%) progressed to MF2-3 during the follow-up interval. The clinical features, mutation landscape and prognosis of patients with progressed fibrosis were similar to those of patients with MF2-3 at diagnosis. We concluded that BM fibrosis (MF1, 2 and 3) was an adverse prognosis feature in primary MDS and correlated with TP53 mutations both at the time of initial diagnosis and during the course of the disease. Therefore, BM fibrosis should be included in the revised prognostic scoring system and carefully considered in treatment selection.
Collapse
|
139
|
González-López O, Muñoz-González JI, Orfao A, Álvarez-Twose I, García-Montero AC. Comprehensive Analysis of Acquired Genetic Variants and Their Prognostic Impact in Systemic Mastocytosis. Cancers (Basel) 2022; 14:cancers14102487. [PMID: 35626091 PMCID: PMC9139197 DOI: 10.3390/cancers14102487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/27/2023] Open
Abstract
Systemic mastocytosis (SM) is a rare clonal haematopoietic stem cell disease in which activating KIT mutations (most commonly KIT D816V) are present in virtually every (>90%) adult patient at similar frequencies among non-advanced and advanced forms of SM. The KIT D816V mutation is considered the most common pathogenic driver of SM. Acquisition of this mutation early during haematopoiesis may cause multilineage involvement of haematopoiesis by KIT D816V, which has been associated with higher tumour burden and additional mutations in other genes, leading to an increased rate of transformation to advanced SM. Thus, among other mutations, alterations in around 30 genes that are also frequently mutated in other myeloid neoplasms have been reported in SM cases. From these genes, 12 (i.e., ASXL1, CBL, DNMT3A, EZH2, JAK2, KRAS, NRAS, SF3B1, RUNX1, SF3B1, SRSF2, TET2) have been recurrently reported to be mutated in SM. Because of all the above, assessment of multilineage involvement of haematopoiesis by the KIT D816V mutation, in the setting of multi-mutated haematopoiesis as revealed by a limited panel of genes (i.e., ASXL1, CBL, DNMT3A, EZH2, NRAS, RUNX1 and SRSF2) and associated with a poorer patient outcome, has become of great help to identify SM patients at higher risk of disease progression and/or poor survival who could benefit from closer follow-up and eventually also early cytoreductive treatment.
Collapse
Affiliation(s)
- Oscar González-López
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Javier I. Muñoz-González
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Iván Álvarez-Twose
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast, Virgen del Valle Hospital) and REMA, 45071 Toledo, Spain
| | - Andrés C. García-Montero
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
140
|
Itokawa N, Oshima M, Koide S, Takayama N, Kuribayashi W, Nakajima-Takagi Y, Aoyama K, Yamazaki S, Yamaguchi K, Furukawa Y, Eto K, Iwama A. Epigenetic traits inscribed in chromatin accessibility in aged hematopoietic stem cells. Nat Commun 2022; 13:2691. [PMID: 35577813 PMCID: PMC9110722 DOI: 10.1038/s41467-022-30440-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/24/2022] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cells (HSCs) exhibit considerable cell-intrinsic changes with age. Here, we present an integrated analysis of transcriptome and chromatin accessibility of aged HSCs and downstream progenitors. Alterations in chromatin accessibility preferentially take place in HSCs with aging, which gradually resolve with differentiation. Differentially open accessible regions (open DARs) in aged HSCs are enriched for enhancers and show enrichment of binding motifs of the STAT, ATF, and CNC family transcription factors that are activated in response to external stresses. Genes linked to open DARs show significantly higher levels of basal expression and their expression reaches significantly higher peaks after cytokine stimulation in aged HSCs than in young HSCs, suggesting that open DARs contribute to augmented transcriptional responses under stress conditions. However, a short-term stress challenge that mimics infection is not sufficient to induce persistent chromatin accessibility changes in young HSCs. These results indicate that the ongoing and/or history of exposure to external stresses may be epigenetically inscribed in HSCs to augment their responses to external stimuli. Haematopoietic stem cells (HSCs) exhibit considerable cell-intrinsic changes with age. Here the authors demonstrate that differentially accessible regions in aged HSC chromatin are enriched for stress-responsive enhancers and act as an epigenetic hub to augment transcriptional responses of aged HSCs to external stimuli.
Collapse
|
141
|
Pasca S, Chifotides HT, Verstovsek S, Bose P. Mutational landscape of blast phase myeloproliferative neoplasms (MPN-BP) and antecedent MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 366:83-124. [PMID: 35153007 DOI: 10.1016/bs.ircmb.2021.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myeloproliferative neoplasms (MPN) have an inherent tendency to evolve to the blast phase (BP), characterized by ≥20% myeloblasts in the blood or bone marrow. MPN-BP portends a dismal prognosis and currently, effective treatment modalities are scarce, except for allogeneic hematopoietic stem cell transplantation (allo-HSCT) in selected patients, particularly those who achieve complete/partial remission. The mutational landscape of MPN-BP differs from de novo acute myeloid leukemia (AML) in several key aspects, such as significantly lower frequencies of FLT3 and DNMT3A mutations, and higher incidence of IDH1/2 and TP53 in MPN-BP. Herein, we comprehensively review the impact of the three signaling driver mutations (JAK2 V617F, CALR exon 9 indels, MPL W515K/L) that constitutively activate the JAK/STAT pathway, and of the other somatic non-driver mutations (epigenetic, mRNA splicing, transcriptional regulators, and mutations in signal transduction genes) that cooperatively or independently promote MPN progression and leukemic transformation. The MPN subtype, harboring two or more high-molecular risk (HMR) mutations (epigenetic regulators and mRNA splicing factors) and "triple-negative" PMF are among the critical factors that increase risk of leukemic transformation and shorten survival. Primary myelofibrosis (PMF) is the most aggressive MPN; and polycythemia vera (PV) and essential thrombocythemia (ET) are relatively indolent subtypes. In PV and ET, mutations in splicing factor genes are associated with progression to myelofibrosis (MF), and in ET, TP53 mutations predict risk for leukemic transformation. The advent of targeted next-generation sequencing and improved prognostic scoring systems for PMF inform decisions regarding allo-HSCT. The emergence of treatments targeting mutant enzymes (e.g., IDH1/2 inhibitors) or epigenetic pathways (BET and LSD1 inhibitors) along with new insights into the mechanisms of leukemogenesis will hopefully lead the way to superior management strategies and outcomes of MPN-BP patients.
Collapse
Affiliation(s)
- Sergiu Pasca
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Helen T Chifotides
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Srdan Verstovsek
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Prithviraj Bose
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
142
|
Carnaz Simões AM, Holmström MO, Aehnlich P, Rahbech A, Peeters MJW, Radziwon-Balicka A, Zamora C, Wirenfeldt Klausen T, Skov V, Kjær L, Ellervik C, Fassi DE, Vidal S, Hasselbalch HC, Andersen MH, thor Straten P. Patients With Myeloproliferative Neoplasms Harbor High Frequencies of CD8 T Cell-Platelet Aggregates Associated With T Cell Suppression. Front Immunol 2022; 13:866610. [PMID: 35603202 PMCID: PMC9120544 DOI: 10.3389/fimmu.2022.866610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are chronic cancers of the hematopoietic stem cells in the bone marrow, and patients often harbor elevated numbers of circulating platelets (PLT). We investigated the frequencies of circulating PLT-lymphocyte aggregates in MPN patients and the effect of PLT-binding on CD8 T cell function. The phenotype of these aggregates was evaluated in 50 MPN patients and 24 controls, using flow cytometry. In vitro studies compared the proliferation, cytokine release, and cytoxicity of PLT-bound and PLT-free CD8 T cells. Frequencies of PLT-CD8 T cell aggregates, were significantly elevated in MPN patients. Advanced disease stage and CALR mutation associated with the highest aggregate frequencies with a predominance of PLT-binding to antigen-experienced CD8 T cells. PLT-bound CD8 T cells showed reduction in proliferation and cytotoxic capacity. Our data suggest that CD8 T cell responses are jeopardized in MPN patients. JAK2 and CALR exon 9 mutations - the two predominant driver mutations in MPN - are targets for natural T cell responses in MPN patients. Moreover, MPN patients have more infections compared to background. Thus, PLT binding to antigen experienced CD8 T cells could play a role in the inadequacy of the immune system to control MPN disease progression and prevent recurrent infections.
Collapse
Affiliation(s)
- Ana Micaela Carnaz Simões
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Pia Aehnlich
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Anne Rahbech
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Marlies J. W. Peeters
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Aneta Radziwon-Balicka
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Carlos Zamora
- IIB-Sant Pau- Institut Rec. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Tobias Wirenfeldt Klausen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Data and Innovation Support, Region Zealand, Sorø, Denmark
| | - Daniel El Fassi
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Silvia Vidal
- IIB-Sant Pau- Institut Rec. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Mads Hald Andersen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per thor Straten
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
143
|
Wang F, Qiu T, Wang H, Yang Q. State-of-the-Art Review on Myelofibrosis Therapies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e350-e362. [PMID: 34903489 DOI: 10.1016/j.clml.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Myelofibrosis (MF) is a BCR-ABL1-negative myeloproliferative neoplasm characterized by anemia, extramedullary hematopoiesis, bone marrow fibrosis, splenomegaly, constitutional symptoms and acute myeloid leukemia progression. Currently, allogeneic haematopoietic stem cell transplantation (AHSCT) therapy is the only curative option for MF patients. However, AHSCT is strictly limited due to the high rates of morbidity and mortality. Janus kinase 2 (JAK2) inhibitor Ruxolitinib is the first-line treatment for intermediate-II or high-risk MF patients with splenomegaly and constitutional symptoms, but most MF patients develop resistance or intolerance to Ruxolitinib. Therefore, MF treatment is a challenge for the medical community. This review summarizes 3 investigated directions for MF therapy: monotherapies of JAK inhibitors, monotherapies of non-JAK targeted agents, combination therapies of Ruxolitinib and other agents. We emphasize combination of Ruxolitinib and other agents is a promising strategy.
Collapse
Affiliation(s)
- Fuping Wang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Wang
- Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiong Yang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
144
|
Pemmaraju N, Garcia JS, Potluri J, Harb JG, Sun Y, Jung P, Qin QQ, Tantravahi SK, Verstovsek S, Harrison C. Addition of navitoclax to ongoing ruxolitinib treatment in patients with myelofibrosis (REFINE): a post-hoc analysis of molecular biomarkers in a phase 2 study. THE LANCET HAEMATOLOGY 2022; 9:e434-e444. [DOI: 10.1016/s2352-3026(22)00116-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022]
|
145
|
Harrison CN, Schaap N, Vannucchi AM, Kiladjian JJ, Passamonti F, Zweegman S, Talpaz M, Verstovsek S, Rose S, Zhang J, Sy O, Mesa RA. Safety and efficacy of fedratinib, a selective oral inhibitor of Janus kinase-2 (JAK2), in patients with myelofibrosis and low pretreatment platelet counts. Br J Haematol 2022; 198:317-327. [PMID: 35476316 PMCID: PMC9541243 DOI: 10.1111/bjh.18207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
Fedratinib, an oral Janus kinase‐2 (JAK2) inhibitor, is approved for patients with myelofibrosis (MF) and platelet counts ≥50 × 109/l, based on outcomes from the phase 3, placebo‐controlled JAKARTA trial in JAK‐inhibitor‐naïve MF, and the phase 2, single‐arm JAKARTA2 trial in patients previously treated with ruxolitinib. We evaluated the efficacy and safety of fedratinib 400 mg/day in patients with baseline platelet counts 50 to <100 × 109/l (“Low‐Platelets” cohorts), including 14/96 patients (15%) in JAKARTA and 33/97 (34%) in JAKARTA2. At 24 weeks, spleen response rates were not significantly different between the Low‐Platelets cohort and patients with baseline platelet counts ≥100 × 109/l (“High‐Platelets” cohort), in JAKARTA (36% vs. 49%, respectively; p = 0.37) or JAKARTA2 (36% vs. 28%; p = 0.41). Symptom response rates were also not statistically different between the Low‐ and High‐Platelets cohorts. Fedratinib was generally well‐tolerated in both platelet‐count cohorts. New or worsening thrombocytopaenia was more frequent in the Low‐Platelets (44%) versus the High‐Platelets (9%) cohort, but no serious thrombocytopaenia events occurred. Thrombocytopaenia was typically managed with dose modifications; only 3/48 Low‐Platelets patients discontinued fedratinib due to thrombocytopaenia. These data indicate that fedratinib 400 mg/day is safe and effective in patients with MF and low pretreatment platelet counts, and no initial fedratinib dose adjustment is required for these patients.
Collapse
Affiliation(s)
- Claire N Harrison
- Department of Clinical Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Nicolaas Schaap
- Radboud University Medical Centre Nijmegen, Nijmegen, Netherlands
| | - Alessandro M Vannucchi
- Center for Research and Innovation of Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Florence, Italy
| | - Jean-Jacques Kiladjian
- Centre d'Investigations Cliniques, INSERM, CIC1427, AP-HP, Hôpital Saint-Louis, Université de Paris, Paris, France
| | | | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Moshe Talpaz
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Srdan Verstovsek
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Jun Zhang
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Oumar Sy
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Ruben A Mesa
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, Texas, USA
| |
Collapse
|
146
|
Levy G, Guglielmelli P, Langmuir P, Constantinescu S. JAK inhibitors and COVID-19. J Immunother Cancer 2022; 10:jitc-2021-002838. [PMID: 35459733 PMCID: PMC9035837 DOI: 10.1136/jitc-2021-002838] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the—possibly altered—response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19. We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.
Collapse
Affiliation(s)
- Gabriel Levy
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium.,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| | - Paola Guglielmelli
- Department of Clinical and Experimental Medicine, University of Florence, Firenze, Italy.,Center of Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Peter Langmuir
- Oncology Targeted Therapeutics, Incyte Corp, Wilmington, Delaware, USA
| | - Stefan Constantinescu
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium .,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,Nuffield Department of Medicine, Oxford University, Ludwig Institute for Cancer Research, Oxford, UK
| |
Collapse
|
147
|
Slaninova N, Bryjova I, Lasota Z, Richterova R, Kubicek J, Augustynek M, Seal A, Krejcar O, Proto A. Thrombotic and Atherogenetic Predisposition in Polyglobulic Donors. Biomedicines 2022; 10:biomedicines10040888. [PMID: 35453637 PMCID: PMC9027744 DOI: 10.3390/biomedicines10040888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
This work analyses the results of research regarding the predisposition of genetic hematological risks associated with secondary polyglobulia. The subjects of the study were selected based on shared laboratory markers and basic clinical symptoms. JAK2 (Janus Kinase 2) mutation negativity represented the common genetic marker of the subjects in the sample of interest. A negative JAK2 mutation hypothetically excluded the presence of an autonomous myeloproliferative disease at the time of detection. The parameters studied in this work focused mainly on thrombotic, immunological, metabolic, and cardiovascular risks. The final goal of the work was to discover the most significant key markers for the diagnosis of high-risk patients and to exclude the less important or only complementary markers, which often represent a superfluous economic burden for healthcare institutions. These research results are applicable as a clinical guideline for the effective diagnosis of selected parameters that demonstrated high sensitivity and specificity. According to the results obtained in the present research, groups with a high incidence of mutations were evaluated as being at higher risk for polycythemia vera disease. It was not possible to clearly determine which of the patients examined had a higher risk of developing the disease as different combinations of mutations could manifest different symptoms of the disease. In general, the entire study group was at risk for manifestations of polycythemia vera disease without a clear diagnosis. The group with less than 20% incidence appeared to be clinically insignificant for polycythemia vera testing and thus there is a potential for saving money in mutation testing. On the other hand, the JAK V617F (somatic mutation of JAK2) parameter from this group should be investigated as it is a clear exclusion or confirmation of polycythemia vera as the primary disease.
Collapse
Affiliation(s)
- Nikola Slaninova
- Department of Cybernetics and Biomedical Engineering, VŠB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava–Poruba, Czech Republic; (N.S.); (I.B.); (M.A.); (A.P.)
| | - Iveta Bryjova
- Department of Cybernetics and Biomedical Engineering, VŠB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava–Poruba, Czech Republic; (N.S.); (I.B.); (M.A.); (A.P.)
| | - Zenon Lasota
- Blood Donor Center, tr. T. G. Masaryka 495, 738 01 Frydek-Mistek, Czech Republic; (Z.L.); (R.R.)
| | - Radmila Richterova
- Blood Donor Center, tr. T. G. Masaryka 495, 738 01 Frydek-Mistek, Czech Republic; (Z.L.); (R.R.)
| | - Jan Kubicek
- Department of Cybernetics and Biomedical Engineering, VŠB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava–Poruba, Czech Republic; (N.S.); (I.B.); (M.A.); (A.P.)
- Correspondence:
| | - Martin Augustynek
- Department of Cybernetics and Biomedical Engineering, VŠB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava–Poruba, Czech Republic; (N.S.); (I.B.); (M.A.); (A.P.)
| | - Ayan Seal
- Department of Computer Science & Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India;
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradecka 1249, 500 03 Hradec Kralove, Czech Republic;
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradecka 1249, 500 03 Hradec Kralove, Czech Republic;
| | - Antonino Proto
- Department of Cybernetics and Biomedical Engineering, VŠB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava–Poruba, Czech Republic; (N.S.); (I.B.); (M.A.); (A.P.)
| |
Collapse
|
148
|
Philadelphia chromosome-negative myeloproliferative neoplasms: clinical aspects and treatment options. Int J Hematol 2022; 115:616-618. [DOI: 10.1007/s12185-022-03344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
149
|
Genetic Background of Polycythemia Vera. Genes (Basel) 2022; 13:genes13040637. [PMID: 35456443 PMCID: PMC9027017 DOI: 10.3390/genes13040637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Polycythemia vera belongs to myeloproliferative neoplasms, essentially by affecting the erythroblastic lineage. JAK2 alterations have emerged as major driver mutations triggering PV-phenotype with the V617F mutation detected in nearly 98% of cases. That’s why JAK2 targeting therapeutic strategies have rapidly emerged to counter the aggravation of the disease. Over decades of research, to go further in the understanding of the disease and its evolution, a wide panel of genetic alterations affecting multiple genes has been highlighted. These are mainly involved in alternative splicing, epigenetic, miRNA regulation, intracellular signaling, and transcription factors expression. If JAK2 mutation, irrespective of the nature of the alteration, is known to be a crucial event for the disease to initiate, additional mutations seem to be markers of progression and poor prognosis. These discoveries have helped to characterize the complex genomic landscape of PV, resulting in potentially new adapted therapeutic strategies for patients concerning all the genetic interferences.
Collapse
|
150
|
Milosevic Feenstra JD, Jäger R, Schischlik F, Ivanov D, Eisenwort G, Rumi E, Schuster M, Gisslinger B, Machherndl‐Spandl S, Bettelheim P, Krauth M, Keil F, Bock C, Cazzola M, Gisslinger H, Kralovics R, Valent P. PD-L1 overexpression correlates with JAK2-V617F mutational burden and is associated with 9p uniparental disomy in myeloproliferative neoplasms. Am J Hematol 2022; 97:390-400. [PMID: 35015307 PMCID: PMC9306481 DOI: 10.1002/ajh.26461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022]
Abstract
Myeloproliferative neoplasms (MPN) are chronic stem cell disorders characterized by enhanced proliferation of myeloid cells, immune deregulation, and drug resistance. JAK2 somatic mutations drive the disease in 50-60% and CALR mutations in 25-30% of cases. Published data suggest that JAK2-V617F-mutated MPN cells express the resistance-related checkpoint PD-L1. By applying RNA-sequencing on granulocytes of 113 MPN patients, we demonstrate that PD-L1 expression is highest among polycythemia vera patients and that PD-L1 expression correlates with JAK2-V617F mutational burden (R = 0.52; p < .0001). Single nucleotide polymorphism (SNP) arrays showed that chromosome 9p uniparental disomy (UPD) covers both PD-L1 and JAK2 in all MPN patients examined. MPN cells in JAK2-V617F-positive patients expressed higher levels of PD-L1 if 9p UPD was present compared to when it was absent (p < .0001). Moreover, haplotype-based association analyses provided evidence for germline genetic factors at PD-L1 locus contributing to MPN susceptibility independently of the previously described GGCC risk haplotype. We also found that PD-L1 is highly expressed on putative CD34+ CD38- disease-initiating neoplastic stem cells (NSC) in both JAK2 and CALR-mutated MPN. PD-L1 overexpression decreased upon exposure to JAK2 blockers and BRD4-targeting agents, suggesting a role for JAK2-STAT5-signaling and BRD4 in PD-L1 expression. Whether targeting of PD-L1 can overcome NSC resistance in MPN remains to be elucidated in forthcoming studies.
Collapse
Affiliation(s)
| | - Roland Jäger
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Daniel Ivanov
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Gregor Eisenwort
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Elisa Rumi
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Division of HematologyFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Bettina Gisslinger
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Sigrid Machherndl‐Spandl
- Department of Haematology, Internal Oncology and Stem Cell TransplantationOrdensklinikum Linz Elisabethinen HospitalLinzAustria
| | - Peter Bettelheim
- Department of Haematology, Internal Oncology and Stem Cell TransplantationOrdensklinikum Linz Elisabethinen HospitalLinzAustria
| | - Maria‐Theresa Krauth
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Felix Keil
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- 3rd Medical Department, Hematology & Oncology, HanuschkrankenhausViennaAustria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent SystemsMedical University of ViennaViennaAustria
| | - Mario Cazzola
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Division of HematologyFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Heinz Gisslinger
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Robert Kralovics
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| |
Collapse
|