101
|
Chen W, Sadatsafavi M, FitzGerald JM, Lynd LD, Sin DD. Gender modifies the effect of body mass index on lung function decline in mild-to-moderate COPD patients: a pooled analysis. Respir Res 2021; 22:59. [PMID: 33602241 PMCID: PMC7891012 DOI: 10.1186/s12931-021-01656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background Low body weight is associated with poor prognosis in patients with chronic obstructive pulmonary disease (COPD). However, it is not known whether gender modifies this relationship. Methods We pooled data of 8686 COPD patients from 7 studies with a median length of 36-months of follow up. Using a longitudinal natural cubic spline regression model, we examined the dose–response relationship between body mass index (BMI) and the rate of decline in forced expiratory volume in one second (FEV1) in patients with GOLD 1 and 2 disease, stratified by gender and adjusted for age, smoking status, and cohort effects. Results There was an inverse linear relationship between BMI and the rate of FEV1 decline in GOLD Grades 1 and 2, which was modified by gender (p < 0.001). In male patients, an increase of BMI by 1 kg/m2 reduced FEV1 decline by 1.05 mL/year (95% CI 0.96, 1.14). However, in female patients, BMI status did not have a clinically meaningful impact on FEV1 decline: an increase of baseline BMI by 1 kg/m2 reduced FEV1 decline by 0.16 ml/year (95% CI 0.11, 0.21). These gender-modified relationships were similar between GOLD 1 and 2 patients, and between current and former smokers. Conclusion In mild to moderate COPD, higher BMI was associated with a less rapid decline of FEV1 in male patients whereas this association was minimal in females patients. This gender-specific BMI effect was independent of COPD severity and smoking status.
Collapse
Affiliation(s)
- Wenjia Chen
- Respiratory Evaluation Sciences Program, Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mohsen Sadatsafavi
- Respiratory Evaluation Sciences Program, Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,UBC Centre for Heart Lung Innovation, St Paul's Hospital, Providence Building, Room 8446, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.,Division of Respiratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - J Mark FitzGerald
- Division of Respiratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada.,Centre for Lung Health, Vancouver Coastal Health Research Institute, University of British Columbia, 7th Floor, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Larry D Lynd
- Respiratory Evaluation Sciences Program, Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,Division of Respiratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada.,Centre for Lung Health, Vancouver Coastal Health Research Institute, University of British Columbia, 7th Floor, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada.,Centre for Health Evaluation and Outcome Sciences, The University of British Columbia, Vancouver, Canada
| | - Don D Sin
- UBC Centre for Heart Lung Innovation, St Paul's Hospital, Providence Building, Room 8446, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada. .,Division of Respiratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
102
|
Ash SY, San José Estépar R, Fain SB, Tal-Singer R, Stockley RA, Nordenmark LH, Rennard S, Han MK, Merrill D, Humphries SM, Diaz AA, Mason SE, Rahaghi FN, Pistenmaa CL, Sciurba FC, Vegas-Sánchez-Ferrero G, Lynch DA, Washko GR. Relationship between Emphysema Progression at CT and Mortality in Ever-Smokers: Results from the COPDGene and ECLIPSE Cohorts. Radiology 2021; 299:222-231. [PMID: 33591891 PMCID: PMC7997617 DOI: 10.1148/radiol.2021203531] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background The relationship between emphysema progression and long-term outcomes is unclear. Purpose To determine the relationship between emphysema progression at CT and mortality among participants with emphysema. Materials and Methods In a secondary analysis of two prospective observational studies, COPDGene (clinicaltrials.gov, NCT00608764) and Evaluation of Chronic Obstructive Pulmonary Disease Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE; clinicaltrials.gov, NCT00292552), emphysema was measured at CT at two points by using the volume-adjusted lung density at the 15th percentile of the lung density histogram (hereafter, lung density perc15) method. The association between emphysema progression rate and all-cause mortality was analyzed by using Cox regression adjusted for ethnicity, sex, baseline age, pack-years, and lung density, baseline and change in smoking status, forced expiratory volume in 1 second, and 6-minute walk distance. In COPDGene, respiratory mortality was analyzed by using the Fine and Gray method. Results A total of 5143 participants (2613 men [51%]; mean age, 60 years ± 9 [standard deviation]) in COPDGene and 1549 participants (973 men [63%]; mean age, 62 years ± 8) in ECLIPSE were evaluated, of which 2097 (40.8%) and 1179 (76.1%) had emphysema, respectively. Baseline imaging was performed between January 2008 and December 2010 for COPDGene and January 2006 and August 2007 for ECLIPSE. Follow-up imaging was performed after 5.5 years ± 0.6 in COPDGene and 3.0 years ± 0.2 in ECLIPSE, and mortality was assessed over the ensuing 5 years in both. For every 1 g/L per year faster rate of decline in lung density perc15, all-cause mortality increased by 8% in COPDGene (hazard ratio [HR], 1.08; 95% CI: 1.01, 1.16; P = .03) and 6% in ECLIPSE (HR, 1.06; 95% CI: 1.00, 1.13; P = .045). In COPDGene, respiratory mortality increased by 22% (HR, 1.22; 95% CI: 1.13, 1.31; P < .001) for the same increase in the rate of change in lung density perc15. Conclusion In ever-smokers with emphysema, emphysema progression at CT was associated with increased all-cause and respiratory mortality. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Lee and Park in this issue.
Collapse
Affiliation(s)
- Samuel Y Ash
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Raúl San José Estépar
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Sean B Fain
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Ruth Tal-Singer
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Robert A Stockley
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Lars H Nordenmark
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Stephen Rennard
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - MeiLan K Han
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Debora Merrill
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Stephen M Humphries
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Alejandro A Diaz
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Stefanie E Mason
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Farbod N Rahaghi
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Carrie L Pistenmaa
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Frank C Sciurba
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Gonzalo Vegas-Sánchez-Ferrero
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - David A Lynch
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - George R Washko
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | -
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| |
Collapse
|
103
|
Mason SE, Moreta-Martinez R, Labaki WW, Strand M, Baraghoshi D, Regan EA, Bon J, San Jose Estepar R, Casaburi R, McDonald MLN, Rossiter H, Make BJ, Dransfield MT, Han MK, Young KA, Kinney G, Hokanson JE, San Jose Estepar R, Washko GR. Respiratory exacerbations are associated with muscle loss in current and former smokers. Thorax 2021; 76:554-560. [PMID: 33574123 DOI: 10.1136/thoraxjnl-2020-215999] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Muscle wasting is a recognised extra-pulmonary complication in chronic obstructive pulmonary disease and has been associated with increased risk of death. Acute respiratory exacerbations are associated with reduction of muscle function, but there is a paucity of data on their long-term effect. This study explores the relationship between acute respiratory exacerbations and long-term muscle loss using serial measurements of CT derived pectoralis muscle area (PMA). DESIGN AND SETTING Participants were included from two prospective, longitudinal, observational, multicentre cohorts of ever-smokers with at least 10 pack-year history. PARTICIPANTS The primary analysis included 1332 (of 2501) participants from Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) and 4384 (of 10 198) participants from Genetic Epidemiology of COPD (COPDGene) who had complete data from their baseline and follow-up visits. INTERVENTIONS PMA was measured on chest CT scans at two timepoints. Self-reported exacerbation data were collected from participants in both studies through the use of periodic longitudinal surveys. MAIN OUTCOME MEASURES Age-related and excess muscle loss over time. RESULTS Age, sex, race and body mass index were associated with baseline PMA. Participants experienced age-related decline at the upper end of reported normal ranges. In ECLIPSE, the exacerbation rate over time was associated with an excess muscle area loss of 1.3% (95% CI 0.6 to 1.9, p<0.001) over 3 years and in COPDGene with an excess muscle area loss of 2.1% (95% CI 1.2 to 2.8, p<0.001) over 5 years. Excess muscle area decline was absent in 273 individuals who participated in pulmonary rehabilitation. CONCLUSIONS Exacerbations are associated with accelerated skeletal muscle loss. Each annual exacerbation was associated with the equivalent of 6 months of age-expected decline in muscle mass. Ameliorating exacerbation-associated muscle loss represents an important therapeutic target.
Collapse
Affiliation(s)
- Stefanie Elizabeth Mason
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew Strand
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA
| | - David Baraghoshi
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA
| | - Elizabeth A Regan
- Division of Rheumatology, National Jewish Health, Denver, Colorado, USA
| | - Jessica Bon
- Division of Pulmonary, Allergy and Critical Care, UPMC, Pittsburgh, Pennsylvania, USA
| | | | - Richard Casaburi
- Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute, Torrance, California, USA
| | - Merry-Lynn N McDonald
- Division of Pulmonary, Allergy, and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Harry Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute, Torrance, California, USA
| | - Barry J Make
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Mark T Dransfield
- Division of Pulmonary, Allergy, and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Greg Kinney
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | | | - George R Washko
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
104
|
Meeraus WH, Mullerova H, El Baou C, Fahey M, Hessel EM, Fahy WA. Predicting Re-Exacerbation Timing and Understanding Prolonged Exacerbations: An Analysis of Patients with COPD in the ECLIPSE Cohort. Int J Chron Obstruct Pulmon Dis 2021; 16:225-244. [PMID: 33574663 PMCID: PMC7872897 DOI: 10.2147/copd.s279315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Understanding risk factors for an acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is important for optimizing patient care. We re-analyzed data from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study (NCT00292552) to identify factors predictive of re-exacerbations and associated with prolonged AECOPDs. METHODS Patients with COPD from ECLIPSE with moderate/severe AECOPDs were included. The end of the first exacerbation was the index date. Timing of re-exacerbation risk was assessed in patients with 180 days' post-index-date follow-up data. Factors predictive of early (1-90 days) vs late (91-180 days) vs no re-exacerbation were identified using a multivariable partial-proportional-odds-predictive model. Explanatory logistic-regression modeling identified factors associated with prolonged AECOPDs. RESULTS Of the 1,554 eligible patients from ECLIPSE, 1,420 had 180 days' follow-up data: more patients experienced early (30.9%) than late (18.7%) re-exacerbations; 50.4% had no re-exacerbation within 180 days. Lower post-bronchodilator FEV1 (P=0.0019), a higher number of moderate/severe exacerbations on/before index date (P<0.0001), higher St. George's Respiratory Questionnaire total score (P=0.0036), and season of index exacerbation (autumn vs winter, P=0.00164) were identified as predictors of early (vs late/none) re-exacerbation risk within 180 days. Similarly, these were all predictors of any (vs none) re-exacerbation risk within 180 days. Median moderate/severe AECOPD duration was 12 days; 22.7% of patients experienced a prolonged AECOPD. The odds of experiencing a prolonged AECOPD were greater for severe vs moderate AECOPDs (adjusted odds ratio=1.917, P=0.002) and lower for spring vs winter AECOPDs (adjusted odds ratio=0.578, P=0.017). CONCLUSION Prior exacerbation history, reduced lung function, poorer respiratory-related quality-of-life (greater disease burden), and season may help identify patients who will re-exacerbate within 90 days of an AECOPD. Severe AECOPDs and winter AECOPDs are likely to be prolonged and may require close monitoring.
Collapse
Affiliation(s)
- Wilhelmine H Meeraus
- GlaxoSmithKline plc., Epidemiology – Value, Evidence and Outcomes, Middlesex, UK
| | - Hana Mullerova
- GlaxoSmithKline plc., Epidemiology – Value, Evidence and Outcomes, Middlesex, UK
| | - Céline El Baou
- GlaxoSmithKline plc., Research and Development, Middlesex, UK
| | - Marion Fahey
- GlaxoSmithKline plc., Epidemiology – Value, Evidence and Outcomes, Middlesex, UK
| | - Edith M Hessel
- GlaxoSmithKline plc., Research and Development, Middlesex, UK
| | - William A Fahy
- GlaxoSmithKline plc., Research and Development, Middlesex, UK
| |
Collapse
|
105
|
Sivapalan P, Bikov A, Jensen JU. Using Blood Eosinophil Count as a Biomarker to Guide Corticosteroid Treatment for Chronic Obstructive Pulmonary Disease. Diagnostics (Basel) 2021; 11:236. [PMID: 33546498 PMCID: PMC7913607 DOI: 10.3390/diagnostics11020236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Treating patients hospitalised with acute exacerbations of chronic obstructive pulmonary disease (COPD) usually involves administering systemic corticosteroids. The many unwanted side effects associated with this treatment have led to increased interest in minimising the accumulated corticosteroid dose necessary to treat exacerbations. Studies have shown that short-term treatment with corticosteroids is preferred, and recent trials have shown that biomarkers can be used to further reduce exposure to corticosteroids. Interestingly, high eosinophil counts in patients with acute exacerbations of COPD are indicative of an eosinophilic phenotype with a distinct response to treatment with corticosteroids. In addition, post-hoc analysis of randomised control trials have shown that higher blood eosinophil counts at the start of the study predict a greater response to inhaled corticosteroids in stable COPD. In this review, we examine the studies on this topic, describe how blood eosinophil cell count may be used as a biomarker to guide treatment with corticosteroids, and identify some relevant challenges.
Collapse
Affiliation(s)
- Pradeesh Sivapalan
- Department of Internal Medicine, Respiratory Medicine Section, Herlev-Gentofte Hospital, 2900 Hellerup, Denmark;
- Department of Internal Medicine, Zealand University Hospital, 4000 Roskilde, Denmark
| | - András Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK;
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - Jens-Ulrik Jensen
- Department of Internal Medicine, Respiratory Medicine Section, Herlev-Gentofte Hospital, 2900 Hellerup, Denmark;
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
106
|
Sadatsafavi M, McCormack J, Petkau J, Lynd LD, Lee TY, Sin DD. Should the number of acute exacerbations in the previous year be used to guide treatments in COPD? Eur Respir J 2021; 57:2002122. [PMID: 32855228 PMCID: PMC7876420 DOI: 10.1183/13993003.02122-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND In contemporary management of chronic obstructive pulmonary disease (COPD), the frequent exacerbator phenotype, based on a 12-month history of acute exacerbation of COPD (AECOPD), is a major determinant of therapeutic recommendations. However, there is considerable debate as to the stability of this phenotype over time. METHODS We used fundamental principles in time-to-event analysis to demonstrate that variation in the frequent exacerbator phenotype has two major sources: variability in the underlying AECOPD rate and randomness in the occurrence of individual AECOPDs. We re-analysed data from two large cohorts, the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study and the SubPopulations and InteRmediate OutcoMes In COPD Study (SPIROMICS), using a Bayesian model that separated these sources of variability. We then evaluated the stability of the frequent exacerbator phenotype based on these results. RESULTS In both cohorts, the pattern of AECOPDs strongly supported the presence of an individual-specific underlying AECOPD rate which is stable over time (Bayes Factor less than 0.001). Despite this, the observed AECOPD rate can vary markedly year-to-year within individual patients. For those with an underlying rate of 0.8-3.1 events·year-1, the frequent exacerbator classification, based on the observed rate, changes more than 30% of the time over two consecutive years due to chance alone. This value increases to more than 45% for those with an underlying rate of 1.2-2.2 events·year-1. CONCLUSIONS While the underlying AECOPD rate is a stable trait, the frequent exacerbator phenotype based on observed AECOPD patterns is unstable, so much so that its suitability for informing treatment decisions should be questioned. Whether evaluating AECOPD history over longer durations or using multivariate prediction models can result in more stable phenotyping needs to be evaluated.
Collapse
Affiliation(s)
- Mohsen Sadatsafavi
- Respiratory Evaluation Sciences Program, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation and Dept of Medicine (Respirology), University of British Columbia, Vancouver, BC, Canada
| | - James McCormack
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - John Petkau
- Dept of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Larry D. Lynd
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Centre for Health Evaluation and Outcome Sciences, Providence Healthcare Research Institute, Vancouver, BC, Canada
| | - Tae Yoon Lee
- Respiratory Evaluation Sciences Program, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Don D. Sin
- UBC Centre for Heart Lung Innovation and Dept of Medicine (Respirology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
107
|
Çankaya BY, Polat G, Tezcan A, Yalçın A, Sade R, Pirimoğlu RB, Karaman A, Kızıloğlu HA, Alper F, Akgün M. Evaluation of lung densitometric and volumetric changes in silicosis patients using three-dimensional software for multidetector CT and the relationship with profusion scores. Clin Radiol 2021; 76:393.e19-393.e24. [PMID: 33509607 DOI: 10.1016/j.crad.2020.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/24/2020] [Indexed: 11/25/2022]
Abstract
AIM To evaluate the density and volume changes in the lungs of silicosis patients and their relationship with the disease severity classification of the International Labor Organization (ILO). MATERIALS AND METHODS The multidetector computed tomography (CT) images of 44 patients diagnosed with silicosis and 32 controls that underwent thoracic CT due to trauma were evaluated. Patients with silicosis were divided into three categories according to the ILO classification. Data related to the total lung volume, total lung mean density, lung opacity score, percentage of lung high opacity, and mean density in the lower and upper lobes were obtained using three-dimensional (3D) software. RESULTS There was no significant difference between the total lung mean densities of the silicosis and control groups (p=0.213); however, a significant difference was observed between the two groups in terms of the total lung volume (p<0.0001). According to the ILO classification, there was a significant difference between the disease severity categories in relation to the percentage of lung high opacity (p=0.000005). A strong correlation was detected between disease severity and high opacity percentage (p<0.0001, r=0.804). According to the ILO classification, there was also a significant difference between disease severity categories in terms of the lung opacity score (p=0.000144), as well as a moderate correlation between disease severity and opacity score (p<0.0001, r=0.580). CONCLUSION Total lung volume is a CT finding that shows variation in exposure to crystalline silica. The percentage of high opacity determined using multidetector CT is an effective parameter in evaluating disease severity.
Collapse
Affiliation(s)
- B Y Çankaya
- Department of Radiology, Atatürk University School of Medicine, Atatürk University, 25240, Erzurum, Turkey.
| | - G Polat
- Department of Radiology, Atatürk University School of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - A Tezcan
- Department of Radiology, Atatürk University School of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - A Yalçın
- Department of Radiology, Atatürk University School of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - R Sade
- Department of Radiology, Atatürk University School of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - R B Pirimoğlu
- Department of Radiology, Atatürk University School of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - A Karaman
- Department of Radiology, Atatürk University School of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - H A Kızıloğlu
- Ömer Halisdemir Training and Research Hospital, Niğde, Turkey
| | - F Alper
- Department of Radiology, Atatürk University School of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - M Akgün
- Department of Pulmonary Diseases, Atatürk University School of Medicine, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
108
|
An Introduction to Advanced Lung Disease. Respir Med 2021. [DOI: 10.1007/978-3-030-81788-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
109
|
Inhaled Gas Magnetic Resonance Imaging: Advances, Applications, Limitations, and New Frontiers. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
110
|
Singhvi D, Bon J. CT Imaging and Comorbidities in COPD: Beyond Lung Cancer Screening. Chest 2021; 159:147-153. [PMID: 32835707 PMCID: PMC8256436 DOI: 10.1016/j.chest.2020.08.2053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/13/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
Comorbidities significantly contribute to morbidity, mortality, and health-care costs in individuals with COPD. Comorbidity prevalence does not always correlate with lung disease severity, and the elevated risk of certain comorbidities is often independent of shared risk factors such as tobacco burden. Although COPD management guidelines recognize the importance of identifying and treating comorbidities as part of the comprehensive management of COPD patients, little guidance is provided regarding best screening practices. Whereas universal comorbidity screening in COPD patients is likely not cost-effective, targeted early screening and treatment in those at highest risk may have a significant impact on COPD outcomes. Recent studies suggest that certain radiographic features on thoracic imaging may serve as surrogate markers of comorbidity in patients with COPD. This review evaluates these studies in the context of the growing availability of chest CT scans in the lung cancer screening era and discusses how chest CT imaging can be leveraged to identify those COPD patients at highest risk for comorbid disease.
Collapse
Affiliation(s)
- Deepti Singhvi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Jessica Bon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; VA Pittsburgh Healthcare System, Pittsburgh, PA.
| |
Collapse
|
111
|
Han MK, Criner GJ, Dransfield MT, Halpin DM, Jones CE, Kilbride S, Lange P, Lettis S, Lipson DA, Lomas DA, Martin N, Martinez FJ, Wise RA, Naya IP, Singh D. Prognostic value of clinically important deterioration in COPD: IMPACT trial analysis. ERJ Open Res 2021; 7:00663-2020. [PMID: 33718490 PMCID: PMC7938047 DOI: 10.1183/23120541.00663-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Clinically important deterioration (CID) is a multicomponent measure for assessing disease worsening in chronic obstructive pulmonary disease (COPD). This analysis investigated the prognostic value of a CID event on future clinical outcomes and the effect of single-inhaler triple versus dual therapy on reducing CID risk in patients in the IMPACT trial. METHODS IMPACT was a phase III, double-blind, 52-week, multicentre trial. Patients with symptomatic COPD and at least one moderate/severe exacerbation in the prior year were randomised 2:2:1 to fluticasone furoate/umeclidinium/vilanterol (FF/UMEC/VI) 100/62.5/25 µg, FF/VI 100/25 µg or UMEC/VI 62.5/25 µg. CID at the time-point of interest was defined as a moderate/severe exacerbation, ≥100 mL decrease in trough forced expiratory volume in 1 s or deterioration in health status (increase of ≥4.0 units in St George's Respiratory Questionnaire total score or increase of ≥2.0 units in COPD Assessment Test score) from baseline. A treatment-independent post hoc prognostic analysis compared clinical outcomes up to week 52 in patients with/without a CID by week 28. A prospective analysis evaluated time to first CID with each treatment. RESULTS Patients with a CID by week 28 had significantly increased exacerbation rates after week 28, smaller improvements in lung function and health status at week 52 (all p<0.001), and increased risk of all-cause mortality after week 28 versus patients who were CID-free. FF/UMEC/VI significantly reduced CID risk versus dual therapies (all p<0.001). CONCLUSIONS Prevention of short-term disease worsening was associated with better long-term clinical outcomes. FF/UMEC/VI reduced CID risk versus dual therapies; this effect may improve long-term prognosis in this population.
Collapse
Affiliation(s)
- MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gerard J. Criner
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mark T. Dransfield
- Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David M.G. Halpin
- Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | | | - Peter Lange
- Section of Epidemiology, Dept of Public Health, University of Copenhagen, Copenhagen, Denmark
- Medical Dept, Herlev Gentofte Hospital, Herlev, Denmark
| | | | - David A. Lipson
- GSK, Collegeville, PA, USA
- Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Neil Martin
- GSK, Brentford, UK
- Institute for Lung Health, University of Leicester, Leicester, UK
| | | | - Robert A. Wise
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ian P. Naya
- GSK, Brentford, UK
- These authors contributed equally
| | - Dave Singh
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
- These authors contributed equally
| |
Collapse
|
112
|
Lv MY, Qiang LX, Li ZH, Jin SD. The lower the eosinophils, the stronger the inflammatory response? The relationship of different levels of eosinophils with the degree of inflammation in acute exacerbation chronic obstructive pulmonary disease (AECOPD). J Thorac Dis 2021; 13:232-243. [PMID: 33569203 PMCID: PMC7867852 DOI: 10.21037/jtd-20-2178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Blood eosinophil levels are a known marker for the effects of therapy in patients with chronic obstructive pulmonary disease (COPD). This study aimed to clarify the cutoff values for blood eosinophils (EOS) to predict exacerbation risk and prognosis of acute exacerbation COPD (AECOPD) and investigate their correlation using inflammatory indicators and clinical characteristics. Methods In this observational study of 174 patients with AECOPD, we assessed the relationship between EOS and COPD. According to the percentage of blood EOS, patients were grouped into two groups (Group 1: EOS <2%, n=98; Group 2: EOS ≥2%, n=76), and Group 2 was further divided into Group A (2%≤ EOS <4%) and Group B (EOS ≥4%) based on a cutoff value of 4%. Patients received standardized treatment after collection of peripheral blood specimen. Associations of EOS with laboratory indicators before any treatment in hospital and with clinical data were compared. Results Patients in Group 1 showed significantly severe inflammation, worse pulmonary function, longer length of stay (LOS) (P<0.001), higher mMRC score (P<0.05), higher CAT score (P<0.05), higher rates of mortality (P<0.05), and greater noninvasive mechanical ventilation usage (P<0.05) compared with Group 2. Intriguingly, the CRP, total mMRC and CAT scores of patients in Group A were significantly lower than those in Group B (P<0.001; P<0.01; P<0.05, respectively). Pearson correlation analysis showed that a low percentage blood eosinophil level was negatively associated with higher WBC count (r=–0.155, P<0.05), NLR (r=–0.227, P<0.01) and CRP (r=–0.308, P<0.01). Conclusions Different cutoff values for percentage blood EOS might be useful biomarkers for predicting the severity of exacerbation and prognosis of inpatients with AECOPD.
Collapse
Affiliation(s)
- Mei-Yu Lv
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-Xia Qiang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi-Heng Li
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shou-De Jin
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
113
|
Gromova M, Vaggelas A, Dallmann G, Seimetz D. Biomarkers: Opportunities and Challenges for Drug Development in the Current Regulatory Landscape. Biomark Insights 2020; 15:1177271920974652. [PMID: 33343195 PMCID: PMC7727038 DOI: 10.1177/1177271920974652] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Biomarkers are widely used at every stage of drug discovery and development. Utilisation of biomarkers has a potential to make drug discovery, development and approval processes more efficient. An overview of the current global regulatory landscape is presented in this article with particular emphasis on the validation and qualification of biomarkers, as well as legal framework for companion diagnostics. Furthermore, this article shows how the number of approved drugs with at least 1 biomarker used during development (biomarker acceptance) is affected by the recent advances in the biomarker regulations. More than half of analysed approvals were supported by biomarker data and there has been a slight increase in acceptance of biomarkers in recent years, even though the growth is not continuous. For certain pharmacotherapeutic groups, approvals with biomarkers are more common than without. Examples include immunosuppressants, immunostimulants, drugs used in diabetes, antithrombotic drugs, antineoplastic agents and antivirals. As a conclusion, potential benefits, challenges and opportunities of using biomarkers in drug discovery and development in the current regulatory landscape are summarised and discussed.
Collapse
|
114
|
Karakioulaki M, Papakonstantinou E, Stolz D. Extracellular matrix remodelling in COPD. Eur Respir Rev 2020; 29:29/158/190124. [PMID: 33208482 DOI: 10.1183/16000617.0124-2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/16/2020] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) of the lung plays several important roles in lung function, as it offers a low resistant pathway that allows the exchange of gases, provides compressive strength and elasticity that supports the fragile alveolar-capillary intersection, controls the binding of cells with growth factors and cell surface receptors and acts as a buffer against retention of water.COPD is a chronic inflammatory respiratory condition, characterised by various conditions that result in progressive airflow limitation. At any stage in the course of the disease, acute exacerbations of COPD may occur and lead to accelerated deterioration of pulmonary function. A key factor of COPD is airway remodelling, which refers to the serious alterations of the ECM affecting airway wall thickness, resistance and elasticity. Various studies have shown that serum biomarkers of ECM turnover are significantly associated with disease severity in patients with COPD and may serve as potential targets to control airway inflammation and remodelling in COPD. Unravelling the complete molecular composition of the ECM in the diseased lungs will help to identify novel biomarkers for disease progression and therapy.
Collapse
Affiliation(s)
- Meropi Karakioulaki
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| | - Eleni Papakonstantinou
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland.,Dept of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daiana Stolz
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| |
Collapse
|
115
|
Jolliffe DA, Stefanidis C, Wang Z, Kermani NZ, Dimitrov V, White JH, McDonough JE, Janssens W, Pfeffer P, Griffiths CJ, Bush A, Guo Y, Christenson S, Adcock IM, Chung KF, Thummel KE, Martineau AR. Vitamin D Metabolism Is Dysregulated in Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2020; 202:371-382. [PMID: 32186892 DOI: 10.1164/rccm.201909-1867oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rationale: Vitamin D deficiency is common in patients with asthma and chronic obstructive pulmonary disease (COPD). Low 25-hydroxyvitamin D (25[OH]D) levels may represent a cause or a consequence of these conditions.Objectives: To determine whether vitamin D metabolism is altered in asthma or COPD.Methods: We conducted a longitudinal study in 186 adults to determine whether the 25(OH)D response to six oral doses of 3 mg vitamin D3, administered over 1 year, differed between those with asthma or COPD versus control subjects. Serum concentrations of vitamin D3, 25(OH)D3, and 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3) were determined presupplementation and postsupplementation in 93 adults with asthma, COPD, or neither condition, and metabolite-to-parent compound molar ratios were compared between groups to estimate hydroxylase activity. Additionally, we analyzed 14 datasets to compare expression of 1α,25(OH)2D3-inducible gene expression signatures in clinical samples taken from adults with asthma or COPD versus control subjects.Measurements and Main Results: The mean postsupplementation 25(OH)D increase in participants with asthma (20.9 nmol/L) and COPD (21.5 nmol/L) was lower than in control subjects (39.8 nmol/L; P = 0.001). Compared with control subjects, patients with asthma and COPD had lower molar ratios of 25(OH)D3-to-vitamin D3 and higher molar ratios of 1α,25(OH)2D3-to-25(OH)D3 both presupplementation and postsupplementation (P ≤ 0.005). Intergroup differences in 1α,25(OH)2D3-inducible gene expression signatures were modest and variable if statistically significant.Conclusions: Attenuation of the 25(OH)D response to vitamin D supplementation in asthma and COPD associated with reduced molar ratios of 25(OH)D3-to-vitamin D3 and increased molar ratios of 1α,25(OH)2D3-to-25(OH)D3 in serum, suggesting that vitamin D metabolism is dysregulated in these conditions.
Collapse
Affiliation(s)
- David A Jolliffe
- Asthma UK Centre for Applied Research, Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Christos Stefanidis
- Asthma UK Centre for Applied Research, Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Zhican Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | - Vassil Dimitrov
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John H White
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, Leuven, Belgium; and
| | - Paul Pfeffer
- Asthma UK Centre for Applied Research, Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Christopher J Griffiths
- Asthma UK Centre for Applied Research, Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrew Bush
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Yike Guo
- Data Science Institute, William Penney Laboratory and
| | - Stephanie Christenson
- Division of Pulmonary, Critical Care, Allergy, & Sleep Medicine, Department of Medicine, University of California, San Francisco, California
| | - Ian M Adcock
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Adrian R Martineau
- Asthma UK Centre for Applied Research, Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
116
|
van 't Hul AJ, Koolen EH, Antons JC, de Man M, Djamin RS, In 't Veen JCCM, Simons SO, van den Heuvel M, van den Borst B, Spruit MA. Treatable traits qualifying for nonpharmacological interventions in COPD patients upon first referral to a pulmonologist: the COPD sTRAITosphere. ERJ Open Res 2020; 6:00438-2020. [PMID: 33263050 PMCID: PMC7682701 DOI: 10.1183/23120541.00438-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction The present study assessed the prevalence of nine treatable traits (TTs) pinpointing nonpharmacological interventions in patients with COPD upon first referral to a pulmonologist, how these TTs co-occurred and whether and to what extent the TTs increased the odds having a severely impaired health status. Methods Data were collected from a sample of 402 COPD patients. A second sample of 381 patients with COPD was used for validation. Nine TTs were assessed: current smoking status, activity-related dyspnoea, frequent exacerbations <12 months, severe fatigue, depressed mood, poor physical capacity, low physical activity, poor nutritional status and a low level of self-management activation. For each TT the odds ratio (OR) of having a severe health status impairment was calculated. Furthermore, a graphic representation was created, the COPD sTRAITosphere, to visualise TTs prevalence and OR. Results On average 3.9±2.0 TTs per patient were observed. These TTs occurred relatively independently of each other and coexisted in 151 unique combinations. A significant positive correlation was found between the number of TTs and Clinical COPD Questionnaire total score (r=0.58; p<0.001). Patients with severe fatigue (OR: 8.8), severe activity-related dyspnoea (OR: 5.8) or depressed mood (OR: 4.2) had the highest likelihood of having a severely impaired health status. The validation sample corroborated these findings. Conclusions Upon first referral to a pulmonologist, COPD patients show multiple TTs indicating them to several nonpharmacological interventions. These TTs coexist in many different combinations, are relatively independent and increase the likelihood of having a severely impaired health status.
Collapse
Affiliation(s)
- Alex J van 't Hul
- Radboud University Medical Center, Radboud Institute for Health Sciences, Dept of Respiratory Diseases, Nijmegen, The Netherlands
| | - Eleonore H Koolen
- Radboud University Medical Center, Radboud Institute for Health Sciences, Dept of Respiratory Diseases, Nijmegen, The Netherlands
| | - Jeanine C Antons
- Radboud University Medical Center, Radboud Institute for Health Sciences, Dept of Respiratory Diseases, Nijmegen, The Netherlands
| | - Marianne de Man
- Bernhoven, Dept of Respiratory Diseases, Uden, The Netherlands
| | - Remco S Djamin
- Dept of Respiratory Diseases, Amphia Hospital, Breda, The Netherlands
| | - Johannes C C M In 't Veen
- Dept of Respiratory Diseases, STZ Centre of Excellence for Asthma & COPD, Franciscus Gasthuis & Vlietland Hospital, Rotterdam, The Netherlands
| | - Sami O Simons
- Dept of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Michel van den Heuvel
- Radboud University Medical Center, Radboud Institute for Health Sciences, Dept of Respiratory Diseases, Nijmegen, The Netherlands
| | - Bram van den Borst
- Radboud University Medical Center, Radboud Institute for Health Sciences, Dept of Respiratory Diseases, Nijmegen, The Netherlands
| | - Martijn A Spruit
- Dept of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands.,Dept of Research and Development, CIRO+, Horn, The Netherlands.,REVAL-Rehabilitation Research Center, BIOMED-Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
117
|
Moll M, Lutz SM, Ghosh AJ, Sakornsakolpat P, Hersh CP, Beaty TH, Dudbridge F, Tobin MD, Mittleman MA, Silverman EK, Hobbs BD, Cho MH. Relative contributions of family history and a polygenic risk score on COPD and related outcomes: COPDGene and ECLIPSE studies. BMJ Open Respir Res 2020; 7:e000755. [PMID: 33239407 PMCID: PMC7689586 DOI: 10.1136/bmjresp-2020-000755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Family history is a risk factor for chronic obstructive pulmonary disease (COPD). We previously developed a COPD risk score from genome-wide genetic markers (Polygenic Risk Score, PRS). Whether the PRS and family history provide complementary or redundant information for predicting COPD and related outcomes is unknown. METHODS We assessed the predictive capacity of family history and PRS on COPD and COPD-related outcomes in non-Hispanic white (NHW) and African American (AA) subjects from COPDGene and ECLIPSE studies. We also performed interaction and mediation analyses. RESULTS In COPDGene, family history and PRS were significantly associated with COPD in a single model (PFamHx <0.0001; PPRS<0.0001). Similar trends were seen in ECLIPSE. The area under the receiver operator characteristic curve for a model containing family history and PRS was significantly higher than a model with PRS (p=0.00035) in NHWs and a model with family history (p<0.0001) alone in NHWs and AAs. Both family history and PRS were significantly associated with measures of quantitative emphysema and airway thickness. There was a weakly positive interaction between family history and the PRS under the additive, but not multiplicative scale in NHWs (relative excess risk due to interaction=0.48, p=0.04). Mediation analyses found that a significant proportion of the effect of family history on COPD was mediated through PRS in NHWs (16.5%, 95% CI 9.4% to 24.3%), but not AAs. CONCLUSION Family history and the PRS provide complementary information for predicting COPD and related outcomes. Future studies can address the impact of obtaining both measures in clinical practice.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sharon M Lutz
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Pilgrim Health Care, Wellesley, Massachusetts, USA
| | - Auyon J Ghosh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Phuwanat Sakornsakolpat
- Department of Medicine, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok, Bangkok, Thailand
| | - Craig P Hersh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Terri H Beaty
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Frank Dudbridge
- Health Sciences, University of Leicester, Leicester, Leicestershire, UK
| | - Martin D Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, Leicestershire, UK
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Murray A Mittleman
- Harvard Medical School, Boston, Massachusetts, USA
- Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
118
|
Kim W, Prokopenko D, Sakornsakolpat P, Hobbs BD, Lutz SM, Hokanson JE, Wain LV, Melbourne CA, Shrine N, Tobin MD, Silverman EK, Cho MH, Beaty TH. Genome-Wide Gene-by-Smoking Interaction Study of Chronic Obstructive Pulmonary Disease. Am J Epidemiol 2020; 190:875-885. [PMID: 33106845 PMCID: PMC8096488 DOI: 10.1093/aje/kwaa227] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/20/2023] Open
Abstract
Risk of chronic obstructive pulmonary disease (COPD) is determined by both cigarette smoking and genetic susceptibility, but little is known about gene-by-smoking interactions. We performed a genome-wide association analysis of 179,689 controls and 21,077 COPD cases from UK Biobank subjects of European ancestry recruited from 2006 to 2010, considering genetic main effects and gene-by-smoking interaction effects simultaneously (2-degrees-of-freedom (df) test) as well as interaction effects alone (1-df interaction test). We sought to replicate significant results in COPDGene (United States, 2008-2010) and SpiroMeta Consortium (multiple countries, 1947-2015) data. We considered 2 smoking variables: 1) ever/never and 2) current/noncurrent. In the 1-df test, we identified 1 genome-wide significant locus on 15q25.1 (cholinergic receptor nicotinic β4 subunit, or CHRNB4) for ever- and current smoking and identified PI*Z allele (rs28929474) of serpin family A member 1 (SERPINA1) for ever-smoking and 3q26.2 (MDS1 and EVI1 complex locus, or MECOM) for current smoking in an analysis of previously reported COPD loci. In the 2-df test, most of the significant signals were also significant for genetic marginal effects, aside from 16q22.1 (sphingomyelin phosphodiesterase 3, or SMPD3) and 19q13.2 (Egl-9 family hypoxia inducible factor 2, or EGLN2). The significant effects at 15q25.1 and 19q13.2 loci, both previously described in prior genome-wide association studies of COPD or smoking, were replicated in COPDGene and SpiroMeta. We identified interaction effects at previously reported COPD loci; however, we failed to identify novel susceptibility loci.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Terri H Beaty
- Correspondence to Dr. Terri H. Beaty, Department of Epidemiology, Johns Hopkins School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 (e-mail: )
| |
Collapse
|
119
|
Dolliver WR, Diaz AA. Advances in Chronic Obstructive Pulmonary Disease Imaging. ACTA ACUST UNITED AC 2020; 6:128-143. [PMID: 33758787 DOI: 10.23866/brnrev:2019-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chest computed tomography (CT) imaging is a useful tool that provides in vivo information regarding lung structure. Imaging has contributed to a better understanding of COPD, allowing for the detection of early structural changes and the quantification of extra-pulmonary structures. Novel CT imaging techniques have provided insight into the progression of the main COPD subtypes, such as emphysema and small airway disease. This article serves as a review of new information relevant to COPD imaging. CT abnormalities, such as emphysema and loss of airways, are present even in smokers who do not meet the criteria for COPD and in those with mild-to-moderate disease. Subjects with mild-to-moderate COPD, with the highest loss of airways, also experience the highest decline in lung function. Extra-pulmonary manifestations of COPD, such as right ventricle enlargement and low muscle mass measured on CT, are associated with increased risk for all-cause mortality. CT longitudinal data has also given insight into the progression of COPD. Mechanically affected areas of lung parenchyma adjacent to emphysematous areas are associated with a greater decline in FEV1. Subjects with the greatest percentage of small airway disease, as measured on matched inspiratory-expiratory CT scan, also present with the greatest decline in lung function.
Collapse
Affiliation(s)
- Wojciech R Dolliver
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alejandro A Diaz
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
120
|
Cosío BG, Pascual-Guardia S, Borras-Santos A, Peces-Barba G, Santos S, Vigil L, Soler-Cataluña JJ, Martínez-González C, Casanova C, Marcos PJ, Alvarez CJ, López-Campos JL, Gea J, Garcia-Aymerich J, Molina J, Román M, Moises J, Szabo V, Reagan EA, San José Estépar R, Washko G, Agustí A, Faner R. Phenotypic characterisation of early COPD: a prospective case-control study. ERJ Open Res 2020; 6:00047-2020. [PMID: 33043045 PMCID: PMC7533304 DOI: 10.1183/23120541.00047-2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022] Open
Abstract
The phenotypic characteristics of chronic obstructive pulmonary disease (COPD) in individuals younger than 50 years of age (early COPD) are not well defined. This prospective, multicentre, case–control study sought to describe these characteristics and compare them with those of smokers (≥10 pack-years) of similar age with normal spirometry (controls). We studied 92 cases (post-bronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) <0.7) and 197 controls. Results were contrasted with participants with similar inclusion criteria recruited into the ECLIPSE and COPDGene cohorts. Cases had moderate airflow limitation (FEV1 71.3±20.8%) but were often symptomatic, used healthcare resources frequently, had air trapping (residual volume 150.6±55.5% ref.), had reduced diffusing capacity (84.2±20.7% ref.) and had frequent evidence of computed tomography (CT) emphysema (61%). Of note, less than half of cases (46%) had been previously diagnosed with COPD. Interestingly, they also often reported a family history of respiratory diseases and had been hospitalised because of respiratory problems before the age of 5 years more frequently than controls (12% versus 3%, p=0.009). By and large, these observations were reproduced when available in the ECLIPSE and COPDGene cohorts. These results show that early COPD is associated with substantial health impact and significant structural and functional abnormalities, albeit it is often not diagnosed (hence, treated). The fact that a sizeable proportion of patients with early COPD report a family history of respiratory diseases and/or early-life events (including hospitalisations before the age of 5 years) renders further support to the possibility of early-life origin of COPD. Early COPD is associated with substantial health impact, and structural and functional abnormalities, albeit it is often not diagnosed and hence, not treated. It is frequently associated with family history of respiratory diseases and early-life events.https://bit.ly/2ZtoRkp
Collapse
Affiliation(s)
- Borja G Cosío
- Servicio de Neumología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Sergi Pascual-Guardia
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Servei de Pneumologia, Hospital del Mar - IMIM, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Germán Peces-Barba
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Fundación Jiménez Díaz, Hospital Universitario, Grupo Quirón, Madrid, Spain
| | - Salud Santos
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Servicio de Neumología, Hospital Universitario de Bellvitge, Barcelona, Spain.,IDIBELL, Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Vigil
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Servei de Pneumologia, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Juan José Soler-Cataluña
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Servicio de Neumología, Hospital Arnau de Vilanova-LLiria, Valencia, Spain
| | | | - Ciro Casanova
- Servicio de Neumología-Unidad de Investigación Hospital Universitario La Candelaria, Universidad de La Laguna, Tenerife, Spain
| | - Pedro J Marcos
- Dirección de Procesos Asistenciales, Servicio de Neumología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Area Sanitaria de A Coruña, Sergas, Universidade da Coruña, A Coruña, Spain
| | - Carlos J Alvarez
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Servicio Neumología, HU 12 de Octubre, Madrid, Spain.,Departamento de Medicina, Facultad Medicina UCM, Madrid, Spain
| | - José Luis López-Campos
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - Joaquim Gea
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Servei de Pneumologia, Hospital del Mar - IMIM, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Judith Garcia-Aymerich
- Universitat Pompeu Fabra, Barcelona, Spain.,ISGlobal, Barcelona, Spain.,CIBER de Epidemiología y Salud Pública, Madrid, Spain
| | - Jesús Molina
- Centro de Salud Francia, DAO, Madrid, Grupo de Respiratorio semFYC, Madrid, Spain
| | - Miguel Román
- Centro de Salud de Son Pisa, Unidad de investigación en enfermedades respiratorias crónicas en atención primaria, IdISBa, Palma de Mallorca, Spain
| | - Jorge Moises
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut Respiratori, Hospital Clinic, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacio August Pi i Sunyer, Barcelona, Spain
| | - Viktoria Szabo
- Institut d'Investigacio August Pi i Sunyer, Barcelona, Spain
| | | | - Raúl San José Estépar
- Applied Chest Imaging Laboratory, Dept of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - George Washko
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Alvar Agustí
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut Respiratori, Hospital Clinic, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacio August Pi i Sunyer, Barcelona, Spain
| | - Rosa Faner
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacio August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
121
|
Sand JMB, Rønnow SR, Langholm LL, Karsdal MA, Manon-Jensen T, Tal-Singer R, Miller BE, Vestbo J, Leeming DJ. Combining biomarkers of clot resolution and alveolar basement membrane destruction predicts mortality in the ECLIPSE COPD cohort. Respir Med 2020; 173:106185. [PMID: 33035747 PMCID: PMC7530580 DOI: 10.1016/j.rmed.2020.106185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by abnormal epithelial repair resulting in a hypercoagulable state with intra-alveolar accumulation of fibrin and alveolar basement membrane destruction. This study aimed to investigate if the combination of two serological biomarkers evaluating these pathological processes could improve the prediction of mortality risk compared to single biomarkers. METHODS Matrix metalloproteinase-mediated degradation of the type IV collagen α3 chain (C4Ma3), located in the alveolar basement membrane, and plasmin-mediated degradation of crosslinked fibrin (X-FIB), an end-product of fibrinogen, were assessed serologically in a subset of the ECLIPSE cohort (n = 982). Biomarker data were dichotomized into high versus low at the median. Cox regression and Kaplan-Meier curves were used to analyze the predictive value of having one or two high biomarkers for all-cause mortality over two years. RESULTS COPD participants with high levels of two biomarkers were at significantly higher risk of all-cause mortality with a hazard ratio of 7.66 (95% CI 1.75-33.48; p = 0.007) while participants with one high biomarker were not at significantly higher risk (HR 3.79 [95% CI 0.85-16.94]; p = 0.08). CONCLUSIONS A combination of serological biomarkers of alveolar basement membrane destruction and clot resolution was predictive of all-cause mortality in COPD. The combination of two different pathological aspects may strengthen prognostic accuracy and could be used in conjunction with clinical assessment to guide treatment decisions.
Collapse
Affiliation(s)
| | - Sarah R Rønnow
- Nordic Bioscience A/S, Herlev, Denmark; University of Southern Denmark, The Faculty of Health Science, Odense, Denmark
| | | | | | | | | | | | - Jørgen Vestbo
- Division of Infection Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | | |
Collapse
|
122
|
Vestbo J, Janson C, Nuevo J, Price D. Observational studies assessing the pharmacological treatment of obstructive lung disease: strengths, challenges and considerations for study design. ERJ Open Res 2020; 6:00044-2020. [PMID: 33083435 PMCID: PMC7553106 DOI: 10.1183/23120541.00044-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/01/2020] [Indexed: 11/05/2022] Open
Abstract
Randomised controlled trials (RCTs) are the gold standard for evaluating treatment efficacy in patients with obstructive lung disease. However, due to strict inclusion criteria and the conditions required for ascertaining statistical significance, the patients included typically represent as little as 5% of the general obstructive lung disease population. Thus, studies in broader patient populations are becoming increasingly important. These can be randomised effectiveness trials or observational studies providing data on real-world treatment effectiveness and safety data that complement efficacy RCTs. In this review we describe the features associated with the diagnosis of asthma and chronic obstructive pulmonary disease (COPD) in the real-world clinical practice setting. We also discuss how RCTs and observational studies have reported opposing outcomes with several treatments and inhaler devices due to differences in study design and the variations in patients recruited by different study types. Whilst observational studies are not without weaknesses, we outline recently developed tools for defining markers of quality of observational studies. We also examine how observational studies are capable of providing valuable insights into disease mechanisms and management and how they are a vital component of research into obstructive lung disease. As we move into an era of personalised medicine, recent observational studies, such as the NOVEL observational longiTudinal studY (NOVELTY), have the capacity to provide a greater understanding of the value of a personalised healthcare approach in patients in clinical practice by focussing on standardised outcome measures of patient-reported outcomes, physician assessments, airway physiology, and blood and airway biomarkers across both primary and specialist care.
Collapse
Affiliation(s)
- Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Christer Janson
- Dept of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | | | - David Price
- Observational and Pragmatic Research Institute, Singapore
- Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
123
|
Zhou A, Zhou Z, Deng D, Zhao Y, Duan J, Cheng W, Liu C, Chen P. The Value of FENO Measurement for Predicting Treatment Response in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:2257-2266. [PMID: 33061343 PMCID: PMC7522317 DOI: 10.2147/copd.s263673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Fractional exhaled nitric oxide (FENO) has been shown to be a marker of airway inflammation in various pulmonary diseases, including chronic obstructive pulmonary disease (COPD). In this study, we assessed the FENO level in patients with acute exacerbations of COPD (AECOPD) and analyzed the predictive value of the FENO level for treatment response. METHODS Demographic data were collected at admission. FENO, lung function, blood gases, COPD Assessment Test (CAT), and modified Medical Research Council (mMRC) scores were measured at admission and on day 7. At the second visit, the patients were asked to report their health status; scores ranged from 1 to 5, representing "much better", "slightly better", "no change", "slightly worse", and "much worse", respectively. The treatment response was evaluated based on the patient's reported health status (responders were those who reported much better and slightly better) and lung function (responders were those who presented an increase in FEV1 over 200 mL). RESULTS A total of 182 patients were recruited into the analysis. The FENO level positively correlated with an increase in FEV1 and FEV1% (r = 0.291, p < 0.001 and r = 0.205, p = 0.005, respectively), but negatively correlated with a decrease in the COPD Assessment Test (CAT) score (r = -0.197, p = 0.008) and patient-reported health status (rho = -0.408, p<0.001). An inverse correlation was observed between FENO concentrations at admission and the length of hospital stay. The cut-off point for differentiating responders, identified by health status, was 18 ppb, with the sensitivity being 89.7% and specificity 88.9%. CONCLUSION FENO levels, determined at hospital admission, are potential to predict the overall treatment response in AECOPD patients, including remission in subjective patient-reported health statuses and, also, improvements in lung function. REGISTRY NUMBER ChiCTR-ROC-16,009,087 (http://www.chictr.org.cn/).
Collapse
Affiliation(s)
- Aiyuan Zhou
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Zijing Zhou
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Dingding Deng
- Department of Respiratory Medicine, The First Affiliated People’s Hospital, Shaoyang College, Shaoyang, Hunan422000, People’s Republic of China
| | - Yiyang Zhao
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Jiaxi Duan
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Wei Cheng
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Cong Liu
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan410011, People’s Republic of China
| |
Collapse
|
124
|
Oshagbemi OA, Odiba JO, Daniel A, Yunusa I. Absolute Blood Eosinophil Counts to Guide Inhaled Corticosteroids Therapy Among Patients with COPD: Systematic Review and Meta-analysis. Curr Drug Targets 2020; 20:1670-1679. [PMID: 31393244 DOI: 10.2174/1389450120666190808141625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2019 recommends the use of absolute blood eosinophil count as a guide for the escalation and de-escalation of inhaled corticosteroids (ICS) in the pharmacological management of patients with chronic obstructive pulmonary disease (COPD). We evaluated the risk of moderate or severe exacerbations among patients escalating and de-escalating ICS therapy by absolute blood eosinophil thresholds in this systematic review. METHODS Through a comprehensive literature search of Pubmed/MEDLINE, EMBASE, and clinical trial sites up to April 2019, we identified relevant studies. We used generic inverse variance method with fixed-effects estimates to compare the risk of moderate or severe exacerbations among COPD patients with elevated blood eosinophil counts exposed to inhaled corticosteroids (ICS) versus non-ICS treatments groups expressed as risk ratios. RESULTS Ten studies (8 randomised control trials and 2 observational studies) were included, with a total of 85,059 COPD patients. In our pooled analysis, we found an overall reduction in risk of moderate or severe exacerbations in patients with absolute blood eosinophil thresholds ranging from ≥ 100 to ≥ 340 cells/µL among patients escalating ICS (RR, 0.77, 95% CI, 0.73-0.81). For studies evaluating the effects of de-escalation of ICS on moderate to severe exacerbations using blood eosinophil thresholds of ≥ 300 to ≥ 340 cells/µL had an increased risk of moderate or severe exacerbations following the de-escalation of ICS (RR, 1.66, 95% CI, 1.31-2.10). CONCLUSION This study confirms the validity of the recommended absolute blood eosinophil count thresholds for the escalation and de-escalation of ICS among COPD patients. However, this recommendation is for COPD patients with prior exacerbations rather than among newly diagnosed COPD patients as observed in this study. COPD patients with current or past history of asthma represent a unique phenotypic group which should be further evaluated.
Collapse
Affiliation(s)
- Olorunfemi A Oshagbemi
- Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University, Netherlands
| | - Jephthah O Odiba
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | | | - Ismaeel Yunusa
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| |
Collapse
|
125
|
Matheson AM, Parraga G. Machine Learning Predictions of COPD Mortality: Computational Hide and Seek. Chest 2020; 158:846-847. [PMID: 32892878 DOI: 10.1016/j.chest.2020.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/28/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Alexander M Matheson
- Department of Medical Biophysics and Robarts Research Institute, Western University, London, Canada
| | - Grace Parraga
- Department of Medical Biophysics and Robarts Research Institute, Western University, London, Canada.
| |
Collapse
|
126
|
Milne S, Li X, Hernandez Cordero AI, Yang CX, Cho MH, Beaty TH, Ruczinski I, Hansel NN, Bossé Y, Brandsma CA, Sin DD, Obeidat M. Protective effect of club cell secretory protein (CC-16) on COPD risk and progression: a Mendelian randomisation study. Thorax 2020; 75:934-943. [PMID: 32839289 DOI: 10.1136/thoraxjnl-2019-214487] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The anti-inflammatory pneumoprotein club cell secretory protein-16 (CC-16) is associated with the clinical expression of chronic obstructive pulmonary disease (COPD). We aimed to determine if there is a causal effect of serum CC-16 level on the risk of having COPD and/or its progression using Mendelian randomisation (MR) analysis. METHODS We performed a genome-wide association meta-analysis for serum CC-16 in two COPD cohorts (Lung Health Study (LHS), n=3850 and ECLIPSE, n=1702). We then used the CC-16-associated single-nucleotide polymorphisms (SNPs) as instrumental variables in MR analysis to identify a causal effect of serum CC-16 on 'COPD risk' (ie, case status in the International COPD Genetics Consortium/UK-Biobank dataset; n=35 735 COPD cases, n=222 076 controls) and 'COPD progression' (ie, annual change in forced expiratory volume in 1 s in LHS and ECLIPSE). We also determined the associations between SNPs associated with CC-16 and gene expression using n=1111 lung tissue samples from the Lung Expression Quantitative Trait Locus Study. RESULTS We identified seven SNPs independently associated (p<5×10-8) with serum CC-16 levels; six of these were novel. MR analysis suggested a protective causal effect of increased serum CC-16 on COPD risk (MR estimate (SE) -0.11 (0.04), p=0.008) and progression (LHS only, MR estimate (SE) 7.40 (3.28), p=0.02). Five of the SNPs were also associated with gene expression in lung tissue (at false discovery rate <0.1) of several genes, including the CC-16-encoding gene SCGB1A1. CONCLUSION We have identified several novel genetic variants associated with serum CC-16 level in COPD cohorts. These genetic associations suggest a potential causal effect of serum CC-16 on the risk of having COPD and its progression, the biological basis of which warrants further investigation.
Collapse
Affiliation(s)
- Stephen Milne
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada .,Division of Respiratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Xuan Li
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana I Hernandez Cordero
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Chen Xi Yang
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Terri H Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nadia N Hansel
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec City, Québec, Canada
| | - Corry-Anke Brandsma
- University of Groningen Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Maen Obeidat
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
127
|
Adler D, Cavalot G, Brochard L. Comorbidities and Readmissions in Survivors of Acute Hypercapnic Respiratory Failure. Semin Respir Crit Care Med 2020; 41:806-816. [PMID: 32746468 DOI: 10.1055/s-0040-1710074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is defined by chronic airflow obstruction, but is presently considered as a complex, heterogeneous, and multicomponent disease in which comorbidities and extrapulmonary manifestations make important contributions to disease expression. COPD-related hospital readmission. In particular frequent intensive care unit (ICU) readmissions for exacerbations represent a major challenge and place a high burden on patient outcomes and health-related quality of life, as well as on the healthcare system.In this narrative review, we first address major and often undiagnosed comorbidities associated with COPD that could have an impact on hospital readmission after an index ICU admission for acute hypercapnic respiratory failure. Some guidance for treatment is discussed. Second, we present predictors of hospital and ICU readmission and discuss various strategies to reduce such events.There is a strong rationale to detect and treat major comorbidities early after index ICU admission for acute hypercapnic respiratory failure. It still remains unclear, however, if a comprehensive and holistic approach to comorbidities in frail patients surviving hypercapnic respiratory failure can efficiently reduce the readmission rate.
Collapse
Affiliation(s)
- Dan Adler
- Division of Lung Diseases, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Giulia Cavalot
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.,Division of Internal Medicine, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| |
Collapse
|
128
|
Rønnow SR, Langholm LL, Karsdal MA, Manon-Jensen T, Tal-Singer R, Miller BE, Vestbo J, Leeming DJ, Sand JMB. Endotrophin, an extracellular hormone, in combination with neoepitope markers of von Willebrand factor improves prediction of mortality in the ECLIPSE COPD cohort. Respir Res 2020; 21:202. [PMID: 32731895 PMCID: PMC7393910 DOI: 10.1186/s12931-020-01461-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Lung epithelial damage, activation of the wound healing cascade, and remodeling of the extracellular matrix (ECM) play a major role in chronic obstructive pulmonary disease (COPD). The pro-peptide of type VI collagen has been identified as the hormone endotrophin. Endotrophin has been shown to promote fibrosis and inflammation, whereas von Willebrand factor (VWF) is a crucial part of wound healing initiation. Here, we assessed the released and activated form of VWF and endotrophin, the pro-peptide of type VI collagen, serologically to investigate their association with mortality in COPD subjects alone or in combination. METHODS One thousand COPD patients with 3 years of clinical follow-up from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) cohort were included. Serum and heparin plasma were collected at 6 months and 1 year, respectively. Competitive ELISA utilizing specific monoclonal antibodies assessed endotrophin/type VI collagen formation (PRO-C6), VWF release (VWF-N), and activated VWF (VWF-A). Biomarker levels were dichotomized into high and low as defined by receiver operating characteristic (ROC) curves based on mortality data. Kaplan-Meier analysis was used to determine hazard ratios for all-cause mortality for biomarkers alone or in combination. RESULTS High levels of PRO-C6, VWF-A, and VWF-N have previously been shown to be individually associated with a higher risk of mortality with hazard ratios of 5.6 (95% CI 2.4-13.1), 3.7 (1.8-7.6), and 4.6 (2.2-9.6), respectively. The hazard ratios increased when combining the biomarkers: PRO-C6*VWFA 8.8 (2.8-27.7) and PRO-C6*VWFN 13.3 (5.6-32.0). Notably, PRO-C6*VWF-N increased more than 2-fold. CONCLUSION We demonstrated that by combining two pathological relevant aspects of COPD, tissue remodeling, and wound healing, the predictive value of biomarkers for mortality increased notably.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruce E Miller
- R&D Respiratory Therapy Area Unit, GlaxoSmithKline, King Of Prussia, PA, USA
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
129
|
Eosinophilia and parasitic infestations in patients with chronic obstructive pulmonary disease. Sci Rep 2020; 10:12490. [PMID: 32719497 PMCID: PMC7385115 DOI: 10.1038/s41598-020-69541-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023] Open
Abstract
Eosinophilia may guide response to inhaled corticosteroid treatment in patients with chronic obstructive pulmonary disease (COPD). This study aimed to determine prevalence of eosinophilia and parasitic infestations in these patients. We conducted a prospective cohort study between February 2019 and January 2020 and screened 107 stable COPD patients. A total of 77 subjects (84.4% men) were included. Age was 73.8 ± 8.9 years. Forced expiratory volume in 1 s was 66.5 ± 25.5%. Smoking history was 25.9 ± 18 pack-years. Comorbidities included cardiovascular disease (57.1%). Respiratory symptoms were assessed by modified Medical Research Council dyspnea score (1.6 ± 0.8), chronic obstructive pulmonary disease Assessment Test score (9.3 ± 4.9), and 6-min walking distance (317.2 ± 135.2 m). Patients with blood eosinophil count at least 100 cells/μL were 79.2% and at least 300 cells/μL were 33.8%. Intestinal parasites were not found. Significant positive correlations were found between high blood eosinophilia and some post-bronchodilator lung function parameters. In conclusion, eosinophilic COPD was not uncommon. No intestinal parasite was found in this population. This study suggests that stool parasite exam might be omitted for routine practice. Clinicaltrials.in.th Number: TCTR20191129002.
Collapse
|
130
|
Prokić I, Lahousse L, de Vries M, Liu J, Kalaoja M, Vonk JM, van der Plaat DA, van Diemen CC, van der Spek A, Zhernakova A, Fu J, Ghanbari M, Ala-Korpela M, Kettunen J, Havulinna AS, Perola M, Salomaa V, Lind L, Ärnlöv J, Stricker BHC, Brusselle GG, Boezen HM, van Duijn CM, Amin N. A cross-omics integrative study of metabolic signatures of chronic obstructive pulmonary disease. BMC Pulm Med 2020; 20:193. [PMID: 32677943 PMCID: PMC7364599 DOI: 10.1186/s12890-020-01222-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a common lung disorder characterized by persistent and progressive airflow limitation as well as systemic changes. Metabolic changes in blood may help detect COPD in an earlier stage and predict prognosis. Methods We conducted a comprehensive study of circulating metabolites, measured by proton Nuclear Magnetic Resonance Spectroscopy, in relation with COPD and lung function. The discovery sample consisted of 5557 individuals from two large population-based studies in the Netherlands, the Rotterdam Study and the Erasmus Rucphen Family study. Significant findings were replicated in 12,205 individuals from the Lifelines-DEEP study, FINRISK and the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) studies. For replicated metabolites further investigation of causality was performed, utilizing genetics in the Mendelian randomization approach. Results There were 602 cases of COPD and 4955 controls used in the discovery meta-analysis. Our logistic regression results showed that higher levels of plasma Glycoprotein acetyls (GlycA) are significantly associated with COPD (OR = 1.16, P = 5.6 × 10− 4 in the discovery and OR = 1.30, P = 1.8 × 10− 6 in the replication sample). A bi-directional two-sample Mendelian randomization analysis suggested that circulating blood GlycA is not causally related to COPD, but that COPD causally increases GlycA levels. Using the prospective data of the same sample of Rotterdam Study in Cox-regression, we show that the circulating GlycA level is a predictive biomarker of COPD incidence (HR = 1.99, 95%CI 1.52–2.60, comparing those in the highest and lowest quartile of GlycA) but is not significantly associated with mortality in COPD patients (HR = 1.07, 95%CI 0.94–1.20). Conclusions Our study shows that circulating blood GlycA is a biomarker of early COPD pathology.
Collapse
Affiliation(s)
- Ivana Prokić
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Lies Lahousse
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Bioanalysis, Pharmaceutical Care Unit, Ghent University, Ghent, Belgium
| | - Maaike de Vries
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jun Liu
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Marita Kalaoja
- Computational Medicine department, Center for Life Course Health Research, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Diana A van der Plaat
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Cleo C van Diemen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ashley van der Spek
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Genetics, School of Medicine,, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mika Ala-Korpela
- Computational Medicine department, Center for Life Course Health Research, Biocenter Oulu, University of Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Johannes Kettunen
- Computational Medicine department, Center for Life Course Health Research, Biocenter Oulu, University of Oulu, Oulu, Finland.,Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S Havulinna
- Finnish Institute for Health and Welfare, Helsinki, Finland.,Molecular Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markus Perola
- Finnish Institute for Health and Welfare, Helsinki, Finland.,Molecular Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Huddinge, Sweden.,School of Health and Social Sciences, Dalarna University, Falun, Sweden
| | - Bruno H C Stricker
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guy G Brusselle
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
131
|
Schroeder M, Benjamin N, Atienza L, Biswas C, Martin A, Whalen JD, Izquierdo Alonso JL, Riesco Miranda JA, Soler-Cataluña JJ, Huerta A, Ismaila AS. Cost-Effectiveness Analysis of a Once-Daily Single-Inhaler Triple Therapy for Patients with Chronic Obstructive Pulmonary Disease (COPD) Using the FULFIL Trial: A Spanish Perspective. Int J Chron Obstruct Pulmon Dis 2020; 15:1621-1632. [PMID: 32764908 PMCID: PMC7360413 DOI: 10.2147/copd.s240556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/24/2020] [Indexed: 01/07/2023] Open
Abstract
Purpose To evaluate the cost-effectiveness of once-daily fluticasone furoate/umeclidinium/vilanterol (FF/UMEC/VI) vs twice-daily budesonide/formoterol (BUD/FOR) in patients with symptomatic chronic obstructive pulmonary disease (COPD) at risk of exacerbations, from the Spanish National Healthcare System perspective. Patients and Methods The validated GALAXY-COPD model was used to simulate disease progression and predict healthcare costs, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs) over a 3-year time horizon for a Spanish population. Patient characteristics from published literature were supplemented by data from FULFIL (NCT02345161), which compared FF/UMEC/VI vs BUD/FOR in patients with symptomatic COPD at risk of exacerbations. Treatment effects, extrapolated to 3 years, were based on Week 24 results in the FULFIL intent-to-treat population, including change in forced expiratory volume in 1 second, St. George’s Respiratory Questionnaire score, and exacerbation rates. Treatment, exacerbations, and COPD management costs (2019€) were informed by Spanish public sources and published literature. A 3% discount rate for costs and benefits was applied. One-way sensitivity and scenario analyses, and probabilistic sensitivity analysis (PSA), were performed. Results FF/UMEC/VI treatment led to fewer moderate and severe exacerbations (2.126 and 0.306, respectively) vs BUD/FOR (2.608 and 0.515, respectively), with a mean incremental cost of €69 and gain of 0.107 QALYs, which resulted in an ICER of €642 per QALY gained. In sensitivity analyses, the ICER was most sensitive to treatment effect variations in exacerbations and healthcare resource utilization/event costs. Overall, 95% of 1000 PSA simulations resulted in an ICER less than €11,000 per QALY gained for FF/UMEC/VI vs BUD/FOR, confirming robustness of the results. The probability of FF/UMEC/VI being cost-effective vs BUD/FOR was 100% at a willingness-to-pay threshold of €30,000 per QALY gained. Conclusion At the accepted Spanish ICER threshold of €30,000, FF/UMEC/VI represents a cost-effective treatment option vs BUD/FOR in patients with symptomatic COPD at risk of exacerbations.
Collapse
Affiliation(s)
| | | | | | | | - Alan Martin
- Value Evidence and Outcomes, GlaxoSmithKline plc., Uxbridge, UK
| | | | | | - Juan Antonio Riesco Miranda
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Servicio de Neumología, Hospital San Pedro de Alcántara, Cáceres, Spain
| | | | | | - Afisi S Ismaila
- Value Evidence and Outcomes, GlaxoSmithKline plc., Collegeville, PA, USA.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
132
|
Lonergan M, Dicker AJ, Crichton ML, Keir HR, Van Dyke MK, Mullerova H, Miller BE, Tal-Singer R, Chalmers JD. Blood neutrophil counts are associated with exacerbation frequency and mortality in COPD. Respir Res 2020; 21:166. [PMID: 32611352 PMCID: PMC7329438 DOI: 10.1186/s12931-020-01436-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/25/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Identifying patients with COPD at increased risk of poor outcomes is challenging due to disease heterogeneity. Potential biomarkers need to be readily available in real-life clinical practice. Blood eosinophil counts are widely studied but few studies have examined the prognostic value of blood neutrophil counts (BNC). METHODS In a large population-based COPD registry in the East of Scotland (TARDIS: Tayside Allergic and Respiratory Disease Information System), BNC were compared to measures of disease severity and mortality for up to 15 years follow-up. Potential mechanisms of disease modification by BNC were explored in a nested microbiome substudy. RESULTS 178,120 neutrophil counts were obtained from 7220 people (mean follow up 9 years) during stable disease periods. Median BNC was 5200cells/μL (IQR 4000-7000cells/μL). Mortality rates among the 34% of patients with elevated BNCs (defined as 6000-15000cells/μL) at the study start were 80% higher (14.0/100 person years v 7.8/100py, P < 0.001) than those with BNC in the normal range (2000-6000cells/μL). People with elevated BNC were more likely to be classified as GOLD D (46% v 33% P < 0.001), have more exacerbations (mean 2.3 v 1.3/year, P < 0.001), and were more likely to have severe exacerbations (13% vs. 5%, P < 0.001) in the following year. Eosinophil counts were much less predictive of these outcomes. In a sub-cohort (N = 276), patients with elevated BNC had increased relative abundance of Proteobacteria and reduced microbiome diversity. CONCLUSION High BNC may provide a useful indicator of risk of exacerbations and mortality in COPD patients.
Collapse
Affiliation(s)
- Mike Lonergan
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Alison J Dicker
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Megan L Crichton
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Holly R Keir
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Melissa K Van Dyke
- Epidemiology, Value Evidence and Outcomes, GSK R&D, Collegeville, PA, USA
| | - Hana Mullerova
- Epidemiology, Value Evidence and Outcomes, GSK R&D, Uxbridge, UK
| | - Bruce E Miller
- Medical Innovation, Value Evidence and Outcomes, GSK R&D, Collegeville, PA, USA
| | - Ruth Tal-Singer
- Medical Innovation, Value Evidence and Outcomes, GSK R&D, Collegeville, PA, USA
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
| |
Collapse
|
133
|
Moll M, Sakornsakolpat P, Shrine N, Hobbs BD, DeMeo DL, John C, Guyatt AL, McGeachie MJ, Gharib SA, Obeidat M, Lahousse L, Wijnant SRA, Brusselle G, Meyers DA, Bleecker ER, Li X, Tal-Singer R, Manichaikul A, Rich SS, Won S, Kim WJ, Do AR, Washko GR, Barr RG, Psaty BM, Bartz TM, Hansel NN, Barnes K, Hokanson JE, Crapo JD, Lynch D, Bakke P, Gulsvik A, Hall IP, Wain L, Weiss ST, Silverman EK, Dudbridge F, Tobin MD, Cho MH. Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts. THE LANCET. RESPIRATORY MEDICINE 2020; 8:696-708. [PMID: 32649918 PMCID: PMC7429152 DOI: 10.1016/s2213-2600(20)30101-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants would predict COPD and associated phenotypes. METHODS We constructed a polygenic risk score using a genome-wide association study of lung function (FEV1 and FEV1/forced vital capacity [FVC]) from the UK Biobank and SpiroMeta. We tested this polygenic risk score in nine cohorts of multiple ethnicities for an association with moderate-to-severe COPD (defined as FEV1/FVC <0·7 and FEV1 <80% of predicted). Associations were tested using logistic regression models, adjusting for age, sex, height, smoking pack-years, and principal components of genetic ancestry. We assessed predictive performance of models by area under the curve. In a subset of studies, we also studied quantitative and qualitative CT imaging phenotypes that reflect parenchymal and airway pathology, and patterns of reduced lung growth. FINDINGS The polygenic risk score was associated with COPD in European (odds ratio [OR] per SD 1·81 [95% CI 1·74-1·88] and non-European (1·42 [1·34-1·51]) populations. Compared with the first decile, the tenth decile of the polygenic risk score was associated with COPD, with an OR of 7·99 (6·56-9·72) in European ancestry and 4·83 (3·45-6·77) in non-European ancestry cohorts. The polygenic risk score was superior to previously described genetic risk scores and, when combined with clinical risk factors (ie, age, sex, and smoking pack-years), showed improved prediction for COPD compared with a model comprising clinical risk factors alone (AUC 0·80 [0·79-0·81] vs 0·76 [0·75-0·76]). The polygenic risk score was associated with CT imaging phenotypes, including wall area percent, quantitative and qualitative measures of emphysema, local histogram emphysema patterns, and destructive emphysema subtypes. The polygenic risk score was associated with a reduced lung growth pattern. INTERPRETATION A risk score comprised of genetic variants can identify a small subset of individuals at markedly increased risk for moderate-to-severe COPD, emphysema subtypes associated with cigarette smoking, and patterns of reduced lung growth. FUNDING US National Institutes of Health, Wellcome Trust.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Phuwanat Sakornsakolpat
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherine John
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Anna L Guyatt
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ma'en Obeidat
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Lies Lahousse
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands; Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sara R A Wijnant
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands; Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy Brusselle
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands; Department of Respiratory Medicine, Erasmus Medical Centre, Rotterdam, Netherlands; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | - Xingnan Li
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ruth Tal-Singer
- GlaxoSmithKline Research and Development, Collegeville, PA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ah Ra Do
- Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, South Korea
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - R Graham Barr
- Department of Medicine and Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA; Kaiser Permanente Washington Health Research Institute, Seattle, WA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nadia N Hansel
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kathleen Barnes
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - James D Crapo
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - David Lynch
- Department of Radiology, National Jewish Health, Denver, CO, USA
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- Division of Respiratory Medicine, Queen's Medical Centre, Nottingham, UK
| | - Ian P Hall
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Louise Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Frank Dudbridge
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Martin D Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
134
|
Mostafavi-Pour-Manshadi SMY, Naderi N, Mancino P, Li PZ, Tan W, Bourbeau J. Fractional Exhaled Nitric Oxide as an Inflammatory Biomarker in Chronic Obstructive Pulmonary Disease (COPD) with or without Concurrent Diagnosis of Asthma: The Canadian Cohort Obstructive Lung Disease (CanCOLD). COPD 2020; 17:355-365. [PMID: 32584165 DOI: 10.1080/15412555.2020.1779681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We studied whether fractional exhaled nitric oxide (F ENO) can differentiate chronic obstructive pulmonary disease (COPD) with concurrent diagnosis of asthma from COPD-only as well as its ability to predict disease severity and progression. This study was embedded in the Canadian Cohort Obstructive Lung Disease (CanCOLD). Subjects of ≥40 years old completed F ENO measurements were subdivided into four groups, including COPD (N = 86 [COPD-only (N = 35) and COPD with concurrent diagnosis of asthma (N = 51)], healthy (N = 72), and at risk (N = 151). Three of the most common clinical definitions were used for characterizing COPD with concurrent diagnosis of asthma: 1) atopy and self-reported physician diagnosis of asthma, 2) ≥12% and ≥200 ml post-bronchodilator FEV1; 3) self-reported physician diagnosis of asthma. F ENO values were classified using quartiles and the American Thoracic Society (ATS) guideline 2011. Compared to COPD-only, more COPD with concurrent diagnosis of asthma had a significant F ENO50 level of [Formula: see text] 33.5 ppb (fourth quartile) than COPD-only (p = 0.045, 0.011, and 0.006, for definition 1, 2, and 3, respectively). Considering the ATS guideline 2011, fewer COPD with concurrent diagnosis of asthma had F ENO50 < 25 than COPD-only, which was statistically significant with definition 1 and 3 (p = 0.038 and 0.026, respectively). F ENO as a biomarker has the potential to be used as a complementary value for differentiating COPD with concurrent diagnosis of asthma from COPD-only. Further studies should be conducted on validated definitions of COPD with concurrent diagnosis of asthma, which may include a reference to the type of airway inflammation in addition to the clinical definition.
Collapse
Affiliation(s)
| | - Nafiseh Naderi
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, McGill University, Montreal, Canada
| | - Palmina Mancino
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, McGill University, Montreal, Canada
| | - Pei Zhi Li
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, McGill University, Montreal, Canada
| | - Wan Tan
- UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, McGill University, Montreal, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
135
|
Increased Airway Wall Thickness in Interstitial Lung Abnormalities and Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc 2020; 16:447-454. [PMID: 30543456 DOI: 10.1513/annalsats.201806-424oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RATIONALE There is increasing evidence that aberrant processes occurring in the airways may precede the development of idiopathic pulmonary fibrosis (IPF); however, there has been no prior confirmatory data derived from imaging studies. OBJECTIVES To assess quantitative measures of airway wall thickness (AWT) in populations characterized for interstitial lung abnormalities (ILA) and for IPF. METHODS Computed tomographic imaging of the chest and measures of AWT were available for 6,073, 615, 1,167, and 38 participants from COPDGene (Genetic Epidemiology of COPD study), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints study), and the Framingham Heart Study (FHS) and in patients with IPF from the Brigham and Women's Hospital Herlihy Registry, respectively. To evaluate these associations, we used multivariable linear regression to compare a standardized measure of AWT (the square root of AWT for airways with an internal perimeter of 10 mm [Pi10]) and characterizations of ILA and IPF by computed tomographic imaging of the chest. RESULTS In COPDGene, ECLIPSE, and FHS, research participants with ILA had increased measures of Pi10 compared with those without ILA. Patients with IPF had mean measures of Pi10 that were even greater than those noted in research participants with ILA. After adjustment for important covariates (e.g., age, sex, race, body mass index, smoking behavior, and chronic obstructive pulmonary disease severity when appropriate), research participants with ILA had increased measures of Pi10 compared with those without ILA (0.03 mm in COPDGene, 95% confidence interval [CI], 0.02-0.03; P < 0.001; 0.02 mm in ECLIPSE, 95% CI, 0.005-0.04; P = 0.01; 0.07 mm in FHS, 95% CI, 0.01-0.1; P = 0.01). Compared with COPDGene participants without ILA older than 60 years of age, patients with IPF were also noted to have increased measures of Pi10 (2.0 mm, 95% CI, 2.0-2.1; P < 0.001). Among research participants with ILA, increases in Pi10 were correlated with reductions in lung volumes in some but not all populations. CONCLUSIONS These results demonstrate that measurable increases in AWT are consistently noted in research participants with ILA and in patients with IPF. These findings suggest that abnormalities of the airways may play a role in, or be correlated with, early pathogenesis of pulmonary fibrosis.
Collapse
|
136
|
Singh D, Criner GJ, Naya I, Jones PW, Tombs L, Lipson DA, Han MK. Measuring disease activity in COPD: is clinically important deterioration the answer? Respir Res 2020; 21:134. [PMID: 32487202 PMCID: PMC7265253 DOI: 10.1186/s12931-020-01387-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
Given the heterogeneity of chronic obstructive pulmonary disease (COPD), personalized clinical management is key to optimizing patient outcomes. Important treatment goals include minimizing disease activity and preventing disease progression; however, quantification of these components remains a challenge. Growing evidence suggests that decline over time in forced expiratory volume in 1 s (FEV1), traditionally the key marker of disease progression, may not be sufficient to fully determine deterioration across COPD populations. In addition, there is a lack of evidence showing that currently available multidimensional COPD indexes improve clinical decision-making, treatment, or patient outcomes. The composite clinically important deterioration (CID) endpoint was developed to assess disease worsening by detecting early deteriorations in lung function (measured by FEV1), health status (assessed by the St George's Respiratory Questionnaire), and the presence of exacerbations. Post hoc and prospective analyses of clinical trial data have confirmed that the multidimensional composite CID endpoint better predicts poorer medium-term outcomes compared with any single CID component alone, and that it can demonstrate differences in treatment efficacy in short-term trials. Given the widely acknowledged need for an individualized holistic approach to COPD management, monitoring short-term CID has the potential to facilitate early identification of suboptimal treatment responses and patients at risk of increased disease progression. CID monitoring may lead to better-informed clinical management decisions and potentially improved prognosis.
Collapse
Affiliation(s)
- Dave Singh
- University of Manchester, Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Gerard J Criner
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ian Naya
- GSK, Respiratory Medicines Development Centre, Stockley Park, Middlesex, UK
- RAMAX Ltd, Bramhall, Cheshire, UK
| | - Paul W Jones
- GSK, Respiratory Medicines Development Centre, Stockley Park, Middlesex, UK
| | | | - David A Lipson
- GSK, Respiratory Clinical Sciences, Collegeville, PA, USA
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, MI, USA
| |
Collapse
|
137
|
Guo J, Chen Y, Zhang W, Tong S, Dong J. Moderate and severe exacerbations have a significant impact on health-related quality of life, utility, and lung function in patients with chronic obstructive pulmonary disease: A meta-analysis. Int J Surg 2020; 78:28-35. [DOI: 10.1016/j.ijsu.2020.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022]
|
138
|
Zhang X, Wu Z, Liu Y, Jiang S. Role of the Bronchodilator Test Defined by the Forced Vital Capacity in Chronic Obstructive Pulmonary Disease Phenotyping. Int J Chron Obstruct Pulmon Dis 2020; 15:1199-1206. [PMID: 32547006 PMCID: PMC7266342 DOI: 10.2147/copd.s252902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose In clinical practice, some chronic obstructive pulmonary disease (COPD) patients experienced a remarkable increase in forced vital capacity (FVC) after bronchodilator administration, whereas forced expiratory volume in the first second (FEV1) remains substantially unchanged. We assume this may relate to airway inflammatory type. We aim to analyze the clinical characteristics and explore the usefulness of the bronchodilator test, especially FVC, in this new COPD phenotype. Patients and Methods A total of 346 COPD patients with exacerbation who underwent bronchodilator tests, fractional exhaled nitric oxide (FeNO) measurements and blood eosinophil counts were analyzed. The characteristics, FeNO levels, and blood eosinophil counts were compared between patients with and without significant bronchodilator responsiveness in terms of FVC. Results Patients with significant FVC responsiveness displayed poorer lung function and higher FeNO levels compared with those without considerable FVC responsiveness (Z= −5.042 to −0.375, p=0.000–0.022). There is a discernible linear relationship between FeNO levels and FVC responsiveness to bronchodilator use (r=0.251, P=0.001). The application of bronchodilator responsiveness of FVC for detecting high FeNO levels in COPD patients exhibited relatively high sensitivity (61.8%) and specificity (86.7%). Conclusion We demonstrated that COPD patients with significant FVC responsiveness had higher FeNO levels than non-responders and established a simple method for detecting high FeNO values. FVC responders may be identified as a separate group of COPD patients.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, People's Republic of China
| | - Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong, People's Republic of China.,Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan 250000, Shandong, People's Republic of China.,Shandong Key Laboratory of Infectious Respiratory Disease, Jinan 250000, Shandong, People's Republic of China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, People's Republic of China.,Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong, People's Republic of China.,Shandong Key Laboratory of Infectious Respiratory Disease, Jinan 250000, Shandong, People's Republic of China
| | - Shujuan Jiang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, People's Republic of China.,Shandong Key Laboratory of Infectious Respiratory Disease, Jinan 250000, Shandong, People's Republic of China
| |
Collapse
|
139
|
Cazzola M, Puxeddu E, Ora J, Rogliani P. Evolving Concepts in Chronic Obstructive Pulmonary Disease Blood-Based Biomarkers. Mol Diagn Ther 2020; 23:603-614. [PMID: 31363933 DOI: 10.1007/s40291-019-00413-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, there has been a great deal of interest in the identification and validation of blood-based biomarkers for clinical use in chronic obstructive pulmonary disease (COPD). We now have panels of blood biomarkers that potentially hold great promise as they show statistically significant associations with COPD, but biomarkers for the diagnosis of COPD remain elusive. In fact, they are yet to demonstrate sufficient accuracy to be accepted in clinical use, and many are not specific to COPD but more related to inflammation (e.g. interleukin-6) or associated with other chronic diseases such as diabetes (e.g. soluble receptor for advanced glycation endproducts [sRAGE]). Although no single blood-based biomarker has demonstrated clinical utility for either the diagnosis or progression of COPD, it has been suggested that combinations of individual markers may provide important diagnostic or prognostic information; however, the interpretation of COPD biomarker results still requires thought and many questions remain unanswered.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Ermanno Puxeddu
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Josuel Ora
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
140
|
Young AL, Bragman FJS, Rangelov B, Han MK, Galbán CJ, Lynch DA, Hawkes DJ, Alexander DC, Hurst JR. Disease Progression Modeling in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2020; 201:294-302. [PMID: 31657634 DOI: 10.1164/rccm.201908-1600oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rationale: The decades-long progression of chronic obstructive pulmonary disease (COPD) renders identifying different trajectories of disease progression challenging.Objectives: To identify subtypes of patients with COPD with distinct longitudinal progression patterns using a novel machine-learning tool called "Subtype and Stage Inference" (SuStaIn) and to evaluate the utility of SuStaIn for patient stratification in COPD.Methods: We applied SuStaIn to cross-sectional computed tomography imaging markers in 3,698 Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-4 patients and 3,479 controls from the COPDGene (COPD Genetic Epidemiology) study to identify subtypes of patients with COPD. We confirmed the identified subtypes and progression patterns using ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) data. We assessed the utility of SuStaIn for patient stratification by comparing SuStaIn subtypes and stages at baseline with longitudinal follow-up data.Measurements and Main Results: We identified two trajectories of disease progression in COPD: a "Tissue→Airway" subtype (n = 2,354, 70.4%), in which small airway dysfunction and emphysema precede large airway wall abnormalities, and an "Airway→Tissue" subtype (n = 988, 29.6%), in which large airway wall abnormalities precede emphysema and small airway dysfunction. Subtypes were reproducible in ECLIPSE. Baseline stage in both subtypes correlated with future FEV1/FVC decline (r = -0.16 [P < 0.001] in the Tissue→Airway group; r = -0.14 [P = 0.011] in the Airway→Tissue group). SuStaIn placed 30% of smokers with normal lung function at elevated stages, suggesting imaging changes consistent with early COPD. Individuals with early changes were 2.5 times more likely to meet COPD diagnostic criteria at follow-up.Conclusions: We demonstrate two distinct patterns of disease progression in COPD using SuStaIn, likely representing different endotypes. One third of healthy smokers have detectable imaging changes, suggesting a new biomarker of "early COPD."
Collapse
Affiliation(s)
- Alexandra L Young
- Centre for Medical Image Computing.,Department of Computer Science.,Department of Medical Physics and Biomedical Engineering, and
| | - Felix J S Bragman
- Centre for Medical Image Computing.,UCL Respiratory, University College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, and
| | - Bojidar Rangelov
- Centre for Medical Image Computing.,UCL Respiratory, University College London, London, United Kingdom
| | - MeiLan K Han
- Artificial Medical Intelligence Group, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | | | - David A Lynch
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and
| | - David J Hawkes
- Centre for Medical Image Computing.,UCL Respiratory, University College London, London, United Kingdom
| | | | - John R Hurst
- Department of Radiology, National Jewish Health, Denver, Colorado
| | | |
Collapse
|
141
|
Occhipinti M, Paoletti M, Crapo JD, Make BJ, Lynch DA, Brusasco V, Lavorini F, Silverman EK, Regan EA, Pistolesi M. Validation of a method to assess emphysema severity by spirometry in the COPDGene study. Respir Res 2020; 21:103. [PMID: 32357885 PMCID: PMC7195744 DOI: 10.1186/s12931-020-01366-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background Standard spirometry cannot identify the predominant mechanism underlying airflow obstruction in COPD, namely emphysema or airway disease. We aimed at validating a previously developed methodology to detect emphysema by mathematical analysis of the maximal expiratory flow-volume (MEFV) curve in standard spirometry. Methods From the COPDGene population we selected those 5930 subjects with MEFV curve and inspiratory-expiratory CT obtained on the same day. The MEFV curve descending limb was fit real-time using forced vital capacity (FVC), peak expiratory flow, and forced expiratory flows at 25, 50 and 75% of FVC to derive an emphysema severity index (ESI), expressed as a continuous positive numeric parameter ranging from 0 to 10. According to inspiratory CT percent lung attenuation area below − 950 HU we defined three emphysema severity subgroups (%LAA-950insp < 6, 6–14, ≥14). By co-registration of inspiratory-expiratory CT we quantified persistent (%pLDA) and functional (%fLDA) low-density areas as CT metrics of emphysema and airway disease, respectively. Results ESI differentiated CT emphysema severity subgroups increasing in parallel with GOLD stages (p < .001), but with high variability within each stage. ESI had significantly higher correlations (p < .001) with emphysema than with airway disease CT metrics, explaining 67% of %pLDA variability. Conversely, standard spirometric variables (FEV1, FEV1/FVC) had significantly lower correlations than ESI with emphysema CT metrics and did not differentiate between emphysema and airways CT metrics. Conclusions ESI adds to standard spirometry the power to discriminate whether emphysema is the predominant mechanism of airway obstruction. ESI methodology has been validated in the large multiethnic population of smokers of the COPDGene study and therefore it could be applied for clinical and research purposes in the general population of smokers, using a readily available online website.
Collapse
Affiliation(s)
- Mariaelena Occhipinti
- Section of Respiratory Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo A. Brambilla 3, 50134, Florence, Italy. .,Section of Radiology, Department of Biomedical, Experimental, and Clinical Sciences, University of Florence, Largo A. Brambilla 3, 50134, Florence, Italy.
| | - Matteo Paoletti
- Section of Respiratory Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo A. Brambilla 3, 50134, Florence, Italy
| | - James D Crapo
- Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Barry J Make
- Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - David A Lynch
- Department of Radiology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Vito Brusasco
- Department of Experimental Medicine, University of Genoa, Via Leon Battista Alberti 2, 16132, Genoa, Italy
| | - Federico Lavorini
- Section of Respiratory Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo A. Brambilla 3, 50134, Florence, Italy
| | - Edwin K Silverman
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Channing Division of Network Medicine, 75 Francis St, Boston, MA 02115, USA
| | - Elizabeth A Regan
- Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Massimo Pistolesi
- Section of Respiratory Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo A. Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
142
|
Wilson AC, Kumar PL, Lee S, Parker MM, Arora I, Morrow JD, Wouters EFM, Casaburi R, Rennard SI, Lomas DA, Agusti A, Tal-Singer R, Dransfield MT, Wells JM, Bhatt SP, Washko G, Thannickal VJ, Tiwari HK, Hersh CP, Castaldi PJ, Silverman EK, McDonald MLN. Heme metabolism genes Downregulated in COPD Cachexia. Respir Res 2020; 21:100. [PMID: 32354332 PMCID: PMC7193359 DOI: 10.1186/s12931-020-01336-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/11/2020] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Cachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers. METHODS We analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB. RESULTS The prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05). DISCUSSION Several replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage.
Collapse
Affiliation(s)
- Ava C Wilson
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Preeti L Kumar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sool Lee
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Itika Arora
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Emiel F M Wouters
- Centre of expertise for chronic organ failure, Horn, the Netherlands
| | - Richard Casaburi
- Rehabilitation Clinical Trials Center, Los Angeles Biomedical Research Institute at Harbor Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen I Rennard
- Department of Medicine, Nebraska Medical Center, Omaha, NE, USA
- BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David A Lomas
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Alvar Agusti
- Fundació Investigació Sanitària Illes Balears (FISIB), Ciber Enfermedades Respiratorias (CIBERES), Barcelona, Catalunya, Spain
- Thorax Institute, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Mark T Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Michael Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Merry-Lynn N McDonald
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
143
|
Tang LYW, Coxson HO, Lam S, Leipsic J, Tam RC, Sin DD. Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT. LANCET DIGITAL HEALTH 2020; 2:e259-e267. [PMID: 33328058 DOI: 10.1016/s2589-7500(20)30064-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/21/2020] [Accepted: 03/05/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is underdiagnosed in the community. Thoracic CT scans are widely used for diagnostic and screening purposes for lung cancer. In this proof-of-concept study, we aimed to evaluate a software pipeline for the automated detection of COPD, based on deep learning and a dataset of low-dose CTs that were performed for early detection of lung cancer. METHODS We examined the use of deep residual networks, a type of artificial residual network, for the automated detection of COPD. Three versions of the residual networks were independently trained to perform COPD diagnosis using random subsets of CT scans collected from the PanCan study, which enrolled ex-smokers and current smokers at high risk of lung cancer, and evaluated the networks using three-fold cross-validation experiments. External validation was performed using 2153 CT scans acquired from a separate cohort of individuals with COPD in the ECLIPSE study. Spirometric data were used to define COPD, with stages defined according to the GOLD criteria. FINDINGS The best performing networks achieved an area under the receiver operating characteristic curve (AUC) of 0·889 (SD 0·017) in three-fold cross-validation experiments. When the same set of networks was applied to the ECLIPSE cohort without any modifications to the trained models, they achieved an AUC of 0·886 (0·017), a positive predictive value of 0·847 (0·056), and a negative predictive value of 0·755 (0·097), which is a greater performance than the best quantitative CT measure, the percentage of lung volumes of less than or equal to -950 Hounsfield units (AUC 0·742). INTERPRETATION Our proposed approach could identify patients with COPD among ex-smokers and current smokers without a previous diagnosis of COPD, with clinically acceptable performance. The use of deep residual networks on chest CT scans could be an effective case-finding tool for COPD detection and diagnosis, particularly in ex-smokers and current smokers who are being screened for lung cancer. FUNDING Data Science Institute, University of British Columbia; Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- Lisa Y W Tang
- Data Science Institute, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada; University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.
| | - Harvey O Coxson
- University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Imaging Unit, Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Jonathon Leipsic
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Roger C Tam
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada; University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
144
|
Lutz SM, Frederiksen B, Begum F, McDonald MLN, Cho MH, Hobbs BD, Parker MM, DeMeo DL, Hersh CP, Ehringer MA, Young K, Jiang L, Foreman MG, Kinney GL, Make BJ, Lomas DA, Bakke P, Gulsvik A, Crapo JD, Silverman EK, Beaty TH, Hokanson JE. Common and Rare Variants Genetic Association Analysis of Cigarettes per Day Among Ever-Smokers in Chronic Obstructive Pulmonary Disease Cases and Controls. Nicotine Tob Res 2020; 21:714-722. [PMID: 29767774 DOI: 10.1093/ntr/nty095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cigarette smoking is a major environmental risk factor for many diseases, including chronic obstructive pulmonary disease (COPD). There are shared genetic influences on cigarette smoking and COPD. Genetic risk factors for cigarette smoking in cohorts enriched for COPD are largely unknown. METHODS We performed genome-wide association analyses for average cigarettes per day (CPD) across the Genetic Epidemiology of COPD (COPDGene) non-Hispanic white (NHW) (n = 6659) and African American (AA) (n = 3260), GenKOLS (the Genetics of Chronic Obstructive Lung Disease) (n = 1671), and ECLIPSE (the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) (n = 1942) cohorts. In addition, we performed exome array association analyses across the COPDGene NHW and AA cohorts. We considered analyses across the entire cohort and stratified by COPD case-control status. RESULTS We identified genome-wide significant associations for CPD on chromosome 15q25 across all cohorts (lowest p = 1.78 × 10-15), except in the COPDGene AA cohort alone. Previously reported associations on chromosome 19 had suggestive and directionally consistent associations (RAB4, p = 1.95 × 10-6; CYP2A7, p = 7.50 × 10-5; CYP2B6, p = 4.04 × 10-4). When we stratified by COPD case-control status, single nucleotide polymorphisms on chromosome 15q25 were nominally associated with both NHW COPD cases (β = 0.11, p = 5.58 × 10-4) and controls (β = 0.12, p = 3.86 × 10-5) For the gene-based exome array association analysis of rare variants, there were no exome-wide significant associations. For these previously replicated associations, the most significant results were among COPDGene NHW subjects for CYP2A7 (p = 5.2 × 10-4). CONCLUSIONS In a large genome-wide association study of both common variants and a gene-based association of rare coding variants in ever-smokers, we found genome-wide significant associations on chromosome 15q25 with CPD for common variants, but not for rare coding variants. These results were directionally consistent among COPD cases and controls. IMPLICATIONS We examined both common and rare coding variants associated with CPD in a large population of heavy smokers with and without COPD of NHW and AA descent. We replicated genome-wide significant associations on chromosome 15q25 with CPD for common variants among NHW subjects, but not for rare variants. We demonstrated for the first time that common variants on chromosome 15q25 associated with CPD are similar among COPD cases and controls. Previously reported associations on chromosome 19 showed suggestive and directionally consistent associations among common variants (RAB4, CYP2A7, and CYP2B6) and for rare variants (CYP2A7) among COPDGene NHW subjects. Although the genetic effect sizes for these single nucleotide polymorphisms on chromosome 15q25 are modest, we show that this creates a substantial smoking burden over the lifetime of a smoker.
Collapse
Affiliation(s)
- Sharon M Lutz
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Brittni Frederiksen
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ferdouse Begum
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Merry-Lynn N McDonald
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO
| | - Kendra Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lai Jiang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Greg L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Barry J Make
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - David A Lomas
- UCL Respiratory, University College London, London, UK
| | - Per Bakke
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - James D Crapo
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | |
Collapse
|
145
|
Kirby M, Hatt C, Obuchowski N, Humphries SM, Sieren J, Lynch DA, Fain SB. Inter- and intra-software reproducibility of computed tomography lung density measurements. Med Phys 2020; 47:2962-2969. [PMID: 32160310 DOI: 10.1002/mp.14130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Multiple commercial, open-source, and academic software tools exist for objective quantification of lung density in computed tomography (CT) images. The purpose of this study was to evaluate the intersoftware reproducibility of CT lung density measurements. METHODS Computed tomography images from 50 participants from the COPDGeneTM cohort study were randomly selected for analysis; n = 10 participants across each global initiative for chronic obstructive lung disease (GOLD) grade (GOLD 0-IV). Academic-based groups (n = 4) and commercial vendors (n = 4) participated anonymously to generate CT lung density measurements using their software tools. Computed tomography total lung volume (TLV), percentage of the low attenuation areas in the lung with Hounsfield unit (HU) values below -950HU (LAA950 ), and the HU value corresponding to the 15th percentile on the parenchymal density histogram (Perc15) were included in the analysis. The intersoftware bias and reproducibility coefficient (RDC) was generated with and without quality assurance (QA) for manual correction of the lung segmentation; intrasoftware bias and RDC was also generated by repeated measurements on the same images. RESULTS Intersoftware mean bias was within ±0.22 mL, ±0.46%, and ±0.97 HU for TLV, LAA950 and Perc15, respectively. The RDC was 0.35 L, 1.2% and 1.8 HU for TLV, LAA950 and Perc15, respectively. Intersoftware RDC remained unchanged following QA: 0.35 L, 1.2% and 1.8 HU for TLV, LAA950 and Perc15, respectively. All software investigated had an intrasoftware RDC of 0. The RDC was comparable for TLV, LAA950 and Perc15 measurements, respectively, for academic-based groups/commercial vendor-based software tools: 0.39 L/0.32 L, 1.2%/1.2%, and 1.7 HU/1.6 HU. Multivariable regression analysis showed that academic-based software tools had greater within-subject standard deviation of TLV than commercial vendors, but no significant differences between academic and commercial groups were found for LAA950 or Perc15 measurements. CONCLUSIONS Computed tomography total lung volume and lung density measurement bias and reproducibility was reported across eight different software tools. Bias was negligible across vendors, reproducibility was comparable for software tools generated by academic-based groups and commercial vendors, and segmentation QA had negligible impact on measurement variability between software tools. In summary, results from this study report the amount of additional measurement variability that should be accounted for when using different software tools to measure lung density longitudinally with well-standardized image acquisition protocols. However, intrasoftware reproducibility was deterministic for all cases so use of the same software tool to reduce variability for serial studies is highly recommended.
Collapse
Affiliation(s)
- Miranda Kirby
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Charles Hatt
- IMBIO, Minneapolis, MN, USA.,Deparment of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Nancy Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO, USA
| | - Sean B Fain
- Deparment of Medical Physics, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
146
|
Yılmaz Çankaya B, Karaman A, Albez FS, Polat G, Alper F, Akgün M. The association of silicosis severity with pectoralis major muscle and subcutaneous fat volumes and the pulmonary artery/aorta ratio evaluated by CT. Diagn Interv Radiol 2020; 27:37-41. [PMID: 32209510 DOI: 10.5152/dir.2020.19534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Silicosis is an incurable occupational disease that sometimes rapidly progresses with fatal outcomes. We aimed to evaluate the association between disease severity and the change in the pectoralis major muscle volume (PMV), subcutaneous fat volume (SFV), and the pulmonary artery/aorta (P/Ao) ratio in patients with silicosis using computed tomography (CT). METHODS The study included 41 male silicosis patients and 41 control group subjects with available chest CT images. Using dedicated software, we measured PMV and SFV from the axial CT images. We calculated the P/Ao ratio and obtained body mass index (BMI) and forced expiratory volume/forced vital capacity (FEV1/FVC) results from hospital records. We used the chest X-ray profusion score according to the International Labor Organization (ILO) classification to evaluate the severity of the silicosis. RESULTS The mean age was 33.5±4.4 and 34.7±4.7 years in the silicotic and control groups, respectively. The mean BMI, PMV, SFV, and P/Ao values significantly differed between the study and control groups (P = 0.0009, P < 0.0001, P < 0.0001, and P = 0.0029, respectively). According to the ILO classification, there were 12 silicosis patients in category 1, 13 in category 2, and 16 in category 3. A significant difference was found between disease categories in terms of PMV, SFV, P/Ao, BMI, and FEV1/FVC values (P = 0.0425, P = 0.0341, P = 0.0002, P = 0.0492, and P = 0.0004, respectively). CONCLUSION Disease severity had a stronger association with decreased PMV and SFV and increased P/Ao ratios than BMI in patients with silicosis caused by denim sandblasting. Thus, CT evaluation might be a useful indicator of disease severity.
Collapse
Affiliation(s)
| | - Adem Karaman
- Department of Radiology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Fadime Sultan Albez
- Department of Pulmonary Diseases, Atatürk University School of Medicine, Erzurum, Turkey
| | - Gökhan Polat
- Department of Radiology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Fatih Alper
- Department of Radiology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Metin Akgün
- Department of Pulmonary Diseases, Atatürk University School of Medicine, Erzurum, Turkey
| |
Collapse
|
147
|
Langholm LL, Rønnow SR, Sand JMB, Leeming DJ, Tal-Singer R, Miller BE, Vestbo J, Karsdal MA, Manon-Jensen T. Increased von Willebrand Factor Processing in COPD, Reflecting Lung Epithelium Damage, Is Associated with Emphysema, Exacerbations and Elevated Mortality Risk. Int J Chron Obstruct Pulmon Dis 2020; 15:543-552. [PMID: 32210548 PMCID: PMC7069584 DOI: 10.2147/copd.s235673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/21/2020] [Indexed: 12/26/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and lung tissue deterioration. Given the high vascularity of the lung, von Willebrand factor (VWF), a central component of wound healing initiation, has previously been assessed in COPD. VWF processing, which is crucial for regulating the primary response of wound healing, has not been assessed directly. Therefore, this study aimed to characterize wound healing initiation in COPD using dynamic VWF-processing biomarkers and to evaluate how these relate to disease severity and mortality. Methods A cross-sectional analysis of plasma samples from the ECLIPSE study collected at year 1 from moderate to very severe COPD subjects (GOLD 2-4, n=984) was performed. We applied competitive neo-epitope ELISAs specifically targeting the formation of and ADAMTS13-processed form of VWF, VWF-N and VWF-A, respectively. Results VWF-A and VWF-N were significantly increased (VWF-N, p=0.01; VWF-A, p=0.0001) in plasma of symptomatic (mMRC score ≥2) compared to asymptomatic/mild symptomatic COPD subjects. Increased VWF-N and VWF-A levels were specifically associated with emphysema (VWF-N, p<0.0001) or prior exacerbations (VWF-A, p=0.01). When dichotomized, high levels of both biomarkers were associated with increased risk of all-cause mortality (VWF-N, HR 3.5; VWF-A, HR 2.64). Conclusion We demonstrate that changes in VWF processing were related to different pathophysiological aspects of COPD. VWF-N relates to the chronic condition of emphysema, while VWF-A was associated with the more acute events of exacerbations. This study indicates that VWF-A and VWF-N may be relevant markers for characterization of disease phenotype and are associated with mortality in COPD. Study Identifier NCT00292552; GSK study code SCO104960.
Collapse
Affiliation(s)
- Lasse L Langholm
- Nordic Bioscience A/S, Herlev, Denmark.,University of Copenhagen, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Sarah Rank Rønnow
- Nordic Bioscience A/S, Herlev, Denmark.,University of Southern Denmark, The Faculty of Health Science, Odense, Denmark
| | | | | | - Ruth Tal-Singer
- Respiratory Medical Innovation, Value Evidence & Outcomes, GSK R&D, Collegeville, PA, USA
| | - Bruce E Miller
- Respiratory Medical Innovation, Value Evidence & Outcomes, GSK R&D, Collegeville, PA, USA
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, and Manchester University NHS Foundation Trust, Manchester, UK
| | | | | |
Collapse
|
148
|
MacNeil JL, Capaldi DPI, Westcott AR, Eddy RL, Barker AL, McCormack DG, Kirby M, Parraga G. Pulmonary Imaging Phenotypes of Chronic Obstructive Pulmonary Disease Using Multiparametric Response Maps. Radiology 2020; 295:227-236. [PMID: 32096708 DOI: 10.1148/radiol.2020191735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Pulmonary imaging of chronic obstructive pulmonary disease (COPD) has focused on CT or MRI measurements, but these have not been evaluated in combination. Purpose To generate multiparametric response map (mPRM) measurements in ex-smokers with or without COPD by using volume-matched CT and hyperpolarized helium 3 (3He) MRI. Materials and Methods In this prospective study (https://clinicaltrials.gov, NCT02279329), participants underwent MRI and CT and completed pulmonary function tests, questionnaires, and the 6-minute walk test between December 2010 and January 2019. Disease status was determined by using Global initiative for chronic Obstructive Lung Disease (GOLD) criteria. The mPRM voxel values were generated by using co-registered MRI and CT labels. Kruskal-Wallis and Bonferroni tests were used to determine differences across disease severity, and correlations were determined by using Spearman coefficients. Results A total of 175 ex-smokers (mean age, 69 years ± 9 [standard deviation], 108 men) with or without COPD were evaluated. Ex-smokers without COPD had a larger fraction of normal mPRM voxels (60% vs 37%, 20%, and 7% for GOLD I, II, and III/IV disease, respectively; all P ≤ .001) and a smaller fraction of abnormal voxels, including small airways disease (normal CT, not ventilated: 5% vs 6% [not significant], 11%, and 19% [P ≤ .001 for both] for GOLD I, II, and III/IV disease, respectively) and mild emphysema (normal CT, abnormal apparent diffusion coefficient [ADC]: 33% vs 54%, 56%, and 54% for GOLD I, II, and III/IV disease respectively; all P ≤ .001). Normal mPRM measurements were positively correlated with forced expiratory volume in 1 second (FEV1) (r = 0.65, P < .001), the FEV1-to-forced vital capacity ratio (r = 0.81, P < .001), and diffusing capacity (r = 0.75, P < .001) and were negatively correlated with worse quality of life (r = -0.48, P < .001). Abnormal mPRM measurements of small airways disease (normal CT, not ventilated) and mild emphysema (normal CT, abnormal ADC) were negatively correlated with FEV1 (r = -0.65 and -0.42, respectively; P < .001) and diffusing capacity (r = -0.53 and -0.60, respectively; P < .001) and were positively correlated with worse quality of life (r = 0.45 and r = 0.33, respectively; P < .001), both of which were present in ex-smokers without COPD. Conclusion Multiparametric response maps revealed two abnormal structure-function results related to emphysema and small airways disease, both of which were unexpectedly present in ex-smokers with normal spirometry and CT findings. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Jonathan L MacNeil
- From the Robarts Research Institute (J.L.M., A.R.W., R.L.E., A.L.B., G.P.), School of Biomedical Engineering (J.L.M., G.P.), Department of Medical Biophysics (A.R.W., R.L.E., A.L.B., G.P.), and Division of Respirology, Department of Medicine (D.G.M., G.P.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.); and Department of Physics, Ryerson University, Toronto, Ontario, Canada (M.K.)
| | - Dante P I Capaldi
- From the Robarts Research Institute (J.L.M., A.R.W., R.L.E., A.L.B., G.P.), School of Biomedical Engineering (J.L.M., G.P.), Department of Medical Biophysics (A.R.W., R.L.E., A.L.B., G.P.), and Division of Respirology, Department of Medicine (D.G.M., G.P.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.); and Department of Physics, Ryerson University, Toronto, Ontario, Canada (M.K.)
| | - Andrew R Westcott
- From the Robarts Research Institute (J.L.M., A.R.W., R.L.E., A.L.B., G.P.), School of Biomedical Engineering (J.L.M., G.P.), Department of Medical Biophysics (A.R.W., R.L.E., A.L.B., G.P.), and Division of Respirology, Department of Medicine (D.G.M., G.P.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.); and Department of Physics, Ryerson University, Toronto, Ontario, Canada (M.K.)
| | - Rachel L Eddy
- From the Robarts Research Institute (J.L.M., A.R.W., R.L.E., A.L.B., G.P.), School of Biomedical Engineering (J.L.M., G.P.), Department of Medical Biophysics (A.R.W., R.L.E., A.L.B., G.P.), and Division of Respirology, Department of Medicine (D.G.M., G.P.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.); and Department of Physics, Ryerson University, Toronto, Ontario, Canada (M.K.)
| | - Andrea L Barker
- From the Robarts Research Institute (J.L.M., A.R.W., R.L.E., A.L.B., G.P.), School of Biomedical Engineering (J.L.M., G.P.), Department of Medical Biophysics (A.R.W., R.L.E., A.L.B., G.P.), and Division of Respirology, Department of Medicine (D.G.M., G.P.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.); and Department of Physics, Ryerson University, Toronto, Ontario, Canada (M.K.)
| | - David G McCormack
- From the Robarts Research Institute (J.L.M., A.R.W., R.L.E., A.L.B., G.P.), School of Biomedical Engineering (J.L.M., G.P.), Department of Medical Biophysics (A.R.W., R.L.E., A.L.B., G.P.), and Division of Respirology, Department of Medicine (D.G.M., G.P.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.); and Department of Physics, Ryerson University, Toronto, Ontario, Canada (M.K.)
| | - Miranda Kirby
- From the Robarts Research Institute (J.L.M., A.R.W., R.L.E., A.L.B., G.P.), School of Biomedical Engineering (J.L.M., G.P.), Department of Medical Biophysics (A.R.W., R.L.E., A.L.B., G.P.), and Division of Respirology, Department of Medicine (D.G.M., G.P.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.); and Department of Physics, Ryerson University, Toronto, Ontario, Canada (M.K.)
| | - Grace Parraga
- From the Robarts Research Institute (J.L.M., A.R.W., R.L.E., A.L.B., G.P.), School of Biomedical Engineering (J.L.M., G.P.), Department of Medical Biophysics (A.R.W., R.L.E., A.L.B., G.P.), and Division of Respirology, Department of Medicine (D.G.M., G.P.), Western University, 1151 Richmond St N, London, ON, Canada N6A 5B7; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, Calif (D.P.I.C.); and Department of Physics, Ryerson University, Toronto, Ontario, Canada (M.K.)
| |
Collapse
|
149
|
Fermont JM, Bolton CE, Fisk M, Mohan D, Macnee W, Cockcroft JR, McEniery C, Fuld J, Cheriyan J, Tal-Singer R, Wilkinson IB, Wood AM, Polkey MI, Müllerova H. Risk assessment for hospital admission in patients with COPD; a multi-centre UK prospective observational study. PLoS One 2020; 15:e0228940. [PMID: 32040531 PMCID: PMC7010290 DOI: 10.1371/journal.pone.0228940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 11/25/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD), acute exacerbation of COPD requiring hospital admission is associated with mortality and healthcare costs. The ERICA study assessed multiple clinical measures in people with COPD, including the short physical performance battery (SPPB), a simple test of physical function with 3 components (gait speed, balance and sit-to-stand). We tested the hypothesis that SPPB score would relate to risk of hospital admissions and length of hospital stay. Data were analysed from 714 of the total 729 participants (434 men and 280 women) with COPD. Data from this prospective observational longitudinal study were obtained from 4 secondary and 1 tertiary centres from England, Scotland, and Wales. The main outcome measures were to estimate the risk of hospitalisation with acute exacerbation of COPD (AECOPD and length of hospital stay derived from hospital episode statistics (HES). In total, 291 of 714 individuals experienced 762 hospitalised AECOPD during five-year follow up. Poorer performance of SPPB was associated with both higher rate (IRR 1.08 per 1 point decrease, 95% CI 1.01 to 1.14) and increased length of stay (IRR 1.18 per 1 point decrease, 95% CI 1.10 to 1.27) for hospitalised AECOPD. For the individual sit-to-stand component of the SPPB, the association was even stronger (IRR 1.14, 95% CI 1.02 to 1.26 for rate and IRR 1.32, 95% CI 1.16 to 1.49 for length of stay for hospitalised AECOPD). The SPPB, and in particular the sit-to-stand component can both evaluate the risk of H-AECOPD and length of hospital stay in COPD. The SPPB can aid in clinical decision making and when prioritising healthcare resources.
Collapse
Affiliation(s)
- Jilles M. Fermont
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, England, United Kingdom
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England, United Kingdom
- * E-mail:
| | - Charlotte E. Bolton
- Division of Respiratory Medicine and NIHR Nottingham BRC Respiratory Theme, School of Medicine, University of Nottingham, Nottingham, England, United Kingdom
| | - Marie Fisk
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Divya Mohan
- Medical Innovation, Value Evidence and Outcomes GSK, Collegeville, PA, United States
| | - William Macnee
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - John R. Cockcroft
- Department of Cardiology, Columbia University Medical Centre, New York, New York, United States
| | - Carmel McEniery
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Jonathan Fuld
- Department of Respiratory Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England, United Kingdom
| | - Joseph Cheriyan
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Ruth Tal-Singer
- Medical Innovation, Value Evidence and Outcomes GSK, Collegeville, PA, United States
| | - Ian B. Wilkinson
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, England, United Kingdom
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, England, United Kingdom
| | - Angela M. Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, England, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, England, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, England, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, England, United Kingdom
| | - Michael I. Polkey
- Department of Respiratory Medicine, Royal Brompton Hospital, London, England, United Kingdom
| | - Hana Müllerova
- Epidemiology, Value Evidence and Outcomes GSK, Uxbridge, England, United Kingdom
| |
Collapse
|
150
|
Humphries SM, Notary AM, Centeno JP, Strand MJ, Crapo JD, Silverman EK, Lynch DA. Deep Learning Enables Automatic Classification of Emphysema Pattern at CT. Radiology 2020; 294:434-444. [PMID: 31793851 PMCID: PMC6996603 DOI: 10.1148/radiol.2019191022] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
Abstract
BackgroundPattern of emphysema at chest CT, scored visually by using the Fleischner Society system, is associated with physiologic impairment and mortality risk.PurposeTo determine whether participant-level emphysema pattern could predict impairment and mortality when classified by using a deep learning method.Materials and MethodsThis retrospective analysis of Genetic Epidemiology of COPD (COPDGene) study participants enrolled between 2007 and 2011 included those with baseline CT, visual emphysema scores, and survival data through 2018. Participants were partitioned into nonoverlapping sets of 2407 for algorithm training, 100 for validation and parameter tuning, and 7143 for testing. A deep learning algorithm using convolutional neural network and long short-term memory architectures was trained to classify pattern of emphysema according to Fleischner criteria. Deep learning scores were compared with visual scores and clinical parameters including pulmonary function tests. Cox proportional hazard models were used to evaluate relationships between emphysema scores and survival. The algorithm was also tested by using CT and clinical data in 1962 participants enrolled in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study.ResultsA total of 7143 COPDGene participants (mean age ± standard deviation, 59.8 years ± 8.9; 3734 men and 3409 women) were evaluated. Deep learning emphysema classifications were associated with impaired pulmonary function tests, 6-minute walk distance, and St George's Respiratory Questionnaire at univariate analysis (P < .001 for each). Testing in the ECLIPSE cohort showed similar associations (P < .001). In the COPDGene test cohort, deep learning emphysema classification improved the fit of linear mixed models in the prediction of these clinical parameters compared with visual scoring (P < .001). Compared with participants without emphysema, mortality was greater in participants classified by the deep learning algorithm as having any grade of emphysema (adjusted hazard ratios were 1.5, 1.7, 2.9, 5.3, and 9.7, respectively, for trace, mild, moderate, confluent, and advanced destructive emphysema; P < .05).ConclusionDeep learning automation of the Fleischner grade of emphysema at chest CT is associated with clinical measures of pulmonary insufficiency and the risk of mortality.© RSNA, 2019Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Stephen M. Humphries
- From the Department of Radiology (S.M.H., A.M.N., J.P.C., D.A.L.), Division of Biostatistics and Bioinformatics (M.J.S.), and Department of Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206-2761; and Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Mass (E.K.S.)
| | - Aleena M. Notary
- From the Department of Radiology (S.M.H., A.M.N., J.P.C., D.A.L.), Division of Biostatistics and Bioinformatics (M.J.S.), and Department of Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206-2761; and Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Mass (E.K.S.)
| | - Juan Pablo Centeno
- From the Department of Radiology (S.M.H., A.M.N., J.P.C., D.A.L.), Division of Biostatistics and Bioinformatics (M.J.S.), and Department of Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206-2761; and Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Mass (E.K.S.)
| | - Matthew J. Strand
- From the Department of Radiology (S.M.H., A.M.N., J.P.C., D.A.L.), Division of Biostatistics and Bioinformatics (M.J.S.), and Department of Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206-2761; and Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Mass (E.K.S.)
| | - James D. Crapo
- From the Department of Radiology (S.M.H., A.M.N., J.P.C., D.A.L.), Division of Biostatistics and Bioinformatics (M.J.S.), and Department of Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206-2761; and Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Mass (E.K.S.)
| | - Edwin K. Silverman
- From the Department of Radiology (S.M.H., A.M.N., J.P.C., D.A.L.), Division of Biostatistics and Bioinformatics (M.J.S.), and Department of Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206-2761; and Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Mass (E.K.S.)
| | - David A. Lynch
- From the Department of Radiology (S.M.H., A.M.N., J.P.C., D.A.L.), Division of Biostatistics and Bioinformatics (M.J.S.), and Department of Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206-2761; and Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Mass (E.K.S.)
| | - For the Genetic Epidemiology of COPD (COPDGene) Investigators
- From the Department of Radiology (S.M.H., A.M.N., J.P.C., D.A.L.), Division of Biostatistics and Bioinformatics (M.J.S.), and Department of Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206-2761; and Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Mass (E.K.S.)
| |
Collapse
|