101
|
Pulmonary hypertension and right heart dysfunction in chronic lung disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:739674. [PMID: 25165714 PMCID: PMC4140123 DOI: 10.1155/2014/739674] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/24/2014] [Accepted: 06/29/2014] [Indexed: 11/30/2022]
Abstract
Group 3 pulmonary hypertension (PH) is a common complication of chronic lung disease (CLD), including chronic obstructive pulmonary disease (COPD), interstitial lung disease, and sleep-disordered breathing. Development of PH is associated with poor prognosis and may progress to right heart failure, however, in the majority of the patients with CLD, PH is mild to moderate and only a small number of patients develop severe PH. The pathophysiology of PH in CLD is multifactorial and includes hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, small vessel destruction, and fibrosis. The effects of PH on the right ventricle (RV) range between early RV remodeling, hypertrophy, dilatation, and eventual failure with associated increased mortality. The golden standard for diagnosis of PH is right heart catheterization, however, evidence of PH can be appreciated on clinical examination, serology, radiological imaging, and Doppler echocardiography. Treatment of PH in CLD focuses on management of the underlying lung disorder and hypoxia. There is, however, limited evidence to suggest that PH-specific vasodilators such as phosphodiesterase-type 5 inhibitors, endothelin receptor antagonists, and prostanoids may have a role in the treatment of patients with CLD and moderate-to-severe PH.
Collapse
|
102
|
Evaluation of antiendothelial cell antibodies in COPD patients, with and without corpulmonale. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2014. [DOI: 10.1016/j.ejcdt.2014.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
103
|
|
104
|
Abstract
PURPOSE OF REVIEW This review discusses the current impact of pulmonary hypertension on the outcome and treatment of cystic fibrosis (CF). RECENT FINDINGS Pulmonary hypertension is commonly encountered in advanced lung diseases such as CF. The prevalence of pulmonary hypertension in CF patients varies based on disease severity and methodology used for diagnosis. Chronic alveolar hypoxia is the most likely cause. The majority of recent studies have shown worse survival in CF patients who develop pulmonary hypertension. The impact of pulmonary hypertension-specific therapies on symptomatology and outcomes in CF patients has not been well studied. SUMMARY Pulmonary hypertension is common in patients with CF and it occurs largely because of hypoxemia. The presence of pulmonary hypertension in patients with CF is likely associated with worse outcome; however, it remains unknown whether treatment with pulmonary hypertension-specific therapies would be beneficial.
Collapse
|
105
|
Klings ES, Machado RF, Barst RJ, Morris CR, Mubarak KK, Gordeuk VR, Kato GJ, Ataga KI, Gibbs JS, Castro O, Rosenzweig EB, Sood N, Hsu L, Wilson KC, Telen MJ, Decastro LM, Krishnamurti L, Steinberg MH, Badesch DB, Gladwin MT. An official American Thoracic Society clinical practice guideline: diagnosis, risk stratification, and management of pulmonary hypertension of sickle cell disease. Am J Respir Crit Care Med 2014; 189:727-40. [PMID: 24628312 DOI: 10.1164/rccm.201401-0065st] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In adults with sickle cell disease (SCD), an increased tricuspid regurgitant velocity (TRV) measured by Doppler echocardiography, an increased serum N-terminal pro-brain natriuretic peptide (NT-pro-BNP) level, and pulmonary hypertension (PH) diagnosed by right heart catheterization (RHC) are independent risk factors for mortality. METHODS A multidisciplinary committee was formed by clinician-investigators experienced in the management of patients with PH and/or SCD. Clinically important questions were posed, related evidence was appraised, and questions were answered with evidence-based recommendations. Target audiences include all clinicians who take care of patients with SCD. RESULTS Mortality risk stratification guides decision making. An increased risk for mortality is defined as a TRV equal to or greater than 2.5 m/second, an NT-pro-BNP level equal to or greater than 160 pg/ml, or RHC-confirmed PH. For patients identified as having increased mortality risk, we make a strong recommendation for hydroxyurea as first-line therapy and a weak recommendation for chronic transfusions as an alternative therapy. For all patients with SCD with elevated TRV alone or elevated NT-pro-BNP alone, and for patients with SCD with RHC-confirmed PH with elevated pulmonary artery wedge pressure and low pulmonary vascular resistance, we make a strong recommendation against PAH-specific therapy. However, for select patients with SCD with RHC-confirmed PH who have elevated pulmonary vascular resistance and normal pulmonary capillary wedge pressure, we make a weak recommendation for either prostacyclin agonist or endothelin receptor antagonist therapy and a strong recommendation against phosphodiesterase-5 inhibitor therapy. CONCLUSIONS Evidence-based recommendations for the management of patients with SCD with increased mortality risk are provided, but will require frequent reassessment and updating.
Collapse
|
106
|
Ortega Ruiz F, Díaz Lobato S, Galdiz Iturri JB, García Rio F, Güell Rous R, Morante Velez F, Puente Maestu L, Tàrrega Camarasa J. Oxigenoterapia continua domiciliaria. Arch Bronconeumol 2014; 50:185-200. [DOI: 10.1016/j.arbres.2013.11.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/22/2013] [Accepted: 11/24/2013] [Indexed: 11/24/2022]
|
107
|
Kuriyama S, Morio Y, Toba M, Nagaoka T, Takahashi F, Iwakami SI, Seyama K, Takahashi K. Genistein attenuates hypoxic pulmonary hypertension via enhanced nitric oxide signaling and the erythropoietin system. Am J Physiol Lung Cell Mol Physiol 2014; 306:L996-L1005. [PMID: 24705719 DOI: 10.1152/ajplung.00276.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Upregulation of the erythropoietin (EPO)/EPO receptor (EPOR) system plays a protective role against chronic hypoxia-induced pulmonary hypertension (hypoxic PH) through enhancement of endothelial nitric oxide (NO)-mediated signaling. Genistein (Gen), a phytoestrogen, is considered to ameliorate NO-mediated signaling. We hypothesized that Gen attenuates and prevents hypoxic PH. In vivo, Sprague-Dawley rats raised in a hypobaric chamber were treated with Gen (60 mkg/kg) for 21 days. Pulmonary hemodynamics and vascular remodeling were ameliorated in Gen-treated hypoxic PH rats. Gen also restored cGMP levels and phosphorylated endothelial NO synthase (p-eNOS) at Ser(1177) and p-Akt at Ser(473) expression in the lungs. Additionally, Gen potentiated plasma EPO concentration and EPOR-positive endothelial cell counts. In experiments with hypoxic PH rats' isolated perfused lungs, Gen caused NO- and phosphatidylinositol 3-kinase (PI3K)/Akt-dependent vasodilation that reversed abnormal vasoconstriction. In vitro, a combination of EPO and Gen increased the p-eNOS and the EPOR expression in human umbilical vein endothelial cells under a hypoxic environment. Moreover, Gen potentiated the hypoxic increase in EPO production from human hepatoma cells. We conclude that Gen may be effective for the prevention of hypoxic PH through the improvement of PI3K/Akt-dependent, NO-mediated signaling in association with enhancement of the EPO/EPOR system.
Collapse
Affiliation(s)
- Sachiko Kuriyama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiteru Morio
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Michie Toba
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsutaro Nagaoka
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shin-Ichiro Iwakami
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kuniaki Seyama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
108
|
Perez T, Garcia G, Roche N, Bautin N, Chambellan A, Chaouat A, Court-Fortune I, Delclaux B, Guenard H, Jebrak G, Orvoen-Frija E, Terrioux P. Société de pneumologie de langue française. Recommandation pour la pratique clinique. Prise en charge de la BPCO. Mise à jour 2012. Exploration fonctionnelle respiratoire. Texte long. Rev Mal Respir 2014; 31:263-94. [DOI: 10.1016/j.rmr.2013.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
109
|
Andell P, Koul S, Martinsson A, Sundström J, Jernberg T, Smith JG, James S, Lindahl B, Erlinge D. Impact of chronic obstructive pulmonary disease on morbidity and mortality after myocardial infarction. Open Heart 2014; 1:e000002. [PMID: 25332773 PMCID: PMC4189340 DOI: 10.1136/openhrt-2013-000002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/24/2022] Open
Abstract
AIM To gain a better understanding of the impact of chronic obstructive pulmonary disease (COPD) on long-term mortality in patients with myocardial infarction (MI) and identify areas where the clinical care for these patients may be improved. METHODS Patients hospitalised for MI between 2005 and 2010 were identified from the nationwide Swedish SWEDEHEART registry. Patients with MI and a prior COPD hospital discharge diagnosis were compared to patients with MI without a prior COPD hospital discharge diagnosis for the primary endpoint of all-cause mortality at 1 year after MI. Secondary endpoints included rates of reinfarction, new-onset stroke, new-onset bleeding and new-onset heart failure at 1 year. RESULTS A total of 81 191 MI patients were included, of which 4867 (6%) had a COPD hospital discharge diagnosis at baseline. Patients with COPD showed a significantly higher unadjusted 1-year mortality (24.6 vs 13.8%) as well as a higher rate of reinfarction, new-onset bleeding and new-onset heart failure post-MI. After adjustment for potential confounders, including comorbidities and treatment, the patients with COPD still showed a significantly higher 1-year mortality (HR 1.14, 95% CI 1.07 to 1.21) as well as a higher rate of new-onset heart failure (HR 1.35, 95% CI 1.24 to 1.47), whereas no significant association between COPD and myocardial reinfarction or new-onset bleeding remained. CONCLUSIONS In this nationwide contemporary study, patients with COPD frequently had an atypical presentation, less often underwent revascularisation and less often received guideline-recommended secondary preventive medications of established benefit. Prior COPD was associated with a higher 1-year mortality and a higher risk of subsequent new-onset heart failure after MI. The association seems to be mainly explained by differences in background characteristics, comorbidities and treatment, although a minor part might be explained by COPD in itself. Improved in-hospital MI treatment and post-MI secondary prevention according to the guidelines may lower the mortality in this high-risk population.
Collapse
Affiliation(s)
- Pontus Andell
- Department of Cardiology, Lund University, Lund, Sweden
| | - Sasha Koul
- Department of Cardiology, Lund University, Lund, Sweden
| | | | - Johan Sundström
- Department of Medical Sciences and Cardiology, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Tomas Jernberg
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Stefan James
- Department of Medical Sciences and Cardiology, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Bertil Lindahl
- Department of Medical Sciences and Cardiology, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - David Erlinge
- Department of Cardiology, Lund University, Lund, Sweden
| |
Collapse
|
110
|
Wright JL, Churg A. Animal models of cigarette smoke-induced chronic obstructive pulmonary disease. Expert Rev Respir Med 2014; 4:723-34. [DOI: 10.1586/ers.10.68] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
111
|
Bei Y, Duong-Quy S, Hua-Huy T, Dao P, Le-Dong NN, Dinh-Xuan AT. Activation of RhoA/Rho-kinase pathway accounts for pulmonary endothelial dysfunction in patients with chronic obstructive pulmonary disease. Physiol Rep 2013; 1:e00105. [PMID: 24303177 PMCID: PMC3841041 DOI: 10.1002/phy2.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/04/2022] Open
Abstract
Recent evidence suggests that activation of RhoA/Rho-kinase accounts for systemic and pulmonary endothelial dysfunction in smokers with normal lung function. However, its role in patients with chronic obstructive pulmonary disease (COPD) has not yet been investigated. The aim of this study was to evaluate the regulation of RhoA/Rho-kinase pathway and pulmonary endothelial dysfunction in patients with COPD. Pulmonary arteries were obtained from nonsmokers (control subjects) and patients with nonhypoxemic and hypoxemic COPD (n = 6–7/group). Endothelium-dependent and -independent relaxations were evaluated by acetylcholine and sodium nitroprusside, respectively. Gene and protein expressions of endothelial nitric oxide synthase (eNOS) were measured by RT-PCR, Western blot, and immunohistochemistry. Nitrate, cGMP, and endothelin-1 (ET-1) concentrations, as well as Rho-kinase activity were measured by ELISA. Protein expressions of total RhoA and GTP-RhoA were measured by Western blot and pull-down assay, respectively. Endothelium-dependent relaxation, and nitrate and cGMP levels were significantly reduced in pulmonary arteries of COPD patients as compared with control subjects. Conversely, activity of RhoA/Rho-kinase was increased in pulmonary arteries of COPD patients as compared with control subjects. In patients with COPD, pulmonary endothelial dysfunction was related to the downregulation of eNOS activity and upregulation of RhoA/Rho-kinase activity.
Collapse
Affiliation(s)
- Yihua Bei
- Medical School, Assistance Publique Hôpitaux de Paris, Service de Physiologie, Paris Descartes University EA 2511, Hôpital Cochin, 27 Rue du faubourg Saint-Jacques, 75014, Paris, France ; Clinical and Translational Research Center, Tongji University School of Medicine and Shanghai East Hospital 150 Jimo Road, Shanghai, 200120, China
| | | | | | | | | | | |
Collapse
|
112
|
El Wahsh RA, Ahmed MK, Yaseen RI. Evaluation of left ventricular function in patients with chronic obstructive pulmonary disease with or without pulmonary hypertension. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2013. [DOI: 10.1016/j.ejcdt.2013.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
113
|
Park J, Song JH, Park DA, Lee JS, Lee SD, Oh YM. Systematic review and meta-analysis of pulmonary hypertension specific therapy for exercise capacity in chronic obstructive pulmonary disease. J Korean Med Sci 2013; 28:1200-6. [PMID: 23960448 PMCID: PMC3744709 DOI: 10.3346/jkms.2013.28.8.1200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/03/2013] [Indexed: 11/20/2022] Open
Abstract
Some patients with chronic obstructive pulmonary disease (COPD) have pulmonary hypertension (PH) that adversely affects survival. We performed a systematic review and meta-analysis to assess whether PH-specific therapies have an effect for stable COPD. Data sources were Medline, EMBASE, Cochrane Central Register of Controlled Trials, Korea med and references from relevant publications. Randomized prospective trials that compared PH specific therapy in COPD for more than 6 weeks with placebo were included. The outcomes were the exercise capacity and adverse events. Four randomized controlled trials involving 109 subjects were included in the analysis. Two trials involved bosentan, one sildenafil and one beraprost. The studies varied in duration of treatment from 3 to 18 months. In a pooled analysis of four trials, exercise-capacity was not significantly improved with PH-specific treatment for COPD (risk ratio, -5.1; 95% CI, -13.0 to 2.8). COPD with overt PH significantly improved the exercise capacity (mean difference, 111.6; 95% CI, 63.3 to 159.9) but COPD with PH unknown did not (mean difference, 26.6; 95% CI, -24.3 to 77.5). There was no significant difference in hypoxemia (mean difference, 2.6; 95% CI, -3.7 to 8.8). PH specific treatments have a significant effect in improving exercise capacity in COPD with overt PH.
Collapse
Affiliation(s)
- Jinkyeong Park
- Department of Pulmonary and Critical Care Medicine Wonkwang University, Sanbon Hospital, Gunpo, Korea
| | - Ju Hee Song
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Ah Park
- Office of Health Technology Evaluation, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Jae Seoung Lee
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Do Lee
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
114
|
Cottrill KA, Chan SY. Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect. Eur J Clin Invest 2013; 43:855-65. [PMID: 23617881 PMCID: PMC3736346 DOI: 10.1111/eci.12104] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/04/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is an enigmatic vascular syndrome characterized by increased pulmonary arterial pressure and adverse remodelling of the pulmonary arterioles and often of the right ventricle. Drawing parallels with tumourigenesis, recent endeavours have explored the relationship between metabolic dysregulation and PH pathogenesis. DESIGN We will discuss the general mechanisms by which cellular stressors such as hypoxia and inflammation alter cellular metabolism. Based on those principles, we will explore the development of a corresponding metabolic pathophenotype in PH, with a focus on WHO Groups I and III, and the implications that these alterations may have for future treatment of this disease. RESULTS Investigation of metabolic dysregulation in both the pulmonary vasculature and right ventricle during PH pathogenesis has provided a more unifying understanding of how disparate disease triggers coordinate end-stage disease manifestations. Namely, as defined originally in various cancers, the Warburg effect describes a chronic shift in energy production from mitochondrial oxidative phosphorylation to glycolysis. In many cases, this Warburg phenotype may serve as a central causative mechanism for PH progression, largely driving cellular hyperproliferation and resistance to apoptosis. Consequently, new therapeutic strategies have been increasingly pursued that target the Warburg phenotype. Finally, new technologies are increasingly becoming available to probe more completely the complexities of metabolic cellular reprogramming and may reveal distinct metabolic pathways beyond the Warburg effect that drive PH. CONCLUSION Studies of metabolic dysregulation in PH are just emerging but may offer powerful therapeutic means to prevent or even reverse disease progression at the molecular level.
Collapse
Affiliation(s)
- Katherine A Cottrill
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
115
|
Yue J, Guan J, Wang X, Zhang L, Yang Z, Ao Q, Deng Y, Zhu P, Wang G. MicroRNA-206 is involved in hypoxia-induced pulmonary hypertension through targeting of the HIF-1α/Fhl-1 pathway. J Transl Med 2013; 93:748-59. [PMID: 23628900 DOI: 10.1038/labinvest.2013.63] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-induced pulmonary hypertension (PH), which is characterized by vasoconstriction and subsequent structural remodeling of blood vessels, is an important event in chronic obstructive pulmonary disease patients and in people living at high altitudes. Hypoxia-inducible factor-1α (HIF-1α) and its regulator four-and-a-half LIM (Lin-11, Isl-1 and Mec-3) domain 1 (Fhl-1) have important roles in hypoxia-induced PH. MicroRNA-206 (miR-206) is critical for myogenesis and related diseases; however, the role of miR-206 in hypoxia-induced PH is unknown. miR-206 expression was evaluated in a hypoxic rat model and in cultured hypoxic pulmonary artery smooth muscle cells (PASMCs) using real-time quantitative PCR (RT-qPCR). HIF-1α and Fhl-1 expression were evaluated using RT-qPCR, western blotting, immunohistochemistry and immunofluorescence. The function of miR-206 was assessed by transfecting miR-206 mimics and inhibitors. Dual-luciferase reporter gene assays and western blotting were performed to validate the target genes of miR-206. siRNA targeted against Fhl-1 was used to investigate the effect of Fhl-1 on miR-206. Flow cytometry was used to detect the cell cycle phase distribution in each group of PASMCs. Significant downregulation of miR-206 in hypoxic lung tissue and PASMCs was identified, whereas HIF-1α and Fhl-1 were upregulated in these samples. The expression of miR-206 in the serum was different from that in the lung tissue. Transfection of pre-miR miR-206 in hypoxic conditions led to increased expression of HIF-1α and Fhl-1 rather than abolishing hypoxia-induced HIF-1α and Fhl-1, as was expected, and promoted the entry of cells into the S phase and enhanced PASMC proliferation. Fhl-1-targeted siRNA in PASMC prevented cell proliferation and led to an increased proportion of cells in the G1 phase without altering miR-206 expression. Bioinformatic analysis and dual-luciferase reporter gene assays revealed direct evidence for miR-206 targeting of HIF-1α. In conclusion, hypoxia-induced downregulation of miR-206 promotes PH by targeting the HIF-1α/Fhl-1 pathway in PASMCs. miR-206 could be a triggering factor of early stage of hypoxia-induced PH.
Collapse
Affiliation(s)
- Junqiu Yue
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Matsuura Y, Kawata N, Yanagawa N, Sugiura T, Sakurai Y, Sato M, Iesato K, Terada J, Sakao S, Tada Y, Tanabe N, Suzuki Y, Tatsumi K. Quantitative assessment of cross-sectional area of small pulmonary vessels in patients with COPD using inspiratory and expiratory MDCT. Eur J Radiol 2013; 82:1804-10. [PMID: 23769190 DOI: 10.1016/j.ejrad.2013.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/01/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Structural and functional changes in pulmonary vessels are prevalent at the initial stages of chronic obstructive pulmonary disease (COPD). These vascular alterations can be assessed using cross-sectional area (CSA) of small pulmonary vessels. However, neither in non-COPD smokers nor in COPD patients it has been defined whether the structural changes of pulmonary vessels detected by paired inspiratory and expiratory CT scans are associated with emphysematous changes. We quantified the CSA and low attenuation area (LAA) and evaluated the changes in these parameters in the inspiratory and expiratory phases. MATERIALS AND METHODS Fifty consecutive non-COPD smokers and COPD patients were subjected to multi detector-row CT and the percentage of vessels with a CSA less than 5 mm(2) as well as the percentage LAA for total lung area (%CSA<5, %LAA, respectively) were calculated. RESULTS The %CSA<5 correlated negatively with %LAA. The %CSA<5 was lower in COPD patients with emphysema as compared with non-COPD smokers and COPD patients with or without mild emphysema. In addition, the %CSA<5 was lower in the no/mild emphysema subgroup as compared with non-COPD smokers. The respiratory phase change of %CSA<5 in COPD patients was greater than that in non-COPD smokers. CONCLUSION The percentage of small pulmonary vessels decreased as emphysematous changes increase, and this decrease was observed even in patients with no/mild emphysema. Furthermore, respiratory phase changes in CSA were higher in COPD patients than in non-COPD smokers.
Collapse
Affiliation(s)
- Yukiko Matsuura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670 Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Skjørten I, Hilde JM, Melsom MN, Hansteen V, Steine K, Humerfelt S. Pulmonary artery pressure and PaO2 in chronic obstructive pulmonary disease. Respir Med 2013; 107:1271-9. [PMID: 23768734 DOI: 10.1016/j.rmed.2013.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/12/2013] [Accepted: 03/26/2013] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a common cause of pre-capillary pulmonary hypertension (PH). This complication may be overlooked in patients with COPD, as symptoms frequently are attributed to ventilatory limitation. Predictors of PH may identify patients with increased risk of morbidity and mortality. OBJECTIVE The aims of this COPD study were to (i) evaluate the relationship between mean pulmonary artery pressure (mPAP) and PaO2, (ii) identify significant predictors of mPAP and PaO2 and (iii) use PaO2 as a marker of PH. METHODS Altogether 95 COPD patients with mild to very severe airway obstruction and without left ventricular (LV) dysfunction were included. Pulmonary function tests, right heart catheterizations and exercise tests with blood gases were performed. RESULTS Multivariate regression analyses showed that only PaO2 was a significant predictor of mPAP. FEV1 and mPAP were significant predictors of PaO2 both at rest and at peak exercise. PaO2 at peak exercise was better to identify pulmonary hypertension than PaO2 at rest. By combining PaO2 at rest and peak exercise, it was possible to predict PH with a detection rate of 76% and a false-positive rate of 24%. CONCLUSION In an outpatient COPD population where LV disease was thoroughly excluded, we observed that only PaO2 was a significant predictor of mPAP. PaO2 at rest and peak exercise below 9.5 kPa (71 mmHg) and 8.5 kPa (64 mmHg), respectively, indicates the need for further evaluation of coexisting PH.
Collapse
Affiliation(s)
- Ingunn Skjørten
- Department of Pulmonary Medicine, Oslo University Hospital, Aker, 0424 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
118
|
Leberl M, Kratzer A, Taraseviciene-Stewart L. Tobacco smoke induced COPD/emphysema in the animal model-are we all on the same page? Front Physiol 2013; 4:91. [PMID: 23720629 PMCID: PMC3654205 DOI: 10.3389/fphys.2013.00091] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/10/2013] [Indexed: 12/18/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is one of the foremost causes of death worldwide. It is primarily caused by tobacco smoke, making it an easily preventable disease, but facilitated by genetic α-1 antitrypsin deficiency. In addition to active smokers, health problems also occur in people involuntarily exposed to second hand smoke (SHS). Currently, the relationship between SHS and COPD is not well established. Knowledge of pathogenic mechanisms is limited, thereby halting the advancement of new treatments for this socially and economically detrimental disease. Here, we attempt to summarize tobacco smoke studies undertaken in animal models, applying both mainstream (direct, nose only) and side stream (indirect, whole body) smoke exposures. This overview of 155 studies compares cellular and molecular mechanisms as well as proteolytic, inflammatory, and vasoreactive responses underlying COPD development. This is a difficult task, as listing of exposure parameters is limited for most experiments. We show that both mainstream and SHS studies largely present similar inflammatory cell populations dominated by macrophages as well as elevated chemokine/cytokine levels, such as TNF-α. Additionally, SHS, like mainstream smoke, has been shown to cause vascular remodeling and neutrophil elastase-mediated proteolytic matrix breakdown with failure to repair. Disease mechanisms and therapeutic interventions appear to coincide in both exposure scenarios. One of the more widely applied interventions, the anti-oxidant therapy, is successful for both mainstream and SHS. The comparison of direct with indirect smoke exposure studies in this review emphasizes that, even though there are many overlapping pathways, it is not conclusive that SHS is using exactly the same mechanisms as direct smoke in COPD pathogenesis, but should be considered a preventable health risk. Some characteristics and therapeutic alternatives uniquely exist in SHS-related COPD.
Collapse
Affiliation(s)
- Maike Leberl
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine Denver, CO, USA
| | | | | |
Collapse
|
119
|
Abstract
Pulmonary hypertension is a prevalent complication of chronic obstructive pulmonary disease (COPD) that is associated with poor prognosis. Although pulmonary hypertension is usually diagnosed in patients with advanced disease, changes in pulmonary vessels are already apparent at early disease stages, and in smokers without airflow obstruction. Changes in pulmonary vessels include intimal hyperplasia, resulting from proliferating mesenchymal cells, and elastic and collagen deposition as well as endothelial dysfunction. Dysregulation of endothelium-derived mediators and growth factors and inflammatory mechanisms underlie the endothelial dysfunction and vessel remodeling. Circumstantial and experimental evidence suggests that cigarette smoke products can initiate pulmonary vascular changes in COPD and that, at advanced disease stages, hypoxia may amplify the effects of cigarette smoke on pulmonary arteries. Bone marrow-derived progenitor cells may contribute to vessel repair and to vessel remodeling, a process that appears to be facilitated by transforming growth factor-β.
Collapse
Affiliation(s)
- Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clinic, University of Barcelona; Biomedical Research Institute August Pi i Sunyer (IDIBAPS); Research Center Network for Respiratory Diseases (CIBERES); Barcelona, Spain
| |
Collapse
|
120
|
Abstract
Pulmonary emphysema is a pathologic condition characterized by permanently enlarged airspaces distal to the terminal bronchiole with destruction of the alveolar walls. Functional information of the lungs is important to understand the pathophysiology of emphysema and that of chronic obstructive pulmonary disease. With the recent developments in magnetic resonance imaging (MRI) techniques, functional MRI with variable MR sequences can be used for the evaluation of different physiological and anatomic changes seen in cases of pulmonary emphysema. In this review article, we will focus on a brief description of each method, results of some of the most recent work, and the clinical application of such knowledge.
Collapse
|
121
|
Ito H, Matsushita S, Hyodo K, Sato Y, Sakakibara Y. Using synchrotron radiation angiography with a highly sensitive detector to identify impaired peripheral perfusion in rat pulmonary emphysema. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:376-82. [PMID: 23412496 PMCID: PMC3943542 DOI: 10.1107/s090904951300040x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
Owing to limitations in spatial resolution and sensitivity, it is difficult for conventional angiography to detect minute changes of perfusion in diffuse lung diseases, including pulmonary emphysema (PE). However, a high-gain avalanche rushing amorphous photoconductor (HARP) detector can give high sensitivity to synchrotron radiation (SR) angiography. SR angiography with a HARP detector provides high spatial resolution and sensitivity in addition to time resolution owing to its angiographic nature. The purpose of this study was to investigate whether this SR angiography with a HARP detector could evaluate altered microcirculation in PE. Two groups of rats were used: group PE and group C (control). Transvenous SR angiography with a HARP detector was performed and histopathological findings were compared. Peak density of contrast material in peripheral lung was lower in group PE than group C (p < 0.01). The slope of the linear regression line in scattering diagrams was also lower in group PE than C (p < 0.05). The correlation between the slope and extent of PE in histopathology showed significant negative correlation (p < 0.05, r = 0.61). SR angiography with a HARP detector made it possible to identify impaired microcirculation in PE by means of its high spatial resolution and sensitivity.
Collapse
Affiliation(s)
- Hiromichi Ito
- Graduate School of Comprehensive Human Science, Department of Thoracic and Cardiovascular Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shonosuke Matsushita
- Graduate School of Comprehensive Human Science, Department of Thoracic and Cardiovascular Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Faculty of Health Science, Tsukuba University of Technology, Tsukuba, Ibaraki 305-8521, Japan
| | - Kazuyuki Hyodo
- High Energy Accelerator Research Organization, KEK, Tsukuba, Ibaraki 305-0801, Japan
| | - Yukio Sato
- Graduate School of Comprehensive Human Science, Department of Thoracic and Cardiovascular Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuzuru Sakakibara
- Graduate School of Comprehensive Human Science, Department of Thoracic and Cardiovascular Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
122
|
Liu X, Tan W, Liu Y, Lin G, Xie C. The role of the β2 adrenergic receptor on endothelial progenitor cells dysfunction of proliferation and migration in chronic obstructive pulmonary disease patients. Expert Opin Ther Targets 2013; 17:485-500. [PMID: 23448263 DOI: 10.1517/14728222.2013.773975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD), with > 44% of these patients presenting with generalized atherosclerosis at autopsy. It is accepted that endothelial progenitor cells (EPCs) participate in the repair of dysfunctional endothelium, thereby, protecting against atherosclerosis. The β2 adrenergic receptor (β2AR) expressed on mononuclear cells in peripheral blood and CD34(+) cells in bone has been shown to regulate T-cell traffic and proliferation. At present, there have been few systematic studies evaluating β2AR expression on EPCs in the peripheral blood of COPD patients and its role in EPCs migration and proliferation. Therefore, the objective of this study was to determine the role of β2ARs in EPCs function and, if this role is altered, in the COPD population. METHODS EPCs from 25 COPD and 16 control patients were isolated by Ficoll density-gradient centrifugation and identified using fluorescence-activated cell sorting. β2AR expression on EPCs was determined by western blotting and real-time PCR. The transwell migration assay was performed to determine the migration capacity of EPCs treated with a β2AR agonist, antagonist and β2AR monoclonal antibody. EPCs proliferation was assayed throughout the cell cycle. Following arterial damage in NOD/SCID mice, the number of EPCs treated with siRNA-β2AR incorporated at the injured vascular site was determined by fluorescence microscopy. RESULTS Data showed a significant increase in the total number of β2ARs in addition to an increased expression on early EPCs in COPD patients. COPD EPCs treated with β2AR antagonist (ICI 118551) increased migration to SDF-1α when compared to treatment with the β2AR agonist, norepinephrine. These changes were directly correlated to increase CXCR4 on EPCs. The proliferation of early EPCs treated with β2AR antagonist was improved and was correlated to an intercellular decrease in reactive oxygen species. CONCLUSION Changes in β2AR in COPD patients alter EPCs migration and proliferation, contributing to altered EPC repair capacity in this patient population.
Collapse
Affiliation(s)
- Xiaoran Liu
- First Affiliated Hospital of Sun Yat-sen University, Respiratory Department , Zhongshan Road, Guangzhou City, Guangdong Province 58, 51008 , People's Republic of China.
| | | | | | | | | |
Collapse
|
123
|
|
124
|
Wang Z, Lakes RS, Eickhoff JC, Chesler NC. Effects of collagen deposition on passive and active mechanical properties of large pulmonary arteries in hypoxic pulmonary hypertension. Biomech Model Mechanobiol 2013; 12:1115-25. [PMID: 23377784 DOI: 10.1007/s10237-012-0467-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/20/2012] [Indexed: 02/03/2023]
Abstract
Proximal pulmonary artery (PA) stiffening is a strong predictor of mortality in pulmonary hypertension. Collagen accumulation is mainly responsible for PA stiffening in hypoxia-induced pulmonary hypertension (HPH) in mouse models. We hypothesized that collagen cross-linking and the type I isoform are the main determinants of large PA mechanical changes during HPH, which we tested by exposing mice that resist type I collagen degradation (Col1a1[Formula: see text] and littermate controls (Col1a1[Formula: see text] to hypoxia for 10 days with or without [Formula: see text]-aminopropionitrile (BAPN) treatment to prevent cross-link formation. Static and dynamic mechanical tests were performed on isolated PAs with smooth muscle cells (SMC) in passive and active states. Percentages of type I and III collagen were quantified by histology; total collagen content and cross-linking were measured biochemically. In the SMC passive state, for both genotypes, hypoxia tended to increase PA stiffness and damping capacity, and BAPN treatment limited these increases. These changes were correlated with collagen cross-linking ([Formula: see text]). In the SMC active state, hypoxia increased PA dynamic stiffness and BAPN had no effect in Col1a1[Formula: see text] mice ([Formula: see text]). PA stiffness did not change in Col1a1[Formula: see text] mice. Similarly, damping capacity did not change for either genotype. Type I collagen accumulated more in Col1a1[Formula: see text] mice, whereas type III collagen increased more in Col1a1[Formula: see text] mice during HPH. In summary, PA passive mechanical properties (both static and dynamic) are related to collagen cross-linking. Type I collagen turnover is critical to large PA remodeling during HPH when collagen metabolism is not mutated and type III collagen may serve as a reserve.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Biomedical Engineering, University of Wisconsin at Madison, 2145 ECB; 1550 Engineering Drive, Madison, WI, 53706-1609, USA
| | | | | | | |
Collapse
|
125
|
Goncharova EA. mTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects. FASEB J 2013; 27:1796-807. [PMID: 23355268 DOI: 10.1096/fj.12-222224] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a major regulator of cellular metabolism, proliferation, and survival that is implicated in various proliferative and metabolic diseases, including obesity, type 2 diabetes, hamartoma syndromes, and cancer. Emerging evidence suggests a potential critical role of mTOR signaling in pulmonary vascular remodeling. Remodeling of small pulmonary arteries due to increased proliferation, resistance to apoptosis, and altered metabolism of cells forming the pulmonary vascular wall is a key currently irreversible pathological feature of pulmonary hypertension, a progressive pulmonary vascular disorder with high morbidity and mortality. In addition to rare familial and idiopathic forms, pulmonary hypertension is also a life-threatening complication of several lung diseases associated with hypoxia. This review aims to summarize our current knowledge and recent advances in understanding the role of the mTOR pathway in pulmonary vascular remodeling, with a specific focus on the hypoxia component, a confirmed shared trigger of pulmonary hypertension in lung diseases. We also discuss the emerging role of mTOR as a promising therapeutic target and mTOR inhibitors as potential pharmacological approaches to treat pulmonary vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Elena A Goncharova
- University of Pennsylvania Perelman School of Medicine, Translational Research Laboratories, Rm. 1214, 125 South 31st St., Philadelphia, PA 19104, USA.
| |
Collapse
|
126
|
Cho JS, Youn HJ, Cho EJ, Her SH, Park MW, Lee JB, Choi MS, Park CS. Feasibility of Real-Time Three-Dimensional Echocardiography for the Assessment of Distorted Biventricular Systolic Function in Patients with Cor Pulmonale. J Cardiovasc Ultrasound 2013; 21:64-71. [PMID: 23837116 PMCID: PMC3701781 DOI: 10.4250/jcu.2013.21.2.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/29/2013] [Accepted: 05/22/2013] [Indexed: 11/22/2022] Open
Abstract
Background This study was to investigate the feasibility of real-time 3-dimensional echocardiography (RT3DE) for the analysis of biventricular ejection fractions and volume measurements in patients with cor pulmonale and the correlations of RT3DE results with 64-slice multi-detector cardiac computed tomography (64-MDCT) results. Methods This study included a total of 22 patients (59.3 ± 16.6 years of age; 10 males and 12 females) who showed flattening or reverse curvature of the interventricular septum and severe pulmonary hypertension [mean right ventricular (RV) systolic pressure = 66.8 ± 19.7 mmHg] on 2-dimensional transthoracic echocardiography due to cor pulmonale. Biventricular end-diastolic and end-systolic volumes were measured by RT3DE and 64-MDCT. The severity of D-shaped deformation was evaluated by using left ventricular (LV) eccentricity index (ratio of diameters parallel/perpendicular to the interventricular septum on parasternal short axis images of the papillary muscle level). Results There were moderate correlations between biventricular volumes measured by RT3DE and 64-MDCT except for LV end-systolic volume (59.8 ± 17.1 vs. 73.2 ± 20.2 mL, r = 0.652, p = 0.001 for LV end-diastolic volume; 30.6 ± 9.1 vs. 30.8 ± 12.5 mL, r = 0.361, p = 0.099 for LV end-systolic volume; 110.1 ± 42.9 vs. 171.1 ± 55.3 mL, r = 0.545, p = 0.009 for RV end-diastolic volume; and 80.9 ± 35.0 vs. 128.7 ± 45.1 mL, r = 0.549, p = 0.005 for RV end-systolic volume respectively). Conclusion This study suggests that RT3DE may be a modest method for measuring distorted biventricular end-systolic and end-diastolic volumes in patients with cor pulmonale.
Collapse
Affiliation(s)
- Jung Sun Cho
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Ho-Joong Youn
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Eun-Joo Cho
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Sung-Ho Her
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Mahn-Won Park
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jae Beum Lee
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Min Seok Choi
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Chan Seok Park
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
127
|
Yao L, Lu P, Li Y, Yang L, Feng H, Huang Y, Zhang D, Chen J, Zhu D. Osthole relaxes pulmonary arteries through endothelial phosphatidylinositol 3-kinase/Akt-eNOS-NO signaling pathway in rats. Eur J Pharmacol 2012; 699:23-32. [PMID: 23220709 DOI: 10.1016/j.ejphar.2012.11.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 01/31/2023]
Abstract
Pulmonary arterial hypertension is a life-threatening disease lacking effective therapies. Osthole is a natural coumarin compound isolated from Angelica pubescens Maxim., which possesses hypotensive effect. Although its effects on isolated thoracic aorta (systemic circulating system) are clarified, it remains unclear whether Osthole relaxes isolated pulmonary arteries (PAs) (pulmonary circulating system). The aim of this study was to investigate the effects of Osthole on isolated PAs and the underlying mechanisms. We examined PA relaxation induced by Osthole in isolated human and rat PA rings with force-electricity transducers, the expression and activity of endothelial nitric oxide synthase (eNOS) and protein kinase B (Akt) with western blot, and nitric oxide (NO) production using DAF-FM DA fluorescent indicator. The results showed that Osthole elicited a dose-dependent vasorelaxation activity with phenylephrine-precontracted human and rat PA rings, which can be diminished by endothelium denudation and inhibition of eNOS, while having no effect on rat mesenteric arteries. Osthole increased NO release as well as activation of Akt and eNOS, indicated with increased phosphorylations of Akt at Ser-473 and eNOS at Ser-1177 in endothelial cells. PI3K inhibitor LY294002 also blocked Osthole induced vasodilation. In summary, dilative effect of Osthole was dependent on endothelial integrity and NO production, and was mediated by endothelial PI3K/Akt-eNOS-NO pathway. These may provide a new pulmonary vasodilator for the therapy of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Li Yao
- Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Goncharova EA, Khavin IS, Goncharov DA, Krymskaya VP. Differential effects of formoterol on thrombin- and PDGF-induced proliferation of human pulmonary arterial vascular smooth muscle cells. Respir Res 2012. [PMID: 23186269 PMCID: PMC3545871 DOI: 10.1186/1465-9921-13-109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Increased pulmonary arterial vascular smooth muscle (PAVSM) cell proliferation is a key pathophysiological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PH). The long-acting β2-adrenergic receptor (β2AR) agonist formoterol, a racemate comprised of (R,R)- and (S,S)-enantiomers, is commonly used as a vasodilator in chronic obstructive pulmonary disease (COPD). PH, a common complication of COPD, increases patients’ morbidity and reduces survival. Recent studies demonstrate that formoterol has anti-proliferative effects on airway smooth muscle cells and bronchial fibroblasts. The effects of formoterol and its enantiomers on PAVSM cell proliferation are not determined. The goals of this study were to examine effects of racemic formoterol and its enantiomers on PAVSM cell proliferation as it relates to COPD-associated PH. Methods Basal, thrombin-, PDGF- and chronic hypoxia-induced proliferation of primary human PAVSM cells was examined by DNA synthesis analysis using BrdU incorporation assay. ERK1/2, mTORC1 and mTORC2 activation were determined by phosphorylation levels of ERK1/2, ribosomal protein S6 and S473-Akt using immunoblot analysis. Results We found that (R,R) and racemic formoterol inhibited basal, thrombin- and chronic hypoxia-induced proliferation of human PAVSM cells while (S,S) formoterol had lesser inhibitory effect. The β2AR blocker propranolol abrogated the growth inhibitory effect of formoterol. (R,R), but not (S,S) formoterol attenuated basal, thrombin- and chronic hypoxia-induced ERK1/2 phosphorylation, but had little effect on Akt and S6 phosphorylation levels. Formoterol and its enantiomers did not significantly affect PDGF-induced DNA synthesis and PDGF-dependent ERK1/2, S473-Akt and S6 phosphorylation in human PAVSM cells. Conclusions Formoterol inhibits basal, thrombin-, and chronic hypoxia-, but not PDGF-induced human PAVSM cell proliferation and ERK1/2, but has little effect on mTORC1 and mTORC2 signaling. Anti-proliferative effects of formoterol depend predominantly on its (R,R) enantiomer and require the binding with β2AR. These data suggest that (R,R) formoterol may be considered as potential adjuvant therapy to inhibit PAVSM cell proliferation in COPD-associated PH.
Collapse
Affiliation(s)
- Elena A Goncharova
- Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
129
|
WANG CHANGMING, JIANG MING, WANG HUIJUAN. Effect of NF-κB inhibitor on high-mobility group protein B1 expression in a COPD rat model. Mol Med Rep 2012; 7:499-502. [DOI: 10.3892/mmr.2012.1181] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 10/15/2012] [Indexed: 11/06/2022] Open
|
130
|
Pulmonary hypertension in parenchymal lung disease. Pulm Med 2012; 2012:684781. [PMID: 23094153 PMCID: PMC3474989 DOI: 10.1155/2012/684781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/07/2012] [Indexed: 01/23/2023] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) has been extensively investigated, although it represents a less common form of the pulmonary hypertension (PH) family, as shown by international registries. Interestingly, in types of PH that are encountered in parenchymal lung diseases such as interstitial lung diseases (ILDs), chronic obstructive pulmonary disease (COPD), and many other diffuse parenchymal lung diseases, some of which are very common, the available data is limited. In this paper, we try to browse in the latest available data regarding the occurrence, pathogenesis, and treatment of PH in chronic parenchymal lung diseases.
Collapse
|
131
|
Cigarette smoke extract stimulates rat pulmonary artery smooth muscle cell proliferation via PKC-PDGFB signaling. J Biomed Biotechnol 2012; 2012:534384. [PMID: 22754279 PMCID: PMC3384980 DOI: 10.1155/2012/534384] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/17/2012] [Accepted: 04/23/2012] [Indexed: 11/29/2022] Open
Abstract
Accumulating evidence suggests a direct role for cigarette smoke in pulmonary vascular remodeling, which contributes to the development of pulmonary hypertension. However, the molecular mechanisms underlying this process remain poorly understood. Platelet-derived growth factor (PDGF) is a potential mitogen and chemoattractant implicated in several biological processes, including cell survival, proliferation, and migration. In this study, we investigated the effect of cigarette smoke extract (CSE) on cell proliferation of rat pulmonary artery smooth muscle cells (rPASMCs). We found that stimulation of rPASMCs with CSE significantly increased cell proliferation and promoted cell cycle progression from G1 phase to the S and G2 phases. CSE treatment also significantly upregulated the mRNA and protein levels of PDGFB and PDGFRβ. Our study also revealed that Rottlerin, an inhibitor of PKCδ signaling, prevented CSE-induced cell proliferation, attenuated the increase of S and G2 phase populations induced by CSE treatment, and downregulated PDGFB and PDGFRβ mRNA and protein levels in rPASMCs exposed to CSE. Collectively, our data demonstrated that CSE-induced cell proliferation of rPASMCs involved upregulation of the PKCδ-PDGFB pathway.
Collapse
|
132
|
Current Role of Imaging in the Diagnosis and Management of Pulmonary Hypertension. AJR Am J Roentgenol 2012; 198:1320-31. [DOI: 10.2214/ajr.11.7366] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
133
|
The epidemiology of vascular dysfunction relating to chronic obstructive pulmonary disease and emphysema. Ann Am Thorac Soc 2012; 8:522-7. [PMID: 22052931 DOI: 10.1513/pats.201101-008mw] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cor pulmonale has long been described in very severe chronic obstructive pulmonary disease (COPD) and emphysema. Cross-sectional results from population-based studies show that left ventricular filling and a variety of vascular measures in the systemic circulation are abnormal in preclinical COPD and emphysema and that a predominant vascular change in COPD and emphysema is endothelial and microvascular dysfunction. These findings suggest that pulmonary vascular changes may occur early in COPD and emphysema and might contribute to pathogenesis. However, longitudinal epidemiologic studies with direct measures of the pulmonary vasculature are lacking; therefore, inferences are limited at present. New imaging-based approaches to the assessment of the pulmonary vasculature are applicable to epidemiologic studies and may help in defining the relationship of pulmonary vascular damage to progression of COPD and emphysema. These measures may also provide imaging-based surrogate markers, and novel therapeutics targeted to the pulmonary vasculature might reduce symptoms and improve function in these common diseases.
Collapse
|
134
|
Abstract
PURPOSE OF REVIEW Defining the nature of the association between chronic obstructive pulmonary disease (COPD) and other chronic conditions is of primary importance to improve the health status of COPD patients through the optimal care of comorbidities. We aimed at providing a reasoned guide to understand, recognize and treat comorbidity of COPD with the perspective of shifting from comorbidity to multimorbidity. RECENT FINDINGS Select comorbidities, such as atherosclerotic disease, depression, chronic kidney disease, cognitive impairment, obstructive sleep apnea syndrome, lung cancer, osteoporosis, diabetes, heart failure, sarcopenia, aortic aneurysm, arrhythmias and pulmonary embolism are highly prevalent among older COPD patients. Several concerns may affect the management of older COPD patients with comorbidity (e.g. the use of β-blockers in patients with COPD and cardiovascular diseases or concerns about the cardiovascular safety of inhaled COPD drugs). SUMMARY Evidence suggests that systemic inflammation may be the link between COPD and comorbidities, but this issue is still debated. Whatever the mechanism underlying comorbidities in COPD may be, it has an important clinical, prognostic and therapeutic impact. Nevertheless, clinical practice guidelines do not take into account comorbidities in their recommendations. Additionally, clinical trials investigating COPD treatment in the context of multimorbidity and considering geriatric outcomes are also distinctly lacking.
Collapse
|
135
|
Protective effects of bone marrow mononuclear cell therapy on lung and heart in an elastase-induced emphysema model. Respir Physiol Neurobiol 2012; 182:26-36. [PMID: 22266352 DOI: 10.1016/j.resp.2012.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 01/07/2012] [Accepted: 01/08/2012] [Indexed: 12/21/2022]
Abstract
We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 × 10(6), CELL) intravenously 3h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-β, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema.
Collapse
|
136
|
Wang R, Xu YJ, Liu XS, Zeng DX, Xiang M. CCN2 promotes cigarette smoke-induced proliferation of rat pulmonary artery smooth muscle cells through upregulating cyclin D1 expression. J Cell Biochem 2012; 113:349-59. [PMID: 21928352 DOI: 10.1002/jcb.23361] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cigarette smoke has been demonstrated to induce pulmonary vascular remodeling, which is characterized by medial thickening of the pulmonary arteries mainly resulting from the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs). However, the molecular mechanism underlying this process is still unclear. In the present study, we investigated whether CCN2 regulated rat PASMCs (rPASMCs) proliferation induced by cigarette smoke extract (CSE) and nicotine by upregulating cyclin D1 in vitro. CCN2 siRNA or cyclin D1 siRNA were transfected to rPASMCs which were then exposed to CSE and nicotine. Both mRNA and protein expressions of CCN2 were significantly increased in rPASMCs treated with 2% CSE or 1 µM nicotine, which markedly promoted the proliferation of rPASMCs. CCN2 siRNA inhibited the proliferation of rPASMCs induced by CSE or nicotine. Furthermore, CCN2 siRNA markedly suppressed the mRNA and protein expressions of cyclin D1 in rPASMCs and led to cell cycle arrest in G0/G1 phase resulting in reduced rPASMCs proliferation. These findings suggest that CCN2 contributes to the CSE and nicotine-induced proliferation of rPASMCs at least in part by upregulating cyclin D1 expression.
Collapse
Affiliation(s)
- Ran Wang
- Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | | | | | | | | |
Collapse
|
137
|
Liu X, Xie C. Human endothelial progenitor cells isolated from COPD patients are dysfunctional. Mol Cell Biochem 2011; 363:53-63. [PMID: 22139347 DOI: 10.1007/s11010-011-1157-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/23/2011] [Indexed: 11/25/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD). More than 44% of these patients present with generalized atherosclerosis at autopsy. It is accepted that endothelial progenitor cells (EPCs) participate in the repair of dysfunctional endothelium and thus protects against atherosclerosis. However, whether COPD affects the repairing capacity of EPCs is unknown. Therefore, the objective of this study was to determine whether and how EPCs are involved in the vascular repair process in patients with COPD. In our study, EPCs from 25 COPD and 16 control patients were isolated by Ficoll density-gradient centrifugation and identified using fluorescence activated cell sorting. Transwell Migratory Assay was performed to determine the number of EPC colony-forming units and the adherent capacity late-EPCs to human umbilical vein endothelial cells. Following arterial damage in NOD/SCID mice, the number of EPCs incorporated at the injured vascular site was determined using a fluorescence microscope. We found that the number of EPC clusters and cell migration, as well as the expression of CXCR4, was significantly decreased in patients with COPD. Additionally, the number of late-EPCs adherent to HUVEC tubules was significantly reduced, and fewer VEGFR2(+)-staining cells were incorporated into the injured site in COPD patients. Our study demonstrates that EPC capacity of repair was affected in COPD patients, which may contribute to altered vascular endothelium in this patient population.
Collapse
Affiliation(s)
- Xiaoran Liu
- Respiratory Department, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou 51008, Guangdong Province, People's Republic of China.
| | | |
Collapse
|
138
|
Farkas L, Farkas D, Warburton D, Gauldie J, Shi W, Stampfli MR, Voelkel NF, Kolb M. Cigarette smoke exposure aggravates air space enlargement and alveolar cell apoptosis in Smad3 knockout mice. Am J Physiol Lung Cell Mol Physiol 2011; 301:L391-401. [PMID: 21743024 DOI: 10.1152/ajplung.00369.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The concept of genetic susceptibility factors predisposing cigarette smokers to develop emphysema stems from the clinical observation that only a fraction of smokers develop clinically significant chronic obstructive pulmonary disease. We investigated whether Smad3 knockout mice, which develop spontaneous air space enlargement after birth because of a defect in transforming growth factor-β (TGF-β) signaling, develop enhanced alveolar cell apoptosis and air space enlargement following cigarette smoke exposure. We investigated Smad3(-/-) and Smad3(+/+) mice at different adult ages and determined air space enlargement, alveolar cell proliferation, and apoptosis. Furthermore, laser-capture microdissection and real-time PCR were used to measure compartment-specific gene expression. We then compared the effects of cigarette smoke exposure on Smad3(-/-) and littermate controls. Smad3 knockout resulted in the development of air space enlargement in the adult mouse and was associated with decreased alveolar VEGF levels and activity and increased alveolar cell apoptosis. Cigarette smoke exposure aggravated air space enlargement and alveolar cell apoptosis. We also found increased Smad2 protein expression and phosphorylation, which was enhanced following cigarette smoke exposure, in Smad3-knockout animals. Double immunofluorescence analysis revealed that endothelial apoptosis started before epithelial apoptosis. Our data indicate that balanced TGF-β signaling is not only important for regulation of extracellular matrix turnover, but also for alveolar cell homeostasis. Impaired signaling via the Smad3 pathway results in alveolar cell apoptosis and alveolar destruction, likely via increased Smad2 and reduced VEGF expression and might represent a predisposition for accelerated development of emphysema due to cigarette smoke exposure.
Collapse
Affiliation(s)
- Laszlo Farkas
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Martinez FJ, Donohue JF, Rennard SI. The future of chronic obstructive pulmonary disease treatment--difficulties of and barriers to drug development. Lancet 2011; 378:1027-37. [PMID: 21907866 DOI: 10.1016/s0140-6736(11)61047-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although chronic obstructive pulmonary disease (COPD) is a major global health problem with a rising incidence and morbidity, few pharmacotherapeutic advances have been made over the past several decades. The challenges of development of such agents are multifactorial and include rudimentary understanding of the biological genesis of human disease, inadequate in-vitro and in-vivo models, unvalidated biomarkers, inefficient physiological and clinical endpoints, and variable regulatory review worldwide. Blockade of various inflammatory pathways and mediators is a reasonable therapeutic strategy to alter the natural history of COPD. Substantial heterogeneity is evident with respect to clinical presentation, physiology, imaging, response to therapy, decline in lung function, and survival. Numerous endpoints have been proposed for clinical studies in COPD, with new approaches under study. The novel strategy that seems most promising is the use of biomarkers. We hope that with these approaches novel pharmacotherapies will be developed in the near future.
Collapse
Affiliation(s)
- Fernando J Martinez
- Department of Internal Medicine and Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
140
|
Reed RM, Iacono A, DeFilippis A, Jones S, Eberlein M, Lechtzin N, Girgis RE. Statin therapy is associated with decreased pulmonary vascular pressures in severe COPD. COPD 2011; 8:96-102. [PMID: 21495837 DOI: 10.3109/15412555.2011.558545] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) in COPD carries a poor prognosis. Statin therapy has been associated with numerous beneficial clinical effects in COPD, including a possible improvement in PH. We examined the association between statin use and pulmonary hemodynamics in a well-characterized cohort of patients undergoing evaluation for lung transplantation. METHODS We conducted a cross-sectional analysis of 112 subjects evaluated for lung transplant with a diagnosis of COPD. Clinical characteristics, pulmonary function, cardiac catheterization findings and medical comorbidities were compared between statins users and non-users. RESULTS Thirty-four (30%) subjects were receiving statin therapy. Statin users were older and had an increased prevalence of systemic hypertension and coronary artery disease (CAD). Mean pulmonary arterial pressure (mPAP) in the statin group was lower [26 ± 7 vs 29 ± 7 mmHg, p = 0.02], as was pulmonary artery wedge pressure (PAWP) [12 ± 5 vs. 15 ± 6 mmHg, p = 0.02]. Pulmonary vascular resistance did not differ between the groups. In multiple regression analysis, statin use was associated with a 4.2 mmHg (95% CI: 2 to 6.4, p = <0.001) lower PAWP and a 2.6 mmHg (95% CI: 0.3 to 4.9, p = 0.03) reduction in mPAP independent of PAWP. CONCLUSIONS In patients with severe COPD, statin use is associated with significantly lower PAWP and mPAP. These finding should be evaluated prospectively.
Collapse
Affiliation(s)
- Robert M Reed
- University of Maryland School of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
In this perspective, we review published data which support the concept that many or most chronic and progressive lung diseases also involve the lung vessels and that microvascular abnormalities and endothelial cell death contribute to the pathobiology of emphysema. Lung vessel maintenance depends on Vascular Endothelial Growth Factor signaling and both are compromised in the emphysematous lung tissue. Although hypoxic pulmonary vasoconstriction has been considered as an important factor contributing to the vascular remodeling in chronic obstructive pulmonary disease (COPD) (COPD/emphysema, it is now clear that inhaled cigarette smoke can damage the lung vessels independent of the lung vascular tone. We propose that a "sick lung circulation" rather than the right heart afterload may better explain the cardiac abnormalities in COPD patients which are usually summarized with the term "cor pulmonale." The mechanisms and causes of pulmonary hypertension are likely complex and include vessel loss, in situ thrombosis, and endothelial cell dysfunction. Assessment of the functional importance of pulmonary hypertension in COPD requires hemodynamic measurements during exercise.
Collapse
Affiliation(s)
- Norbert F. Voelkel
- Department of Internal Medicine, Victoria Johnson Laboratory for Obstructive Lung Disease Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jose Gomez-Arroyo
- Department of Internal Medicine, Victoria Johnson Laboratory for Obstructive Lung Disease Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shiro Mizuno
- Department of Pulmonary Medicine, Kanazawa Medical University, Kanazawa, Japan
| |
Collapse
|
142
|
[Structural abnormalities and inflammation in COPD: a focus on small airways]. Rev Mal Respir 2011; 28:749-60. [PMID: 21742236 DOI: 10.1016/j.rmr.2011.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/13/2011] [Indexed: 11/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by poorly reversible airflow limitation associated with airway remodelling and inflammation of both large and small airways. The site of airflow obstruction in COPD is located in the small airways, justifying a focus on this compartment. The structural abnormalities that are found in bronchioles with a diameter less than 2mm are characterized by increased airway wall thickness with peribronchial fibrosis, and by luminal obstruction by mucous exudates. Destruction of alveolar walls, the hallmark of emphysema, may be related to protease-antiprotease imbalance, and to mechanisms involving apoptosis, senescence, and autoimmunity. Cigarette smoke inhalation triggers the recruitment of innate immune cells (neutrophils and macrophages) and putatively adaptive immunity mediated via T and B lymphocytes and lymphoid follicles in the small airways. These data suggest a potential role for therapies that can target remodelling and inflammation in the small airways of patients with COPD.
Collapse
|
143
|
Cell-specific dual role of caveolin-1 in pulmonary hypertension. Pulm Med 2011; 2011:573432. [PMID: 21660237 PMCID: PMC3109422 DOI: 10.1155/2011/573432] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 03/10/2011] [Indexed: 12/15/2022] Open
Abstract
A wide variety of cardiopulmonary and systemic diseases are known to lead to pulmonary hypertension (PH). A number of signaling pathways have been implicated in PH; however, the precise mechanism/s leading to PH is not yet clearly understood. Caveolin-1, a membrane scaffolding protein found in a number of cells including endothelial and smooth muscle cells, has been implicated in PH. Loss of endothelial caveolin-1 is reported in clinical and experimental forms of PH. Caveolin-1, also known as a tumor-suppressor factor, interacts with a number of transducing molecules that reside in or are recruited to caveolae, and it inhibits cell proliferative pathways. Not surprisingly, the rescue of endothelial caveolin-1 has been found not only to inhibit the activation of proliferative pathways but also to attenuate PH. Recently, it has emerged that during the progression of PH, enhanced expression of caveolin-1 occurs in smooth muscle cells, where it facilitates cell proliferation, thus contributing to worsening of the disease. This paper summarizes the cell-specific dual role of caveolin-1 in PH.
Collapse
|
144
|
Wang Z, Chesler NC. Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia. Biomech Model Mechanobiol 2011; 11:279-89. [PMID: 21538012 DOI: 10.1007/s10237-011-0309-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 04/10/2011] [Indexed: 11/25/2022]
Abstract
Chronic hypoxic pulmonary hypertension (HPH) is associated with large pulmonary artery (PA) stiffening, which is correlated with collagen accumulation. However, the mechanisms by which collagen contributes to PA stiffening remain largely unexplored. Moreover, HPH may alter mechanical properties other than stiffness, such as pulse damping capacity, which also affects ventricular workload but is rarely quantified. We hypothesized that collagen content and cross-linking differentially regulate the stiffness and damping capacity of large PAs during HPH progression. The hypothesis was tested with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1(R/R)). These mice and littermate controls (Col1a1(+/+)) were exposed to hypoxia for 10 days; some were treated with β-aminopropionitrile (BAPN), which prevents new cross-link formation. Isolated PA dynamic mechanical tests were performed, and collagen content and cross-linking were measured. In Col1a1(+/+) mice, HPH increased both collagen content and cross-linking, and BAPN treatment prevented these increases. Similar trends were observed in Col1a1(R/R) mice except that collagen content further increased with BAPN treatment. Mechanical tests showed that in Col1a1(+/+) mice, HPH increased PA stiffness and damping capacity, and these increases were impeded by BAPN treatment. In Col1a1(R/R) mice, HPH led to a smaller but significant increase in PA stiffness and a decrease in damping capacity. These mechanical changes were not affected by BAPN treatment. Vessel-specific correlations for each strain showed that the stiffness and damping capacity were correlated with the total content rather than cross-linking of collagen. Our results suggest that collagen total content is critical to extralobar PA stiffening during HPH.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
145
|
Gläser S, Obst A, Opitz CF, Dörr M, Felix SB, Empen K, Völzke H, Ewert R, Schäper C, Koch B. Peripheral endothelial dysfunction is associated with gas exchange inefficiency in smokers. Respir Res 2011; 12:53. [PMID: 21518441 PMCID: PMC3094213 DOI: 10.1186/1465-9921-12-53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/25/2011] [Indexed: 01/22/2023] Open
Abstract
Aims To assess the cross-sectional association between exercise capacity, gas exchange efficiency and endothelial function, as measured by flow-mediated dilation (FMD) and nitroglycerin-mediated dilation (NMD) of the brachial artery, in a large-scale population-based survey. Methods The study population was comprised of 1416 volunteers 25 to 85 years old. Oxygen uptake at anaerobic threshold (VO2@AT), peak exercise (peakVO2) and ventilatory efficiency (VE vs. VCO2 slope and VE/VCO2@AT) were assessed on a breath-by-breath basis during incremental symptom-limited cardiopulmonary exercise. FMD and NMD measurements at rest were performed using standardised ultrasound techniques. Results Multivariable logistic regression analyses revealed a significant association between FMD and ventilatory efficiency in current smokers but not in ex-smokers or non-smokers. There was no association between FMD and VO2@AT or peak VO2. In current smokers, for each one millimetre decrement in FMD, VE/VCO2@AT improved by -3.6 (95% CI -6.8, -0.4) in the overall population [VE vs. VCO2 slope -3.9 (-7.1, -0.6)]. These results remained robust after adjusting for all major influencing factors. Neither exercise capacity nor ventilatory efficiency was significantly associated with NMD. Conclusion In current smokers, FMD is significantly associated with ventilatory efficiency. This result may be interpreted as a potential clinical link between smoking and early pulmonary vasculopathy due to smoking.
Collapse
Affiliation(s)
- Sven Gläser
- Medical Faculty of the Ernst-Moritz-Arndt University, Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, Friedrich-Loeffler-Str, 23, D-17475 Greifswald, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Toya SP, Malik AB. Role of endothelial injury in disease mechanisms and contribution of progenitor cells in mediating endothelial repair. Immunobiology 2011; 217:569-80. [PMID: 21513999 DOI: 10.1016/j.imbio.2011.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/09/2011] [Indexed: 12/30/2022]
Abstract
Recent research on the endothelium demonstrates complex interactions of endothelial cells with circulating immune cells, mediators such as cytokines, hormones and growth factors, and with the underlying parenchymal cells. These disparate interactions are involved in promotion of vascular development; maintenance of tissue homeostasis; and regulation of vascular repair. Injury to the endothelial monolayer is the sine qua non of organ dysfunction with endothelial repair the necessary first step needed for recovery. Thus, the capacity of the endothelium to regenerate itself is a key determinant of organ repair and survival after injury. Using the example of the lung, we will review the current state of knowledge regarding the importance of endothelium in the above mentioned processes with a focus on the role of stem cells, both endogenous (i.e., localized within the vessel wall) as well as exogenous (i.e., arriving in the vessel wall from distant sites such as the bone marrow) in promoting endothelial repair and regeneration. The subject of endothelial regeneration and the ways in which stem and progenitor cells contribute to this process has promise in treating vascular diseases. As we will highlight in this review, some questions have been addressed but many more remain and need to be addressed before cell-based therapies become a viable option.
Collapse
Affiliation(s)
- Sophie P Toya
- Department of Pharmacology and the Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | |
Collapse
|
147
|
Krymskaya VP, Snow J, Cesarone G, Khavin I, Goncharov DA, Lim PN, Veasey SC, Ihida-Stansbury K, Jones PL, Goncharova EA. mTOR is required for pulmonary arterial vascular smooth muscle cell proliferation under chronic hypoxia. FASEB J 2011; 25:1922-33. [PMID: 21368105 DOI: 10.1096/fj.10-175018] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pulmonary arterial vascular smooth muscle (PAVSM) cell proliferation is a key pathophysiological component of vascular remodeling in pulmonary arterial hypertension (PAH) for which cellular and molecular mechanisms are poorly understood. The goal of our study was to determine the role of mammalian target of rapamycin (mTOR) in PAVSM cell proliferation, a major pathological manifestation of vascular remodeling in PAH. Our data demonstrate that chronic hypoxia promoted mTOR(Ser-2481) phosphorylation, an indicator of mTOR intrinsic catalytic activity, mTORC1-specific S6 and mTORC2-specific Akt (Ser-473) phosphorylation, and proliferation of human and rat PAVSM cells that was inhibited by siRNA mTOR. PAVSM cells derived from rats exposed to chronic hypoxia (VSM-H cells) retained increased mTOR(Ser-2481), S6, Akt (Ser-473) phosphorylation, and DNA synthesis compared to cells from normoxia-exposed rats. Suppression of mTORC2 signaling with siRNA rictor, or inhibition of mTORC1 signaling with rapamycin and metformin, while having little effect on other complex activities, inhibited VSM-H and chronic hypoxia-induced human and rat PAVSM cell proliferation. Collectively, our data demonstrate that up-regulation of mTOR activity and activation of both mTORC1 and mTORC2 are required for PAVSM cell proliferation induced by in vitro and in vivo chronic hypoxia and suggest that mTOR may serve as a potential therapeutic target to inhibit vascular remodeling in PAH.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Rabinovich RA, MacNee W. Chronic obstructive pulmonary disease and its comorbidities. Br J Hosp Med (Lond) 2011; 72:137-45. [DOI: 10.12968/hmed.2011.72.3.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - William MacNee
- UoE/MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ
| |
Collapse
|
149
|
|
150
|
Oualha M, Boitiaux JF, Tadié JM, Cazes A, Riquet M, Naline E, Israël-Biet D, Delclaux C. Association of ex vivo vascular and bronchial dysfunctions in smokers. Pulm Pharmacol Ther 2010; 24:227-31. [PMID: 21187156 DOI: 10.1016/j.pupt.2010.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/24/2010] [Accepted: 12/18/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND It has recently been shown that systemic endothelial dysfunction is associated with airflow limitation in COPD. We conducted this ex vivo study to assess whether endothelial dysfunction of pulmonary arteries of former smokers was associated with modifications of airway functions. METHODS Pharmacological experiments were conducted on arterial and bronchial rings obtained from lung specimen of 20 patients: 13 smokers without COPD and 7 smokers with mild to moderate COPD (GOLD class I or II). The impairment of acetylcholine-mediated vasodilation (constriction) of preconstricted arterial rings defined endothelial dysfunction. Resting tone (initial and after a contraction test) and cGMP-mediated dilation of bronchial rings in response to zaprinast were evaluated. RESULTS Initial airway resting tone was correlated with airflow limitation (FEV(1) % predicted: Rho = -0.49; p = 0.032). The acetylcholine response of arterial rings was correlated with zaprinast-induced bronchodilation (Rho = 0.54, p = 0.019). Patients with endothelial dysfunction (n = 5), as compared with those displaying no dysfunction (n = 15), were characterized by an increased resting tone (after contraction test), an impaired response to zaprinast but a similar degree of airflow limitation (FEV(1)). CONCLUSION Endothelial dysfunction of pulmonary arteries is associated with increased resting tone and impaired cGMP-mediated dilation of airways in former smokers, suggesting common underlying mechanisms of pulmonary arterial and bronchial dysfunctions.
Collapse
Affiliation(s)
- Mehdi Oualha
- Université Paris Descartes, UFR Biomédicale des Saints-Pères, UPRES EA 4068, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|