101
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023; 14:2172264. [PMID: 36752587 PMCID: PMC10732619 DOI: 10.1080/21505594.2023.2172264] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
Affiliation(s)
- Kayleigh Earle
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Daniel P. Conn
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George Vere
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C. Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
102
|
Di Raimondo D, Pirera E, Pintus C, De Rosa R, Profita M, Musiari G, Siscaro G, Tuttolomondo A. The Role of the Cumulative Illness Rating Scale (CIRS) in Estimating the Impact of Comorbidities on Chronic Obstructive Pulmonary Disease (COPD) Outcomes: A Pilot Study of the MACH (Multidimensional Approach for COPD and High Complexity) Study. J Pers Med 2023; 13:1674. [PMID: 38138901 PMCID: PMC10745043 DOI: 10.3390/jpm13121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a heterogeneous systemic syndrome that often coexists with multiple comorbidities. In highly complex COPD patients, the role of the Cumulative Illness Rating Scale (CIRS) as a risk predictor of COPD exacerbation is not known. OBJECTIVE The objective of this study was determine the effectiveness of the CIRS score in detecting the association of comorbidities and disease severity with the risk of acute exacerbations in COPD patients. METHODS In total, 105 adults with COPD (mean age 72.1 ± 9.0 years) were included in this prospective study. All participants at baseline had at least two moderate exacerbations or one leading to hospitalization. The primary outcome was a composite of moderate or severe COPD exacerbation during the 12 months of follow-up. RESULTS The CIRS indices (CIRS total score, Severity Index and Comorbidity Index) showed a positive correlation with modified Medical Research Council (mMRC), COPD assessment test (CAT) and a negative correlation with forced expiratory volume in the first second (FEV1), Forced Vital Capacity (FVC), and FEV1/FVC. The three CIRS indices were able to predict the 12-month rate of moderate or severe exacerbation (CIRS Total Score: Hazard Ratio (HR) = 1.12 (95% CI: 1.08-1.21); CIRS Severity Index: HR = 1.21 (95% CI: 1.12-1.31); CIRS Comorbidity Index = 1.58 (95% CI: 1.33-1.89)). CONCLUSIONS Among patients with COPD, the comorbidity number and severity, as assessed by the CIRS score, influence the risk in moderate-to-severe exacerbations. The CIRS score also correlates with the severity of respiratory symptoms and lung function.
Collapse
Affiliation(s)
- Domenico Di Raimondo
- Division of Internal Medicine and Stroke Care, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (ProMISE) “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (E.P.); (C.P.); (R.D.R.); (M.P.); (G.M.); (A.T.)
| | - Edoardo Pirera
- Division of Internal Medicine and Stroke Care, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (ProMISE) “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (E.P.); (C.P.); (R.D.R.); (M.P.); (G.M.); (A.T.)
| | - Chiara Pintus
- Division of Internal Medicine and Stroke Care, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (ProMISE) “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (E.P.); (C.P.); (R.D.R.); (M.P.); (G.M.); (A.T.)
| | - Riccardo De Rosa
- Division of Internal Medicine and Stroke Care, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (ProMISE) “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (E.P.); (C.P.); (R.D.R.); (M.P.); (G.M.); (A.T.)
| | - Martina Profita
- Division of Internal Medicine and Stroke Care, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (ProMISE) “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (E.P.); (C.P.); (R.D.R.); (M.P.); (G.M.); (A.T.)
| | - Gaia Musiari
- Division of Internal Medicine and Stroke Care, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (ProMISE) “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (E.P.); (C.P.); (R.D.R.); (M.P.); (G.M.); (A.T.)
| | | | - Antonino Tuttolomondo
- Division of Internal Medicine and Stroke Care, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (ProMISE) “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (E.P.); (C.P.); (R.D.R.); (M.P.); (G.M.); (A.T.)
| |
Collapse
|
103
|
Jung SH, Chung KS, Na CS, Ahn HS, Shin YK, Lee KT. Ethanol Extracts from the Aerial Parts of Inula japonica and Potentilla chinensis Alleviate Airway Inflammation in Mice That Inhaled Particulate Matter 10 and Diesel Particulate Matter. Nutrients 2023; 15:4599. [PMID: 37960252 PMCID: PMC10647664 DOI: 10.3390/nu15214599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Air pollution causes various airway diseases. However, many commonly used treatments can have high risks of side effects or are costly. To examine the anti-inflammatory properties of Inula japonica Thunb. and Potentilla chinensis Ser., a mouse model was generated via inhalation of both particulate matter 10 and diesel particulate matter, and 30% ethanol extracts of either I. japonica (IJ) or P. chinensis (PC) and a mixture of both ethanol extracts (IP) were orally administered to BALB/c mice for 12 days. IJ, PC, and IP inhibited immune cell numbers and their regulation in both the bronchoalveolar lavage fluid (BALF) and lungs. These agents suppressed the levels of interleukin (IL)-1α, IL-17, tumor necrosis factor (TNF)-α, C-X-C motif chemokine ligand (CXCL)-1, and CXCL-2 in BALF, and also inhibited F4/80 and IL-1 receptor-associated kinase (IRAK)-1 in lungs. They reduced the gene expression of TNF-α, CXCL-1, inducible NOS, COX-2, Mucin 5AC, and transient receptor potential cation channel subfamily V member 1 in lungs. These extracts also reduced histopathological changes and inflammatory progression, manifested as decreased cell infiltration, collagen deposition, and respiratory epithelial cell thickness. I. japonica and P. chinensis show potential for development as pharmaceuticals that suppress inflammatory progression and alleviate airway inflammation diseases caused by air pollutants.
Collapse
Affiliation(s)
- Seang-Hwan Jung
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea;
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea;
| | - Chang-Seon Na
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (C.-S.N.); (H.-S.A.)
| | - Hye-Shin Ahn
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (C.-S.N.); (H.-S.A.)
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (C.-S.N.); (H.-S.A.)
| | - Kyung-Tae Lee
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea;
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea;
| |
Collapse
|
104
|
Lu Y, Deng M, Yin Y, Hou G, Zhou X. Global Trends in Research Regarding Macrophages Associated with Chronic Obstructive Pulmonary Disease: A Bibliometric Analysis from 2011 to 2022. Int J Chron Obstruct Pulmon Dis 2023; 18:2163-2177. [PMID: 37810373 PMCID: PMC10558051 DOI: 10.2147/copd.s419634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory condition characterized by chronic airway inflammation, where macrophages from the innate immune system may exert a pivotal influence. Our study aimed to summarize the present state of knowledge and to identify the focal points and emerging developments regarding macrophages associated with COPD through bibliometrics. Methods Publications regarding research on macrophages associated with COPD from January 1, 2011, to January 1, 2022, were retrieved from the Science Citation Index-Expanded (SCI-E) which is part of the Web of Science database. In total, 1521 publications were analyzed using bibliometric methodology. VOSviewer was used to analyze the annual publications, countries, institutions, authors, journals, and research hotspots. Results Based on the bibliometric analysis, publications relating to macrophages associated with COPD tended to increase from 2011 to 2022. The United States was the largest producer and most influential country in this field. Research during the past decade has focused on inflammation in the lungs. Most previous studies have mainly focused on the mechanisms that promote the initiation and progression of COPD. Macrophage-related oxidative stress and immunity, communication between macrophages and epithelial cells, and interventions for acute exacerbations have become the focus of more recent studies and will become a hot topic in the future. Conclusion Global research on macrophage-associated COPD has been growing rapidly in the past decade. The hot topics in this field gradually tended to shift focus from "inflammation" to "oxidative stress", "epithelial-cells", and "exacerbations". The significance of macrophages in coordinating immune responses, interacting with other cells, and exhibiting dysregulated capacities has attracted increasing attention to COPD pathogenesis. The adoption of new technologies may provide a more promising and comprehensive understanding of the specific role of macrophages in COPD in the future.
Collapse
Affiliation(s)
- Ye Lu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- National Center for Respiratory Medicine, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- National Clinical Research Center for Respiratory Diseases, Beijing, People’s Republic of China
| | - Yan Yin
- Department of Respiratory and Critical Care Medicine, First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- National Center for Respiratory Medicine, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- National Clinical Research Center for Respiratory Diseases, Beijing, People’s Republic of China
| | - Xiaoming Zhou
- Department of Respirology, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| |
Collapse
|
105
|
Gu P, Wang Z, Yu X, Wu N, Wu L, Li Y, Hu X. Mechanism of KLF9 in airway inflammation in chronic obstructive pulmonary. Immun Inflamm Dis 2023; 11:e1043. [PMID: 37904708 PMCID: PMC10568256 DOI: 10.1002/iid3.1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an airway-associated lung disorder, resulting in airway inflammation. This article aimed to explore the role of the krüppel-like factor 9 (KLF9)/microRNA (miR)-494-3p/phosphatase and tensin homolog (PTEN) axis in airway inflammation and pave a theoretical foundation for the treatment of COPD. METHODS The COPD mouse model was established by exposure to cigarette smoke, followed by measurements of total cells, neutrophils, macrophages, and hematoxylin and eosin staining. The COPD cell model was established on human lung epithelial cells BEAS-2B using cigarette smoke extract. Cell viability was assessed by cell counting kit-8 assay. miR-494-3p, KLF9, PTEN, and NLR family, pyrin domain containing 3 (NLRP3) levels in tissues and cells were measured by quantitative real-time polymerase chain reaction or Western blot assay. Inflammatory factors (TNF-α/IL-6/IL-8/IFN-γ) were measured by enzyme-linked immunosorbent assay. Interactions among KLF9, miR-494-3p, and PTEN 3'UTR were verified by chromatin immunoprecipitation and dual-luciferase assays. RESULTS KLF9 was upregulated in lung tissues of COPD mice. Inhibition of KLF9 alleviated airway inflammation, reduced intrapulmonary inflammatory cell infiltration, and repressed NLRP3 expression. KLF9 bound to the miR-494-3p promoter and increased miR-494-3p expression, and miR-494-3p negatively regulated PTEN expression. miR-494-3p overexpression or Nigericin treatment reversed KLF9 knockdown-driven repression of NLRP3 inflammasome and inflammation. CONCLUSION KLF9 bound to the miR-494-3p promoter and repressed PTEN expression, thereby facilitating NLRP3 inflammasome-mediated inflammation.
Collapse
Affiliation(s)
- Peijie Gu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Zhen Wang
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Xin Yu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Nan Wu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Liang Wu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Yihang Li
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Xiaodong Hu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| |
Collapse
|
106
|
Seyfinejad B, Nemutlu E, Taghizadieh A, Khoubnasabjafari M, Ozkan SA, Jouyban A. Biomarkers in exhaled breath condensate as fingerprints of asthma, chronic obstructive pulmonary disease and asthma-chronic obstructive pulmonary disease overlap: a critical review. Biomark Med 2023; 17:811-837. [PMID: 38179966 DOI: 10.2217/bmm-2023-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap are the third leading cause of mortality around the world. They share some common features, which can lead to misdiagnosis. To properly manage these conditions, reliable markers for early and accurate diagnosis are needed. Over the past 20 years, many molecules have been investigated in the exhaled breath condensate to better understand inflammation pathways and mechanisms related to these disorders. Recently, more advanced techniques, such as sensitive metabolomic and proteomic profiling, have been used to obtain a more comprehensive understanding. This article reviews the use of targeted and untargeted metabolomic methodology to study asthma, COPD and asthma-COPD overlap.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkiye
| | - Ali Taghizadieh
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anesthesiology & Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkiye
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO Box 99138 Nicosia, North Cyprus, Mersin 10, Turkiye
| |
Collapse
|
107
|
Nolasco S, Crimi C, Campisi R. Personalized Medicine in Asthma: Current Approach and Future Perspectives. J Pers Med 2023; 13:1459. [PMID: 37888070 PMCID: PMC10608641 DOI: 10.3390/jpm13101459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Asthma is one of the most common chronic respiratory diseases, affecting over 300 million people worldwide [...].
Collapse
Affiliation(s)
- Santi Nolasco
- Respiratory Medicine Unit, Policlinico “G. Rodolico-San Marco” University Hospital, 95123 Catania, Italy; (S.N.); (R.C.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Claudia Crimi
- Respiratory Medicine Unit, Policlinico “G. Rodolico-San Marco” University Hospital, 95123 Catania, Italy; (S.N.); (R.C.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Raffaele Campisi
- Respiratory Medicine Unit, Policlinico “G. Rodolico-San Marco” University Hospital, 95123 Catania, Italy; (S.N.); (R.C.)
| |
Collapse
|
108
|
Wang W, Zhu DN, Shao SS, Bao J. Closed thoracic drainage in elderly patients with chronic obstructive pulmonary disease complicated with spontaneous pneumothorax: A retrospective study. World J Clin Cases 2023; 11:6415-6423. [PMID: 37900247 PMCID: PMC10600998 DOI: 10.12998/wjcc.v11.i27.6415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) combined with spontaneous pneumothorax, is characterized by significant decline in lung function, and even cause cardiopulmonary failure and hypoxia. AIM To evaluate the clinical effectiveness of central venous catheters and indwelling pleural catheters (IPC) in managing closed thoracic drainage in patients diagnosed with COPD with concomitant by spontaneous pneumothorax. METHODS Retrospective analysis was conducted on the clinical information of 60 elderly patients with COPD complicated by spontaneous pneumothorax admitted to the Shexian Branch of the second affiliated hospital of Zhejiang university school of medicine between March 2020 and March 2023. The clinical efficacy, complications, hospitalization duration, and costs were compared between patients with an indwelling thoracic catheter and those with a central venous catheter. Univariate logistic regression was used to analyze the causes of catheter displacement. RESULTS According to our findings, there were significant differences in the IPC group's clinical efficacy, catheter operation time, and lung recruitment time (P < 0.05). Comparing the complications after catheter treatment between the two groups revealed statistically significant variations in the incidence of postoperative analgesics, catheter abscission, catheter blockage, and subcutaneous emphysema in the IPC group (P < 0.05). Univariate analysis demonstrated significant differences between patients with and without catheter dislodgement regarding duty nurse's working years (less than three), Acute Physiology and Chronic Health Evaluation II (APACHE II) scores (less than 15), lack of catheter suture fixation, and the proportion of catheters not fixed twice (P < 0.05). CONCLUSION Our results demonstrated that when treating elderly COPD patients with spontaneous pneumothorax, indwelling thoracic catheters are more effective than the central venous catheter group. Patients' catheter shedding is influenced by the primary nurse's working years, APACHE II scores, and catheter fixation technique.
Collapse
Affiliation(s)
- Wei Wang
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of Shexian, Huangshan 242700, Anhui Province, China
| | - Dong-Ning Zhu
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of Shexian, Huangshan 242700, Anhui Province, China
| | - Shan-Shan Shao
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of Shexian, Huangshan 242700, Anhui Province, China
| | - Jun Bao
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of Shexian, Huangshan 242700, Anhui Province, China
| |
Collapse
|
109
|
Liu Y, Kong H, Cai H, Chen G, Chen H, Ruan W. Progression of the PI3K/Akt signaling pathway in chronic obstructive pulmonary disease. Front Pharmacol 2023; 14:1238782. [PMID: 37799975 PMCID: PMC10548138 DOI: 10.3389/fphar.2023.1238782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a chronic respiratory disease characterized by a slow progression and caused by the inhalation of harmful particulate matter. Cigarette smoke and air pollutants are the primary contributing factors. Currently, the pathogenesis of COPD remains incompletely understood. The PI3K/Akt signaling pathway has recently emerged as a critical regulator of inflammation and oxidative stress response in COPD, playing a pivotal role in the disease's progression and treatment. This paper reviews the association between the PI3K/Akt pathway and COPD, examines effective PI3K/Akt inhibitors and novel anti-COPD agents, aiming to identify new therapeutic targets for clinical intervention in this disease.
Collapse
Affiliation(s)
- Yanhui Liu
- Department of Clinical Pharmacy, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Haobo Kong
- Department of Respiratory Intensive Care Unit, Anhui Chest Hospital, Hefei, Anhui, China
| | - Heping Cai
- Department of Clinical Pharmacy, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Guanru Chen
- Department of Clinical Pharmacy, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Huiying Chen
- Department of Clinical Pharmacy, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Wenyi Ruan
- Department of Clinical Pharmacy, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| |
Collapse
|
110
|
Chen G, Mu Q, Meng ZJ. Cigarette Smoking Contributes to Th1/Th2 Cell Dysfunction via the Cytokine Milieu in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:2027-2038. [PMID: 37720875 PMCID: PMC10504905 DOI: 10.2147/copd.s426215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Background Dysregulation and pyroptosis of T-helper (Th) cells and inflammatory cytokines have been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the immune response mechanisms as a consequence of tobacco smoke exposure are not fully understood. We hypothesized that cigarette smoke-induced inflammation could be modulated through the cytokine milieu and T-cell nicotinic acetylcholine receptors (nAChRs). Methods The proportions of peripheral blood Th1 and Th2 cells from patients with COPD, smokers without airway obstruction and healthy nonsmokers were analyzed using flow cytometry. The levels of plasma proinflammatory cytokines and their potential association with pulmonary function were also measured. The influence of cigarette smoke extract (CSE) on the conditioned differentiation of T helper cell subsets was further examined in vitro. Results Significantly higher Th1 cell and plasma IFN-γ and IL-18 levels but lower levels of Th2 cells were found in the peripheral blood from patients with COPD. The increased plasma levels of IFN-γ and IL-18 were negatively correlated with pulmonary function (FEV1% predicted value). Pyroptosis participates in COPD development probably through the activation of the NLRP3 inflammasome upon exposure to CSE. CSE does not directly induce the differentiation of T helper cells; however, under conditioned medium, CSE promotes Th1 development through α7 nAChR modification, while it does not substantially interfere with Th2 differentiation. Conclusion The differences in the cytokine milieu play a key role in the effects of CSE on the immune response in patients with COPD.
Collapse
Affiliation(s)
- Gang Chen
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Qing Mu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zhao-Ji Meng
- Department of Immune Allergy, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
111
|
Maetani T, Tanabe N, Sato A, Shiraishi Y, Sakamoto R, Ogawa E, Sakai H, Matsumoto H, Sato S, Date H, Hirai T, Muro S. Association between blood eosinophil count and small airway eosinophils in smokers with and without COPD. ERJ Open Res 2023; 9:00235-2023. [PMID: 37868149 PMCID: PMC10588801 DOI: 10.1183/23120541.00235-2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Airway eosinophilic inflammation is a pathological feature in a subgroup of patients with COPD and in some smokers with a high COPD risk. Although blood eosinophil count is used to define eosinophilic COPD, the association between blood eosinophil count and airway eosinophilic inflammation remains controversial. This cross-sectional study tested this association in smokers with and without COPD while considering potential confounders, such as smoking status and comorbidities. Methods Lung specimens were obtained from smokers with and without COPD and non-COPD never-smokers undergoing lung lobectomy. Those with any asthma history were excluded. The infiltration of eosinophils into the small airway wall was quantified on histological sections stained with major basic protein (MBP). Results The number of airway MBP-positive cells was greater in smokers (n=60) than in never-smokers (n=14). Smokers with and without COPD (n=30 each) exhibited significant associations between blood eosinophil count and airway MBP-positive cells (ρ=0.45 and 0.71). When smokers were divided into the high and low airway MBP groups based on their median value, blood eosinophil count was higher in the high-MBP group, with no difference in age, smoking status, comorbidities, emphysema or coronary artery calcification on computed tomography, and inhaled corticosteroid (ICS) use. The association between greater blood eosinophil count and the high-MBP group was confirmed in multivariable models adjusted for smoking status, airflow limitation and ICS use. Conclusion The blood eosinophil count may reflect eosinophilic inflammation in the small airways in smokers with and without COPD.
Collapse
Affiliation(s)
- Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Emiko Ogawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Respiratory Medicine, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Hiroaki Sakai
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Thoracic Surgery, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Medicine, Nara Medical University Graduate School of Medicine, Nara, Japan
| |
Collapse
|
112
|
Zinellu A, Mangoni AA. Arginine, Transsulfuration, and Folic Acid Pathway Metabolomics in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12:2180. [PMID: 37681911 PMCID: PMC10486395 DOI: 10.3390/cells12172180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
There is an increasing interest in biomarkers of nitric oxide dysregulation and oxidative stress to guide management and identify new therapeutic targets in patients with chronic obstructive pulmonary disease (COPD). We conducted a systematic review and meta-analysis of the association between circulating metabolites within the arginine (arginine, citrulline, ornithine, asymmetric, ADMA, and symmetric, SDMA dimethylarginine), transsulfuration (methionine, homocysteine, and cysteine) and folic acid (folic acid, vitamin B6, and vitamin B12) metabolic pathways and COPD. We searched electronic databases from inception to 30 June 2023 and assessed the risk of bias and the certainty of evidence. In 21 eligible studies, compared to healthy controls, patients with stable COPD had significantly lower methionine (standardized mean difference, SMD = -0.50, 95% CI -0.95 to -0.05, p = 0.029) and folic acid (SMD = -0.37, 95% CI -0.65 to -0.09, p = 0.009), and higher homocysteine (SMD = 0.78, 95% CI 0.48 to 1.07, p < 0.001) and cysteine concentrations (SMD = 0.34, 95% CI 0.02 to 0.66, p = 0.038). Additionally, COPD was associated with significantly higher ADMA (SMD = 1.27, 95% CI 0.08 to 2.46, p = 0.037), SDMA (SMD = 3.94, 95% CI 0.79 to 7.08, p = 0.014), and ornithine concentrations (SMD = 0.67, 95% CI 0.13 to 1.22, p = 0.015). In subgroup analysis, the SMD of homocysteine was significantly associated with the biological matrix assessed and the forced expiratory volume in the first second to forced vital capacity ratio, but not with age, study location, or analytical method used. Our study suggests that the presence of significant alterations in metabolites within the arginine, transsulfuration, and folic acid pathways can be useful for assessing nitric oxide dysregulation and oxidative stress and identifying novel treatment targets in COPD. (PROSPERO registration number: CRD42023448036.).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| |
Collapse
|
113
|
Wu X, Jia B, Luo X, Wang J, Li M. Glucocorticoid Alleviates Mechanical Stress-Induced Airway Inflammation and Remodeling in COPD via Transient Receptor Potential Canonical 1 Channel. Int J Chron Obstruct Pulmon Dis 2023; 18:1837-1851. [PMID: 37654522 PMCID: PMC10466112 DOI: 10.2147/copd.s419828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
Background Increased airway resistance and hyperinflation in chronic obstructive pulmonary disease (COPD) are associated with increased mechanical stress that modulate many essential pathophysiological functions including airway remodeling and inflammation. Our present study aimed to investigate the role of transient receptor potential canonical 1 (TRPC1), a mechanosensitive cation channel in airway remodeling and inflammation in COPD and the effect of glucocorticoid on this process. Methods In patients, we investigated the effect of pathological high mechanical stress on the expression of airway remodeling-related cytokines transforming growth factor β1 (TGF-β1), matrix metalloproteinase-9 (MMP9) and the count of inflammatory cells in endotracheal aspirates (ETAs) by means of different levels of peak inspiratory pressure (PIP) under mechanical ventilation, and analyzed their correlation with TRPC1. Based on whether patients regularly used inhaled corticosteroid (ICS), COPD patients were further divided into ICS group (n = 12) and non-ICS group (n=15). The ICS effect on the expression of TRPC1 was detected by Western blot. In vitro, we imitated the mechanical stress using cyclic stretch and examined the levels of TGF-β1 and MMP-9. The role of TRPC1 was further explored by siRNA transfection and dexamethasone administration. Results Our results revealed that the TRPC1 level and the inflammatory cells counts were significantly higher in COPD group. After mechanical ventilation, the expression of TGF-β1 and MMP-9 in all COPD subgroups was significantly increased, while in the control group, only high PIP subgroup increased. Meanwhile, TRPC1 expression was positively correlated with the counts of inflammatory cells and the levels of TGF-β1 and MMP-9. In vitro, mechanical stretch significantly increased TGF-β1 and MMP-9 levels and such increase was greatly attenuated by TRPC1 siRNA transfection and dexamethasone administration. Conclusion Our results suggest that the increased TRPC1 may play a role in the airway inflammation and airway remodeling in COPD under high airway pressure. Glucocorticoid could in some degree alleviate airway remodeling via inhibition of TRPC1.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’ s Republic of China
| | - Baolin Jia
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, 629000, People’s Republic of China
| | - Xiaobin Luo
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’ s Republic of China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Minchao Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
114
|
Wang J, Wang P, Shao Y, He D. Advancing Treatment Strategies: A Comprehensive Review of Drug Delivery Innovations for Chronic Inflammatory Respiratory Diseases. Pharmaceutics 2023; 15:2151. [PMID: 37631365 PMCID: PMC10458134 DOI: 10.3390/pharmaceutics15082151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic inflammatory respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis, present ongoing challenges in terms of effective treatment and management. These diseases are characterized by persistent inflammation in the airways, leading to structural changes and compromised lung function. There are several treatments available for them, such as bronchodilators, immunomodulators, and oxygen therapy. However, there are still some shortcomings in the effectiveness and side effects of drugs. To achieve optimal therapeutic outcomes while minimizing systemic side effects, targeted therapies and precise drug delivery systems are crucial to the management of these diseases. This comprehensive review focuses on the role of drug delivery systems in chronic inflammatory respiratory diseases, particularly nanoparticle-based drug delivery systems, inhaled corticosteroids (ICSs), novel biologicals, gene therapy, and personalized medicine. By examining the latest advancements and strategies in these areas, we aim to provide a thorough understanding of the current landscape and future prospects for improving treatment outcomes in these challenging conditions.
Collapse
Affiliation(s)
- Junming Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Pengfei Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Yiru Shao
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Daikun He
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
115
|
Zhao Y, Zhang H, Zhang Q, Tao H. Research Progress of Neutrophil-Mediated Drug Delivery Strategies for Inflammation-Related Disease. Pharmaceutics 2023; 15:1881. [PMID: 37514067 PMCID: PMC10384340 DOI: 10.3390/pharmaceutics15071881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
As the most abundant white blood cells in humans, neutrophils play a key role in acute and chronic inflammation, suggesting that these cells are a key component of targeted therapies for various inflammation-related diseases. Specific enzyme-responsive or specific ligand-modified polymer nanoparticles are beneficial for improving drug efficacy, reducing toxicity, and enhancing focal site retention. However, there remain significant challenges in biomedical applications of these synthetic polymer nanoparticles, mainly due to their rapid clearance by the reticuloendothelial system. In recent years, biomimetic drug delivery systems such as neutrophils acting directly as drug carriers or neutrophil-membrane-coated nanoparticles have received increasing attention due to the natural advantages of neutrophils. Thus, neutrophil-targeted, neutrophil-assisted, or neutrophil-coated nanoparticles exhibit a prolonged blood circulation time and improved accumulation at the site of inflammation. Despite recent advancements, further clinical research must be performed to evaluate neutrophil-based delivery systems for future biomedical application in the diagnosis and treatment of related inflammatory diseases. In this review, we have summarized new exciting developments and challenges in neutrophil-mediated drug delivery strategies for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pharmaceutics, 96602 Hospital of Chinese People's Liberation Army, Kunming 650233, China
| | - Haigang Zhang
- Department of Pharmacology, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hui Tao
- Department of Pharmacology, College of Pharmacy, Army Medical University, Chongqing 400038, China
| |
Collapse
|
116
|
Wang WJ, Peng K, Lu X, Zhu YY, Li Z, Qian QH, Yao YX, Fu L, Wang Y, Huang YC, Zhao H, Wang H, Xu DX, Tan ZX. Long-term cadmium exposure induces chronic obstructive pulmonary disease-like lung lesions in a mouse model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163073. [PMID: 36965727 DOI: 10.1016/j.scitotenv.2023.163073] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Accumulating evidences demonstrate that long-term exposure to atmospheric fine particles and air pollutants elevates the risk of chronic obstructive pulmonary disease (COPD). Cadmium (Cd) is one of the important toxic substances in atmospheric fine particles and air pollutants. In this study, we aimed to establish a mouse model to evaluate whether respiratory Cd exposure induces COPD-like lung injury. Adult male C57BL/6 mice were exposed to CdCl2 (10 mg/L, 4 h per day) by inhaling aerosol for either 10 weeks (short-term) or 6 months (long-term). The mean serum Cd concentration was 6.26 μg/L in Cd-exposed mice. Lung weight and coefficient were elevated in long-term Cd-exposed mice. Pathological scores and alveolar destructive indices were increased in long-term Cd-exposed mouse lungs. Mean linear intercept and airway wall thickness were accordingly elevated in Cd-exposed mice. Inflammatory cell infiltration was obvious and inflammatory cytokines, including TNF-α, IL-1β, IL-6, IL-8, IL-10 and TGF-β, were up-regulated in Cd-exposed mouse lungs. α-SMA, N-cadherin and vimentin, epithelial-mesenchymal transition markers, and extracellular matrix collagen deposition around small airway, determined by Masson's trichrome staining, were shown in Cd-exposed mouse lungs. COPD-characteristic lung function decline was observed in long-term Cd-exposed mice. These outcomes show that long-term respiratory exposure to Cd induces COPD-like lung lesions for the first time.
Collapse
Affiliation(s)
- Wen-Jing Wang
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Kun Peng
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xue Lu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yan-Yan Zhu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Zhao Li
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Qing-Hua Qian
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Ya-Xin Yao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Fu
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yi-Chao Huang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hui Zhao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Zhu-Xia Tan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
117
|
Racanelli AC, Choi AMK. CEACAM6: A Novel Marker of Chronic Obstructive Pulmonary Disease Susceptibility? Am J Respir Crit Care Med 2023; 207:1546-1548. [PMID: 37219336 PMCID: PMC10273108 DOI: 10.1164/rccm.202303-0610ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Affiliation(s)
- Alexandra C Racanelli
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I Weill Department of Medicine, Weill Cornell Medicine New York, New York, USA and New York Presbyterian Hospital-Weill Cornell Medical Center New York, New York, USA
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I Weill Department of Medicine, Weill Cornell Medicine New York, New York, USA and New York Presbyterian Hospital-Weill Cornell Medical Center New York, New York, USA
| |
Collapse
|
118
|
Wu CY, Cilic A, Pak O, Dartsch RC, Wilhelm J, Wujak M, Lo K, Brosien M, Zhang R, Alkoudmani I, Witte B, Pedersen F, Watz H, Voswinckel R, Günther A, Ghofrani HA, Brandes RP, Schermuly RT, Grimminger F, Seeger W, Sommer N, Weissmann N, Hadzic S. CEACAM6 as a Novel Therapeutic Target to Boost HO-1-mediated Antioxidant Defense in COPD. Am J Respir Crit Care Med 2023; 207:1576-1590. [PMID: 37219322 DOI: 10.1164/rccm.202208-1603oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/23/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Tobacco smoking and air pollution are primary causes of chronic obstructive pulmonary disease (COPD). However, only a minority of smokers develop COPD. The mechanisms underlying the defense against nitrosative/oxidative stress in nonsusceptible smokers to COPD remain largely unresolved. Objectives: To investigate the defense mechanisms against nitrosative/oxidative stress that possibly prevent COPD development or progression. Methods: Four cohorts were investigated: 1) sputum samples (healthy, n = 4; COPD, n = 37), 2) lung tissue samples (healthy, n = 13; smokers without COPD, n = 10; smoker+COPD, n = 17), 3) pulmonary lobectomy tissue samples (no/mild emphysema, n = 6), and 4) blood samples (healthy, n = 6; COPD, n = 18). We screened 3-nitrotyrosine (3-NT) levels, as indication of nitrosative/oxidative stress, in human samples. We established a novel in vitro model of a cigarette smoke extract (CSE)-resistant cell line and studied 3-NT formation, antioxidant capacity, and transcriptomic profiles. Results were validated in lung tissue, isolated primary cells, and an ex vivo model using adeno-associated virus-mediated gene transduction and human precision-cut lung slices. Measurements and Main Results: 3-NT levels correlate with COPD severity of patients. In CSE-resistant cells, nitrosative/oxidative stress upon CSE treatment was attenuated, paralleled by profound upregulation of heme oxygenase-1 (HO-1). We identified carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) as a negative regulator of HO-1-mediated nitrosative/oxidative stress defense in human alveolar type 2 epithelial cells (hAEC2s). Consistently, inhibition of HO-1 activity in hAEC2s increased the susceptibility toward CSE-induced damage. Epithelium-specific CEACAM6 overexpression increased nitrosative/oxidative stress and cell death in human precision-cut lung slices on CSE treatment. Conclusions: CEACAM6 expression determines the hAEC2 sensitivity to nitrosative/oxidative stress triggering emphysema development/progression in susceptible smokers.
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Anis Cilic
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Ruth Charlotte Dartsch
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Magdalena Wujak
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Kevin Lo
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Monika Brosien
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Ruoyu Zhang
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Ibrahim Alkoudmani
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Biruta Witte
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Frauke Pedersen
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North, DZL, Grosshansdorf, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North, DZL, Grosshansdorf, Germany
| | | | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany; and
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Friedrich Grimminger
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
119
|
Plichta J, Kuna P, Panek M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: recent developments and future perspectives. Front Immunol 2023; 14:1207641. [PMID: 37334374 PMCID: PMC10272527 DOI: 10.3389/fimmu.2023.1207641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Chronic inflammatory diseases of the lung are some of the leading causes of mortality and significant morbidity worldwide. Despite the tremendous burden these conditions put on global healthcare, treatment options for most of these diseases remain scarce. Inhaled corticosteroids and beta-adrenergic agonists, while effective for symptom control and widely available, are linked to severe and progressive side effects, affecting long-term patient compliance. Biologic drugs, in particular peptide inhibitors and monoclonal antibodies show promise as therapeutics for chronic pulmonary diseases. Peptide inhibitor-based treatments have already been proposed for a range of diseases, including infectious disease, cancers and even Alzheimer disease, while monoclonal antibodies have already been implemented as therapeutics for a range of conditions. Several biologic agents are currently being developed for the treatment of asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and pulmonary sarcoidosis. This article is a review of the biologics already employed in the treatment of chronic inflammatory pulmonary diseases and recent progress in the development of the most promising of those treatments, with particular focus on randomised clinical trial outcomes.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
120
|
Zhu Y, Chang D. Interactions between the lung microbiome and host immunity in chronic obstructive pulmonary disease. Chronic Dis Transl Med 2023; 9:104-121. [PMID: 37305112 PMCID: PMC10249200 DOI: 10.1002/cdt3.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease and the third leading cause of death worldwide. Developments in next-generation sequencing technology have improved microbiome analysis, which is increasingly recognized as an important component of disease management. Similar to the gut, the lung is a biosphere containing billions of microbial communities. The lung microbiome plays an important role in regulating and maintaining the host immune system. The microbiome composition, metabolites of microorganisms, and the interactions between the lung microbiome and the host immunity profoundly affect the occurrence, development, treatment, and prognosis of COPD. In this review, we drew comparisons between the lung microbiome of healthy individuals and that of patients with COPD. Furthermore, we summarize the intrinsic interactions between the host and the overall lung microbiome, focusing on the underlying mechanisms linking the microbiome to the host innate and adaptive immune response pathways. Finally, we discuss the possibility of using the microbiome as a biomarker to determine the stage and prognosis of COPD and the feasibility of developing a novel, safe, and effective therapeutic target.
Collapse
Affiliation(s)
- Yixing Zhu
- Graduate School of The PLA General HospitalBeijingChina
| | - De Chang
- Department of Respiratory and Critical Care Medicine, Eighth Medical Center, Department of Respiratory and Critical Care Seventh Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
121
|
Liang L, Lin Y, Feng L, Shao S, Cao S, Rong H, Chu S, Xie W, Cai S, Wang J, Tong Z. Multicentre double-blind randomised controlled trial of systematic corticosteroid therapy in patients with acute exacerbations of chronic obstructive pulmonary disease admitted to hospital with higher eosinophil levels: the ECHO protocol. BMJ Open 2023; 13:e066354. [PMID: 37247957 PMCID: PMC10230870 DOI: 10.1136/bmjopen-2022-066354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Corticosteroid is one of the most commonly used medications in patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). The increasing understanding of these side-effects of systematic corticosteroids and their better response to treatment among patients with COPD with higher blood eosinophil counts has led to an interest in a more targeted approach to systematic corticosteroid treatment. However, there is a lack of evidence from high-quality randomised controlled trial (RCT) studies about whether initial systematic corticosteroids should be given to patients with AECOPD with elevated eosinophilia. The aim of the present research was to test this hypothesis. METHODS AND ANALYSIS This is a multicentre, double-blind, superiority RCT in the respiratory departments of 12 general hospitals in China. It is anticipated that 456 patients with AECOPD with a blood eosinophil count >2% or >300 cells/µL at admission will be recruited. Eligible patients will be randomised (1:1) to the intervention group receiving 40 mg oral prednisone daily or identical-appearing placebo (control group) for five consecutive days. Follow-up visits are performed during hospitalisation, followed by clinic interviews on days 30, 60 and 90 after discharge. The primary outcome is treatment failure rates comprising requiring or receiving invasive or non-invasive mechanical ventilation, requiring or transferring to intensive care unit during the index hospitalisation, length of index hospitalisation longer than 14 days, death during the index hospitalisation or within 30 days after discharge and readmission with acute exacerbations of COPD within 30 days after discharge. The results of this trial will provide insight into the value of using blood eosinophil counts as a biomarker of eosinophilic exacerbation and initiating systematic corticosteroid treatment for patients with AECOPD with higher eosinophil levels. ETHICS AND DISSEMINATION This study was approved by Beijing Chaoyang Hospital Institutional Review Board (approval number: 2020-KE-544) and the main results and secondary results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05059873.
Collapse
Affiliation(s)
- Lirong Liang
- Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yingxiang Lin
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lin Feng
- Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuai Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Siyu Cao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hengmo Rong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuilian Chu
- Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wuxiang Xie
- Peking University Clinical Research Institute, Peking University First Hospital, Peking University, Beijing, China
| | - Samuel Cai
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Jiawen Wang
- Department of Biostatistics & Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
122
|
Liu X, Huang X, Xu F. The influence of pyroptosis-related genes on the development of chronic obstructive pulmonary disease. BMC Pulm Med 2023; 23:167. [PMID: 37194062 DOI: 10.1186/s12890-023-02408-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/31/2023] [Indexed: 05/18/2023] Open
Abstract
Increasing evidences have demonstrated that pyroptosis exerts key roles in the occurrence, development of chronic obstructive pulmonary disease. However, the mechanisms of pyroptosis in COPD remain largely unknown. In our research, Statistics were performed using R software and related packages in this study. Series matrix files of small airway epithelium samples were downloaded from the GEO database. Differential expression analysis with FDR < 0.05 was performed to identify COPD-associated pyroptosis-related genes. 8 up-regulated genes (CASP4, CASP5, CHMP7, GZMB, IL1B, AIM2, CASP6, GSDMC) and 1 down-regulated genes (PLCG1) was identified as COPD-associated pyroptosis-related genes. Twenty-six COPD key genes was identified by WGCNA analysis. PPI analysis and gene correlation analysis showed their relationship clearly. KEGG and GO analysis have revealed the main pyroptosis-related mechanism of COPD. The expression of 9 COPD-associated pyroptosis-related genes in different grades was also depicted. The immune environment of COPD was also explored. Furthermore, the relationship of pyroptosis-related genes and the expression of immune cells was also be shown in the end. In the end, we concluded that pyroptosis influences the development of COPD. This study may provide new insight into the novel therapeutic targets for COPD clinical treatment.
Collapse
Affiliation(s)
- Xinlong Liu
- Department of Intensive Care Unit, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiaoling Huang
- Department of Intensive Care Unit, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Feng Xu
- Department of Intensive Care Unit, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
123
|
Wang H, Li S, Chen B, Wu M, Yin H, Shao Y, Wang J. Exploring the shared gene signatures of smoking-related osteoporosis and chronic obstructive pulmonary disease using machine learning algorithms. Front Mol Biosci 2023; 10:1204031. [PMID: 37251077 PMCID: PMC10213920 DOI: 10.3389/fmolb.2023.1204031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Objectives: Cigarette smoking has been recognized as a predisposing factor for both osteoporosis (OP) and chronic obstructive pulmonary disease (COPD). This study aimed to investigate the shared gene signatures affected by cigarette smoking in OP and COPD through gene expression profiling. Materials and methods: Microarray datasets (GSE11784, GSE13850, GSE10006, and GSE103174) were obtained from Gene Expression Omnibus (GEO) and analyzed for differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) regression method and a random forest (RF) machine learning algorithm were used to identify candidate biomarkers. The diagnostic value of the method was assessed using logistic regression and receiver operating characteristic (ROC) curve analysis. Finally, immune cell infiltration was analyzed to identify dysregulated immune cells in cigarette smoking-induced COPD. Results: In the smoking-related OP and COPD datasets, 2858 and 280 DEGs were identified, respectively. WGCNA revealed 982 genes strongly correlated with smoking-related OP, of which 32 overlapped with the hub genes of COPD. Gene Ontology (GO) enrichment analysis showed that the overlapping genes were enriched in the immune system category. Using LASSO regression and RF machine learning, six candidate genes were identified, and a logistic regression model was constructed, which had high diagnostic values for both the training set and external validation datasets. The area under the curves (AUCs) were 0.83 and 0.99, respectively. Immune cell infiltration analysis revealed dysregulation in several immune cells, and six immune-associated genes were identified for smoking-related OP and COPD, namely, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), tissue-type plasminogen activator (PLAT), sodium channel 1 subunit alpha (SCNN1A), sine oculis homeobox 3 (SIX3), sperm-associated antigen 9 (SPAG9), and vacuolar protein sorting 35 (VPS35). Conclusion: The findings suggest that immune cell infiltration profiles play a significant role in the shared pathogenesis of smoking-related OP and COPD. The results could provide valuable insights for developing novel therapeutic strategies for managing these disorders, as well as shedding light on their pathogenesis.
Collapse
Affiliation(s)
- Haotian Wang
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shaoshuo Li
- Department of Traumatology and Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Baixing Chen
- Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Mao Wu
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traumatology and Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Heng Yin
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traumatology and Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Yang Shao
- Department of Traumatology and Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traumatology and Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
124
|
Jordan A, Sivapalan P, Rømer V, Jensen JU. Time-Updated Phenotypic Guidance of Corticosteroids and Antibiotics in COPD: Rationale, Perspective and a Proposed Method. Biomedicines 2023; 11:biomedicines11051395. [PMID: 37239067 DOI: 10.3390/biomedicines11051395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with distinct phenotypes, each having distinct treatment needs. Eosinophilic airway inflammation is present in a subset of COPD patients in whom it can act as a driver of exacerbations. Blood eosinophil counts are a reliable way to identify patients with an eosinophilic phenotype, and these measurements have proven to be successful in guiding the use of corticosteroids in moderate and severe COPD exacerbations. Antibiotic use in COPD patients induces a risk of Clostridium difficile infection, diarrhea, and antibiotic resistance. Procalcitonin could possibly guide antibiotic treatment in patients admitted with AECOPD. Current studies in COPD patients were successful in reducing exposure to antibiotics with no changes in mortality or length of stay. Daily monitoring of blood eosinophils is a safe and effective way to reduce oral corticosteroid exposure and side effects for acute exacerbations. No evidence on time-updated treatment guidance for stable COPD exists yet, but a current trial is testing an eosinophil-guided approach on inhaled corticosteroid use. Procalcitonin-guided antibiotic treatment in AECOPD shows promising results in safely and substantially reducing antibiotic exposure both in time-independent and time-updated algorithms.
Collapse
Affiliation(s)
- Alexander Jordan
- Section of Respiratory Medicine, Herlev-Gentofte University Hospital, 2900 Hellerup, Denmark
| | - Pradeesh Sivapalan
- Section of Respiratory Medicine, Herlev-Gentofte University Hospital, 2900 Hellerup, Denmark
| | - Valdemar Rømer
- Section of Respiratory Medicine, Herlev-Gentofte University Hospital, 2900 Hellerup, Denmark
| | - Jens-Ulrik Jensen
- Section of Respiratory Medicine, Herlev-Gentofte University Hospital, 2900 Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
125
|
Guyatt A, John C, Williams AT, Shrine N, Reeve NF, Sayers I, Hall I, Wain LV, Sheehan N, Dudbridge F, Tobin MD. Mendelian randomisation of eosinophils and other cell types in relation to lung function and disease. Thorax 2023; 78:496-503. [PMID: 35537820 PMCID: PMC10176352 DOI: 10.1136/thoraxjnl-2021-217993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/09/2022] [Indexed: 11/04/2022]
Abstract
RATIONALE Eosinophils are associated with airway inflammation in respiratory disease. Eosinophil production and survival is controlled partly by interleukin-5: anti-interleukin-5 agents reduce asthma and response correlates with baseline eosinophil counts. However, whether raised eosinophils are causally related to chronic obstructive pulmonary disease (COPD) and other respiratory phenotypes is not well understood. OBJECTIVES We investigated causality between eosinophils and: lung function, acute exacerbations of COPD, asthma-COPD overlap (ACO), moderate-to-severe asthma and respiratory infections. METHODS We performed Mendelian randomisation (MR) using 151 variants from genome-wide association studies of blood eosinophils in UK Biobank/INTERVAL, and respiratory traits in UK Biobank/SpiroMeta, using methods relying on different assumptions for validity. We performed multivariable analyses using eight cell types where there was possible evidence of causation by eosinophils. MEASUREMENTS AND MAIN RESULTS Causal estimates derived from individual variants were highly heterogeneous, which may arise from pleiotropy. The average effect of raising eosinophils was to increase risk of ACO (weighted median OR per SD eosinophils, 1.44 (95%CI 1.19 to 1.74)), and moderate-severe asthma (weighted median OR 1.50 (95%CI 1.23 to 1.83)), and to reduce forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) and FEV1 (weighted median estimator, SD FEV1/FVC: -0.054 (95% CI -0.078 to -0.029), effect only prominent in individuals with asthma). CONCLUSIONS Broad consistency across MR methods may suggest causation by eosinophils (although of uncertain magnitude), yet heterogeneity necessitates caution: other important mechanisms may be responsible for the impairment of respiratory health by these eosinophil-raising variants. These results could suggest that anti-IL5 agents (designed to lower eosinophils) may be valuable in treating other respiratory conditions, including people with overlapping features of asthma and COPD.
Collapse
Affiliation(s)
- Anna Guyatt
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Catherine John
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nicola F Reeve
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Ian Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Nuala Sheehan
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
126
|
Li K, Mei X, Xu K, Jia L, Zhao P, Tian Y, Li J. Comparative study of cigarette smoke, Klebsiella pneumoniae, and their combination on airway epithelial barrier function in mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:1133-1142. [PMID: 36757011 DOI: 10.1002/tox.23753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The airway epithelium acts as a physical barrier to protect pulmonary airways against pathogenic microorganisms and toxic substances, such as cigarette smoke (CS), bacteria, and viruses. The disruption of the structural integrity and dysfunction of the airway epithelium is related to the occurrence and progression of chronic obstructive pulmonary disease. PURPOSE The aim of this study is to compare the effects of CS, Klebsiella pneumoniae (KP), and their combination on airway epithelial barrier function. METHODS The mice were exposed to CS, KP, and their combination from 1 to 8 weeks. After the cessation of CS and KP at Week 8, we observed the recovery of epithelial barrier function in mice for an additional 16 weeks. To compare the epithelial barrier function among different groups over time, the mice were sacrificed at Weeks 4, 8, 16, and 24 and then the lungs were harvested to detect the pulmonary pathology, inflammatory cytokines, and tight junction proteins. To determine the underlying mechanisms, the BEAS-2B cells were treated with an epidermal growth factor receptor (EGFR) inhibitor (AG1478). RESULTS The results of this study suggested that the decreased lung function, increased bronchial wall thickness (BWT), elevated inflammatory factors, and reduced tight junction protein levels were observed at Week 8 in CS-induced mice and these changes persisted until Week 16. In the KP group, increased BWT and elevated inflammatory factors were observed only at Week 8, whereas in the CS + KP group, decreased lung function, lung tissue injury, inflammatory cell infiltration, and epithelial barrier impairment were observed at Week 4 and persisted until Week 24. To further determine the mechanisms of CS, bacteria, and their combination on epithelial barrier injury, we investigated the changes of EGFR and its downstream protein in the lung tissues of mice and BEAS-2B cells. Our research indicated that CS, KP, or their combination could activate EGFR, which can phosphorylate and activate ERK1/2, and this effect was more pronounced in the CS + KP group. Furthermore, the EGFR inhibitor AG1478 suppressed the phosphorylation of ERK1/2 and subsequently upregulated the expression of ZO-1 and occludin. In general, these results indicated that the combination of CS and KP caused more severe and enduring damage to epithelial barrier function than CS or KP alone, which might be associated with EGFR/ERK1/2 signaling. CONCLUSION Epithelial barrier injury occurred earlier, was more severe, and had a longer duration when induced by the combination of CS and KP compared with the exposure to CS or KP alone, which might be associated with EGFR/ERK signaling.
Collapse
Affiliation(s)
- Kangchen Li
- Department of Respiratory Diseases, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofeng Mei
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kexin Xu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lidan Jia
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Department of Respiratory Diseases, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
127
|
Mormile M, Mormile I, Fuschillo S, Rossi FW, Lamagna L, Ambrosino P, de Paulis A, Maniscalco M. Eosinophilic Airway Diseases: From Pathophysiological Mechanisms to Clinical Practice. Int J Mol Sci 2023; 24:ijms24087254. [PMID: 37108417 PMCID: PMC10138384 DOI: 10.3390/ijms24087254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Eosinophils play a key role in airway inflammation in many diseases, such as allergic and non-allergic asthma, chronic rhinosinusitis with nasal polyps, and chronic obstructive pulmonary disease. In these chronic disabling conditions, eosinophils contribute to tissue damage, repair, remodeling, and disease persistence through the production a variety of mediators. With the introduction of biological drugs for the treatment of these respiratory diseases, the classification of patients based on clinical characteristics (phenotype) and pathobiological mechanisms (endotype) has become mandatory. This need is particularly evident in severe asthma, where, despite the great scientific efforts to understand the immunological pathways underlying clinical phenotypes, the identification of specific biomarkers defining endotypes or predicting pharmacological response remains unsatisfied. In addition, a significant heterogeneity also exists among patients with other airway diseases. In this review, we describe some of the immunological differences in eosinophilic airway inflammation associated with severe asthma and other airway diseases and how these factors might influence the clinical presentation, with the aim of clarifying when eosinophils play a key pathogenic role and, therefore, represent the preferred therapeutic target.
Collapse
Affiliation(s)
- Mauro Mormile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Fuschillo
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Lamagna
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Mauro Maniscalco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| |
Collapse
|
128
|
Hee Jo E, Eun Moon J, Han Chang M, Jin Lim Y, Hyun Park J, Hee Lee S, Rae Cho Y, Cho AE, Pil Pack S, Kim HW, Crowley L, Le B, Nukhet AB, Chen Y, Zhong Y, Zhao J, Li Y, Cha H, Hoon Pan J, Kyeom Kim J, Hyup Lee J. Sensitization of GSH synthesis by curcumin curtails acrolein-induced alveolar epithelial apoptosis via Keap1 cysteine conjugation: A randomized controlled trial and experimental animal model of pneumonitis. J Adv Res 2023; 46:17-29. [PMID: 35772713 PMCID: PMC10105072 DOI: 10.1016/j.jare.2022.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Epidemiological studies have reported an association between exposures to ambient air pollution and respiratory diseases, including chronic obstructive pulmonary disease (COPD). Pneumonitis is a critical driving factor of COPD and exposure to air pollutants (e.g., acrolein) is associated with increased incidence of pneumonitis. OBJECTIVES Currently available anti-inflammatory therapies provide little benefit against respiratory diseases. To this end, we investigated the preventive role of curcumin against air pollutant-associated pneumonitis and its underlying mechanism. METHODS A total of 40 subjects was recruited from Chengdu, China which is among the top three cities in terms of respiratory mortality related to air pollution. The participants were randomly provided either placebo or curcumin supplements for 2 weeks and blood samples were collected at the baseline and at the end of the intervention to monitor systemic markers. In our follow up mechanistic study, C57BL/6 mice (n = 40) were randomly allocated into 4 groups: Control group (saline + no acrolein), Curcumin only group (curcumin + no acrolein), Acrolein only group (saline + acrolein), and Acrolein + Curcumin group (curcumin + acrolein). Curcumin was orally administered at 100 mg/kg body weight once a day for 10 days, and then the mice were subjected to nasal instillation of acrolein (5 mg/kg body weight). Twelve hours after single acrolein exposure, all mice were euthanized. RESULTS Curcumin supplementation, with no noticeable adverse responses, reduced circulating pro-inflammatory cytokines in association with clinical pneumonitis as positive predictive while improving those of anti-inflammatory cytokines. In the pre-clinical study, curcumin reduced pneumonitis manifestations by suppression of intrinsic and extrinsic apoptotic signaling, which is attributed to enhanced redox sensing of Nrf2 and thus sensitized synthesis and restoration of GSH, at least in part, through curcumin-Keap1 conjugation. CONCLUSIONS Our study collectively suggests that curcumin could provide an effective preventive measure against air pollutant-enhanced pneumonitis and thus COPD.
Collapse
Affiliation(s)
- Eun Hee Jo
- Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea; Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Ji Eun Moon
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Moon Han Chang
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Ye Jin Lim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; Health Functional Food Policy Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Jung Hyun Park
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; Division of Brain Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Suk Hee Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Young Rae Cho
- Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Department of Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Art E Cho
- Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Department of Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Seung Pil Pack
- Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Department of Bioinformatics, Korea University, Sejong, Republic of Korea
| | | | - Liana Crowley
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Brandy Le
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Aykin-Burns Nukhet
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yinfeng Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yihang Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Hanvit Cha
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Jeong Hoon Pan
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA.
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Institutes of Natural Sciences, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
129
|
Cheng C, Han C, Fang Q, Liu Y, Chi X, Li X. Associations between air pollutants and hospital admissions for chronic obstructive pulmonary disease in Jinan: potential benefits from air quality improvements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46435-46445. [PMID: 36717420 PMCID: PMC9887246 DOI: 10.1007/s11356-023-25567-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 06/01/2023]
Abstract
Evidence between air pollution and chronic obstructive pulmonary disease (COPD) is inconsistent and limited in China. In this study, we aim to examine the associations between air pollutants and hospital admissions for COPD, hoping to provide practical advice for prevention and control of COPD. Hospital admissions for COPD were collected from a Grade-A tertiary hospital in Jinan from 2014 to 2020. A generalized additive model (GAM) was used to examine the associations between air pollutants and hospital admissions for COPD. Stratified analysis was also conducted for gender, age (20-74 and ≥75 years), and season (warm and cold). The avoidable number of COPD hospital admissions was calculated when air pollutants were controlled under national and WHO standards. Over the study period, a total of 4,012 hospital admissions for COPD were recorded. The daily hospital admissions of COPD increased by 2.36% (95%CI: 0.13-4.65%) and 2.39% (95%CI: 0.19-4.65%) for per 10 μg/m3 increase of NO2 and SO2 concentrations at lag2, respectively. There was no statistically significant difference in health effects caused by increased concentrations of PM2.5, PM10, CO, and O3. The health effects of increased SO2 concentration were stronger in women, the ≥75 years old people and the cold season. About 2 (95%CI: 0-3), 64 (95%CI: 4-132) and 86 (95%CI: 6-177) COPD admissions would be avoided when the SO2 concentration was controlled below the NAAQS-II (150 μg/m3), NAAQS-I (50 μg/m3), and WHO's AQG2021 standard (40 μg/m3), respectively. These findings suggest that short-term exposure to NO2 and SO2 was associated with increased risks of daily COPD admissions, especially for females and the elderly. The control of SO2 and NO2 under the national and WHO standards could avoid more COPD admissions and obtain greater health benefits.
Collapse
Affiliation(s)
- Chuanlong Cheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Chuang Han
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Qidi Fang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Ying Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Xiangyu Chi
- Department of Geriatric Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiujun Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China.
| |
Collapse
|
130
|
Gopallawa I, Dehinwal R, Bhatia V, Gujar V, Chirmule N. A four-part guide to lung immunology: Invasion, inflammation, immunity, and intervention. Front Immunol 2023; 14:1119564. [PMID: 37063828 PMCID: PMC10102582 DOI: 10.3389/fimmu.2023.1119564] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Lungs are important respiratory organs primarily involved in gas exchange. Lungs interact directly with the environment and their primary function is affected by several inflammatory responses caused by allergens, inflammatory mediators, and pathogens, eventually leading to disease. The immune architecture of the lung consists of an extensive network of innate immune cells, which induce adaptive immune responses based on the nature of the pathogen(s). The balance of immune responses is critical for maintaining immune homeostasis in the lung. Infection by pathogens and physical or genetic dysregulation of immune homeostasis result in inflammatory diseases. These responses culminate in the production of a plethora of cytokines such as TSLP, IL-9, IL-25, and IL-33, which have been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Shifting the balance of Th1, Th2, Th9, and Th17 responses have been the targets of therapeutic interventions in the treatment of these diseases. Here, we have briefly reviewed the innate and adaptive i3mmune responses in the lung. Genetic and environmental factors, and infection are the major causes of dysregulation of various functions of the lung. We have elaborated on the impact of inflammatory and infectious diseases, advances in therapies, and drug delivery devices on this critical organ. Finally, we have provided a comprehensive compilation of different inflammatory and infectious diseases of the lungs and commented on the pros and cons of different inhalation devices for the management of lung diseases. The review is intended to provide a summary of the immunology of the lung, with an emphasis on drug and device development.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ruchika Dehinwal
- Department of Microbiology, Division of Infectious Disease, Brigham Women’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| | | | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Narendra Chirmule
- R&D Department, SymphonyTech Biologics, Philadelphia, PA, United States
- *Correspondence: Narendra Chirmule,
| |
Collapse
|
131
|
Wang D, Rao L, Lei H, Li W, Yu Q, Li W, Wei J, Xu S, Mo B. Clinical significance of serum levels of 14-3-3β protein in patients with stable chronic obstructive pulmonary disease. Sci Rep 2023; 13:4861. [PMID: 36964173 PMCID: PMC10039013 DOI: 10.1038/s41598-023-32096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
Nowadays, the diagnosis and treatment of COPD are often based on the results of lung function tests. Certain individuals, however, are not candidates for lung function testing due to pulmonary bullae, cardiac failure, low lung function, and other factors. Therefore, we evaluated whether serum tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein β (14-3-3β) could be a biomarker for the diagnosis of stable COPD patients. The expression of serum 14-3-3β protein was evaluated by an enzyme-linked immunosorbent assay. The association between its concentrations and clinical parameters of stable COPD patients were analyzed by correlation analysis and ROC curve. The results before propensity score matching (PSM) showed that serum 14-3-3β protein concentrations (ng/ml) in stable COPD patients were significantly higher than in healthy controls (P < 0.001). Furthermore, serum 14-3-3β protein concentrations were higher in GOLD 3&4 COPD patients compared with healthy participants, GOLD 1 and GOLD 2 COPD patients (P < 0.05), which shows that the concentration of 14-3-3β protein correlates with disease severity in stable COPD patients. After 1:1 PSM, there was also a statistically significant rise in 14-3-3 protein levels in stable COPD patients compared to healthy controls (P < 0.01). Serum 14-3-3β protein levels were positively correlated with blood neutrophil levels (P < 0.05), and negatively related to lung function parameters in stable COPD patients (P < 0.01). When the cutoff value was set at 29.53 ng/ml, the ROC curve yielded a sensitivity of 84.9% and a specificity of 68.3% for diagnosing stable COPD. The 14-3-3β protein may be a potential serum biomarker for the diagnosis of stable COPD patients, which is associated with disease severity, systemic inflammation, and small airway obstruction.
Collapse
Affiliation(s)
- Decai Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lizong Rao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Huiren Lei
- Department of Respiratory and Critical Care Medicine, Guangxi Zhuang Autonomous Region Education Department Key Laboratory of Respiratory Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Second Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Wencui Li
- Department of Respiratory and Critical Care Medicine, Guangxi Zhuang Autonomous Region Education Department Key Laboratory of Respiratory Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Second Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Qiufang Yu
- Department of Respiratory and Critical Care Medicine, Guangxi Zhuang Autonomous Region Education Department Key Laboratory of Respiratory Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Second Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, Guangxi Zhuang Autonomous Region Education Department Key Laboratory of Respiratory Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Second Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Jianghong Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, Guangxi Zhuang Autonomous Region Education Department Key Laboratory of Respiratory Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Second Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China.
| |
Collapse
|
132
|
Wang Y, Su X, Yin Y, Wang Q. Identification and Analysis of Necroptosis-Related Genes in COPD by Bioinformatics and Experimental Verification. Biomolecules 2023; 13:biom13030482. [PMID: 36979417 PMCID: PMC10046193 DOI: 10.3390/biom13030482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/16/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous and complex progressive inflammatory disease. Necroptosis is a newly identified type of programmed cell death. However, the role of necroptosis in COPD is unclear. This study aimed to identify necroptosis-related genes in COPD and explore the roles of necroptosis and immune infiltration through bioinformatics. The analysis identified 49 differentially expressed necroptosis-related genes that were primarily engaged in inflammatory immune response pathways. The infiltration of CD8+ T cells and M2 macrophages in COPD lung tissue was relatively reduced, whereas that of M0 macrophages was increased. We identified 10 necroptosis-related hub genes significantly associated with infiltrated immune cells. Furthermore, 7 hub genes, CASP8, IL1B, RIPK1, MLKL, XIAP, TNFRSF1A, and CFLAR, were validated using an external dataset and experimental mice. CFLAR was considered to have the best COPD-diagnosing capability. TF and miRNA interactions with common hub genes were identified. Several related potentially therapeutic molecules for COPD were also identified. The present findings suggest that necroptosis occurs in COPD pathogenesis and is correlated with immune cell infiltration, which indicates that necroptosis may participate in the development of COPD by interacting with the immune response.
Collapse
Affiliation(s)
- Yingxi Wang
- Institute of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Yin
- Institute of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
- Correspondence: (Y.Y.); (Q.W.)
| | - Qiuyue Wang
- Institute of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
- Correspondence: (Y.Y.); (Q.W.)
| |
Collapse
|
133
|
Li S, Huang Q, He B. SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung 2023; 201:201-215. [PMID: 36790647 DOI: 10.1007/s00408-023-00607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease characterized by irreversible airflow obstruction and lung function decline. It is well established that COPD represents a major cause of morbidity and mortality globally. Due to the substantial economic and social burdens associated with COPD, it is necessary to discover new targets and develop novel beneficial therapies. Although the pathogenesis of COPD is complex and remains to be robustly elucidated, numerous studies have shown that oxidative stress, inflammatory responses, cell apoptosis, autophagy, and aging are involved in the pathogenesis of COPD. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to the silent information regulator 2 (Sir2) family. Multiple studies have indicated that SIRT1 plays an important role in oxidative stress, apoptosis, inflammation, autophagy, and cellular senescence, which contributes to the pathogenesis and development of COPD. This review aimed to discuss the functions and mechanisms of SIRT1 in the progression of COPD and concluded that SIRT1 activation might be a potential therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
134
|
Furci F, Murdaca G, Pelaia C, Imbalzano E, Pelaia G, Caminati M, Allegra A, Senna G, Gangemi S. TSLP and HMGB1: Inflammatory Targets and Potential Biomarkers for Precision Medicine in Asthma and COPD. Biomedicines 2023; 11:437. [PMID: 36830972 PMCID: PMC9953666 DOI: 10.3390/biomedicines11020437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The airway epithelium, through pattern recognition receptors expressed transmembrane or intracellularly, acts as a first line of defense for the lungs against many environmental triggers. It is involved in the release of alarmin cytokines, which are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Knowledge of the role of epithelial cells in orchestrating the immune response and mediating the clearance of invading pathogens and dead/damaged cells to facilitate resolution of inflammation is necessary to understand how, in many chronic lung diseases, there is a persistent inflammatory response that becomes the basis of underlying pathogenesis. This review will focus on the role of pulmonary epithelial cells and of airway epithelial cell alarmins, in particular thymic stromal lymphopoietin (TSLP) and high mobility group box 1 (HMGB1), as key mediators in driving the inflammation of chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), evaluating the similarities and differences. Moreover, emerging concepts regarding the therapeutic role of molecules that act on airway epithelial cell alarmins will be explored for a precision medicine approach in the context of pulmonary diseases, thus allowing the use of these molecules as possible predictive biomarkers of clinical and biological response.
Collapse
Affiliation(s)
- Fabiana Furci
- Allergy Unit and Asthma Center, Verona University Hospital, 37134 Verona, Italy
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino IRCCS, University of Genova, Viale Benedetto XV, n. 6, 16132 Genova, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Egidio Imbalzano
- Division of Internal Medicine, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Marco Caminati
- Department of Medicine, University of Verona and Verona University Hospital, 37134 Verona, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Gianenrico Senna
- Allergy Unit and Asthma Center, Verona University Hospital, 37134 Verona, Italy
- Department of Medicine, University of Verona and Verona University Hospital, 37134 Verona, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
135
|
Taxifolin ameliorates cigarette smoke-induced chronic obstructive pulmonary disease via inhibiting inflammation and apoptosis. Int Immunopharmacol 2023; 115:109577. [PMID: 36584569 DOI: 10.1016/j.intimp.2022.109577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a significant cause of morbidity and mortality worldwide and is characterized by chronic airway inflammation and lung parenchymal cell apoptosis. Cigarette smoke is the major risk factor for the occurrence and development of COPD. Taxifolin (TAX) showed promising pharmacological effects in the management of inflammation, oxidative stress, and apoptosis. In the present study, our results demonstrated that TAX significantly alleviated cigarette smoke-induced inflammation and apoptosis both in vivo and in vitro. TAX notably lowered the elevated total cell count in mouse BALF compared with that in the COPD group. The cigarette smoke-induced emphysematous changes were remarkably reversed by TAX. In addition, treatment with TAX suppressed the elevated mRNA and protein levels of IL-1β, IL-6 and TNF-α in COPD mouse lung tissue and cigarette smoke extract (CSE)-treated human bronchial epithelial cells (HBECs). Additionally, TAX significantly decreased the ratios of p-iκB to iκB and p-p65 to p65 compared with the COPD group and CSE-treated HBECs. Moreover, the results of the TUNEL assay and flow cytometry also demonstrated the anti-apoptotic effect of TAX in mouse lung tissue and HBECs. Furthermore, the elevated Bax and CCP3 levels and decreased Bcl-2 levels induced by cigarette smoke were significantly reversed by TAX treatment in vivo and in vitro. Our results highlight the ameliorating effects of TAX against cigarette smoke-induced inflammation and apoptosis in the pathogenesis of COPD.
Collapse
|
136
|
He BF, Wu YX, Hu WP, Hua JL, Han Y, Zhang J. ROS induced the Rab26 promoter hypermethylation to promote cigarette smoking-induced airway epithelial inflammation of COPD through activation of MAPK signaling. Free Radic Biol Med 2023; 195:359-370. [PMID: 36610560 DOI: 10.1016/j.freeradbiomed.2023.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Cigarette smoking (CS) exposure-induced airway inflammatory responses drive the occurrence and development of emphysema and chronic obstructive pulmonary disease (COPD). However, its precise mechanisms have not been fully elucidated. In this study, we explore the role of Rab26 in CS exposure modulating the inflammatory response of airway epithelium and the novel mechanism of CS exposure regulation Rab26. These data showed that CS exposure and H2O2 (a type of ROS) suppressed the expression of Rab26 and increased the expression of DNMT3b in vivo and in vitro. GEO data analysis found the level of Rab26 was decreased in the lung tissue of COPD patients. CSE-induced ROS promoted DNA methylation of the Rab26 promoter and inhibited its promoter activity by elevating the DNMT3b level. Antioxidants N-Acetyl-l-cysteine (NAC), 5-Aza-2'-deoxycytidine (5-AZA) (DNA methylation inhibitor) and DNMT3B siRNA alleviated CSE's inhibitory effect on Rab26 expression in vitro. Importantly, NAC alleviated the improved expression of Rab26 and reduced DNMT3B expression, in the airway of smoking exposure as well as attenuated the inflammatory response in vivo. Overexpression of Rab26 attenuated CSE-induced production of inflammatory mediators through part inactivation of p38 and JNK MAPK. On the contrary, silencing Rab26 enhanced p38 and JNK activation and aggravated inflammatory response. These findings suggest that ROS-mediated Rab26 promoter hypermethylation is a critical step in cigarette smoking-induced airway epithelial inflammatory response. Restoring Rab26 in the airway epithelium might be a potential strategy for treating airway inflammation and COPD.
Collapse
Affiliation(s)
- Bin-Feng He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Xing Wu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei-Ping Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jian-Lan Hua
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yaoping Han
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
137
|
Matera MG, Calzetta L, Cazzola M, Ora J, Rogliani P. Biologic therapies for chronic obstructive pulmonary disease. Expert Opin Biol Ther 2023; 23:163-173. [PMID: 36527286 DOI: 10.1080/14712598.2022.2160238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a disorder characterized by a complicated chronic inflammatory response that is resistant to corticosteroid therapy. As a result, there is a critical need for effective anti-inflammatory medications to treat people with COPD. Using monoclonal antibodies (mAbs) to inhibit cytokines and chemokines or their receptors could be a potential approach to treating the inflammatory component of COPD. AREAS COVERED The therapeutic potential that some of these mAbs might have in COPD is reviewed. EXPERT OPINION No mAb directed against cytokines or chemokines has shown any therapeutic impact in COPD patients, apart from mAbs targeting the IL-5 pathway that appear to have statistically significant, albeit weak, effect in patients with eosinophilic COPD. This may reflect the complexity of COPD, in which no single cytokine or chemokine has a dominant role. Because the umbrella term COPD encompasses several endotypes with diverse underlying processes, mAbs targeting specific cytokines or chemokines should most likely be evaluated in limited and focused populations.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma Italy
| | - Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| |
Collapse
|
138
|
Qian Y, Yan L, Wei M, Song P, Wang L. Seeds of Ginkgo biloba L. inhibit oxidative stress and inflammation induced by cigarette smoke in COPD rats through the Nrf2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115758. [PMID: 36167232 DOI: 10.1016/j.jep.2022.115758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional medicine, seeds of Ginkgo biloba L. (Gbs) have been used to treat cough or asthma for a long time. It is commonly used in clinic for lung diseases. However, its mechanism of lung protection is not completely clear. AIMS OF THE STUDY This research was designed to explore the protective effects of Gbs on antioxidant and inflammation during the chronic obstructive pulmonary disease (COPD) pathological process provoked by cigarette smoking (CS) in rats. MATERIALS AND METHODS Six random groups including control group, CS model group, Gbs intervention groups (25 mg/kg, 50 mg/kg, and 100 mg/kg) and aminophylline group were composed of forty-eight rats. Smoking and intratracheal instillation of lipopolysaccharide (LPS) were used to establish the COPD rat model. Glutathione peroxidase (GSH-PX), malondialdehyde (MDA), superoxide dismutase (SOD), and enzyme-linked immunosorbent assay (ELISA) was used for quantifying the inflammatory factors such as IL-8, IL-6, IL-10, IL-17 and TNF-α. Western blotting were used for detecting the protein expressions of Nrf2, Keap1 and HO-1 in the lung tissues. RESULTS Gbs inhibits lung histological changes and decreased the inflammatory factors in both bronchoalveolar lavage fluid (BALF) and serum of CS-exposed rats, including IL-10, IL-17, IL-6, IL-8 and TNF-α. Gbs also inhibited the MDA level, increased SOD and GSH-PX activity in serum and changed expressions of Nrf2, Keap1 and HO-1 in the lung tissues. CONCLUSION Gbs inhibit oxidative stress and inflammation induced by cigarette smoke in COPD rats through the Nrf2 Pathway.
Collapse
Affiliation(s)
- Yiyun Qian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Liang Yan
- Nanjing Cavendish Bio-engineering Technology Co, Ltd, Nanjing, 210046, China.
| | - Min Wei
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Pingping Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Lihong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
139
|
ZENG W, SONG Y, WANG R, HE R, WANG T. Neutrophil elastase: From mechanisms to therapeutic potential. J Pharm Anal 2023; 13:355-366. [PMID: 37181292 PMCID: PMC10173178 DOI: 10.1016/j.jpha.2022.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Neutrophil elastase (NE), a major protease in the primary granules of neutrophils, is involved in microbicidal activity. NE is an important factor promoting inflammation, has bactericidal effects, and shortens the inflammatory process. NE also regulates tumor growth by promoting metastasis and tumor microenvironment remodeling. However, NE plays a role in killing tumors under certain conditions and promotes other diseases such as pulmonary ventilation dysfunction. Additionally, it plays a complex role in various physiological processes and mediates several diseases. Sivelestat, a specific NE inhibitor, has strong potential for clinical application, particularly in the treatment of coronavirus disease 2019 (COVID-19). This review discusses the pathophysiological processes associated with NE and the potential clinical applications of sivelestat.
Collapse
|
140
|
Effective Component Compatibility of Bufei Yishen Formula III Which Regulates the Mucus Hypersecretion of COPD Rats via the miR-146a-5p/EGFR/MEK/ERK Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9423435. [PMID: 36619199 PMCID: PMC9812609 DOI: 10.1155/2022/9423435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Background The effective-component compatibility of Bufei Yishen formula III (ECC-BYF III) with 5 ingredients (ginsenoside Rh1, astragaloside, icariin, nobiletin, and paeonol) has been shown to protect against chronic obstructive pulmonary disease (COPD). The present study aimed to observe the effects of ECC-BYF III in a COPD rat model and dissect its potential mechanisms in regulating mucus hypersecretion via the miR-146a-5p/epidermal growth factor receptor (EGFR)/MEK/ERK pathway. Methods COPD model rats were treated with normal saline, ECC-BYF III, or N-acetylcysteine (NAC). Pulmonary function, lung tissue histology with H & E and AB-PAS staining, expression levels of interleukin (IL)-4, IL-6, IL-1β, MUC5AC, MUC5B, and FOXA2 in lung tissues and the mRNA and proteins involved in the miR-146a-5p/EGFR/MEK/ERK pathway were evaluated. Results The COPD rats showed a significant decrease in the pulmonary function and serious pathological damage to the lung tissue. ECC-BYF III and NAC significantly improved the ventilation function and small airway pathological damage in the COPD rats. The goblet cells and the expression levels of IL-1β, IL-6, MUC5AC, and MUC5B were increased in the COPD rats and were significantly decreased after ECC-BYF III or NAC intervention. The expression levels of IL-4 and FOXA2 in the COPD rats were markedly decreased and were improved in the ECC-BYF III and NAC groups. ECC-BYF III appeared to have a potent effect in restoring the reduced expression of miR-146a-5p. The increased phosphorylation levels of EGFR, MEK, and ERK1/2 and the protein expression levels of SPDEF in the lungs of COPD rats could be significantly reduced by ECC-BYF III. Conclusions ECC-BYF III has a significant effect in improving the airway mucus hypersecretion in COPD model rats, as well as a protective effect against limited pulmonary function and injured lung histopathology. The protective effect of ECC-BYF III in reducing airway mucus hypersecretion in COPD may involve the miR-146a-5p/EGFR/MEK/ERK pathway.
Collapse
|
141
|
Huang Q, Wang Y, Zhang L, Qian W, Shen S, Wang J, Wu S, Xu W, Chen B, Lin M, Wu J. Single-cell transcriptomics highlights immunological dysregulations of monocytes in the pathobiology of COPD. Respir Res 2022; 23:367. [PMID: 36539833 PMCID: PMC9764587 DOI: 10.1186/s12931-022-02293-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a common respiratory disease, whose pathogenetic complexity was strongly associated with aging/smoking and poorly understood. METHODS Here we performed single-cell RNA sequencing (scRNA-seq) analysis of 66,610 cells from COPD and age-stratified control lung tissues of donors with different smoking histories to prioritize cell types most perturbed in COPD lungs in aging/smoking dependent or independent manner. By performing an array of advanced bioinformatic analyses, such as gene set enrichment analysis, trajectory analysis, cell-cell interactions analysis, regulatory potential analysis, weighted correlation network analysis, functional interaction analysis, and gene set variation analysis, we integrated cell-type-level alterations into a system-level malfunction and provided a more clarified COPD pathological model containing specific mechanisms by which aging and smoking facilitate COPD development. Finally, we integrated the publicly available scRNA-seq data of 9 individuals, resulting in a total of 110,931 cells, and replicated the analyses to enhance the credibility of our findings. RESULTS Our study pointed to enrichment of COPD molecular alteration in monocytes, which further induced a previously unrecognized pro-inflammatory effect on alveolar epithelial cells. In addition, aged monocytes and club cells facilitated COPD development via maintaining an autoimmune airway niche. Unexpectedly, macrophages, whose defect to resolve inflammation was long-recognized in COPD pathogenesis, primarily induced an imbalance of sphingolipids rheostat in a smoking-dependent way. These findings were validated in a meta-analysis including other public single-cell transcriptomic data. CONCLUSIONS In sum, our study provided a clarified view of COPD pathogenesis and demonstrated the potential of targeting monocytes in COPD diagnosis and treatment.
Collapse
Affiliation(s)
- Qiqing Huang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Lili Zhang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Wei Qian
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Shaoran Shen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jingshen Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Shuangshuang Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Wei Xu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Bo Chen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
| | - Jianqing Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
142
|
Pei Y, Zhang J, Qu J, Rao Y, Li D, Gai X, Chen Y, Liang Y, Sun Y. Complement component 3 protects human bronchial epithelial cells from cigarette smoke-induced oxidative stress and prevents incessant apoptosis. Front Immunol 2022; 13:1035930. [PMID: 36605203 PMCID: PMC9807617 DOI: 10.3389/fimmu.2022.1035930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The complement component 3 (C3) is a pivotal element of the complement system and plays an important role in innate immunity. A previous study showed that intracellular C3 was upregulated in airway epithelial cells (AECs) from individuals with end-stage chronic obstructive pulmonary disease (COPD). Accumulating evidence has shown that cigarette smoke extract (CSE) induces oxidative stress and apoptosis in AECs. Therefore, we investigated whether C3 modulated cigarette smoke-induced oxidative stress and apoptosis in AECs and participated in the pathogenesis of COPD. We found increased C3 expression, together with increased oxidative stress and apoptosis, in a cigarette smoke-induced mouse model of COPD and in AECs from patients with COPD. Different concentrations of CSEinduced C3 expression in 16HBE cells in vitro. Interestingly, C3 knockdown (KD) exacerbated oxidative stress and apoptosis in 16HBE cells exposed to CSE. Furthermore, C3 exerted its pro-survival effects through JNK inhibition, while exogenous C3 partially rescued CSE-induced cell death and oxidative stress in C3 KD cells. These data indicate that locally produced C3 is an important pro-survival molecule in AECs under cigarette smoke exposure, revealing a potentially novel mechanism in the pathogenesis of COPD.
Collapse
Affiliation(s)
| | - Jing Zhang
- *Correspondence: Jing Zhang, ; Yongchang Sun,
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Li S, Huang Q, Zhou D, He B. PRKCD as a potential therapeutic target for chronic obstructive pulmonary disease. Int Immunopharmacol 2022; 113:109374. [PMID: 36279664 DOI: 10.1016/j.intimp.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
144
|
Compound glycyrrhiza oral solution alleviates oxidative stress and inflammation by regulating SRC/MAPK pathway in chronic obstructive pulmonary disease. Immunopharmacol Immunotoxicol 2022; 44:1032-1043. [PMID: 35838630 DOI: 10.1080/08923973.2022.2102992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Patients with chronic obstructive pulmonary disease (COPD) suffer from persistent cough and breathlessness, which can be ameliorated by the Chinese herbal medicine glycyrrhiza. Furthermore, the SRC/MAPK pathway is activated in the process of oxidative stress and inflammation, which afflict COPD progression. Thus, this research aimed at dissecting the mechanism of compound glycyrrhiza oral solution (CGOS) relieving oxidative stress and inflammation in COPD via the SRC/MAPK pathway. METHODS After a COPD rat model was established using lipopolysaccharide and cigarette smoke, rats underwent intragastric administration with CGOS and intratracheal injection with LV-NC and LV-SRC lentivirus into lungs. Then, pulmonary function-related indexes were evaluated, followed by analyses of arterial blood and inflammatory cell number in prepared bronchoalveolar lavage fluids. Meanwhile, the contents of oxidative stress-related indicators (malondialdehyde, 3NT, 8-Isoprostane, glutathione, NO, and SOD) in pulmonary tissues were measured, along with RT-qPCR and ELISA detection of the expression of inflammatory factors (TNF-α, IL-1β, IL-4, and IL-10). Moreover, western blot assay was utilized to assess p-SRC/SRC and p-p38/p38 ratios in pulmonary tissues. RESULTS CGOS treatment enhanced PaO2 and reduced PaCO2 in COPD rats, accompanied by declines in the number of total cells, neutrophils, and macrophages. CGOS improved pulmonary function, decreased malondialdehyde, 3NT, 8-Isoprostane, TNF-α, and IL-1β levels, and increased GSH, NO, IL-4, and IL-10 levels and SOD activity. Mechanistically, CGOS suppressed the SRC/MAPK pathway, and SRC overexpression reversed the alleviating function of CGOS in COPD rats. CONCLUSIONS In conclusion, CGOS might alleviate oxidative stress and inflammation in COPD rats by inhibiting the SRC/MAPK pathway.
Collapse
|
145
|
Joglekar MM, Nizamoglu M, Fan Y, Nemani SSP, Weckmann M, Pouwels SD, Heijink IH, Melgert BN, Pillay J, Burgess JK. Highway to heal: Influence of altered extracellular matrix on infiltrating immune cells during acute and chronic lung diseases. Front Pharmacol 2022; 13:995051. [PMID: 36408219 PMCID: PMC9669433 DOI: 10.3389/fphar.2022.995051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/19/2022] [Indexed: 10/31/2023] Open
Abstract
Environmental insults including respiratory infections, in combination with genetic predisposition, may lead to lung diseases such as chronic obstructive pulmonary disease, lung fibrosis, asthma, and acute respiratory distress syndrome. Common characteristics of these diseases are infiltration and activation of inflammatory cells and abnormal extracellular matrix (ECM) turnover, leading to tissue damage and impairments in lung function. The ECM provides three-dimensional (3D) architectural support to the lung and crucial biochemical and biophysical cues to the cells, directing cellular processes. As immune cells travel to reach any site of injury, they encounter the composition and various mechanical features of the ECM. Emerging evidence demonstrates the crucial role played by the local environment in recruiting immune cells and their function in lung diseases. Moreover, recent developments in the field have elucidated considerable differences in responses of immune cells in two-dimensional versus 3D modeling systems. Examining the effect of individual parameters of the ECM to study their effect independently and collectively in a 3D microenvironment will help in better understanding disease pathobiology. In this article, we discuss the importance of investigating cellular migration and recent advances in this field. Moreover, we summarize changes in the ECM in lung diseases and the potential impacts on infiltrating immune cell migration in these diseases. There has been compelling progress in this field that encourages further developments, such as advanced in vitro 3D modeling using native ECM-based models, patient-derived materials, and bioprinting. We conclude with an overview of these state-of-the-art methodologies, followed by a discussion on developing novel and innovative models and the practical challenges envisaged in implementing and utilizing these systems.
Collapse
Affiliation(s)
- Mugdha M. Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - YiWen Fan
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Sai Sneha Priya Nemani
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Markus Weckmann
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Simon D. Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Barbro N. Melgert
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
| | - Janesh Pillay
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Critical Care, Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, Netherlands
| |
Collapse
|
146
|
Saber Cherif L, Diabasana Z, Perotin JM, Ancel J, Petit LMG, Devilliers MA, Bonnomet A, Lalun N, Delepine G, Maskos U, Gosset P, Polette M, Muggeo A, Guillard T, Deslée G, Dormoy V. The Nicotinic Receptor Polymorphism rs16969968 Is Associated with Airway Remodeling and Inflammatory Dysregulation in COPD Patients. Cells 2022; 11:cells11192937. [PMID: 36230899 PMCID: PMC9563397 DOI: 10.3390/cells11192937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies unveiled the associations between the single nucleotide polymorphism rs16969968 of CHRNA5, encoding the nicotinic acetylcholine receptor alpha5 subunit (α5SNP), and nicotine addiction, cancer, and COPD independently. Here, we investigated α5SNP-induced epithelial remodeling and inflammatory response in human COPD airways. We included 26 α5SNP COPD patients and 18 wild-type α5 COPD patients in a multi-modal study. A comparative histologic analysis was performed on formalin-fixed paraffin-embedded lung tissues. Isolated airway epithelial cells from bronchial brushings were cultivated in the air-liquid interface. Broncho-alveolar fluids were collected to detect inflammatory mediators. Ciliogenesis was altered in α5SNP COPD bronchial and bronchiolar epithelia. Goblet cell hyperplasia was exacerbated in α5SNP small airways. The broncho-alveolar fluids of α5SNP COPD patients exhibited an increase in inflammatory mediators. The involvement of the rs16969968 polymorphism in airway epithelial remodeling and related inflammatory response in COPD prompts the development of innovative personalized diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lynda Saber Cherif
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Zania Diabasana
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Jeanne-Marie Perotin
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Département des Maladies Respiratoires, CHU de Reims, 51092 Reims, France
| | - Julien Ancel
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Département des Maladies Respiratoires, CHU de Reims, 51092 Reims, France
| | - Laure M. G. Petit
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Maëva A. Devilliers
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Arnaud Bonnomet
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Plateforme d’Imagerie Cellulaire et Tissulaire (PICT), Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Nathalie Lalun
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Gonzague Delepine
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Département de Chirurgie Thoracique, CHU de Reims, 51092 Reims, France
| | - Uwe Maskos
- CNRS UMR 3571, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, Institut Pasteur de Paris, Université de Paris Cité, 75006 Paris, France
| | - Philippe Gosset
- CNRS UMR 9017, Inserm U1019, Institut Pasteur de Lille, Université de Lille, CHU de Lille, 59000 Lille, France
| | - Myriam Polette
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Département de Biopathologie, CHU de Reims, 51092 Reims, France
| | - Anaëlle Muggeo
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Laboratoire de Bactériologie, Virologie, Hygiène Hospitalière, Parasitologie, Mycologie, CHU de Reims, 51092 Reims, France
| | - Thomas Guillard
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Laboratoire de Bactériologie, Virologie, Hygiène Hospitalière, Parasitologie, Mycologie, CHU de Reims, 51092 Reims, France
| | - Gaëtan Deslée
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Département des Maladies Respiratoires, CHU de Reims, 51092 Reims, France
| | - Valérian Dormoy
- Inserm P3Cell UMR-S 1250, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Correspondence: ; Tel.: +33-(0)3-10-73-62-28
| |
Collapse
|
147
|
Abstract
Smoking is a well-established risk factor for chronic obstructive pulmonary disease (COPD). Chronic lung inflammation continues even after smoking cessation and leads to COPD progression. To date, anti-inflammatory therapies are ineffective in improving pulmonary function and COPD symptoms, and new molecular targets are urgently needed to deal with this challenge. The receptor for advanced glycation end-products (RAGE) was shown to be relevant in COPD pathogenesis, since it is both a genetic determinant of low lung function and a determinant of COPD susceptibility. Moreover, RAGE is involved in the physiological response to cigarette smoke exposure. Since innate and acquired immunity plays an essential role in the development of chronic inflammation and emphysema in COPD, here we summarized the roles of RAGE and its ligand HMGB1 in COPD immunity.
Collapse
Affiliation(s)
- Lin Chen
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xuejiao Sun
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
148
|
Antus B, Barta I. Blood Eosinophils and Exhaled Nitric Oxide: Surrogate Biomarkers of Airway Eosinophilia in Stable COPD and Exacerbation. Biomedicines 2022; 10:biomedicines10092128. [PMID: 36140229 PMCID: PMC9496115 DOI: 10.3390/biomedicines10092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, tremendous efforts have been devoted to characterizing the inflammatory processes in chronic obstructive pulmonary disease (COPD) in order to provide more personalized treatment for COPD patients. While it has proved difficult to identify COPD-specific inflammatory pathways, the distinction between eosinophilic and non-eosinophilic airway inflammation has gained clinical relevance. Evidence has shown that sputum eosinophil counts are increased in a subset of COPD patients and that these patients are more responsive to oral or inhaled corticosteroid therapy. Due to feasibility issues associated with sputum cell profiling in daily clinical practice, peripheral blood eosinophil counts and fractional exhaled nitric oxide levels have been evaluated as surrogate biomarkers for assessing the extent of airway eosinophilia in COPD patients, both in stable disease and acute exacerbations. The diagnostic value of these markers is not equivalent and depends heavily on the patient’s condition at the time of sample collection. Additionally, the sensitivity and specificity of these tests may be influenced by the patient’s maintenance treatment. Overall, eosinophilic COPD may represent a distinct disease phenotype that needs to be further investigated in terms of prognosis and treatment outcomes.
Collapse
Affiliation(s)
- Balazs Antus
- Department of Pathophysiology, National Koranyi Institute of Pulmology, Koranyi Frigyes Ut 1, 1121 Budapest, Hungary
- Department of Pulmonology, National Koranyi Institute of Pulmology, Koranyi Frigyes Ut 1, 1121 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-391-3309
| | - Imre Barta
- Department of Pathophysiology, National Koranyi Institute of Pulmology, Koranyi Frigyes Ut 1, 1121 Budapest, Hungary
| |
Collapse
|
149
|
Barta I, Paska C, Antus B. Sputum Cytokine Profiling in COPD: Comparison Between Stable Disease and Exacerbation. Int J Chron Obstruct Pulmon Dis 2022; 17:1897-1908. [PMID: 36017119 PMCID: PMC9397440 DOI: 10.2147/copd.s364982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Cytokines are extracellular signaling proteins that have been widely implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, we investigated cytokine expression both at the mRNA and protein level in the sputum of healthy individuals, stable COPD patients, and those experiencing a severe acute exacerbation (AECOPD) requiring hospitalization. Patients and Methods Sputum was collected in 19 healthy controls, 25 clinically stable COPD patients, and 31 patients with AECOPD. In AECOPD patients sample collection was performed both at the time of hospital admission and at discharge following treatment. Sputum supernatant was analyzed by an antibody microarray detecting 120 cytokines simultaneously, while the mRNA expression of 14 selected cytokines in sputum cells was investigated by real-time PCR (qPCR). Results Proteomic analysis identified interleukin (IL)-6 and growth-regulated oncogene (GRO)α as the only sputum cytokines that were differentially expressed between stable COPD patients and healthy controls. At the onset of AECOPD, several cytokines exhibited altered sputum expression compared to stable COPD. Recovery from AECOPD induced significant changes in the sputum cytokine protein profile; however, the length of hospitalization was insufficient for most cytokines to return to stable levels. With regard to gene expression analysis by qPCR, we found that bone morphogenetic protein (BMP)-4 was up-regulated, while IL-1α, monokine-induced by interferon-γ (MIG), and BMP-6 were down-regulated at the mRNA level in patients with AECOPD compared to stable disease. Conclusion The sputum cytokine signature of AECOPD differs from that of stable COPD. Protein level changes are asynchronous with changes in gene expression at the mRNA level in AECOPD. The observation that the levels of most cytokines do not stabilize with acute treatment of AECOPD suggests a prolonged effect of exacerbation on the status of COPD patients.
Collapse
Affiliation(s)
- Imre Barta
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Csilla Paska
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Balazs Antus
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
150
|
Chen J, Wang J, Duan X, Ping F, Zhang A. Clinical Observation of General Anesthesia Combined with Spinal Anesthesia in Elderly Patients with Chronic Obstructive Pulmonary Disease. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9160145. [PMID: 36046452 PMCID: PMC9420591 DOI: 10.1155/2022/9160145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
Objective This work is aimed at evaluating the efficacy and safety of general anesthesia (GA) combined with spinal anesthesia (SA) (GA+SA) in elderly patients with chronic obstructive pulmonary disease (COPD). Methods and Material. 50 elderly COPD patients were rolled randomly into a control group (simple GA) and observation group (GA+SA). The differences in operation time, postoperative recovery time (PRT), language expression time (LET), anesthetic dosage (AD), catheter extubation time (CET), respiratory circulation indicators (mean arterial pressure (MAP), heart rate (HR), SaO2, and PaO2), postoperative VRS score, pulmonary function (forced vital capacity (FVC)), forced expiratory volume in 1 s (FEV1)/FVC and forced expiratory flow (FEF 25%~75%), serum inflammatory factors (IL-6, IL-8, and TNF-α), Short Portable Mental Status Questionnaire (SPMSQ) score, and the incidence of respiratory system events were analyzed. Results The results showed that the PRT, LET, AD, and CET of the observation group were all shorter (P < 0.05). The postoperative MAP, HR, SaO2, and PaO2 levels of patients who received GA+SA were much higher than those who received simple GA (P < 0.05). The postoperative VRS score of the observation group was better than that of the controls (P < 0.05). The postoperative pulmonary function of patients in the observation group was better compared with that in the control group (P < 0.05). The postoperative serum inflammatory factors in the observation group were lower in contrast to the patients who received simple GA (P < 0.05). The postoperative cognitive function SPMSQ score of patients who received GA+SA was lower compared with the score of patients who received simple GA (P < 0.05). However, the probability of respiratory system events in the observation group was lower (P < 0.05). Conclusion In conclusion, GA+SA could significantly shorten the PRT and improve the recovery quality of elderly COPD patients. It can also reduce the postoperative inflammatory response and strengthen the pulmonary function and cognitive function. It also enhances the analgesic which is beneficial to patients' postoperative recovery. Therefore, GA+SA was a highly effective and safe anesthesia method for elderly patients with COPD, and it was worthy of clinical application.
Collapse
Affiliation(s)
- Jie Chen
- Affiliated Hospital of Hebei Engineering University, Handan, 056002 Hebei, China
| | - Jing Wang
- Affiliated Hospital of Hebei Engineering University, Handan, 056002 Hebei, China
| | - Xiaohui Duan
- Affiliated Hospital of Hebei Engineering University, Handan, 056002 Hebei, China
| | - Fumin Ping
- Affiliated Hospital of Hebei Engineering University, Handan, 056002 Hebei, China
| | - Aiming Zhang
- Affiliated Hospital of Hebei Engineering University, Handan, 056002 Hebei, China
| |
Collapse
|