101
|
Samir M, Abdelkader RM, Boushehri MS, Mansour S, Lamprecht A, Tammam SN. Enhancement of mitochondrial function using NO releasing nanoparticles; a potential approach for therapy of Alzheimer's disease. Eur J Pharm Biopharm 2023; 184:16-24. [PMID: 36640916 DOI: 10.1016/j.ejpb.2023.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Increasing evidence is showing the important role of mitochondrial dysfunction in AD. Mitochondria based oxidative stress, decrease in respiratory chain activity and ATP production are all associated with AD, hence indicating that the enhancement of mitochondrial function and biogenesis present a promising therapeutic approach for AD. Nitric oxide (NO) is an initiator of mitochondrial biogenesis. However, its gaseous nature and very short half-life limit the realization of its therapeutic potential. Additionally, its uncontrolled in-vivo distribution results in generalized vasodilation, hypotension among other off-target effects. Diazeniumdiolates (NONOates) are NO donors that release NO in physiological temperature and pH. Their encapsulation within a hydrophobic matrix carrier system could control the release of NO, and at the same time enable its delivery to the brain. In this work, PAPANONOate (PN) a NO donor was encapsulated in small (92 ± 7 nm) poly (lactic-co-glycolic acid) (PLGA) NPs. These NPs did not induce hemolysis upon intravenous administration and were able to accumulate in the brains of lipopolysaccharides (LPS) induced neurodegeneration mouse models. The encapsulation of PN within a hydrophobic PLGA matrix enabled the sustained release of NO from NPs (≈ 3 folds slower relative to free PN) and successfully delivered PN to brain. As a result, PN-NPs but not free PN resulted in an enhancement in memory and cognition in animals with neurodegeneration as determined by the Y-maze test. The enhancement in cognition was a result of increased mitochondria function as indicated by the increased production of ATP and Cytochrome C oxidase enzyme activity.
Collapse
Affiliation(s)
- Mirna Samir
- Department of Pharmaceutical Technology, German University in Cairo (GUC), Egypt
| | - Reham M Abdelkader
- Department of Pharmacology, Toxicology and German University in Cairo (GUC), Egypt
| | - Maryam Shetab Boushehri
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Samar Mansour
- Department of Pharmaceutical Technology, German University in Cairo (GUC), Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Germany; Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France
| | - Salma N Tammam
- Department of Pharmaceutical Technology, German University in Cairo (GUC), Egypt.
| |
Collapse
|
102
|
Exosomes: A missing link between chronic systemic inflammation and Alzheimer's disease? Biomed Pharmacother 2023; 159:114161. [PMID: 36641928 DOI: 10.1016/j.biopha.2022.114161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Exosomes are potent mediators of physiological and pathological processes. In Alzheimer's disease and inflammatory disorders, due to exosomes' distinctive ability to cross the blood-brain barrier, a bidirectional communication between the periphery and the central nervous system exists. Since exosomes can carry various biochemical molecules, this review investigates the role of exosomes as possible mediators between chronic systemic inflammatory diseases and Alzheimer's disease. Exosomes carry pro-inflammatory molecules generated in the periphery, travel to the central nervous system, and target glial and neuronal cells. Microglia and astrocytes then become activated, initiating chronic neuroinflammation. As the aging brain is more susceptible to such changes, this state of neuroinflammation can stimulate neuropathologies, impair amyloid-beta clearance capabilities, and generate dysregulated microRNAs that alter the expression of genes critical in Alzheimer's disease pathology. These processes, individually and collectively, become significant risk factors for the development of Alzheimer's disease.
Collapse
|
103
|
Sánchez-Tapia M, Mimenza-Alvarado A, Granados-Domínguez L, Flores-López A, López-Barradas A, Ortiz V, Pérez-Cruz C, Sánchez-Vidal H, Hernández-Acosta J, Ávila-Funes JA, Guevara-Cruz M, Tovar AR, Torres N. The Gut Microbiota-Brain Axis during Aging, Mild Cognitive Impairment and Dementia: Role of Tau Protein, β-Amyloid and LPS in Serum and Curli Protein in Stool. Nutrients 2023; 15:nu15040932. [PMID: 36839291 PMCID: PMC9961602 DOI: 10.3390/nu15040932] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Currently, there is an increasing number of people with mild cognitive (MCI) impairment and dementia (D). In the present work we studied the role of tau protein, β-amyloid, LPS (lipopolysaccharide), and curli protein of elderly adults with MCI or D and the contribution of gut microbiota. Four groups were studied: young subjects, healthy adults older than 60 years (A), elderly adults with MCI (MCI), and elderly adults with dementia (D). A preclinical study was conducted in old male Wistar rats to evaluate the impact of gut microbiota on curli protein abundance in feces and brain. The results showed that with increasing age, tau protein, β-amyloid, and LPS significantly increased in serum during MCI and D, and this was associated with an increase in the abundance of E. coli that synthesize the amyloid protein curli, that may promote the aggregation of amyloid proteins. Rats showed a clear increase in the abundance of curli protein in the brain during aging. Thus, cognitive impairment and dementia are in part due to an alteration in the gut microbiota-brain axis via increase in curli protein and LPS leading to an increase in tau and β-amyloid protein.
Collapse
Affiliation(s)
- Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Alberto Mimenza-Alvarado
- Departamento de Geriatria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Lizbeth Granados-Domínguez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Adriana Flores-López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Adriana López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Victor Ortiz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Claudia Pérez-Cruz
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacología, CINVESTAV, Mexico City 07360, Mexico
| | - Hilda Sánchez-Vidal
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Julieta Hernández-Acosta
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - José Alberto Ávila-Funes
- Departamento de Geriatria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Correspondence:
| |
Collapse
|
104
|
Elhabak M, Salama AAA, Salama AH. Nose-to-brain delivery of galantamine loaded nanospray dried polyacrylic acid/taurodeoxycholate mixed matrix as a protective therapy in lipopolysaccharide-induced Alzheimer's in mice model. Int J Pharm 2023; 632:122588. [PMID: 36623740 DOI: 10.1016/j.ijpharm.2023.122588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
One of the promising drug delivery approaches is performed by nanosizing the administered drug product using the nanospray drying technique. In this study, a combination of several formulation factors was integrated and exploited to augment the bioavailability of galantamine hydrobromide (GAL) via the intranasal route. Nanosized polymeric particles were fabricated using the mucoadhesive polymer, polyacrylic acid (PAA), and the permeability booster, sodium taurodeoxycholate (TDC). First, a preliminary study was conducted to adjust the nanospray drying conditions. Then, formulations were prepared on the basis of a mixed factorial experimental design and further analyzed using Design Expert® software. Different responses were investigated: particle size, polydispersity index, spray rate, drying efficiency, and percent yield. The optimized formulation was further assessed for physical morphology using the scanning electron microscope, flowability, in vitro drug release, and in vivo brain cell uptake using confocal laser scanning microscopy. The promising formulation (F6), composed of equal ratio of PAA and TDC and 20 mg GAL, exhibited a particle size of 185.55 ± 4.3 nm, polydispersity index of 0.413 ± 0.02, and yield-value of 69.58 ± 5.82 %. It also displayed good flowability, complete drug release within 2 h, and enhanced in vivo fluorescent dye uptake and penetration in brain cells. The efficacy of the optimized formulation was examined using lipopolysaccharide-induced Alzheimer's in mice. Results revealed the advantageous influence of the optimized formulation (F6) through downregulation of NF-κβ, IL-1β and GFAP as well as upregulating TGF-1β in adult mice.
Collapse
Affiliation(s)
- Mona Elhabak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt.
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Alaa H Salama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt; Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
105
|
Engler-Chiurazzi EB, Russell AE, Povroznik JM, McDonald KO, Porter KN, Wang DS, Hammock J, Billig BK, Felton CC, Yilmaz A, Schreurs BG, O'Callaghan JD, Zwezdaryk KJ, Simpkins JW. Intermittent systemic exposure to lipopolysaccharide-induced inflammation disrupts hippocampal long-term potentiation and impairs cognition in aging male mice. Brain Behav Immun 2023; 108:279-291. [PMID: 36549577 PMCID: PMC10019559 DOI: 10.1016/j.bbi.2022.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related cognitive decline, a common component of the brain aging process, is associated with significant impairment in daily functioning and quality of life among geriatric adults. While the complexity of mechanisms underlying cognitive aging are still being elucidated, microbial exposure and the multifactorial inflammatory cascades associated with systemic infections are emerging as potential drivers of neurological senescence. The negative cognitive and neurobiological consequences of a single pathogen-associated inflammatory experience, such as that modeled through treatment with lipopolysaccharide (LPS), are well documented. Yet, the brain aging impacts of repeated, intermittent inflammatory challenges are less well studied. To extend the emerging literature assessing the impact of infection burden on cognitive function among normally aging mice, here, we repeatedly exposed adult mice to intermittent LPS challenges during the aging period. Male 10-month-old C57BL6 mice were systemically administered escalating doses of LPS once every two weeks for 2.5 months. We evaluated cognitive consequences using the non-spatial step-through inhibitory avoidance task, and both spatial working and reference memory versions of the Morris water maze. We also probed several potential mechanisms, including cortical and hippocampal cytokine/chemokine gene expression, as well as hippocampal neuronal function via extracellular field potential recordings. Though there was limited evidence for an ongoing inflammatory state in cortex and hippocampus, we observed impaired learning and memory and a disruption of hippocampal long-term potentiation. These data suggest that a history of intermittent exposure to LPS-induced inflammation is associated with subtle but significantly impaired cognition among normally aging mice. The broader impact of these findings may have important implications for standard of care involving infections in aging individuals or populations at-risk for dementia.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA; Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA.
| | - A E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA; Magee Women's Research Institute, Allied Member, Pittsburgh, PA 15213, USA
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - K O McDonald
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA
| | - K N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - D S Wang
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - J Hammock
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - B K Billig
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - C C Felton
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - A Yilmaz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - B G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - J D O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - K J Zwezdaryk
- Department of Microbiology and Immunology, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
106
|
Chen Y, Dai J, Tang L, Mikhailova T, Liang Q, Li M, Zhou J, Kopp RF, Weickert C, Chen C, Liu C. Neuroimmune transcriptome changes in patient brains of psychiatric and neurological disorders. Mol Psychiatry 2023; 28:710-721. [PMID: 36424395 PMCID: PMC9911365 DOI: 10.1038/s41380-022-01854-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
Abstract
Neuroinflammation has been implicated in multiple brain disorders but the extent and the magnitude of change in immune-related genes (IRGs) across distinct brain disorders has not been directly compared. In this study, 1275 IRGs were curated and their expression changes investigated in 2467 postmortem brains of controls and patients with six major brain disorders, including schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), major depressive disorder (MDD), Alzheimer's disease (AD), and Parkinson's disease (PD). There were 865 IRGs present across all microarray and RNA-seq datasets. More than 60% of the IRGs had significantly altered expression in at least one of the six disorders. The differentially expressed immune-related genes (dIRGs) shared across disorders were mainly related to innate immunity. Moreover, sex, tissue, and putative cell type were systematically evaluated for immune alterations in different neuropsychiatric disorders. Co-expression networks revealed that transcripts of the neuroimmune systems interacted with neuronal-systems, both of which contribute to the pathology of brain disorders. However, only a few genes with expression changes were also identified as containing risk variants in genome-wide association studies. The transcriptome alterations at gene and network levels may clarify the immune-related pathophysiology and help to better define neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Yu Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiacheng Dai
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Longfei Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tatiana Mikhailova
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Qiuman Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Richard F Kopp
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Cynthia Weickert
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
- School of Psychiatry, UNSW, Sydney, NSW, Australia
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
107
|
Anwar MM, Özkan E, Shomalizadeh N, Sapancı S, Özler C, Kesibi J, Gürsoy-Özdemir Y. Assessing the role of primary healthy microglia and gap junction blocker in hindering Alzheimer's disease neuroinflammatory type: Early approaches for therapeutic intervention. Front Neurosci 2023; 16:1041461. [PMID: 36704003 PMCID: PMC9871931 DOI: 10.3389/fnins.2022.1041461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a predominantly heterogeneous disease with a highly complex pathobiology. The presence of amyloid-beta (Aβ) depositions and the accumulation of hyperphosphorylated tau protein remain the characteristic hallmarks of AD. These hallmarks can be detected throughout the brain and other regions, including cerebrospinal fluid (CSF) and the spinal cord. Microglia cells, the brain-resident macrophage type of the brain, are implicated in maintaining healthy brain homeostasis. The localized administration of primary healthy microglia (PHM) is suggested to play a role in mitigating AD hallmark depositions and associated cognitive dysfunction. Carbenoxolone (CBX) is the most common gap junction blocker. It cannot effectively cross the blood-brain barrier (BBB) under systemic administration. Therefore, localized administration of CBX may be a recommended intervention against AD by acting as an antioxidant and anti-inflammatory agent. This study aims to determine whether the localized intracerebroventricular (ICV) administration of PHM and CBX may act as an effective therapeutic intervention for AD neuroinflammatory type. In addition, this study also aims to reveal whether detecting AD hallmarks in the spinal cord and CSF can be considered functional and effective during AD early diagnosis. Male albino rats were divided into four groups: control (group 1), lipopolysaccharide (LPS)-induced AD neuroinflammatory type (group 2), ICV injection of LPS + isolated PHM (group 3), and ICV injection of LPS + CBX (group 4). Morris water maze (MWM) was conducted to evaluate spatial working memory. The brain and spinal cord were isolated from each rat with the collection of CSF. Our findings demonstrate that the localized administration of PHM and CBX can act as promising therapeutic approaches against AD. Additionally, Aβ and tau toxic aggregates were detected in the spinal cord and the CSF of the induced AD model concomitant with the brain tissues. Overall, it is suggested that the ICV administration of PHM and CBX can restore normal brain functions and alleviate AD hallmark depositions. Detecting these depositions in the spinal cord and CSF may be considered in AD early diagnosis. As such, conducting clinical research is recommended to reveal the benefits of related therapeutic approaches compared with preclinical findings.
Collapse
Affiliation(s)
- Mai M. Anwar
- Department of Biochemistry, National Organization for Drug Control and Research/Egyptian Drug Authority, Cairo, Egypt
| | - Esra Özkan
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Narges Shomalizadeh
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Selin Sapancı
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Ceyda Özler
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Judy Kesibi
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
108
|
Xu Y, Hiyoshi A, Fall K, Montgomery S. Systemic inflammation measured by erythrocyte sedimentation rate and cognitive function among young men in Sweden: A within-sibling analysis. Sci Prog 2023; 106:368504221145541. [PMID: 36718517 PMCID: PMC10450265 DOI: 10.1177/00368504221145541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study assesses the extent to which the association between erythrocyte sedimentation rate, a marker of inflammation, and cognitive function is explained by shared familial factors using within-sibling analyses. Men who were born in Sweden between 1950 and 1965 and recorded in the Swedish Military Conscription Register between 1969 and 1983 were included (N = 632,396). Erythrocyte sedimentation rate and cognitive function were measured at the conscription assessment (median age = 18.3 years, with a range from 15.5 to 28.5 years). Conventional linear regression and multilevel linear regression with a hybrid modeling approach were used, with the latter to obtain within-effect estimation in which unmeasured familial confounding shared by siblings was controlled for. We found that the association between erythrocyte sedimentation rate and cognitive function at conscription assessment was partly accounted for by, but remained independent of, shared familial factors.
Collapse
Affiliation(s)
- Yin Xu
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Sociology and Psychology, School of Public Administration, Sichuan University, Chengdu, China
| | - Ayako Hiyoshi
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Public Health Sciences, Stockholm University, Stockholm, Sweden
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Katja Fall
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Scott Montgomery
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Epidemiology and Public Health, University College London, London, UK
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
109
|
Khodaei S, Wang DS, Lee Y, Chung W, Orser BA. Sevoflurane and lipopolysaccharide-induced inflammation differentially affect γ-aminobutyric acid type A receptor-mediated tonic inhibition in the hippocampus of male mice. Br J Anaesth 2023; 130:e7-e10. [PMID: 36336522 DOI: 10.1016/j.bja.2022.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shahin Khodaei
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yulim Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Woosuk Chung
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Anesthesiology & Pain Medicine, University of Toronto, Toronto, ON, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
110
|
Bhatt S, Dhar AK, Samanta MK, Suttee A. Effects of Current Psychotropic Drugs on Inflammation and Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:407-434. [PMID: 36949320 DOI: 10.1007/978-981-19-7376-5_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The immune system and inflammation are involved in the pathological progression of various psychiatric disorders such as depression or major depressive disorder (MDD), generalized anxiety disorder (GAD) or anxiety, schizophrenia, Alzheimer's disease (AD), and Huntington's disease. It is observed that levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and other markers are highly increased in the abovementioned disorders. The inflammation and immune component also lead to enhance the oxidative stress. The oxidative stress and increased production of reactive oxygen species (ROS) are considered as important factors that are involved in pathological progression of psychiatric disorders. Increase production of ROS is associated with excessive inflammation followed by cell necrosis and death. The psychotropic drugs are mainly work through modulations of neurotransmitter system. However, it is evident that inflammation and immune modulation are also having important role in the progression of psychiatric disorders. Rationale of the use of current psychotropic drugs is modulation of immune system by them. However, the effects of psychotropic drugs on the immune system and how these might contribute to their efficacy remain largely unclear. The drugs may act through modification of inflammation and related markers. The main purpose of this book chapter is to address the role of current psychotropic drugs on inflammation and immune system. Moreover, it will also address the role of inflammation in the progression of psychiatric disorders.
Collapse
Affiliation(s)
- Shvetank Bhatt
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| | | | | | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
111
|
Kalyan M, Tousif AH, Sonali S, Vichitra C, Sunanda T, Praveenraj SS, Ray B, Gorantla VR, Rungratanawanich W, Mahalakshmi AM, Qoronfleh MW, Monaghan TM, Song BJ, Essa MM, Chidambaram SB. Role of Endogenous Lipopolysaccharides in Neurological Disorders. Cells 2022; 11:cells11244038. [PMID: 36552802 PMCID: PMC9777235 DOI: 10.3390/cells11244038] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide (LPS) is a cell-wall immunostimulatory endotoxin component of Gram-negative bacteria. A growing body of evidence reveals that alterations in the bacterial composition of the intestinal microbiota (gut dysbiosis) disrupt host immune homeostasis and the intestinal barrier function. Microbial dysbiosis leads to a proinflammatory milieu and systemic endotoxemia, which contribute to the development of neurodegenerative diseases and metabolic disorders. Two important pathophysiological hallmarks of neurodegenerative diseases (NDDs) are oxidative/nitrative stress and inflammation, which can be initiated by elevated intestinal permeability, with increased abundance of pathobionts. These changes lead to excessive release of LPS and other bacterial products into blood, which in turn induce chronic systemic inflammation, which damages the blood-brain barrier (BBB). An impaired BBB allows the translocation of potentially harmful bacterial products, including LPS, and activated neutrophils/leucocytes into the brain, which results in neuroinflammation and apoptosis. Chronic neuroinflammation causes neuronal damage and synaptic loss, leading to memory impairment. LPS-induced inflammation causes inappropriate activation of microglia, astrocytes, and dendritic cells. Consequently, these alterations negatively affect mitochondrial function and lead to increases in oxidative/nitrative stress and neuronal senescence. These cellular changes in the brain give rise to specific clinical symptoms, such as impairment of locomotor function, muscle weakness, paralysis, learning deficits, and dementia. This review summarizes the contributing role of LPS in the development of neuroinflammation and neuronal cell death in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjunath Kalyan
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ahmed Hediyal Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sankar Simla Praveenraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Vasavi Rakesh Gorantla
- Department of Anatomical sciences, School of Medicine, St. George’s University Grenada, West Indies FZ818, Grenada
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research & Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917, USA
- 21 Health Street, Consulting Services, 1 Christian Fields, London SW16 3JY, UK
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
- Correspondence: (B.-J.S.); (M.M.E.); (S.B.C.)
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: (B.-J.S.); (M.M.E.); (S.B.C.)
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Correspondence: (B.-J.S.); (M.M.E.); (S.B.C.)
| |
Collapse
|
112
|
Vojtechova I, Machacek T, Kristofikova Z, Stuchlik A, Petrasek T. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathog 2022; 18:e1010929. [PMCID: PMC9671327 DOI: 10.1371/journal.ppat.1010929] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The amyloid cascade hypothesis, focusing on pathological proteins aggregation, has so far failed to uncover the root cause of Alzheimer’s disease (AD), or to provide an effective therapy. This traditional paradigm essentially explains a mechanism involved in the development of sporadic AD rather than its cause. The failure of an overwhelming majority of clinical studies (99.6%) demonstrates that a breakthrough in therapy would be difficult if not impossible without understanding the etiology of AD. It becomes more and more apparent that the AD pathology might originate from brain infection. In this review, we discuss a potential role of bacteria, viruses, fungi, and eukaryotic parasites as triggers of AD pathology. We show evidence from the current literature that amyloid beta, traditionally viewed as pathological, actually acts as an antimicrobial peptide, protecting the brain against pathogens. However, in case of a prolonged or excessive activation of a senescent immune system, amyloid beta accumulation and aggregation becomes damaging and supports runaway neurodegenerative processes in AD. This is paralleled by the recent study by Alam and colleagues (2022) who showed that alpha-synuclein, the protein accumulating in synucleinopathies, also plays a critical physiological role in immune reactions and inflammation, showing an unforeseen link between the 2 unrelated classes of neurodegenerative disorders. The multiplication of the amyloid precursor protein gene, recently described by Lee and collegues (2018), and possible reactivation of human endogenous retroviruses by pathogens fits well into the same picture. We discuss these new findings from the viewpoint of the infection hypothesis of AD and offer suggestions for future research. More than a century after its discovery, Alzheimer’s disease (AD) remains incurable and mysterious. The dominant hypothesis of amyloid cascade has succeeded in explaining the key pathological mechanism, but not its trigger. Amyloid beta has been traditionally considered a pathological peptide, and its physiological functions remain poorly known. These knowledge gaps have contributed to repeated failures of clinical studies. The emerging infectious hypothesis of AD considers central nervous system (CNS) infection the primary trigger of sporadic AD. A closely connected hypothesis claims that amyloid beta is an antimicrobial peptide. In this review, we discuss the available evidence for the involvement of infections in AD, coming from epidemiological studies, post mortem analyses of brain tissue, and experiments in vitro and in vivo. We argue there is no unique “Alzheimer’s germ,” instead, AD is a general reaction of the CNS to chronic infections, in the milieu of an aged immune system. The pathology may become self-sustained even without continuous presence of microbes in the brain. Importantly, the infectious hypothesis leads to testable predictions. Targeting amyloid beta should be ineffective, unless the triggering pathogen and inflammatory response are addressed as well. Meticulous control of selected infections might be the best near-term strategy for AD prevention.
Collapse
Affiliation(s)
- Iveta Vojtechova
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| | - Tomas Machacek
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Ales Stuchlik
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Petrasek
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| |
Collapse
|
113
|
Babaei F, Mirzababaei M, Dargahi L, Shahsavari Z, Nassiri-Asl M, Karima S. Preventive Effect of Saccharomyces boulardii on Memory Impairment Induced by Lipopolysaccharide in Rats. ACS Chem Neurosci 2022; 13:3180-3187. [PMID: 36318666 DOI: 10.1021/acschemneuro.2c00500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent studies have indicated that dysfunction of gut microbiota, living microorganisms of the digestive tract, plays a role in the pathogenesis of neurodegenerative disorders, indicating the valuable impact of probiotics as a potential preventive or therapeutic strategy. Saccharomyces boulardii is a yeast probiotic with beneficial effects on various disorders, ranging from inflammatory gastrointestinal diseases to brain and behavioral disorders. Herein, we examined the effect of S. boulardii on memory impairment induced by lipopolysaccharide (LPS) in Wistar rats. Four groups of rats were used in this study (N = 10): (1) control [Cnt], (2) LPS, (3) LPS + S. boulardii [LPS + S], and (4) S. boulardii [S]. Animals were orally administered S. boulardii (250 mg/rat) or saline by gavage for 4 weeks. From the 14th day of the study, animals were administered intraperitoneal LPS (0.25 mg/kg/day) or saline for 9 days. We assessed memory impairment, neuroinflammation, and amyloid-β deposition. S. boulardii ameliorated LPS-induced memory dysfunction. We observed that S. boulardii significantly reduced the elevated levels of serum interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, as well as hippocampal levels of NLRP3 and caspase-1 in the LPS model. Moreover, S. boulardii alleviated amyloid-β deposition in the rat hippocampus. Collectively, our findings indicated that S. boulardii could inhibit memory impairment, neuroinflammation, and amyloid-β accumulation induced by LPS, possibly by modifying the gut microbiota.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Zahra Shahsavari
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-69364, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| |
Collapse
|
114
|
Kim J, Kim SJ, Jeong HR, Park JH, Moon M, Hoe HS. Inhibiting EGFR/HER-2 ameliorates neuroinflammatory responses and the early stage of tau pathology through DYRK1A. Front Immunol 2022; 13:903309. [PMID: 36341365 PMCID: PMC9632417 DOI: 10.3389/fimmu.2022.903309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
The FDA-approved EGFR/HER2 inhibitor varlitinib inhibits tumor growth and is used in cancer treatment. However, the neuroinflammatory response associated with EGFR/HER2 and its underlying mechanism have not been elucidated. This study evaluates the impact of varlitinib on LPS- and tau-mediated neuroinflammatory responses for the first time. In BV2 microglial cells, varlitinib reduced LPS-stimulated il-1β and/or inos mRNA levels and downstream AKT/FAK/NF-kB signaling. Importantly, varlitinib significantly diminished LPS-mediated microglial nlrp3 inflammasome activation in BV2 microglial cells. In primary astrocytes, varlitinib downregulated LPS-evoked astroglial il-1β mRNA levels, AKT signaling, and nlrp3 inflammasome activation. In LPS-treated wild-type mice, varlitinib significantly reduced LPS-stimulated glial activation and IL-1β/NLRP3 inflammasome formation. Moreover, varlitinib significantly reduced micro- and astroglial activation and tau hyperphosphorylation in 3-month-old tau-overexpressing PS19 mice by downregulating tau kinase DYRK1A levels. However, in 6-month-old tau-overexpressing PS19 mice, varlitinib only significantly diminished astroglial activation and tau phosphorylation at Thr212/Ser214. Taken together, our findings suggest that varlitinib has therapeutic potential for LPS- and tau-induced neuroinflammatory responses and the early stages of tau pathology.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Su-Jin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Ha-Ram Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- *Correspondence: Hyang-Sook Hoe, ; Minho Moon,
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
- *Correspondence: Hyang-Sook Hoe, ; Minho Moon,
| |
Collapse
|
115
|
Anti-Inflammatory Activity of Panduratin A against LPS-Induced Microglial Activation. Biomedicines 2022; 10:biomedicines10102587. [PMID: 36289849 PMCID: PMC9599841 DOI: 10.3390/biomedicines10102587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Uncontrolled and excessive microglial activation is known to contribute to inflammation-mediated neurodegeneration. Therefore, reducing neurotoxic microglial activation may serve as a new approach to preventing neurodegeneration. Here, we investigated the anti-inflammatory effects of panduratin A against microglial activation induced by lipopolysaccharides (LPS) in the SIMA9 microglial cell line. We initially examined the anti-inflammatory properties of panduratin A by measuring LPS-induced nitric oxide (NO) production and the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). Panduratin A significantly reduced NO levels and pro-inflammatory cytokines’ production and secretion. In addition, panduratin A enhanced the production of anti-inflammatory cytokines IL-4 and IL-10. The anti-inflammatory effects of panduratin A are related to the suppression of the NF-κB signaling pathway. Together, these results demonstrate the anti-inflammatory properties of panduratin A against LPS-induced microglial activation, suggesting panduratin A has the potential to be further developed as a new agent for the prevention of neuroinflammation-associated neurodegenerative diseases.
Collapse
|
116
|
Pluta R, Jabłoński M, Januszewski S, Czuczwar SJ. Crosstalk between the aging intestinal microflora and the brain in ischemic stroke. Front Aging Neurosci 2022; 14:998049. [PMID: 36275012 PMCID: PMC9582537 DOI: 10.3389/fnagi.2022.998049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Aging is an inevitable phenomenon experienced by animals and humans, and its intensity varies from one individual to another. Aging has been identified as a risk factor for neurodegenerative disorders by influencing the composition of the gut microbiota, microglia activity and cognitive performance. The microbiota-gut-brain axis is a two-way communication path between the gut microbes and the host brain. The aging intestinal microbiota communicates with the brain through secreted metabolites (neurotransmitters), and this phenomenon leads to the destruction of neuronal cells. Numerous external factors, such as living conditions and internal factors related to the age of the host, affect the condition of the intestinal microflora in the form of dysbiosis. Dysbiosis is defined as changes in the composition and function of the gut microflora that affect the pathogenesis, progress, and response to treatment of a disease entity. Dysbiosis occurs when changes in the composition and function of the microbiota exceed the ability of the microflora and its host to restore equilibrium. Dysbiosis leading to dysfunction of the microbiota-gut-brain axis regulates the development and functioning of the host’s nervous, immune, and metabolic systems. Dysbiosis, which causes disturbances in the microbiota-gut-brain axis, is seen with age and with the onset of stroke, and is closely related to the development of risk factors for stroke. The review presents and summarizes the basic elements of the microbiota-gut-brain axis to better understand age-related changes in signaling along the microbiota-gut-brain axis and its dysfunction after stroke. We focused on the relationship between the microbiota-gut-brain axis and aging, emphasizing that all elements of the microbiota-gut-brain axis are subject to age-related changes. We also discuss the interaction between microbiota, microglia and neurons in the aged individuals in the brain after ischemic stroke. Finally, we presented preclinical and clinical studies on the role of the aged microbiota-gut-brain axis in the development of risk factors for stroke and changes in the post-stroke microflora.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- *Correspondence: Ryszard Pluta,
| | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
117
|
Ji X, Yang X, Shi C, Guo D, Wang X, Messina JM, Meng Q, Urao N, Cooney R, Luo J. Functionalized core-shell nanogel scavenger for immune modulation therapy in sepsis. ADVANCED THERAPEUTICS 2022; 5:2200127. [PMID: 36590645 PMCID: PMC9797201 DOI: 10.1002/adtp.202200127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/05/2023]
Abstract
Sepsis is a complex, life-threatening hyperinflammatory syndrome associated with organ failure and high mortality due to lack of effective treatment options. Here we report a core-shell hydrogel nanoparticle with the core functionalized with telodendrimer (TD) nanotrap (NT) to control hyperinflammation in sepsis. The combination of multi-valent charged and hydrophobic moieties in TD enables effective binding with biomolecules in NT. The higher crosslinking in the shell structure of nanogel excludes the abundant large serum proteins and allows for size-selectivity in scavenging the medium-sized septic molecules (10-30 kDa), e.g., lipopolysaccharides (LPS, a potent endotoxin in sepsis), thus reducing cytokine production. At the same time, the core-shell TD NT nanogel captures the over-flowing proinflammatory cytokines effectively both in vitro and in vivo from biological fluids to further control hyperinflammation. Intraperitoneal injection of core-shell TD NT nanogel effectively attenuates NF-κB activation and cytokine production in LPS-induced septic mouse models. These results indicate the potential applications of the injectable TD NT core-shell nanogel to attenuate local or systemic inflammation.
Collapse
Affiliation(s)
- Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaojing Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Qinghe Meng
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Norifumi Urao
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Robert Cooney
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
118
|
Bocharova OV, Fisher A, Pandit NP, Molesworth K, Mychko O, Scott AJ, Makarava N, Ritzel R, Baskakov IV. Aβ plaques do not protect against HSV-1 infection in a mouse model of familial Alzheimer's disease, and HSV-1 does not induce Aβ pathology in a model of late onset Alzheimer's disease. Brain Pathol 2022; 33:e13116. [PMID: 36064300 PMCID: PMC9836376 DOI: 10.1111/bpa.13116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023] Open
Abstract
The possibility that the etiology of late onset Alzheimer's disease is linked to viral infections of the CNS has been actively debated in recent years. According to the antiviral protection hypothesis, viral pathogens trigger aggregation of Aβ peptides that are produced as a defense mechanism in response to infection to entrap and neutralize pathogens. To test the causative relationship between viral infection and Aβ aggregation, the current study examined whether Aβ plaques protect the mouse brain against Herpes Simplex Virus 1 (HSV-1) infection introduced via a physiological route and whether HSV-1 infection triggers formation of Aβ plaques in a mouse model of late-onset AD that does not develop Aβ pathology spontaneously. In aged 5XFAD mice infected via eye scarification, high density of Aβ aggregates did not improve survival time or rate when compared with wild type controls. In 5XFADs, viral replication sites were found in brain areas with a high density of extracellular Aβ deposits, however, no association between HSV-1 and Aβ aggregates could be found. To test whether HSV-1 triggers Aβ aggregation in a mouse model that lacks spontaneous Aβ pathology, 13-month-old hAβ/APOE4/Trem2*R47H mice were infected with HSV-1 via eye scarification with the McKrae HSV-1 strain, intracranial inoculation with McKrae, intracranial inoculation after priming with LPS for 6 weeks, or intracranial inoculation with high doses of McKrae or 17syn + strains that represent different degrees of neurovirulence. No signs of Aβ aggregation were found in any of the experimental groups. Instead, extensive infiltration of peripheral leukocytes was observed during the acute stage of HSV-1 infection, and phagocytic activity of myeloid cells was identified as the primary defense mechanism against HSV-1. The current results argue against a direct causative relationship between HSV-1 infection and Aβ pathology.
Collapse
Affiliation(s)
- Olga V. Bocharova
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Aidan Fisher
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Narayan P. Pandit
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Kara Molesworth
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Olga Mychko
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Alison J. Scott
- Department of Microbial PathogenesisUniversity of Maryland School of DentistryBaltimoreMarylandUSA
| | - Natallia Makarava
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Rodney Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR)University of Maryland School of MedicineBaltimoreMarylandUSA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
119
|
Askari S, Javadpour P, Rashidi FS, Dargahi L, Kashfi K, Ghasemi R. Behavioral and Molecular Effects of Thapsigargin-Induced Brain ER- Stress: Encompassing Inflammation, MAPK, and Insulin Signaling Pathway. Life (Basel) 2022; 12:life12091374. [PMID: 36143409 PMCID: PMC9500646 DOI: 10.3390/life12091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulation of misfolded proteins, known as endoplasmic reticulum (ER) stress, is known to participate in Alzheimer’s disease (AD). AD is also correlated with impaired central insulin signaling. However, few studies have probed the relationship between memory, central ER stress, inflammation, hippocampal mitogen-activated protein kinase (MAPK) activity and insulin resistance. The present study aimed to investigate the causative role and underlying mechanisms of brain ER stress in memory impairment and develop a reliable animal model for ER-mediated memory loss. Thapsigargin (TG), a known ER stress activator, was centrally administered. The cognitive function of animals was evaluated by the Morris Water Maze (MWM). To verify the induction of central ER stress, we investigated the mRNA expression of UPR markers in the hippocampus. In addition, the activation of ER stress markers, including Bip, CHOP, and some related apoptosis and pro-inflammatory proteins, such as caspase-3, Bax, Bcl-2, TNF-α, MAPK, and insulin signaling markers, were assessed by Western-blots. The results demonstrated that TG impairs spatial cognition and hippocampal insulin signaling. Meanwhile, molecular results showed a concurrent increment of hippocampal UPR markers, apoptosis, P38 activity, and TNF-α. This study introduced TG-induced ER stress as a pharmacological model for memory impairment in rats and revealed some underlying mechanisms.
Collapse
Affiliation(s)
- Sahar Askari
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
- Correspondence: ; Tel.: +98-21-22439971
| |
Collapse
|
120
|
Song L, Yang YT, Guo Q, Zhao XM. Cellular transcriptional alterations of peripheral blood in Alzheimer's disease. BMC Med 2022; 20:266. [PMID: 36031604 PMCID: PMC9422129 DOI: 10.1186/s12916-022-02472-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), a progressive neurodegenerative disease, is the most common cause of dementia worldwide. Accumulating data support the contributions of the peripheral immune system in AD pathogenesis. However, there is a lack of comprehensive understanding about the molecular characteristics of peripheral immune cells in AD. METHODS To explore the alterations of cellular composition and the alterations of intrinsic expression of individual cell types in peripheral blood, we performed cellular deconvolution in a large-scale bulk blood expression cohort and identified cell-intrinsic differentially expressed genes in individual cell types with adjusting for cellular proportion. RESULTS We detected a significant increase and decrease in the proportion of neutrophils and B lymphocytes in AD blood, respectively, which had a robust replicability across other three AD cohorts, as well as using alternative algorithms. The differentially expressed genes in AD neutrophils were enriched for some AD-associated pathways, such as ATP metabolic process and mitochondrion organization. We also found a significant enrichment of protein-protein interaction network modules of leukocyte cell-cell activation, mitochondrion organization, and cytokine-mediated signaling pathway in neutrophils for AD risk genes including CD33 and IL1B. Both changes in cellular composition and expression levels of specific genes were significantly associated with the clinical and pathological alterations. A similar pattern of perturbations on the cellular proportion and gene expression levels of neutrophils could be also observed in mild cognitive impairment (MCI). Moreover, we noticed an elevation of neutrophil abundance in the AD brains. CONCLUSIONS We revealed the landscape of molecular perturbations at the cellular level for AD. These alterations highlight the putative roles of neutrophils in AD pathobiology.
Collapse
Affiliation(s)
- Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Yucheng T Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Zhangjiang Fudan International Innovation Center, Shanghai, 200433, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | | | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China. .,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China. .,Zhangjiang Fudan International Innovation Center, Shanghai, 200433, China. .,International Human Phenome Institutes (Shanghai), Shanghai, 200433, China.
| |
Collapse
|
121
|
Ganz T, Fainstein N, Ben-Hur T. When the infectious environment meets the AD brain. Mol Neurodegener 2022; 17:53. [PMID: 35986296 PMCID: PMC9388962 DOI: 10.1186/s13024-022-00559-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background The Amyloid theory of Alzheimer’s disease (AD) suggests that the deposition of Amyloid β (Aβ) in the brain triggers a chain of events, involving the deposition of phosphorylated Tau and other misfolded proteins, leading to neurodegeneration via neuroinflammation, oxidative stress, and neurovascular factors. The infectious theory linked various infectious agents with the development of AD, raising the possibility that they serve as etiological causes of the disease. Are these theories mutually exclusive, or do they coincide? Main body In this review, we will discuss how the two theories converge. We present a model by which (1) the systemic infectious burden accelerates the development of AD brain pathology via bacterial Amyloids and other pathogen-associated molecular patterns (PAMPs), and (2) the developing AD brain pathology increases its susceptibility to the neurotoxicity of infectious agents -derived PAMPs, which drive neurodegeneration via activated microglia. Conclusions The reciprocal effects of amyloid deposition and systemic infectious burden may lead to a vicious cycle fueling Alzheimer’s disease pathogenesis.
Collapse
|
122
|
Go J, Park HY, Lee DW, Maeng SY, Lee IB, Seo YJ, An JP, Oh WK, Lee CH, Kim KS. Humulus japonicus attenuates LPS-and scopolamine-induced cognitive impairment in mice. Lab Anim Res 2022; 38:21. [PMID: 35854340 PMCID: PMC9297604 DOI: 10.1186/s42826-022-00134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Neuroinflammation plays an important role in cognitive decline and memory impairment in neurodegenerative disorders. Previously, we demonstrated that Humulus japonicus (HJ) has anti-inflammatory effects in rodent models of Alzheimer’s disease and Parkinson’s disease. The present study aimed to examine the protective potential of HJ extracts against lipopolysaccharide (LPS)-induced cognitive impairment and scopolamine-induced amnesia in mouse models. Cognitive improvement of mice was investigated by novel object recognition test. For analyzing effects on neuroinflammation, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed. Results We found that the oral administration of HJ significantly improved cognitive dysfunction induced by LPS in a novel object recognition test. The LPS-induced activation of microglia was notably decreased by HJ treatment in the cortex and hippocampus. HJ administration with LPS also significantly increased the mRNA expression of interleukin (IL)-10 and decreased the mRNA expression of IL-12 in the parietal cortex of mice. The increased expression of LPS-induced complement C1q B chain (C1bq) and triggering receptor expressed on myeloid cells 2 (Trem2) genes was significantly suppressed by HJ treatment. In addition, HJ administration significantly improved novel object recognition in a scopolamine-induced amnesia mouse model. Conclusions These findings revealed that HJ has a beneficial effect on cognitive impairment and neuroinflammation induced by systemic inflammation and on amnesia induced by scopolamine in mice.
Collapse
Affiliation(s)
- Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Da Woon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - So-Young Maeng
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea.,College of Biosciences and Biotechnology, Chung-Nam National University, Daejeon, 34134, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yun Jeong Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin-Pyo An
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences College of Pharmacy, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences College of Pharmacy, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
123
|
Kim J, Lee HJ, Park JH, Cha BY, Hoe HS. Nilotinib modulates LPS-induced cognitive impairment and neuroinflammatory responses by regulating P38/STAT3 signaling. J Neuroinflammation 2022; 19:187. [PMID: 35841100 PMCID: PMC9288088 DOI: 10.1186/s12974-022-02549-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In chronic myelogenous leukemia, reciprocal translocation between chromosome 9 and chromosome 22 generates a chimeric protein, Bcr-Abl, that leads to hyperactivity of tyrosine kinase-linked signaling transduction. The therapeutic agent nilotinib inhibits Bcr-Abl/DDR1 and can cross the blood-brain barrier, but its potential impact on neuroinflammatory responses and cognitive function has not been studied in detail. METHODS The effects of nilotinib in vitro and in vivo were assessed by a combination of RT-PCR, real-time PCR, western blotting, ELISA, immunostaining, and/or subcellular fractionation. In the in vitro experiments, the effects of 200 ng/mL LPS or PBS on BV2 microglial cells, primary microglia or primary astrocytes pre- or post-treated with 5 µM nilotinib or vehicle were evaluated. The in vivo experiments involved wild-type mice administered a 7-day course of daily injections with 20 mg/kg nilotinib (i.p.) or vehicle before injection with 10 mg/kg LPS (i.p.) or PBS. RESULTS In BV2 microglial cells, pre- and post-treatment with nilotinib altered LPS-induced proinflammatory/anti-inflammatory cytokine mRNA levels by suppressing AKT/P38/SOD2 signaling. Nilotinib treatment also significantly downregulated LPS-stimulated proinflammatory cytokine levels in primary microglia and primary astrocytes by altering P38/STAT3 signaling. Experiments in wild-type mice showed that nilotinib administration affected LPS-mediated microglial/astroglial activation in a brain region-specific manner in vivo. In addition, nilotinib significantly reduced proinflammatory cytokine IL-1β, IL-6 and COX-2 levels and P38/STAT3 signaling in the brain in LPS-treated wild-type mice. Importantly, nilotinib treatment rescued LPS-mediated spatial working memory impairment and cortical dendritic spine number in wild-type mice. CONCLUSIONS Our results indicate that nilotinib can modulate neuroinflammatory responses and cognitive function in LPS-stimulated wild-type mice.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
| | - Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Byung-Yoon Cha
- PharmacoRex Co., Ltd., 20 Techno 1-ro, Yuseong-gu, Daejeon, 34016, Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea. .,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea.
| |
Collapse
|
124
|
Chen XK, Kwan JSK, Wong GTC, Yi ZN, Ma ACH, Chang RCC. Leukocyte invasion of the brain after peripheral trauma in zebrafish (Danio rerio). EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:973-987. [PMID: 35831435 PMCID: PMC9356012 DOI: 10.1038/s12276-022-00801-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Despite well-known systemic immune reactions in peripheral trauma, little is known about their roles in posttraumatic neurological disorders, such as anxiety, sickness, and cognitive impairment. Leukocyte invasion of the brain, a common denominator of systemic inflammation, is involved in neurological disorders that occur in peripheral inflammatory diseases, whereas the influences of peripheral leukocytes on the brain after peripheral trauma remain largely unclear. In this study, we found that leukocytes, largely macrophages, transiently invaded the brain of zebrafish larvae after peripheral trauma through vasculature-independent migration, which was a part of the systemic inflammation and was mediated by interleukin-1b (il1b). Notably, myeloid cells in the brain that consist of microglia and invading macrophages were implicated in posttraumatic anxiety-like behaviors, such as hyperactivity (restlessness) and thigmotaxis (avoidance), while a reduction in systemic inflammation or myeloid cells can rescue these behaviors. In addition, invading leukocytes together with microglia were found to be responsible for the clearance of apoptotic cells in the brain; however, they also removed the nonapoptotic cells, which suggested that phagocytes have dual roles in the brain after peripheral trauma. More importantly, a category of conserved proteins between zebrafish and humans or rodents that has been featured in systemic inflammation and neurological disorders was determined in the zebrafish brain after peripheral trauma, which supported that zebrafish is a translational model of posttraumatic neurological disorders. These findings depicted leukocyte invasion of the brain during systemic inflammation after peripheral trauma and its influences on the brain through il1b-dependent mechanisms. Invasion of the brain by white blood cells followed tail amputation in zebrafish, the resulting systemic inflammation producing anxiety-like behaviors. Scientists have long recognised an association between systemic inflammation following peripheral traumatic injury such as limb loss and post-traumatic neurological disorders such as anxiety and depression. Raymond Chuen-Chung Chang at the University of Hong Kong, Alvin Chun-Hang Ma at Hong Kong Polytechnic University, China, and co-workers found that following trauma, white cells, mainly macrophages, flowed from neighboring tissues into the hindbrain, before spreading throughout the brain. This influx of white cells, mediated by the small signaling protein interleukin-1b, triggered anxiety-like behaviors such as hyperactivity and avoidance in the zebrafish. The researchers emphasize that the links between systemic inflammation following peripheral trauma and neurological responses require extensive further research.
Collapse
Affiliation(s)
- Xiang-Ke Chen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Zhen-Ni Yi
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Alvin Chun-Hang Ma
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
125
|
Abbas HA, Salama AM, El-Toumy SA, A. Salama AA, Tadros SH, El Gedaily RA. Novel Neuroprotective Potential of Bunchosia armeniaca (Cav.) DC against Lipopolysaccharide Induced Alzheimer’s Disease in Mice. PLANTS 2022; 11:plants11141792. [PMID: 35890426 PMCID: PMC9322164 DOI: 10.3390/plants11141792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Bunchosia armeniaca (Cav.) DC (Malpighiaceae) is one of the well-known traditionally used remedies worldwide. This study aims to explore the leaves’ metabolome via Quadrupole-Time-of-Flight-Liquid-Chromatography-Mass Spectrometry and to investigate the neuroprotective effect of leaves using lipopolysaccharide (LPS) induced Alzheimer’s disease model. Mice were administered LPS (0.25 mg/kg/day; intraperitoneal) as well as methanolic extract (BME), dichloromethane (BDMF), and butanol (BBF) fractions (each 200 mg/kg/day; oral) for one week. BME and BBF improved behavioral activity on the Y maze test, decreased brain content of inflammatory markers such as nuclear factor kappa B and interleukin 1 beta, and prevented the elevation of cytochrome P450 2E1, and glial fibrillary acidic protein compared to the LPS-administered group. Histopathological examination of several brain parts confirmed the neuroprotective effect of the tested extracts. In addition, BBF exhibited higher activity in all tested in vitro antioxidant and acetylcholinesterase inhibition assays. Metabolic profiling offered tentative identification of 88 metabolites, including mainly flavonoids, phenolic acids, and coumarins. Several detected metabolites, such as quercetin, apigenin, baicalin, vitexin, and resveratrol, had previously known neuroprotective effects. The current study highlighted the possible novel potential of B. armeniaca in preventing memory impairment, possibly through its antioxidant effect and inhibition of acetylcholinesterase, inflammatory and oxidative stress mediators.
Collapse
Affiliation(s)
- Haidy A. Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Ahram Canadian University, Giza 12573, Egypt; (H.A.A.); (A.M.S.)
| | - Ahmed M. Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Ahram Canadian University, Giza 12573, Egypt; (H.A.A.); (A.M.S.)
| | - Sayed A. El-Toumy
- Chemistry of Tannins Department, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt;
| | - Abeer A. A. Salama
- Department of Pharmacology, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt;
| | - Soad H. Tadros
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt;
| | - Rania A. El Gedaily
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt;
- Correspondence: ; Tel.: +20-1006910089
| |
Collapse
|
126
|
Mao S, Huang CP, Lan H, Lau HG, Chiang CP, Chen YW. Association of periodontitis and oral microbiomes with Alzheimer’s disease: A narrative systematic review. J Dent Sci 2022; 17:1762-1779. [PMID: 36299333 PMCID: PMC9588805 DOI: 10.1016/j.jds.2022.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background/purpose Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common form of dementia. The etiology for AD includes age, genetic susceptibility, neuropathology, and infection. Periodontitis is an infectious and inflammatory disease which mainly causes alveolar bone destruction and tooth loss. The evidence of a link between AD and periodontitis remains controversial. Thus far, studies reviewing the association between AD and periodontal disease have been insufficient from the viewpoint of the oral microbiome. The aim of this review was to focus on studies that have explored the relationship between the oral microbiome and AD development by using the next-generation sequencing technique. Materials and methods A comprehensive electronic search of MEDLINE via PubMed, EMBASE, Scopus, and Google Scholar was conducted. The keywords included dementia, Alzheimer’s disease, cognitive impairment, periodontitis, periodontal disease, and oral microbiome. Results This review included 26 articles based on the eligibility criteria. Epidemiologic researches and post-mortem studies showed that the presence of periodontitis is associated with cognitive decline, suggesting a possible role of periodontal pathogens in the pathogenesis of AD. The reported microbiome was inconsistent with those in gene sequencing studies. Nevertheless, Gram-negative species may be possible candidates. Conclusion This review suggests that periodontal infection is associated with AD. The contributing microbiome remains unconfirmed, possibly because of different microbiome sampling sites or methods. Additional large-scale studies with periodontal intervention and longitudinal follow-up are warranted to clarify the relationship between periodontal disease and AD.
Collapse
|
127
|
Abstract
Systemic inflammation elicited by sepsis can induce an acute cerebral dysfunction known as sepsis-associated encephalopathy (SAE). Recent evidence suggests that SAE is common but shows a dynamic trajectory over time. Half of all patients with sepsis develop SAE in the intensive care unit, and some survivors present with sustained cognitive impairments for several years after initial sepsis onset. It is not clear why some, but not all, patients develop SAE and also the factors that determine the persistence of SAE. Here, we first summarize the chronic pathology and the dynamic changes in cognitive functions seen after the onset of sepsis. We then outline the cerebral effects of sepsis, such as neuroinflammation, alterations in neuronal synapses and neurovascular changes. We discuss the key factors that might contribute to the development and persistence of SAE in older patients, including premorbid neurodegenerative pathology, side effects of sedatives, renal dysfunction and latent virus reactivation. Finally, we postulate that some of the mechanisms that underpin neuropathology in SAE may also be relevant to delirium and persisting cognitive impairments that are seen in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tatsuya Manabe
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
128
|
Liu C. The Role of Mesenchymal Stem Cells in Regulating Astrocytes-Related Synapse Dysfunction in Early Alzheimer’s Disease. Front Neurosci 2022; 16:927256. [PMID: 35801178 PMCID: PMC9253587 DOI: 10.3389/fnins.2022.927256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disease, is characterized by the presence of extracellular amyloid-β (Aβ) aggregates and intracellular neurofibrillary tangles formed by hyperphosphorylated tau as pathological features and the cognitive decline as main clinical features. An important cellular correlation of cognitive decline in AD is synapse loss. Soluble Aβ oligomer has been proposed to be a crucial early event leading to synapse dysfunction in AD. Astrocytes are crucial for synaptic formation and function, and defects in astrocytic activation and function have been suggested in the pathogenesis of AD. Astrocytes may contribute to synapse dysfunction at an early stage of AD by participating in Aβ metabolism, brain inflammatory response, and synaptic regulation. While mesenchymal stem cells can inhibit astrogliosis, and promote non-reactive astrocytes. They can also induce direct regeneration of neurons and synapses. This review describes the role of mesenchymal stem cells and underlying mechanisms in regulating astrocytes-related Aβ metabolism, neuroinflammation, and synapse dysfunction in early AD, exploring the open questions in this field.
Collapse
|
129
|
Lima MN, Barbosa-Silva MC, Maron-Gutierrez T. Microglial Priming in Infections and Its Risk to Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:878987. [PMID: 35783096 PMCID: PMC9240317 DOI: 10.3389/fncel.2022.878987] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Infectious diseases of different etiologies have been associated with acute and long-term neurological consequences. The primary cause of these consequences appears to be an inflammatory process characterized primarily by a pro-inflammatory microglial state. Microglial cells, the local effectors' cells of innate immunity, once faced by a stimulus, alter their morphology, and become a primary source of inflammatory cytokines that increase the inflammatory process of the brain. This inflammatory scenario exerts a critical role in the pathogenesis of neurodegenerative diseases. In recent years, several studies have shown the involvement of the microglial inflammatory response caused by infections in the development of neurodegenerative diseases. This has been associated with a transitory microglial state subsequent to an inflammatory response, known as microglial priming, in which these cells are more responsive to stimuli. Thus, systemic inflammation and infections induce a transitory state in microglia that may lead to changes in their state and function, making priming them for subsequent immune challenges. However, considering that microglia are long-lived cells and are repeatedly exposed to infections during a lifetime, microglial priming may not be beneficial. In this review, we discuss the relationship between infections and neurodegenerative diseases and how this may rely on microglial priming.
Collapse
Affiliation(s)
- Maiara N. Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Maria C. Barbosa-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
130
|
Ballerini C, Njamnshi AK, Juliano SL, Kalaria RN, Furlan R, Akinyemi RO. Non-Communicable Neurological Disorders and Neuroinflammation. Front Immunol 2022; 13:834424. [PMID: 35769472 PMCID: PMC9235309 DOI: 10.3389/fimmu.2022.834424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Traumatic brain injury, stroke, and neurodegenerative diseases represent a major cause of morbidity and mortality in Africa, as in the rest of the world. Traumatic brain and spinal cord injuries specifically represent a leading cause of disability in the younger population. Stroke and neurodegenerative disorders predominantly target the elderly and are a major concern in Africa, since their rate of increase among the ageing is the fastest in the world. Neuroimmunology is usually not associated with non-communicable neurological disorders, as the role of neuroinflammation is not often considered when evaluating their cause and pathogenesis. However, substantial evidence indicates that neuroinflammation is extremely relevant in determining the consequences of non-communicable neurological disorders, both for its protective abilities as well as for its destructive capacity. We review here current knowledge on the contribution of neuroinflammation and neuroimmunology to the pathogenesis of traumatic injuries, stroke and neurodegenerative diseases, with a particular focus on problems that are already a major issue in Africa, like traumatic brain injury, and on emerging disorders such as dementias.
Collapse
Affiliation(s)
- Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alfred K. Njamnshi
- Brain Research Africa Initiative (BRAIN); Neurology Department, Central Hospital Yaounde/Faculty of Medicine and Biomedical Sciences (FMBS), The University of Yaounde 1, Yaounde, Cameroon
| | - Sharon L. Juliano
- Neuroscience, Uniformed Services University Hebert School (USUHS), Bethesda, MD, United States
| | - Rajesh N. Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- *Correspondence: Roberto Furlan, ; Rufus O. Akinyemi,
| | - Rufus O. Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Roberto Furlan, ; Rufus O. Akinyemi,
| |
Collapse
|
131
|
Conditioned medium from amniotic fluid mesenchymal stem cells could modulate Alzheimer's disease-like changes in human neuroblastoma cell line SY-SY5Y in a paracrine manner. Tissue Cell 2022; 76:101808. [DOI: 10.1016/j.tice.2022.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022]
|
132
|
Dhandapani R, Neri M, Bernhard M, Brzak I, Schweizer T, Rudin S, Joller S, Berth R, Kernen J, Neuhaus A, Waldt A, Cuttat R, Naumann U, Keller CG, Roma G, Feuerbach D, Shimshek DR, Neumann U, Gasparini F, Galimberti I. Sustained Trem2 stabilization accelerates microglia heterogeneity and Aβ pathology in a mouse model of Alzheimer's disease. Cell Rep 2022; 39:110883. [PMID: 35649351 DOI: 10.1016/j.celrep.2022.110883] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
TREM2 is a transmembrane protein expressed exclusively in microglia in the brain that regulates inflammatory responses to pathological conditions. Proteolytic cleavage of membrane TREM2 affects microglial function and is associated with Alzheimer's disease, but the consequence of reduced TREM2 proteolytic cleavage has not been determined. Here, we generate a transgenic mouse model of reduced Trem2 shedding (Trem2-Ile-Pro-Asp [IPD]) through amino-acid substitution of an ADAM-protease recognition site. We show that Trem2-IPD mice display increased Trem2 cell-surface-receptor load, survival, and function in myeloid cells. Using single-cell transcriptomic profiling of mouse cortex, we show that sustained Trem2 stabilization induces a shift of fate in microglial maturation and accelerates microglial responses to Aβ pathology in a mouse model of Alzheimer's disease. Our data indicate that reduction of Trem2 proteolytic cleavage aggravates neuroinflammation during the course of Alzheimer's disease pathology, suggesting that TREM2 shedding is a critical regulator of microglial activity in pathological states.
Collapse
Affiliation(s)
- Rahul Dhandapani
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Marilisa Neri
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Mario Bernhard
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Irena Brzak
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Tatjana Schweizer
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Stefan Rudin
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Stefanie Joller
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Ramon Berth
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Jasmin Kernen
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Anna Neuhaus
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Annick Waldt
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Rachel Cuttat
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Ulrike Naumann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Caroline Gubser Keller
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Guglielmo Roma
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Dominik Feuerbach
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Derya R Shimshek
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Ulf Neumann
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Fabrizio Gasparini
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Ivan Galimberti
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| |
Collapse
|
133
|
Maternal Prenatal Inflammation Increases Brain Damage Susceptibility of Lipopolysaccharide in Adult Rat Offspring via COX-2/PGD-2/DPs Pathway Activation. Int J Mol Sci 2022; 23:ijms23116142. [PMID: 35682823 PMCID: PMC9181626 DOI: 10.3390/ijms23116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
A growing body of research suggests that inflammatory insult contributes to the etiology of central nervous system diseases, such as depression, Alzheimer’s disease, and so forth. However, the effect of prenatal systemic inflammation exposure on offspring brain development and cerebral susceptibility to inflammatory insult remains unknown. In this study, we utilized the prenatal inflammatory insult model in vivo and the neuronal damage model in vitro. The results obtained show that prenatal maternal inflammation exacerbates LPS-induced memory impairment, neuronal necrosis, brain inflammatory response, and significantly increases protein expressions of COX-2, DP2, APP, and Aβ, while obviously decreasing that of DP1 and the exploratory behaviors of offspring rats. Meloxicam significantly inhibited memory impairment, neuronal necrosis, oxidative stress, and inflammatory response, and down-regulated the expressions of APP, Aβ, COX-2, and DP2, whereas significantly increased exploring behaviors and the expression of DP1 in vivo. Collectively, these findings suggested that maternal inflammation could cause offspring suffering from inflammatory and behavioral disorders and increase the susceptibility of offspring to cerebral pathological factors, accompanied by COX-2/PGD-2/DPs pathway activation, which could be ameliorated significantly by COX-2 inhibitor meloxicam treatment.
Collapse
|
134
|
Ito H, Hosomi S, Koyama Y, Matsumoto H, Imamura Y, Ogura H, Oda J. Sepsis-Associated Encephalopathy: A Mini-Review of Inflammation in the Brain and Body. Front Aging Neurosci 2022; 14:912866. [PMID: 35711904 PMCID: PMC9195626 DOI: 10.3389/fnagi.2022.912866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is defined as a life-threatening multi-organ dysfunction triggered by an uncontrolled host response to infectious disease. Systemic inflammation elicited by sepsis can cause acute cerebral dysfunction, characterized by delirium, coma, and cognitive dysfunction, known as septic encephalopathy. Recent evidence has reported the underlying mechanisms of sepsis. However, the reasons for the development of inflammation and degeneration in some brain regions and the persistence of neuroinflammation remain unclear. This mini-review describes the pathophysiology of region-specific inflammation after sepsis-associated encephalopathy (SAE), clinical features, and future prospects for SAE treatment. The hippocampus is highly susceptible to inflammation, and studies that perform treatments with antibodies to cytokine receptors, such as interleukin-1β, are in progress. Future development of clinically applicable therapies is expected.
Collapse
Affiliation(s)
- Hiroshi Ito
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Sanae Hosomi
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- *Correspondence: Sanae Hosomi,
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukio Imamura
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jun Oda
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
135
|
Burlacu CC, Neag MA, Mitre AO, Sirbu AC, Badulescu AV, Buzoianu AD. The Role of miRNAs in Dexmedetomidine's Neuroprotective Effects against Brain Disorders. Int J Mol Sci 2022; 23:5452. [PMID: 35628263 PMCID: PMC9141783 DOI: 10.3390/ijms23105452] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
There are limited neuroprotective strategies for various central nervous system conditions in which fast and sustained management is essential. Neuroprotection-based therapeutics have become an intensively researched topic in the neuroscience field, with multiple novel promising agents, from natural products to mesenchymal stem cells, homing peptides, and nanoparticles-mediated agents, all aiming to significantly provide neuroprotection in experimental and clinical studies. Dexmedetomidine (DEX), an α2 agonist commonly used as an anesthetic adjuvant for sedation and as an opioid-sparing medication, stands out in this context due to its well-established neuroprotective effects. Emerging evidence from preclinical and clinical studies suggested that DEX could be used to protect against cerebral ischemia, traumatic brain injury (TBI), spinal cord injury, neurodegenerative diseases, and postoperative cognitive disorders. MicroRNAs (miRNAs) regulate gene expression at a post-transcriptional level, inhibiting the translation of mRNA into functional proteins. In vivo and in vitro studies deciphered brain-related miRNAs and dysregulated miRNA profiles after several brain disorders, including TBI, ischemic stroke, Alzheimer's disease, and multiple sclerosis, providing emerging new perspectives in neuroprotective therapy by modulating these miRNAs. Experimental studies revealed that some of the neuroprotective effects of DEX are mediated by various miRNAs, counteracting multiple mechanisms in several disease models, such as lipopolysaccharides induced neuroinflammation, β-amyloid induced dysfunction, brain ischemic-reperfusion injury, and anesthesia-induced neurotoxicity models. This review aims to outline the neuroprotective mechanisms of DEX in brain disorders by modulating miRNAs. We address the neuroprotective effects of DEX by targeting miRNAs in modulating ischemic brain injury, ameliorating the neurotoxicity of anesthetics, reducing postoperative cognitive dysfunction, and improving the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Codrin-Constantin Burlacu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandru-Constantin Sirbu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andrei-Vlad Badulescu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
136
|
Tucker AE, Alicea Pauneto CDM, Barnett AM, Coleman LG. Chronic Ethanol Causes Persistent Increases in Alzheimer's Tau Pathology in Female 3xTg-AD Mice: A Potential Role for Lysosomal Impairment. Front Behav Neurosci 2022; 16:886634. [PMID: 35645744 PMCID: PMC9131098 DOI: 10.3389/fnbeh.2022.886634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Epidemiological studies have found that heavy alcohol use is associated with increased risk for Alzheimer's disease (AD), with frequent drinking earlier in adulthood increasing risk. The increases in neuroinflammation featured in both heavy alcohol use and AD may be partially responsible for this link. However, it is unknown if abstinence mitigates this risk. We hypothesized that binge ethanol during mid adult life would persistently increase AD pathology even after prolonged abstinence. Male and female 3xTg-AD mice (APPSwe, tauP301, Psen1tm1Mpm) which feature progressive amyloid (Aβ) and tau pathology, received chronic binge ethanol (5g/kg/day, 5-days-on/2-days-off, i.g.) or water during adulthood (from 5.5 to 9 months of age), followed by abstinence and assessment at 14 months of age. The effects of ethanol on protective AD genes (e.g., APOE and TREM2) as well as proinflammatory genes were measured by PCR. Levels of pathologic tau and Aβ were measured by immunohistochemistry and western blot. Ethanol caused persistent reductions in protective AD genes: APOE (25% reduction, *p < 0.05), TREM2 (28%, *p < 0.05), LPL (40%, ** p < 0.01), and CTSD (24%, *p < 0.05) and promoted a proinflammatory gene signature in female, but not male cortex. Concurrently, ethanol increased total and hyperphosphorylated tau (AT8) in piriform cortex and hippocampus of females, but not males. Levels of AT8 were negatively correlated with APOE (R = -0.67, *p < 0.05) and TREM2 (R = -0.78, **p < 0.005) suggesting protective roles in pathogenesis. No differences were found in levels of main regulators of tau phosphorylation state (GSK3β, PKA, PP2A), suggesting ethanol disrupted clearance of tau. Therefore, we measured the effect of ethanol on lysosomes, which degrade tau, and lysosomal localization of tau using co-immunofluorescence. In females, ethanol caused a persistent reduction in mature LAMP1 lysosomes in CA1 of hippocampus (35%, *p < 0.05), along with a 60% increase in total tau (*p < 0.05). Thus, chronic binge ethanol during mid adult life causes a persistent enhancement of tau pathology in cortical and hippocampal brain regions of females. Persistent AD pathology was associated with an increased proinflammatory signature and a reduction of mature lysosomes. This implicates binge ethanol exposure with increased risk of AD pathologic progression in females.
Collapse
Affiliation(s)
- Autumn E. Tucker
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Coral del Mar Alicea Pauneto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Alexandra M. Barnett
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Leon G. Coleman
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,*Correspondence: Leon G. Coleman Jr.,
| |
Collapse
|
137
|
Zhao Y, Yu J, Ping F, Xu L, Li W, Zhang H, Li Y. Insulin and liraglutide attenuate brain pathology in diabetic mice by enhancing the Wnt/β‑catenin signaling pathway. Exp Ther Med 2022; 24:439. [PMID: 35720633 PMCID: PMC9185805 DOI: 10.3892/etm.2022.11366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022] Open
Abstract
Insulin and liraglutide have been demonstrated to control blood glucose and exert neuroprotective effects. However, the impact of liraglutide or insulin alone or in combination on brain pathology in type 1 diabetes mellitus (T1DM) and their underlying mechanisms are unclear. In the present study, diabetes mellitus (DM) was induced via intraperitoneal injection of streptozotocin in mice and subsequently mice were treated with insulin, liraglutide, a combination of the two drugs or saline. Changes in body weight and blood glucose were assessed weekly. The pathological changes in the brain tissue and the apoptosis of neurons were assessed using H&E staining and TUNEL staining. The mRNA and protein expression levels of apoptosis-related proteins were detected using reverse transcription-quantitative PCR (RT-qPCR) and western blotting, respectively. Moreover, Ki67 protein expression was analyzed using immunohistochemistry and the mRNA and protein expression levels of Wnt/β-catenin signaling pathway-related proteins were examined using RT-qPCR and western blotting, respectively. The results of the present study suggested that DM mice developed hyperglycemia and weight loss and also exhibited significantly increased neural cell apoptosis and significantly reduced numbers of Ki67-positive cells. Liraglutide significantly decreased blood glucose levels in DM mice, whereas both insulin and the combination of the two drugs failed to control blood glucose well. Insulin, liraglutide and their combination also failed to control body weight well, but significantly attenuated brain pathological changes and activation of the pro-apoptotic proteins Caspase-3 and Bax, which may have resulted in the significant increase in the expression levels of Wnt/β-catenin signaling pathway-associated molecules such as Wnt3a and S9-pGSK-3β. Liraglutide also promoted the protein expression of the neurogenesis marker of Ki67 and the antiapoptotic factor Bcl-2. These results suggested that insulin and liraglutide may improve brain damage via upregulation of the Wnt/β-catenin signaling pathway and could be of therapeutic relevance for improvement of cognitive impairment in patients with DM.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jie Yu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Fan Ping
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Lingling Xu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wei Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Huabing Zhang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yuxiu Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
138
|
Puris E, Kouřil Š, Najdekr L, Auriola S, Loppi S, Korhonen P, Gómez-Budia M, Fricker G, Kanninen KM, Malm T, Friedecký D, Gynther M. Metabolomic, lipidomic and proteomic characterisation of lipopolysaccharide-induced inflammation mouse model. Neuroscience 2022; 496:165-178. [DOI: 10.1016/j.neuroscience.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
|
139
|
Choi H, Lee D, Mook-Jung I. Gut Microbiota as a Hidden Player in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1501-1526. [PMID: 35213369 DOI: 10.3233/jad-215235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is accompanied by cognitive impairment and shows representative pathological features, including senile plaques and neurofibrillary tangles in the brain. Recent evidence suggests that several systemic changes outside the brain are associated with AD and may contribute to its pathogenesis. Among the factors that induce systemic changes in AD, the gut microbiota is increasingly drawing attention. Modulation of gut microbiome, along with continuous attempts to remove pathogenic proteins directly from the brain, is a viable strategy to cure AD. Seeking a holistic understanding of the pathways throughout the body that can affect the pathogenesis, rather than regarding AD solely as a brain disease, may be key to successful therapy. In this review, we focus on the role of the gut microbiota in causing systemic manifestations of AD. The review integrates recently emerging concepts and provides potential mechanisms about the involvement of the gut-brain axis in AD, ranging from gut permeability and inflammation to bacterial translocation and cross-seeding.
Collapse
Affiliation(s)
- Hyunjung Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dongjoon Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
140
|
Barnett A, David E, Rohlman A, Nikolova VD, Moy SS, Vetreno RP, Coleman LG. Adolescent Binge Alcohol Enhances Early Alzheimer's Disease Pathology in Adulthood Through Proinflammatory Neuroimmune Activation. Front Pharmacol 2022; 13:884170. [PMID: 35559229 PMCID: PMC9086457 DOI: 10.3389/fphar.2022.884170] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Epidemiological studies suggest that heavy alcohol use early in life is associated with increased risk for Alzheimer's disease (AD). However, mechanisms connecting AD with alcohol use have not been identified. Both heavy alcohol use and AD feature increased proinflammatory signaling. Therefore, we hypothesized that adolescent binge ethanol would increase AD molecular and behavioral pathology in adulthood through proinflammatory signaling. The 3xTg-AD mouse model (APPSwe, tauP301, Psen1tm1Mpm) which features amyloid (Aβ) and tau pathology beginning at 6-12 months underwent adolescent intermittent ethanol (AIE, 5 g/kg/d, i.g., P25-55) with assessment of AD pathologic mediators at P200. A second group of mice received AIE +/- minocycline (30 mg/kg/d, IP) followed by behavioral testing in adulthood. Behavioral testing and age of testing included: locomotor activity and exploration (27-28 weeks), novel object recognition (NORT, 28-30 weeks), 3-chamber sociability and social memory (29-31 weeks), prepulse inhibition (PPI, 30-32 weeks), Morris Water Maze with reversal (MWM, 31-35 weeks), and Piezo sleep monitoring (35-37 weeks). We found that AIE increased levels of neurotoxic Aβ1-42 in adult female hippocampus as well as intraneuronal Aβ1-42 in amygdala and entorhinal cortex. Phosphorylated tau at residue Thr181 (p-tau-181) was also increased in female hippocampus by AIE. Several proinflammatory genes were persistently increased by AIE in the female hippocampus, including IL-1β, MCP-1, IL-6, and IFNα. Expression of these genes was strongly correlated with the levels of Aβ1-42 and p-tau-181 in hippocampus. AIE caused persistent decreases in locomotor activity (open-field and NORT habituation) and increased anxiety-like behavior (thigmotaxis) while reducing memory retention. Treatment with the anti-inflammatory compound minocycline during AIE blocked persistent increases in Aβ1-42 in amygdala and p-tau-181 in hippocampus, and prevented AIE-induced thigmotaxis and memory loss. Together, these data find that adolescent binge ethanol enhances AD molecular and behavioral pathology in adulthood through proinflammatory signaling. Blockade of proinflammatory signaling during ethanol exposure prevents ethanol-induced effects on pathologic accumulation of AD-associated proteins and persistent behavior changes relevant to human AD.
Collapse
Affiliation(s)
- Alexandra Barnett
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Emeraghi David
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Aaron Rohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Viktoriya D. Nikolova
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Carolina Institute for Developmental Disorders, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Sheryl S. Moy
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Carolina Institute for Developmental Disorders, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Leon G. Coleman
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,*Correspondence: Leon G. Coleman Jr,
| |
Collapse
|
141
|
Nafady MH, Sayed ZS, Abdelkawy DA, Shebl ME, Elsayed RA, Ashraf GM, Perveen A, Attia MS, Bahbah EI. The Effect of Gut Microbe Dysbiosis on the Pathogenesis of Alzheimer's Disease (AD) and related conditions. Curr Alzheimer Res 2022; 19:274-284. [PMID: 35440296 DOI: 10.2174/1567205019666220419101205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
It has been hypothesized that the shift in gut microbiota composition, known as gut microbe dysbiosis, may be correlated with the onset of Alzheimer's disease (AD), which is the most common cause of dementia characterized by a gradual deterioration in cognitive function associated with the development of amyloid-beta (Aβ) plaques. The gut microbiota dysbiosis induces the release of significant amounts of amyloids, lipopolysaccharides, and neurotoxins, which might play a role in modulating signaling pathways and immune activation, leading to the production of proinflammatory cytokines related to the pathogenesis of AD. The dysbiosis of gut microbe is associated with various diseases such as type 2 diabetes, obesity, hypertension, and some neuropsychiatric disorders like depression, anxiety, and stress. It is conceivable that these diseases trigger the onset of AD. Thus, modifying the gut microbiota composition with probiotic and prebiotic supplementation can reduce depression and anxiety symptoms, lower stress reactivity, and improve memory. This narrative review aimed to examine the possible role of gut microbe dysbiosis in AD's pathogenesis.
Collapse
Affiliation(s)
- Mohamed H Nafady
- Radiological Imaging Technology Department, Faculty of Applied Medical Science, Misr university for science and technology (MUST), Cairo, Egypt.,Radiation Science Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Zeinab S Sayed
- Faculty of Applied Medical Science (AMS), Misr university for science and technology (MUST), Cairo, Egypt
| | - Dalia A Abdelkawy
- Faculty of Applied Medical Science (AMS), Misr university for science and technology (MUST), Cairo, Egypt
| | - Mostafa E Shebl
- Faculty of Applied Medical Science (AMS), Misr university for science and technology (MUST), Cairo, Egypt
| | - Reem A Elsayed
- Faculty of Applied Medical Science (AMS), Misr university for science and technology (MUST), Cairo, Egypt
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt.,Medical Research Group of Egypt (MRGE), Cairo, Egypt.,SevoClin Research Group, Cairo, Egypt
| |
Collapse
|
142
|
Demir EA, Gulbol-Duran G, Urhan-Kucuk M, Dogan H, Tutuk O, Cimen F, Bayirli M, Tumer C, Duran N. Behavioral and Cognitive Consequences of Obesity in Parents and Offspring in Female and Male Rats: Implications of Neuroinflammation and Neuromodulation. Mol Neurobiol 2022; 59:3947-3968. [PMID: 35438432 DOI: 10.1007/s12035-022-02831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Obesity is a rapidly growing public health concern that can create a family-wise burden. This study was aimed to investigate behavioral, cognitive, neuroinflammatory, and neuromodulatory consequences of the diet and parental obesity. Female and male Wistar albino rats were fed on either an obesogenic or standard diet for 12 weeks, beginning with weaning. Thereafter, the animals were matched and allowed to mate. Pups born to obese or normal parents received either the diet or standard chow to the same age. The obesogenic diet and/or parental obesity increased the locomotor activity in both females and males. The diet exhibited anxiolytic-like and antidepressant-like properties, and impaired short-term object memory as well as spatial memory. Interestingly, the obesogenic diet resulted in neuroinflammation only in naïve animals, but not in the ones with parental obesity. BDNF, SIRT1, and p53 expressions were decreased, whereas RelN expression was increased in the brain with the diet, regardless of parental obesity. Multi-factor analyses demonstrated that the obesogenic diet is the prominent influencer of cognitive, neuroinflammatory, and neuromodulatory results while parental obesity has an effect on spatial memory, neuroinflammation, and hippocampal RelN and p53 expressions. Here, we provided supporting evidence for detrimental cognitive and neuroinflammatory consequences of early life consumption of the obesogenic diet which accompanies alterations in neuromodulatory factors. Surprisingly, the diet was found beneficial against anxiety-like and depression-like behaviors, and additionally, parental obesity was demonstrated to impair some aspects of cognitive performance which appears unrelated to neuroinflammation.
Collapse
Affiliation(s)
- Enver Ahmet Demir
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040.
| | - Gulay Gulbol-Duran
- Department of Medical Biology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Meral Urhan-Kucuk
- Department of Medical Biology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Hatice Dogan
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040
| | - Okan Tutuk
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040
| | - Funda Cimen
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mucella Bayirli
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Cemil Tumer
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040
| | - Nizami Duran
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
143
|
Meier‐Stephenson FS, Meier‐Stephenson VC, Carter MD, Meek AR, Wang Y, Pan L, Chen Q, Jacobo S, Wu F, Lu E, Simms GA, Fisher L, McGrath AJ, Fermo V, Barden CJ, Clair HD, Galloway TN, Yadav A, Campágna‐Slater V, Hadden M, Reed M, Taylor M, Kelly B, Diez‐Cecilia E, Kolaj I, Santos C, Liyanage I, Sweeting B, Stafford P, Boudreau R, Reid GA, Noyce RS, Stevens L, Staniszewski A, Zhang H, Murty MRVS, Lemaire P, Chardonnet S, Richardson CD, Gabelica V, DePauw E, Brown R, Darvesh S, Arancio O, Weaver DF. Alzheimer's disease as an autoimmune disorder of innate immunity endogenously modulated by tryptophan metabolites. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12283. [PMID: 35415204 PMCID: PMC8985489 DOI: 10.1002/trc2.12283] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 12/19/2022]
Abstract
Introduction Alzheimer's disease (AD) is characterized by neurotoxic immuno-inflammation concomitant with cytotoxic oligomerization of amyloid beta (Aβ) and tau, culminating in concurrent, interdependent immunopathic and proteopathic pathogeneses. Methods We performed a comprehensive series of in silico, in vitro, and in vivo studies explicitly evaluating the atomistic-molecular mechanisms of cytokine-mediated and Aβ-mediated neurotoxicities in AD. Next, 471 new chemical entities were designed and synthesized to probe the pathways identified by these molecular mechanism studies and to provide prototypic starting points in the development of small-molecule therapeutics for AD. Results In response to various stimuli (e.g., infection, trauma, ischemia, air pollution, depression), Aβ is released as an early responder immunopeptide triggering an innate immunity cascade in which Aβ exhibits both immunomodulatory and antimicrobial properties (whether bacteria are present, or not), resulting in a misdirected attack upon "self" neurons, arising from analogous electronegative surface topologies between neurons and bacteria, and rendering them similarly susceptible to membrane-penetrating attack by antimicrobial peptides (AMPs) such as Aβ. After this self-attack, the resulting necrotic (but not apoptotic) neuronal breakdown products diffuse to adjacent neurons eliciting further release of Aβ, leading to a chronic self-perpetuating autoimmune cycle. AD thus emerges as a brain-centric autoimmune disorder of innate immunity. Based upon the hypothesis that autoimmune processes are susceptible to endogenous regulatory processes, a subsequent comprehensive screening program of 1137 small molecules normally present in human brain identified tryptophan metabolism as a regulator of brain innate immunity and a source of potential endogenous anti-AD molecules capable of chemical modification into multi-site therapeutic modulators targeting AD's complex immunopathic-proteopathic pathogenesis. Discussion Conceptualizing AD as an autoimmune disease, identifying endogenous regulators of this autoimmunity, and designing small molecule drug-like analogues of these endogenous regulators represents a novel therapeutic approach for AD.
Collapse
|
144
|
Oliveira Miranda C. Mesenchymal stem cells for lysosomal storage and polyglutamine disorders: Possible shared mechanisms. Eur J Clin Invest 2022; 52:e13707. [PMID: 34751953 DOI: 10.1111/eci.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/28/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mesenchymal stem cells' (MSC) therapeutic potential has been investigated for the treatment of several neurodegenerative diseases. The fact these cells can mediate a beneficial effect in different neurodegenerative contexts strengthens their competence to target diverse mechanisms. On the other hand, distinct disorders may share similar mechanisms despite having singular neuropathological characteristics. METHODS We have previously shown that MSC can be beneficial for two disorders, one belonging to the groups of Lysosomal Storage Disorders (LSDs) - the Krabbe Disease or Globoid Cell Leukodystrophy, and the other to the family of Polyglutamine diseases (PolyQs) - the Machado-Joseph Disease or Spinocerebellar ataxia type 3. We gave also input into disease characterization since neuropathology and MSC's effects are intrinsically associated. This review aims at describing MSC's multimode of action in these disorders while emphasizing to possible mechanistic alterations they must share due to the accumulation of cellular toxic products. RESULTS Lysosomal storage disorders and PolyQs have different aetiology and associated symptoms, but both result from the accumulation of undegradable products inside neuronal cells due to inefficient clearance by the endosomal/lysosomal pathway. Moreover, numerous cellular mechanisms that become compromised latter are also shared by these two disease groups. CONCLUSIONS Here, we emphasize MSC's effect in improving proteostasis and autophagy cycling turnover, neuronal survival, synaptic activity and axonal transport. LSDs and PolyQs, though rare in their predominance, collectively affect many people and require our utmost dedication and efforts to get successful therapies due to their tremendous impact on patient s' lives and society.
Collapse
Affiliation(s)
- Catarina Oliveira Miranda
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
145
|
Cho E, Youn K, Kwon H, Jeon J, Cho WS, Park SJ, Son SH, Jang DS, Shin CY, Moon M, Jun M, Kim NJ, Kim DH. Eugenitol ameliorates memory impairments in 5XFAD mice by reducing Aβ plaques and neuroinflammation. Biomed Pharmacother 2022; 148:112763. [PMID: 35240526 DOI: 10.1016/j.biopha.2022.112763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is caused by various pathological mechanisms; therefore, it is necessary to develop drugs that simultaneously act on multiple targets. In this study, we investigated the effects of eugenitol, which has anti-amyloid β (Aβ) and anti-neuroinflammatory effects, in an AD mouse model. We found that eugenitol potently inhibited Aβ plaque and oligomer formation. Moreover, eugenitol dissociated the preformed Aβ plaques and reduced Aβ-induced nero2a cell death. An in silico docking simulation study showed that eugenitol may interact with Aβ1-42 monomers and fibrils. Eugenitol showed radical scavenging effects and potently reduced the release of proinflammatory cytokines from lipopolysaccharide-treated BV2 cells. Systemic administration of eugenitol blocked Aβ aggregate-induced memory impairment in the Morris water maze test in a dose-dependent manner. In 5XFAD mice, prolonged administration of eugenitol ameliorated memory and hippocampal long-term potentiation impairment. Moreover, eugenitol significantly reduced Aβ deposits and neuroinflammation in the hippocampus of 5XFAD mice. These results suggest that eugenitol, which has anti-Aβ aggregation, Aβ fibril dissociation, and anti-inflammatory effects, potently modulates AD-like pathologies in 5XFAD mice, and could be a promising candidate for AD therapy.
Collapse
Affiliation(s)
- Eunbi Cho
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Huiyoung Kwon
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Republic of Korea
| | - Jieun Jeon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Hwan Son
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, Republic of Korea, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Mira Jun
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Republic of Korea.
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
146
|
Rosenblum SL, Kosman DJ. Aberrant Cerebral Iron Trafficking Co-morbid With Chronic Inflammation: Molecular Mechanisms and Pharmacologic Intervention. Front Neurol 2022; 13:855751. [PMID: 35370907 PMCID: PMC8964494 DOI: 10.3389/fneur.2022.855751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The redox properties that make iron an essential nutrient also make iron an efficient pro-oxidant. Given this nascent cytotoxicity, iron homeostasis relies on a combination of iron transporters, chaperones, and redox buffers to manage the non-physiologic aqueous chemistry of this first-row transition metal. Although a mechanistic understanding of the link between brain iron accumulation (BIA) and neurodegenerative diseases is lacking, BIA is co-morbid with the majority of cognitive and motor function disorders. The most prevalent neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple System Atrophy (MSA), and Multiple Sclerosis (MS), often present with increased deposition of iron into the brain. In addition, ataxias that are linked to mutations in mitochondrial-localized proteins (Friedreich's Ataxia, Spinocerebellar Ataxias) result in mitochondrial iron accumulation and degradation of proton-coupled ATP production leading to neuronal degeneration. A comorbidity common in the elderly is a chronic systemic inflammation mediated by primary cytokines released by macrophages, and acute phase proteins (APPs) released subsequently from the liver. Abluminal inflammation in the brain is found downstream as a result of activation of astrocytes and microglia. Reasonably, the iron that accumulates in the brain comes from the cerebral vasculature via the microvascular capillary endothelial cells whose tight junctions represent the blood-brain barrier. A premise amenable to experimental interrogation is that inflammatory stress alters both the trans- and para-cellular flux of iron at this barrier resulting in a net accumulation of abluminal iron over time. This review will summarize the evidence that lends support to this premise; indicate the mechanisms that merit delineation; and highlight possible therapeutic interventions based on this model.
Collapse
Affiliation(s)
| | - Daniel J. Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
147
|
SOCE-mediated NFAT1–NOX2–NLRP1 inflammasome involves in lipopolysaccharide-induced neuronal damage and Aβ generation. Mol Neurobiol 2022; 59:3183-3205. [DOI: 10.1007/s12035-021-02717-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
|
148
|
Dutta M, Weigel KM, Patten KT, Valenzuela AE, Wallis C, Bein KJ, Wexler AS, Lein PJ, Cui JY. Chronic exposure to ambient traffic-related air pollution (TRAP) alters gut microbial abundance and bile acid metabolism in a transgenic rat model of Alzheimer's disease. Toxicol Rep 2022; 9:432-444. [PMID: 35310146 PMCID: PMC8927974 DOI: 10.1016/j.toxrep.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background Traffic-related air pollution (TRAP) is linked to increased risk for age-related dementia, including Alzheimer's disease (AD). The gut microbiome is posited to influence AD risk, and an increase in microbial-derived secondary bile acids (BAs) is observed in AD patients. We recently reported that chronic exposure to ambient TRAP modified AD risk in a sex-dependent manner in the TgF344 AD (TG) rat. Objectives In this study, we used samples from the same cohort to test our hypothesis that TRAP sex-dependently produces gut dysbiosis and increases secondary BAs to a larger extent in the TG rat relative to wildtype (WT) controls. Methods Male and female TG and age-matched WT rats were exposed to either filtered air (FA) or TRAP from 28 days up to 15 months of age (n = 5-6). Tissue samples were collected after 9 or 14months of exposure. Results At 10 months of age, TRAP tended to decrease the alpha diversity as well as the beneficial taxa Lactobacillus and Ruminococcus flavefaciens uniquely in male TG rats as determined by 16 S rDNA sequencing. A basal decrease in Firmicutes/Bacteroidetes (F/B) ratio was also noted in TG rats at 10 months. At 15 months of age, TRAP altered inflammation-related bacteria in the gut of female rats from both genotypes. BAs were more affected by chronic TRAP exposure in females, with a general trend of increase in host-produced unconjugated primary and microbiota-produced secondary BAs. Most of the mRNAs of the hepatic BA-processing genes were not altered by TRAP, except for a down-regulation of the BA-uptake transporter Ntcp in males. Conclusion In conclusion, chronic TRAP exposure produced distinct gut dysbiosis and altered BA homeostasis in a sex and host genotype-specific manner.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Kris M. Weigel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Kelley T. Patten
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, CA, USA
| | - Anthony E. Valenzuela
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, CA, USA
| | | | - Keith J. Bein
- Air Quality Research Center, UC Davis, Davis, CA, USA
- Center for Health and the Environment, UC Davis, Davis, CA, USA
| | - Anthony S. Wexler
- Air Quality Research Center, UC Davis, Davis, CA, USA
- Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, UC Davis, Davis, CA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, CA, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
149
|
Jungbauer G, Stähli A, Zhu X, Auber Alberi L, Sculean A, Eick S. Periodontal microorganisms and Alzheimer disease - A causative relationship? Periodontol 2000 2022; 89:59-82. [PMID: 35244967 PMCID: PMC9314828 DOI: 10.1111/prd.12429] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023]
Abstract
In the initiation or exacerbation of Alzheimer disease, the dissemination of oral microorganisms into the brain tissue or the low‐level systemic inflammation have been speculated to play a role. However, the impact of oral microorganisms, such as Porphyromonas gingivalis, on the pathogenesis of Alzheimer disease and the potential causative relationship is still unclear. The present review has critically reviewed the literature by examining the following aspects: (a) the oral microbiome and the immune response in the elderly population, (b) human studies on the association between periodontal and gut microorganisms and Alzheimer disease, (c) animal and in vitro studies on microorganisms and Alzheimer disease, and (d) preventive and therapeutic approaches. Factors contributing to microbial dysbiosis seem to be aging, local inflammation, systemic diseases, wearing of dentures, living in nursing homes and no access to adequate oral hygiene measures. Porphyromonas gingivalis was detectable in post‐mortem brain samples. Microbiome analyses of saliva samples or oral biofilms showed a decreased microbial diversity and a different composition in Alzheimer disease compared to cognitively healthy subjects. Many in‐vitro and animal studies underline the potential of P gingivalis to induce Alzheimer disease‐related alterations. In animal models, recurring applications of P gingivalis or its components increased pro‐inflammatory mediators and β‐amyloid in the brain and deteriorated the animals' cognitive performance. Since periodontitis is the result of a disturbed microbial homoeostasis, an effect of periodontal therapy on the oral microbiome and host response related to cognitive parameters may be suggested and should be elucidated in further clinical trials.
Collapse
Affiliation(s)
- Gert Jungbauer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Private Dental Practice, Straubing, Germany
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | | | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
150
|
Failure of Alzheimer’s Mice Brain Resident Neural Precursor Cells in Supporting Microglia-Mediated Amyloid β Clearance. Cells 2022; 11:cells11050876. [PMID: 35269501 PMCID: PMC8909275 DOI: 10.3390/cells11050876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
The failure of brain microglia to clear excess amyloid β (Aβ) is considered a leading cause of the progression of Alzheimer’s disease pathology. Resident brain neural precursor cells (NPCs) possess immune-modulatory and neuro-protective properties, which are thought to maintain brain homeostasis. We have recently showed that resident mouse brain NPCs exhibit an acquired decline in their trophic properties in the Alzheimer’s disease brain environment. Therefore, we hypothesized that functional NPCs may support microglial phagocytic activity, and that NPCs derived from the adult AD mouse brain may fail to support the clearance of Aβ by microglia. We first identified in the AD brain, in vivo and ex vivo, a subpopulation of microglia that express high Aβ phagocytic activity. Time-lapse microscopy showed that co-culturing newborn NPCs with microglia induced a significant increase in the fraction of microglia with high Aβ phagocytic activity. Freshly isolated NPCs from adult wild type, but not AD, mouse brain, induced an increase in the fraction of microglia with high Aβ phagocytic activity. Finally, we showed that NPCs also possess the ability to promote Aβ degradation within the microglia with high Aβ phagocytic activity. Thus, resident brain NPCs support microglial function to clear Aβ, but NPCs derived from the AD environment fail to do so. We suggest that the failure of AD brain NPCs to support Aβ clearance from the brain by microglia may accelerate disease pathology.
Collapse
|