101
|
Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG. Traumatic Spinal Cord Injury-Repair and Regeneration. Neurosurgery 2017; 80:S9-S22. [PMID: 28350947 DOI: 10.1093/neuros/nyw080] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/12/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Traumatic spinal cord injuries (SCI) have devastating consequences for the physical, financial, and psychosocial well-being of patients and their caregivers. Expediently delivering interventions during the early postinjury period can have a tremendous impact on long-term functional recovery. PATHOPHYSIOLOGY This is largely due to the unique pathophysiology of SCI where the initial traumatic insult (primary injury) is followed by a progressive secondary injury cascade characterized by ischemia, proapoptotic signaling, and peripheral inflammatory cell infiltration. Over the subsequent hours, release of proinflammatory cytokines and cytotoxic debris (DNA, ATP, reactive oxygen species) cyclically adds to the harsh postinjury microenvironment. As the lesions mature into the chronic phase, regeneration is severely impeded by the development of an astroglial-fibrous scar surrounding coalesced cystic cavities. Addressing these challenges forms the basis of current and upcoming treatments for SCI. MANAGEMENT This paper discusses the evidence-based management of a patient with SCI while emphasizing the importance of early definitive care. Key neuroprotective therapies are summarized including surgical decompression, methylprednisolone, and blood pressure augmentation. We then review exciting neuroprotective interventions on the cusp of translation such as Riluzole, Minocycline, magnesium, therapeutic hypothermia, and CSF drainage. We also explore the most promising neuroregenerative strategies in trial today including Cethrin™, anti-NOGO antibody, cell-based approaches, and bioengineered biomaterials. Each section provides a working knowledge of the key preclinical and patient trials relevant to clinicians while highlighting the pathophysiologic rationale for the therapies. CONCLUSION We conclude with our perspectives on the future of treatment and research in this rapidly evolving field.
Collapse
Affiliation(s)
- Christopher S Ahuja
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Department of Genetics and Development, University of Toronto, Toronto, Canada
| | - Satoshi Nori
- Department of Genetics and Development, University of Toronto, Toronto, Canada
| | | | - Jefferson Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Spine Program, University of Toronto, Toronto, Canada
| | - Brian Kwon
- Vancouver Spine Institute, Vancouver General Hospital, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada
| | - James Harrop
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - David Choi
- National Hospital for Neurology and Neurosurgery, University College London, London, England
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Spine Program, University of Toronto, Toronto, Canada.,Department of Genetics and Development, University of Toronto, Toronto, Canada
| |
Collapse
|
102
|
Low immunogenicity of mouse induced pluripotent stem cell-derived neural stem/progenitor cells. Sci Rep 2017; 7:12996. [PMID: 29021610 PMCID: PMC5636829 DOI: 10.1038/s41598-017-13522-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Resolving the immunogenicity of cells derived from induced pluripotent stem cells (iPSCs) remains an important challenge for cell transplant strategies that use banked allogeneic cells. Thus, we evaluated the immunogenicity of mouse fetal neural stem/progenitor cells (fetus-NSPCs) and iPSC-derived neural stem/progenitor cells (iPSC-NSPCs) both in vitro and in vivo. Flow cytometry revealed the low expression of immunological surface antigens, and these cells survived in all mice when transplanted syngeneically into subcutaneous tissue and the spinal cord. In contrast, an allogeneic transplantation into subcutaneous tissue was rejected in all mice, and allogeneic cells transplanted into intact and injured spinal cords survived for 3 months in approximately 20% of mice. In addition, cell survival was increased after co-treatment with an immunosuppressive agent. Thus, the immunogenicity and post-transplantation immunological dynamics of iPSC-NSPCs resemble those of fetus-NSPCs.
Collapse
|
103
|
|
104
|
Yasuhara T, Kameda M, Sasaki T, Tajiri N, Date I. Cell Therapy for Parkinson's Disease. Cell Transplant 2017; 26:1551-1559. [PMID: 29113472 PMCID: PMC5680961 DOI: 10.1177/0963689717735411] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Cell therapy for Parkinson's disease (PD) began in 1979 with the transplantation of fetal rat dopamine-containing neurons that improved motor abnormalities in the PD rat model with good survival of grafts and axonal outgrowth. Thirty years have passed since the 2 clinical trials using cell transplantation for PD patients were first reported. Recently, cell therapy is expected to develop as a realistic treatment option for PD patients owing to the advancement of biotechnology represented by pluripotent stem cells. Medication using levodopa, surgery including deep brain stimulation, and rehabilitation have all been established as current therapeutic strategies. Strong therapeutic effects have been demonstrated by these treatment methods, but they have been unable to stop the progression of the disease. Fortunately, cell therapy might be a key for true neurorestoration. This review article describes the historical development of cell therapy for PD, the current status of cell therapy, and the future direction of this treatment method.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Naoki Tajiri
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
- Department of Psychology, Graduate School of Psychology, Kibi International University, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| |
Collapse
|
105
|
Nori S, Ahuja CS, Fehlings MG. Translational Advances in the Management of Acute Spinal Cord Injury: What is New? What is Hot? Neurosurgery 2017; 64:119-128. [DOI: 10.1093/neuros/nyx217] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/04/2017] [Indexed: 01/10/2023] Open
Affiliation(s)
- Satoshi Nori
- Department of Genetics and Develop-ment, University of Toronto, Toronto, Canada
| | - Christopher S. Ahuja
- Department of Genetics and Develop-ment, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Michael G. Fehlings
- Department of Genetics and Develop-ment, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
- Spine Program, University of Toronto, Toronto, Canada
| |
Collapse
|
106
|
Affiliation(s)
- Shigeki Ohta
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
107
|
Epigenetic regulation of neural stem cell differentiation towards spinal cord regeneration. Cell Tissue Res 2017; 371:189-199. [PMID: 28695279 DOI: 10.1007/s00441-017-2656-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022]
Abstract
Severe spinal cord injury (SCI) leads to almost complete neural cell loss at the injured site, causing the irreversible disruption of neuronal circuits. The transplantation of neural stem or precursor cells (NS/PCs) has been regarded as potentially effective for SCI treatment because NS/PCs can compensate for the injured sites by differentiating into neurons and glial cells (astrocytes and oligodendrocytes). An understanding of the molecular mechanisms that regulate the proliferation, fate specification and maturation of NS/PCs and their progeny would facilitate the establishment of better therapeutic strategies for regeneration after SCI. In recent years, several studies of SCI animal models have demonstrated that the modulation of specific epigenetic marks by histone modifiers and non-coding RNAs directs the setting of favorable cellular environments that promote the neuronal differentiation of NS/PCs and/or the elongation of the axons of the surviving neurons at the injured sites. In this review, we provide an overview of recent progress in the epigenetic regulation/manipulation of neural cells for the treatment of SCI.
Collapse
|
108
|
Li H, Chen G. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells. Neuron 2017; 91:728-738. [PMID: 27537482 DOI: 10.1016/j.neuron.2016.08.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuroregeneration in the CNS has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this Perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart, and liver and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient's own internal cells for tissue repair.
Collapse
Affiliation(s)
- Hedong Li
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
109
|
Llewellyn KJ, Nalbandian A, Weiss LN, Chang I, Yu H, Khatib B, Tan B, Scarfone V, Kimonis VE. Myogenic differentiation of VCP disease-induced pluripotent stem cells: A novel platform for drug discovery. PLoS One 2017; 12:e0176919. [PMID: 28575052 PMCID: PMC5456028 DOI: 10.1371/journal.pone.0176919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 04/19/2017] [Indexed: 02/07/2023] Open
Abstract
Valosin Containing Protein (VCP) disease is an autosomal dominant multisystem proteinopathy caused by mutations in the VCP gene, and is primarily associated with progressive muscle weakness, including atrophy of the pelvic and shoulder girdle muscles. Currently, no treatments are available and cardiac and respiratory failures can lead to mortality at an early age. VCP is an AAA ATPase multifunction complex protein and mutations in the VCP gene resulting in disrupted autophagic clearance. Due to the rarity of the disease, the myopathic nature of the disorder, ethical and practical considerations, VCP disease muscle biopsies are difficult to obtain. Thus, disease-specific human induced pluripotent stem cells (hiPSCs) now provide a valuable resource for the research owing to their renewable and pluripotent nature. In the present study, we report the differentiation and characterization of a VCP disease-specific hiPSCs into precursors expressing myogenic markers including desmin, myogenic factor 5 (MYF5), myosin and heavy chain 2 (MYH2). VCP disease phenotype is characterized by high expression of TAR DNA Binding Protein-43 (TDP-43), ubiquitin (Ub), Light Chain 3-I/II protein (LC3-I/II), and p62/SQSTM1 (p62) protein indicating disruption of the autophagy cascade. Treatment of hiPSC precursors with autophagy stimulators Rapamycin, Perifosine, or AT101 showed reduction in VCP pathology markers TDP-43, LC3-I/II and p62/SQSTM1. Conversely, autophagy inhibitors chloroquine had no beneficial effect, and Spautin-1 or MHY1485 had modest effects. Our results illustrate that hiPSC technology provide a useful platform for a rapid drug discovery and hence constitutes a bridge between clinical and bench research in VCP and related diseases.
Collapse
Affiliation(s)
- Katrina J. Llewellyn
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Angèle Nalbandian
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Lan N. Weiss
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Isabela Chang
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Howard Yu
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Bibo Khatib
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Baichang Tan
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Vanessa Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Virginia E. Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| |
Collapse
|
110
|
He S, Chen J, Zhang Y, Zhang M, Yang X, Li Y, Sun H, Lin L, Fan K, Liang L, Feng C, Wang F, Zhang X, Guo Y, Pei D, Zheng H. Sequential EMT-MET induces neuronal conversion through Sox2. Cell Discov 2017; 3:17017. [PMID: 28580167 PMCID: PMC5450022 DOI: 10.1038/celldisc.2017.17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022] Open
Abstract
Direct neuronal conversion can be achieved with combinations of small-molecule compounds and growth factors. Here, by studying the first or induction phase of the neuronal conversion induced by defined 5C medium, we show that the Sox2-mediated switch from early epithelial-mesenchymal transition (EMT) to late mesenchymal-epithelial transition (MET) within a high proliferation context is essential and sufficient for the conversion from mouse embryonic fibroblasts (MEFs) to TuJ+ cells. At the early stage, insulin and basic fibroblast growth factor (bFGF)-induced cell proliferation, early EMT, the up-regulation of Stat3 and Sox2, and the subsequent activation of neuron projection. Up-regulated Sox2 then induced MET and directed cells towards a neuronal fate at the late stage. Inhibiting either stage of this sequential EMT-MET impaired the conversion. In addition, Sox2 could replace sequential EMT-MET to induce a similar conversion within a high proliferation context, and its functions were confirmed with other neuronal conversion protocols and MEFs reprogramming. Therefore, the critical roles of the sequential EMT-MET were implicated in direct cell fate conversion in addition to reprogramming, embryonic development and cancer progression.
Collapse
Affiliation(s)
- Songwei He
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Jinlong Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Yixin Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Mengdan Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiao Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Yuan Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Hao Sun
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Lilong Lin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Ke Fan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Lining Liang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Chengqian Feng
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Fuhui Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Yiping Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Hui Zheng
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| |
Collapse
|
111
|
Nagoshi N, Okano H. Applications of induced pluripotent stem cell technologies in spinal cord injury. J Neurochem 2017; 141:848-860. [PMID: 28199003 DOI: 10.1111/jnc.13986] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/14/2022]
Abstract
Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in most such studies, the origin of the cells used was mainly fetal tissue or embryonic stem cells, both of which carry potential ethical concerns with respect to clinical use. The development of induced pluripotent stem cells (iPSCs) opened a new path toward regenerative medicine for SCI. iPSCs can be generated from somatic cells by induction of transcription factors, and induced to differentiate into NPCs with characteristics of cells of the central nervous system. The beneficial effect of iPSC-derived NPC transplantation has been reported from our group and others working in rodent and non-human primate models. These promising results facilitate the application of iPSCs for clinical applications in SCI patients. However, iPSCs also have issues, such as genetic/epigenetic abnormalities and tumorigenesis because of the artificial induction method, that must be addressed prior to clinical use. The selection of somatic cells, generation of integration-free iPSCs, and characterization of differentiated NPCs with thorough quality management are all needed to address these potential risks. To enhance the efficacy of the transplanted iPSC-NPCs, especially at chronic phase of SCI, administration of a chondroitinase or semaphorin3A inhibitor represents a potentially important means of promoting axonal regeneration through the lesion site. The combined use of rehabilitation with such cell therapy approaches is also important, as repetitive training enhances neurite outgrowth of transplanted cells and strengthens neural circuits at central pattern generators. Our group has already evaluated clinical grade iPSC-derived NPCs, and we look forward to initiating clinical testing as the next step toward determining whether this approach is safe and effective for clinical use. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Collapse
Affiliation(s)
- Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
112
|
Kuo YC, Rajesh R. Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:680-689. [PMID: 28532079 DOI: 10.1016/j.msec.2017.03.303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 01/12/2023]
Abstract
Nerve growth factor (NGF)-loaded heparinized cationic solid lipid nanoparticles (NGF-loaded HCSLNs) were developed using heparin-stearic acid conjugate, cacao butter, cholesterol, stearylamine (SA), and esterquat 1 (EQ 1). The effect of cationic lipids and lipid matrix composition on the particle size, particle structure, surface molecular composition, chemical structure, electrophoretic mobility, and zeta potential of HCSLNs was investigated. The effect of HCSLNs on the membrane charge of induced pluripotent stem cells (iPSCs) was also studied. The results indicated that the average diameter of HCSLNs was 90-240nm and the particle size of HCSLNs with EQ 1 was smaller than that with SA. The zeta potential and electrophoresis analysis showed that HCSLNs with SA had a positively charged potential and HCSLNs with EQ 1 had a negatively charged potential at pH7.4. The high-resolution transmission electron microscope confirmed the loading of NGF on the surface of HCSLNs. Differentiation of iPSCs using NGF-loaded HCSLNs with EQ 1 exhibited higher absolute values of the electrophoretic mobility and zeta potential than differentiation using NGF-loaded HCSLNs with SA. The immunochemical staining of neuronal nuclei revealed that NGF-loaded HCSLNs can be used for differentiation of iPSCs into neurons. NGF-loaded HCSLNs with EQ 1 had higher viability of iPSCs than NGF-loaded HCSLNs with SA. NGF-loaded HCSLNs with EQ 1 may be promising formulation to regulate the membrane charge of iPSCs during neuronal differentiation.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China.
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| |
Collapse
|
113
|
Cooper DJ, Zunino G, Bixby JL, Lemmon VP. Phenotypic screening with primary neurons to identify drug targets for regeneration and degeneration. Mol Cell Neurosci 2017; 80:161-169. [PMID: 27444126 PMCID: PMC5243932 DOI: 10.1016/j.mcn.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/04/2016] [Accepted: 07/16/2016] [Indexed: 12/13/2022] Open
Abstract
High-throughput, target-based screening techniques have been utilized extensively for drug discovery in the past several decades. However, the need for more predictive in vitro models of in vivo disease states has generated a shift in strategy towards phenotype-based screens. Phenotype based screens are particularly valuable in studying complex conditions such as CNS injury and degenerative disease, as many factors can contribute to a specific cellular response. In this review, we will discuss different screening frameworks and their relative utility in examining mechanisms of neurodegeneration and axon regrowth, particularly in cell-based in vitro disease models.
Collapse
Affiliation(s)
- Daniel J. Cooper
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | - Giulia Zunino
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | - John L. Bixby
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
- Center for Computational Science, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | - Vance P. Lemmon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
- Center for Computational Science, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| |
Collapse
|
114
|
Appelt-Menzel A, Cubukova A, Günther K, Edenhofer F, Piontek J, Krause G, Stüber T, Walles H, Neuhaus W, Metzger M. Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells. Stem Cell Reports 2017; 8:894-906. [PMID: 28344002 PMCID: PMC5390136 DOI: 10.1016/j.stemcr.2017.02.021] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 11/28/2022] Open
Abstract
In vitro models of the human blood-brain barrier (BBB) are highly desirable for drug development. This study aims to analyze a set of ten different BBB culture models based on primary cells, human induced pluripotent stem cells (hiPSCs), and multipotent fetal neural stem cells (fNSCs). We systematically investigated the impact of astrocytes, pericytes, and NSCs on hiPSC-derived BBB endothelial cell function and gene expression. The quadruple culture models, based on these four cell types, achieved BBB characteristics including transendothelial electrical resistance (TEER) up to 2,500 Ω cm2 and distinct upregulation of typical BBB genes. A complex in vivo-like tight junction (TJ) network was detected by freeze-fracture and transmission electron microscopy. Treatment with claudin-specific TJ modulators caused TEER decrease, confirming the relevant role of claudin subtypes for paracellular tightness. Drug permeability tests with reference substances were performed and confirmed the suitability of the models for drug transport studies. Establishment of a standardized human BBB co-culture model based on hiPSCs and fNSCs Reflection of physiological BBB integrity and expression of relevant transporters/TJs Confirmation of TJ network functionality by claudin-specific TJ modulators Validation of physiological transcellular model tightness by permeability studies
Collapse
Affiliation(s)
- Antje Appelt-Menzel
- University Hospital Würzburg, Chair Tissue Engineering and Regenerative Medicine, 97070 Würzburg, Germany; Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoskeletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 97070 Würzburg, Germany
| | - Alevtina Cubukova
- Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoskeletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 97070 Würzburg, Germany
| | - Katharina Günther
- Julius-Maximilians-University Würzburg, Institute of Anatomy and Cell Biology, Stem Cell and Regenerative Medicine Group, 97070 Würzburg, Germany
| | - Frank Edenhofer
- Julius-Maximilians-University Würzburg, Institute of Anatomy and Cell Biology, Stem Cell and Regenerative Medicine Group, 97070 Würzburg, Germany; Leopold-Franzens-University Innsbruck, Institute of Molecular Biology & CMBI, Department Genomics, Stem Cell Biology & Regenerative Medicine, 6020 Innsbruck, Austria
| | - Jörg Piontek
- Charité Universitätsmedizin Berlin, Clinical Physiology & Nutritional Medicine, Department of Gastroenterology, Rheumatology & Infectious Diseases, 12203 Berlin, Germany
| | - Gerd Krause
- Leibniz Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Tanja Stüber
- University Hospital Würzburg, Women's Hospital and Polyclinic, 97080 Würzburg, Germany
| | - Heike Walles
- University Hospital Würzburg, Chair Tissue Engineering and Regenerative Medicine, 97070 Würzburg, Germany; Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoskeletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 97070 Würzburg, Germany
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Competence Center Health and Bioresources, Competence Unit Molecular Diagnostics, 1190 Vienna, Austria
| | - Marco Metzger
- University Hospital Würzburg, Chair Tissue Engineering and Regenerative Medicine, 97070 Würzburg, Germany; Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoskeletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 97070 Würzburg, Germany.
| |
Collapse
|
115
|
Kanda Y, Yamazaki D, Sekino Y. Development of new pharmacological test methods using human iPS cell-derived cardiomyocytes. Nihon Yakurigaku Zasshi 2017; 149:110-114. [PMID: 28260739 DOI: 10.1254/fpj.149.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
116
|
Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Reports 2017; 8:673-684. [PMID: 28262544 PMCID: PMC5355810 DOI: 10.1016/j.stemcr.2017.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 01/10/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are promising in regenerative medicine. However, the risks of teratoma formation and the overgrowth of the transplanted cells continue to be major hurdles that must be overcome. Here, we examined the efficacy of the inducible caspase-9 (iCaspase9) gene as a fail-safe against undesired tumorigenic transformation of iPSC-derived somatic cells. We used a lentiviral vector to transduce iCaspase9 into two iPSC lines and assessed its efficacy in vitro and in vivo. In vitro, the iCaspase9 system induced apoptosis in approximately 95% of both iPSCs and iPSC-derived neural stem/progenitor cells (iPSC-NS/PCs). To determine in vivo function, we transplanted iPSC-NS/PCs into the injured spinal cord of NOD/SCID mice. All transplanted cells whose mass effect was hindering motor function recovery were ablated upon transduction of iCaspase9. Our results suggest that the iCaspase9 system may serve as an important countermeasure against post-transplantation adverse events in stem cell transplant therapies.
Collapse
|
117
|
Evaluation of the immunogenicity of human iPS cell-derived neural stem/progenitor cells in vitro. Stem Cell Res 2017; 19:128-138. [DOI: 10.1016/j.scr.2017.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/15/2016] [Accepted: 01/12/2017] [Indexed: 01/23/2023] Open
|
118
|
Nakazawa T, Kikuchi M, Ishikawa M, Yamamori H, Nagayasu K, Matsumoto T, Fujimoto M, Yasuda Y, Fujiwara M, Okada S, Matsumura K, Kasai A, Hayata-Takano A, Shintani N, Numata S, Takuma K, Akamatsu W, Okano H, Nakaya A, Hashimoto H, Hashimoto R. Differential gene expression profiles in neurons generated from lymphoblastoid B-cell line-derived iPS cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine. Schizophr Res 2017; 181:75-82. [PMID: 28277309 DOI: 10.1016/j.schres.2016.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 01/25/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder with complex genetic and environmental origins. While many antipsychotics have been demonstrated as effective in the treatment of schizophrenia, a substantial number of schizophrenia patients are partially or fully unresponsive to the treatment. Clozapine is the most effective antipsychotic drug for treatment-resistant schizophrenia; however, clozapine has rare but serious side-effects. Furthermore, there is inter-individual variability in the drug response to clozapine treatment. Therefore, the identification of the molecular mechanisms underlying the action of clozapine and drug response predictors is imperative. In the present study, we focused on a pair of monozygotic twin cases with treatment-resistant schizophrenia, in which one twin responded well to clozapine treatment and the other twin did not. Using induced pluripotent stem (iPS) cell-based technology, we generated neurons from iPS cells derived from these patients and subsequently performed RNA-sequencing to compare the transcriptome profiles of the mock or clozapine-treated neurons. Although, these iPS cells similarly differentiated into neurons, several genes encoding homophilic cell adhesion molecules, such as protocadherin genes, showed differential expression patterns between these two patients. These results, which contribute to the current understanding of the molecular mechanisms of clozapine action, establish a new strategy for the use of monozygotic twin studies in schizophrenia research.
Collapse
Affiliation(s)
- Takanobu Nakazawa
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuki Nagayasu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Matsumoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzukicho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Michiko Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Oncology Center, Osaka University Hospital, 2-15, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mikiya Fujiwara
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shota Okada
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kensuke Matsumura
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shusuke Numata
- Department of Psychiatry, Course of Integrated Brain Sciences, School of Medicine, University of Tokushima, 2-50-1 Kuramotocho, Tokushima, Tokushima 770-8503, Japan
| | - Kazuhiro Takuma
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, D3, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Wado Akamatsu
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akihiro Nakaya
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, D3, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, D3, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
119
|
Iida T, Iwanami A, Sanosaka T, Kohyama J, Miyoshi H, Nagoshi N, Kashiwagi R, Toyama Y, Matsumoto M, Nakamura M, Okano H. Whole-Genome DNA Methylation Analyses Revealed Epigenetic Instability in Tumorigenic Human iPS Cell-Derived Neural Stem/Progenitor Cells. Stem Cells 2017; 35:1316-1327. [PMID: 28142229 DOI: 10.1002/stem.2581] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
Although human induced pluripotent stem cell (hiPSC) derivatives are considered promising cellular resources for regenerative medicine, their tumorigenicity potentially limits their clinical application in hiPSC technologies. We previously demonstrated that oncogenic hiPSC-derived neural stem/progenitor cells (hiPSC-NS/PCs) produced tumor-like tissues that were distinct from teratomas. To gain insight into the mechanisms underlying the regulation of tumorigenicity in hiPSC-NS/PCs, we performed an integrated analysis using the Infinium HumanMethylation450 BeadChip array and the HumanHT-12 v4.0 Expression BeadChip array to compare the comprehensive DNA methylation and gene expression profiles of tumorigenic hiPSC-NS/PCs (253G1-NS/PCs) and non-tumorigenic cells (201B7-NS/PCs). Although the DNA methylation profiles of 253G1-hiPSCs and 201B7-hiPSCs were similar regardless of passage number, the methylation status of the global DNA methylation profiles of 253G1-NS/PCs and 201B7-NS/PCs differed; the genomic regions surrounding the transcriptional start site of the CAT and PSMD5 genes were hypermethylated in 253G1-NS/PCs but not in 201B7-NS/PCs. Interestingly, the aberrant DNA methylation profile was more pronounced in 253G1-NS/PCs that had been passaged more than 15 times. In addition, we identified aberrations in DNA methylation at the RBP1 gene locus; the DNA methylation frequency in RBP1 changed as 253G1-NS/PCs were sequentially passaged. These results indicate that different NS/PC clones have different DNA methylomes and that DNA methylation patterns are unstable as cells are passaged. Therefore, DNA methylation profiles should be included in the criteria used to evaluate the tumorigenicity of hiPSC-NS/PCs in the clinical setting. Stem Cells 2017;35:1316-1327.
Collapse
Affiliation(s)
- Tsuyoshi Iida
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Akio Iwanami
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Rei Kashiwagi
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
120
|
Murakami N, Imamura K, Izumi Y, Egawa N, Tsukita K, Enami T, Yamamoto T, Kawarai T, Kaji R, Inoue H. Proteasome impairment in neural cells derived from HMSN-P patient iPSCs. Mol Brain 2017; 10:7. [PMID: 28196470 PMCID: PMC5310050 DOI: 10.1186/s13041-017-0286-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/21/2017] [Indexed: 01/01/2023] Open
Abstract
Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is caused by a heterozygous mutation (P285L) in Tropomyosin-receptor kinase Fused Gene (TFG), histopathologically characterized by progressive spinal motor neuron loss with TFG cytosolic aggregates. Although the TFG protein, found as a type of fusion oncoprotein, is known to facilitate vesicle transport from endoplasmic reticulum (ER) to Golgi apparatus at ER exit site, it is unclear how mutant TFG causes motor neuron degeneration. Here we generated induced pluripotent stem cells (iPSCs) from HMSN-P patients, and differentiated the iPSCs into neural cells with spinal motor neurons (iPS-MNs). We found that HMSN-P patient iPS-MNs exhibited ubiquitin proteasome system (UPS) impairment, and HMSN-P patient iPS-MNs were vulnerable to UPS inhibitory stress. Gene correction of the mutation in TFG using the CRISPR-Cas9 system reverted the cellular phenotypes of HMSN-P patient iPS-MNs. Collectively, these results suggest that our cellular model with defects in cellular integrity including UPS impairments may lead to identification of pathomechanisms and a therapeutic target for HMSN-P.
Collapse
Affiliation(s)
- Nagahisa Murakami
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.,Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Keiko Imamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Naohiro Egawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kayoko Tsukita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Takako Enami
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
121
|
Lin H, Li Q, Lei Y. An Integrated Miniature Bioprocessing for Personalized Human Induced Pluripotent Stem Cell Expansion and Differentiation into Neural Stem Cells. Sci Rep 2017; 7:40191. [PMID: 28057917 PMCID: PMC5216399 DOI: 10.1038/srep40191] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/01/2016] [Indexed: 01/01/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are ideal cell sources for personalized cell therapies since they can be expanded to generate large numbers of cells and differentiated into presumably all the cell types of the human body in vitro. In addition, patient specific iPSC-derived cells induce minimal or no immune response in vivo. However, with current cell culture technologies and bioprocessing, the cost for biomanufacturing clinical-grade patient specific iPSCs and their derivatives are very high and not affordable for majority of patients. In this paper, we explored the use of closed and miniature cell culture device for biomanufacturing patient specific neural stem cells (NSCs) from iPSCs. We demonstrated that, with the assist of a thermoreversible hydrogel scaffold, the bioprocessing including iPSC expansion, iPSC differentiation into NSCs, the subsequent depletion of undifferentiated iPSCs from the NSCs, and concentrating and transporting the purified NSCs to the surgery room, could be integrated and completed within two closed 15 ml conical tubes.
Collapse
Affiliation(s)
- Haishuang Lin
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, USA
| | - Qiang Li
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, USA
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, USA.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Fred &Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
122
|
Chan HH, Wathen CA, Ni M, Zhuo S. Stem cell therapies for ischemic stroke: current animal models, clinical trials and biomaterials. RSC Adv 2017. [DOI: 10.1039/c7ra00336f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We report the facilitation of stem cell therapy in stroke by tissue engineering and applications of biomaterials.
Collapse
Affiliation(s)
- Hugh H. Chan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Department of Neuroscience
| | | | - Ming Ni
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Shuangmu Zhuo
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| |
Collapse
|
123
|
Nori S, Nakamura M, Okano H. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy. PROGRESS IN BRAIN RESEARCH 2017; 231:33-56. [DOI: 10.1016/bs.pbr.2016.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
124
|
Potential of Induced Pluripotent Stem Cells (iPSCs) for Treating Age-Related Macular Degeneration (AMD). Cells 2016; 5:cells5040044. [PMID: 27941641 PMCID: PMC5187528 DOI: 10.3390/cells5040044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022] Open
Abstract
The field of stem cell biology has rapidly evolved in the last few decades. In the area of regenerative medicine, clinical applications using stem cells hold the potential to be a powerful tool in the treatment of a wide variety of diseases, in particular, disorders of the eye. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are promising technologies that can potentially provide an unlimited source of cells for cell replacement therapy in the treatment of retinal degenerative disorders such as age-related macular degeneration (AMD), Stargardt disease, and other disorders. ESCs and iPSCs have been used to generate retinal pigment epithelium (RPE) cells and their functional behavior has been tested in vitro and in vivo in animal models. Additionally, iPSC-derived RPE cells provide an autologous source of cells for therapeutic use, as well as allow for novel approaches in disease modeling and drug development platforms. Clinical trials are currently testing the safety and efficacy of these cells in patients with AMD. In this review, the current status of iPSC disease modeling of AMD is discussed, as well as the challenges and potential of this technology as a viable option for cell replacement therapy in retinal degeneration.
Collapse
|
125
|
Fossati V, Jain T, Sevilla A. The silver lining of induced pluripotent stem cell variation. Stem Cell Investig 2016; 3:86. [PMID: 28066788 DOI: 10.21037/sci.2016.11.16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 11/06/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are being generated using various reprogramming methods and from different cell sources. Hence, a lot of effort has been devoted to evaluating the differences among iPSC lines, in particular with respect to their differentiation capacity. While line-to-line variability should mainly reflect the genetic diversity within the human population, here we review some studies that have brought attention to additional variation caused by genomic and epigenomic alterations. We discuss strategies to evaluate aberrant changes and to minimize technical and culture-induced noise, in order to generate safe cells for clinical applications. We focus on the findings from a recent study, which compared the differentiation capacity of several iPSC lines committed to the hematopoietic lineage and correlated the differential maturation capacity with aberrant DNA methylations. Although iPSC variation represents a challenge for the field, we embrace the authors' perspective that iPSC variations should be used to our advantage for predicting and selecting the best performing iPSC lines, depending on the desired application.
Collapse
Affiliation(s)
- Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY 10023, USA
| | - Tanya Jain
- The New York Stem Cell Foundation Research Institute, New York, NY 10023, USA
| | - Ana Sevilla
- The New York Stem Cell Foundation Research Institute, New York, NY 10023, USA
| |
Collapse
|
126
|
Nagatsu T, Nagatsu I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects. J Neural Transm (Vienna) 2016; 123:1255-1278. [PMID: 27491309 DOI: 10.1007/s00702-016-1596-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Ikuko Nagatsu
- Department of Anatomy, School of Medicine, Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
127
|
Analysis of induced pluripotent stem cells carrying 22q11.2 deletion. Transl Psychiatry 2016; 6:e934. [PMID: 27801899 PMCID: PMC5314118 DOI: 10.1038/tp.2016.206] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022] Open
Abstract
Given the complexity and heterogeneity of the genomic architecture underlying schizophrenia, molecular analyses of these patients with defined and large effect-size genomic defects could provide valuable clues. We established human-induced pluripotent stem cells from two schizophrenia patients with the 22q11.2 deletion (two cell lines from each subject, total of four cell lines) and three controls (total of four cell lines). Neurosphere size, neural differentiation efficiency, neurite outgrowth, cellular migration and the neurogenic-to-gliogenic competence ratio were significantly reduced in patient-derived cells. As an underlying mechanism, we focused on the role of DGCR8, a key gene for microRNA (miRNA) processing and mapped in the deleted region. In mice, Dgcr8 hetero-knockout is known to show a similar phenotype of reduced neurosphere size (Ouchi et al., 2013). The miRNA profiling detected reduced expression levels of miRNAs belonging to miR-17/92 cluster and miR-106a/b in the patient-derived neurospheres. Those miRNAs are reported to target p38α, and conformingly the levels of p38α were upregulated in the patient-derived cells. p38α is known to drive gliogenic differentiation. The inhibition of p38 activity by SB203580 in patient-derived neurospheres partially restored neurogenic competence. Furthermore, we detected elevated expression of GFAP, a gliogenic (astrocyte) marker, in postmortem brains from schizophrenia patients without the 22q11.2 deletion, whereas inflammation markers (IL1B and IL6) remained unchanged. In contrast, a neuronal marker, MAP2 expressions were decreased in schizophrenia brains. These results suggest that a dysregulated balance of neurogenic-to-gliogenic competence may underlie neurodevelopmental disorders such as schizophrenia.
Collapse
|
128
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
129
|
Fujimori K, Tezuka T, Ishiura H, Mitsui J, Doi K, Yoshimura J, Tada H, Matsumoto T, Isoda M, Hashimoto R, Hattori N, Takahashi T, Morishita S, Tsuji S, Akamatsu W, Okano H. Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines. Mol Brain 2016; 9:88. [PMID: 27716287 PMCID: PMC5046991 DOI: 10.1186/s13041-016-0267-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/20/2016] [Indexed: 12/28/2022] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) facilitate understanding of the etiology of diseases, discovery of new drugs and development of novel therapeutic interventions. A frequently used starting source of cells for generating iPSCs has been dermal fibroblasts (DFs) isolated from skin biopsies. However, there are also numerous repositories containing lymphoblastoid B-cell lines (LCLs) generated from a variety of patients. To date, this rich bioresource of LCLs has been underused for generating iPSCs, and its use would greatly expand the range of targeted diseases that could be studied by using patient-specific iPSCs. However, it remains unclear whether patient’s LCL-derived iPSCs (LiPSCs) can function as a disease model. Therefore, we generated Parkinson’s disease patient-specific LiPSCs and evaluated their utility as tools for modeling neurological diseases. We established iPSCs from two LCL clones, which were derived from a healthy donor and a patient carrying PARK2 mutations, by using existing non-integrating episomal protocols. Whole genome sequencing (WGS) and comparative genomic hybridization (CGH) analyses showed that the appearance of somatic variations in the genomes of the iPSCs did not vary substantially according to the original cell types (LCLs, T-cells and fibroblasts). Furthermore, LiPSCs could be differentiated into functional neurons by using the direct neurosphere conversion method (dNS method), and they showed several Parkinson’s disease phenotypes that were similar to those of DF-iPSCs. These data indicate that the global LCL repositories can be used as a resource for generating iPSCs and disease models. Thus, LCLs are the powerful tools for generating iPSCs and modeling neurological diseases.
Collapse
Affiliation(s)
- Koki Fujimori
- Department of Physiology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshiki Tezuka
- Department of Physiology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koichiro Doi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-0882, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-0882, Japan
| | - Hirobumi Tada
- Department of Physiology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Kanagawa, 236-0027, Japan.,Department of Integrative Aging Neuroscience, Section of Neuroendocrinology, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Takuya Matsumoto
- Department of Physiology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-ku, Kanagawa, 210-8681, Japan
| | - Miho Isoda
- Department of Physiology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita-shi, Osaka, 565-0871, Japan.,Department of Psychiatry, Osaka University Graduate School of Medicine, Suita-shi, Osaka, 565-0871, Japan
| | - Nubutaka Hattori
- Department of Neurology, Juntendo University, School of Medicine, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Takuya Takahashi
- Department of Physiology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Kanagawa, 236-0027, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-0882, Japan.,Medical Genome Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Medical Genome Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Wado Akamatsu
- Department of Physiology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Center for Genomic and Regenerative Medicine, Juntendo University, School of Medicine, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
130
|
Sugai K, Fukuzawa R, Shofuda T, Fukusumi H, Kawabata S, Nishiyama Y, Higuchi Y, Kawai K, Isoda M, Kanematsu D, Hashimoto-Tamaoki T, Kohyama J, Iwanami A, Suemizu H, Ikeda E, Matsumoto M, Kanemura Y, Nakamura M, Okano H. Pathological classification of human iPSC-derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases. Mol Brain 2016; 9:85. [PMID: 27642008 PMCID: PMC5027634 DOI: 10.1186/s13041-016-0265-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022] Open
Abstract
The risk of tumorigenicity is a hurdle for regenerative medicine using induced pluripotent stem cells (iPSCs). Although teratoma formation is readily distinguishable, the malignant transformation of iPSC derivatives has not been clearly defined due to insufficient analysis of histology and phenotype. In the present study, we evaluated the histology of neural stem/progenitor cells (NSPCs) generated from integration-free human peripheral blood mononuclear cell (PBMC)-derived iPSCs (iPSC-NSPCs) following transplantation into central nervous system (CNS) of immunodeficient mice. We found that transplanted iPSC-NSPCs produced differentiation patterns resembling those in embryonic CNS development, and that the microenvironment of the final site of migration affected their maturational stage. Genomic instability of iPSCs correlated with increased proliferation of transplants, although no carcinogenesis was evident. The histological classifications presented here may provide cues for addressing potential safety issues confronting regenerative medicine involving iPSCs.
Collapse
Affiliation(s)
- Keiko Sugai
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Ryuji Fukuzawa
- Department of Pathology, Tokyo Metropolitan Children's Medical Center, Fuchu, Tokyo, 183-8561, Japan
| | - Tomoko Shofuda
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Hayato Fukusumi
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Soya Kawabata
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuichiro Nishiyama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuichiro Higuchi
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Miho Isoda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Regenerative & Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo, 650-0047, Japan
| | - Daisuke Kanematsu
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | | | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Akio Iwanami
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroshi Suemizu
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Eiji Ikeda
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan.,Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
131
|
Kondo Y, Duncan ID. Myelin repair by transplantation of myelin-forming cells in globoid cell leukodystrophy. J Neurosci Res 2016; 94:1195-202. [PMID: 27557886 DOI: 10.1002/jnr.23909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe disease, is a devastating demyelinating disease that affects both the central and peripheral nervous systems. It is caused by genetic deficiency in the activity of a lysosomal enzyme, galactocerebrosidase (GALC), which is necessary for the maintenance of myelin. Hematopoietic stem cell transplantation (HSCT) including umbilical cord stem cell transplantation is the only effective therapy available to date. HSCT significantly prolongs the life span of patients with GLD when performed before disease onset, although it is not curative. In HSCT, infiltrating donor-derived macrophages are thought to indirectly supply the enzyme (called "cross-correction") to the host's myelinating cells. Given the limitation in treating GLD, it is hypothesized that remyelinating demyelinated axons with GALC-competent myelinating cells by transplantation will result in more stable myelination than endogenous myelin repair supported by GALC cross-correction. Transplantation of myelin-forming cells in a variety of animal models of dysmyelinating and demyelinating disorders suggests that this approach is promising in restoring saltatory conduction and protecting neurons by providing new healthy myelin. However, GLD is one of the most challenging diseases in terms of the aggressiveness of the disease and widespread pathology. Experimental transplantation of myelin-forming cells in the brain of a mouse model of GLD has been only modestly effective to date. Thus, a practical strategy for myelin repair in GLD would be to combine the rapid and widespread cross-correction of GALC by HSCT with the robust, stable myelination provided by transplanted GALC-producing myelin-forming cells. This short review will discuss such possibilities. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoichi Kondo
- Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan.
| | - Ian D Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
132
|
Yamazaki K, Fukushima K, Sugawara M, Tabata Y, Imaizumi Y, Ishihara Y, Ito M, Tsukahara K, Kohyama J, Okano H. Functional Comparison of Neuronal Cells Differentiated from Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells under Different Oxygen and Medium Conditions. ACTA ACUST UNITED AC 2016; 21:1054-1064. [PMID: 28139961 DOI: 10.1177/1087057116661291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Because neurons are difficult to obtain from humans, generating functional neurons from human induced pluripotent stem cells (hiPSCs) is important for establishing physiological or disease-relevant screening systems for drug discovery. To examine the culture conditions leading to efficient differentiation of functional neural cells, we investigated the effects of oxygen stress (2% or 20% O2) and differentiation medium (DMEM/F12:Neurobasal-based [DN] or commercial [PhoenixSongs Biologicals; PS]) on the expression of genes related to neural differentiation, glutamate receptor function, and the formation of networks of neurons differentiated from hiPSCs (201B7) via long-term self-renewing neuroepithelial-like stem (lt-NES) cells. Expression of genes related to neural differentiation occurred more quickly in PS and/or 2% O2 than in DN and/or 20% O2, resulting in high responsiveness of neural cells to glutamate, N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and ( S)-3,5-dihydroxyphenylglycine (an agonist for mGluR1/5), as revealed by calcium imaging assays. NMDA receptors, AMPA receptors, mGluR1, and mGluR5 were functionally validated by using the specific antagonists MK-801, NBQX, JNJ16259685, and 2-methyl-6-(phenylethynyl)-pyridine, respectively. Multielectrode array analysis showed that spontaneous firing occurred earlier in cells cultured in 2% O2 than in 20% O2. Optimization of O2 tension and culture medium for neural differentiation of hiPSCs can efficiently generate physiologically relevant cells for screening systems.
Collapse
Affiliation(s)
- Kazuto Yamazaki
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan
| | - Kazuyuki Fukushima
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan
| | - Michiko Sugawara
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan.,2 Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yoshikuni Tabata
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan.,2 Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yoichi Imaizumi
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan
| | - Yasuharu Ishihara
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan
| | - Masashi Ito
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan
| | - Kappei Tsukahara
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan
| | - Jun Kohyama
- 2 Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- 2 Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
133
|
Takahashi H, Itoga K, Shimizu T, Yamato M, Okano T. Human Neural Tissue Construct Fabrication Based on Scaffold-Free Tissue Engineering. Adv Healthc Mater 2016; 5:1931-8. [PMID: 27331769 DOI: 10.1002/adhm.201600197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/21/2016] [Indexed: 11/06/2022]
Abstract
Current neural tissue engineering strategies involve the development and application of neural tissue constructs produced by using an anisotropic polymeric scaffold. This study reports a scaffold-free method of tissue engineering to create a tubular neural tissue construct containing unidirectional neuron bundles. The surface patterning of a thermoresponsive culture substrate and a coculture system of neurons with patterned astrocytes can provide an anisotropic structure and easy handling of the neural tissue construct without the use of a scaffold. Furthermore, using a gelatin gel-coated plunger, the neuron bundles can be laid out in the same direction at regulated intervals within multilayered astrocyte sheets. Since the 3D tissue construct is composed only by neurons and astrocytes, they can communicate physiologically without obstruction of a scaffold. The medical benefits of scaffold-free tissue generation provide new opportunities for the development of human cell-based tissue models required to better understand the mechanisms of neurodegenerative diseases. Therefore, this new tissue engineering approach may be useful to establish a technology for regenerative medicine and drug discovery using the patient's own neurons.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Kazuyoshi Itoga
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| |
Collapse
|
134
|
Csöbönyeiová M, Polák Š, Danišovič L. Recent approaches and challenges in iPSCs: modeling and cell-based therapy of Alzheimer's disease. Rev Neurosci 2016; 27:457-64. [PMID: 26812864 DOI: 10.1515/revneuro-2015-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/13/2015] [Indexed: 12/21/2022]
Abstract
The lack of effective therapies for different neurodegenerative disorders has placed huge burdens on society. To overcome the restricted capacity of the central nervous system for regeneration, the promising alternative would be to use stem cells for more effective treatment of chronic degenerative and inflammatory neurological conditions and also of acute neuronal damage and from injuries or cerebrovascular diseases. The generation of induced pluripotent stem cells from somatic cells by the ectopic expression of specific transcription factors has provided the regenerative medicine field with a new tool for investigating and treating neurodegenerative diseases, including Alzheimer's disease (AD). This technology provides an alternative to traditional approaches, such as nuclear transfer and somatic cell fusion using embryonic stem cells. However, due to a problem in standardization of certain reprogramming techniques and systems research, the induced pluripotent stem cell-based technology is still in its infancy. The present paper is aimed at a brief review of the current status in modeling and cell-based therapies for AD.
Collapse
|
135
|
Karagiannis P, Eto K. Ten years of induced pluripotency: from basic mechanisms to therapeutic applications. Development 2016; 143:2039-43. [DOI: 10.1242/dev.138172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ten years ago, the discovery that mature somatic cells could be reprogrammed into induced pluripotent stem cells (iPSCs) redefined the stem cell field and brought about a wealth of opportunities for both basic research and clinical applications. To celebrate the tenth anniversary of the discovery, the International Society for Stem Cell Research (ISSCR) and Center for iPS Cell Research and Application (CiRA), Kyoto University, together held the symposium ‘Pluripotency: From Basic Science to Therapeutic Applications’ in Kyoto, Japan. The three days of lectures examined both the mechanisms and therapeutic applications of iPSC reprogramming. Here we summarize the main findings reported, which are testament to how far the field has come in only a decade, as well as the enormous potential that iPSCs hold for the future.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Eto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
136
|
Holmqvist S, Lehtonen Š, Chumarina M, Puttonen KA, Azevedo C, Lebedeva O, Ruponen M, Oksanen M, Djelloul M, Collin A, Goldwurm S, Meyer M, Lagarkova M, Kiselev S, Koistinaho J, Roybon L. Creation of a library of induced pluripotent stem cells from Parkinsonian patients. NPJ Parkinsons Dis 2016; 2:16009. [PMID: 28725696 PMCID: PMC5516589 DOI: 10.1038/npjparkd.2016.9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are becoming an important source of pre-clinical models for research focusing on neurodegeneration. They offer the possibility for better understanding of common and divergent pathogenic mechanisms of brain diseases. Moreover, iPSCs provide a unique opportunity to develop personalized therapeutic strategies, as well as explore early pathogenic mechanisms, since they rely on the use of patients' own cells that are otherwise accessible only post-mortem, when neuronal death-related cellular pathways and processes are advanced and adaptive. Neurodegenerative diseases are in majority of unknown cause, but mutations in specific genes can lead to familial forms of these diseases. For example, mutations in the superoxide dismutase 1 gene lead to the motor neuron disease amyotrophic lateral sclerosis (ALS), while mutations in the SNCA gene encoding for alpha-synuclein protein lead to familial Parkinson's disease (PD). The generations of libraries of familial human ALS iPSC lines have been described, and the iPSCs rapidly became useful models for studying cell autonomous and non-cell autonomous mechanisms of the disease. Here we report the generation of a comprehensive library of iPSC lines of familial PD and an associated synucleinopathy, multiple system atrophy (MSA). In addition, we provide examples of relevant neural cell types these iPSC can be differentiated into, and which could be used to further explore early disease mechanisms. These human cellular models will be a valuable resource for identifying common and divergent mechanisms leading to neurodegeneration in PD and MSA.
Collapse
Affiliation(s)
- Staffan Holmqvist
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Šárka Lehtonen
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Margarita Chumarina
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Katja A Puttonen
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Carla Azevedo
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Olga Lebedeva
- Russian Academy of Sciences, Vavilov Institute of General Genetics, Moscow, Russia
| | - Marika Ruponen
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Minna Oksanen
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mehdi Djelloul
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Collin
- Department of Clinical Genetics and Biobanks, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Stefano Goldwurm
- Parkinson Institute, Istituti Clinici di Perfezionamento, Milan, Italy
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Lagarkova
- Russian Academy of Sciences, Vavilov Institute of General Genetics, Moscow, Russia
| | - Sergei Kiselev
- Russian Academy of Sciences, Vavilov Institute of General Genetics, Moscow, Russia
| | - Jari Koistinaho
- Stem Cell Laboratory of Molecular Brain Research Group, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
137
|
Azuma K, Yamanaka S. Recent policies that support clinical application of induced pluripotent stem cell-based regenerative therapies. Regen Ther 2016; 4:36-47. [PMID: 31245486 PMCID: PMC6581825 DOI: 10.1016/j.reth.2016.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/07/2016] [Accepted: 01/28/2016] [Indexed: 02/04/2023] Open
Abstract
In Japan, a research center network consisting of Kyoto University to provide clinical-grade induced Pluripotent Stem Cells (iPSC) and several major research centers to develop iPSC-based regenerative therapies was formed for the clinical application of iPSCs. This network is under the supervision of a newly formed funding agency, the Japan Agency for Medical Research and Development. In parallel, regulatory authorities of Japan, including the Ministry of Health, Labour and Welfare, and Pharmaceuticals and Medical Devices Agency, are trying to accelerate the development process of regenerative medicine products (RMPs) by several initiatives: 1) introduction of a conditional and time-limited approval scheme only applicable to RMPs under the revised Pharmaceuticals and Medical Devices Act, 2) expansion of a consultation program at the early stage of development, 3) establishment of guidelines to support efficient development and review and 4) enhancement of post-market safety measures such as introduction of patient registries and setting user requirements with cooperation from relevant academic societies and experts. Ultimately, the establishment of a global network among iPSC banks that derives clinical-grade iPSCs from human leukocyte antigens homozygous donors has been proposed. In order to share clinical-grade iPSCs globally and to facilitate global development of iPSC-based RMPs, it will be necessary to promote regulatory harmonization and to establish common standards related to iPSCs and differentiated cells based on scientific evidence.
Collapse
Key Words
- AMED, Japan Agency for Medical Research and Development
- BLA, Biological License Approval
- CFR, Code of Federal Regulations
- CiRA, Center for iPS Cell Research and Application
- DMF, Drug Master File
- ESC, embryonic stem cell
- FDA, Food and Drug Administration
- FY, fiscal year
- GAiT, Global Alliance for iPS Cell Therapies
- GCTP, Good Gene, Cell, Cellular and Tissue-based Products Manufacturing Practice
- GMP, good manufacturing practice
- HLA, human leukocyte antigen
- Haplobank
- IBRI, Institution of Biomedical Research and Innovation
- ICH, The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use
- IND, Investigational New Drug
- INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support
- IRB, Institutional Review Board
- J-MACS, Japanese Registry for Mechanically Assisted Circulatory Support
- JST, Japan Science and Technology Agency
- Japan
- LVAD, left ventricular assist device
- METI, Ministry of Economy, Trade and Industry
- MEXT, Ministry of Education, Culture, Sports, Science and Technology
- MHLW, Ministry of Health, Labour and Welfare
- NEDO, New Energy and Industrial Technology Development Organization
- NIBIO, National Institute of Biomedical Innovation
- NIHS, National Institute of Health Science
- PAL, Pharmaceutical Affairs Law
- PIC/S, The Pharmaceutical Inspection Convention and Pharmaceutical Inspection Co-operation Scheme
- PMD Act, Pharmaceuticals and Medical Devices Act
- PMDA, Pharmaceuticals and Medical Devices Agency
- Policy
- R&D, research and development
- RM Act, the Act on the Safety of Regenerative Medicine
- RMP, regenerative medicine product
- Regenerative medicine
- Regulation
- Riken CDB, Riken Center for Developmental Biology
- U.S., United States
- WHO, World Health Organization
- iPS cells
- iPSC, induced pluripotent stem cell
Collapse
Affiliation(s)
- Kentaro Azuma
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
| |
Collapse
|
138
|
Cellular Zinc Homeostasis Contributes to Neuronal Differentiation in Human Induced Pluripotent Stem Cells. Neural Plast 2016; 2016:3760702. [PMID: 27247802 PMCID: PMC4876239 DOI: 10.1155/2016/3760702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/24/2016] [Indexed: 11/23/2022] Open
Abstract
Disturbances in neuronal differentiation and function are an underlying factor of many brain disorders. Zinc homeostasis and signaling are important mediators for a normal brain development and function, given that zinc deficiency was shown to result in cognitive and emotional deficits in animal models that might be associated with neurodevelopmental disorders. One underlying mechanism of the observed detrimental effects of zinc deficiency on the brain might be impaired proliferation and differentiation of stem cells participating in neurogenesis. Thus, to examine the molecular mechanisms regulating zinc metabolism and signaling in differentiating neurons, using a protocol for motor neuron differentiation, we characterized the expression of zinc homeostasis genes during neurogenesis using human induced pluripotent stem cells (hiPSCs) and evaluated the influence of altered zinc levels on the expression of zinc homeostasis genes, cell survival, cell fate, and neuronal function. Our results show that zinc transporters are highly regulated genes during neuronal differentiation and that low zinc levels are associated with decreased cell survival, altered neuronal differentiation, and, in particular, synaptic function. We conclude that zinc deficiency in a critical time window during brain development might influence brain function by modulating neuronal differentiation.
Collapse
|
139
|
Rotenone Susceptibility Phenotype in Olfactory Derived Patient Cells as a Model of Idiopathic Parkinson's Disease. PLoS One 2016; 11:e0154544. [PMID: 27123847 PMCID: PMC4849794 DOI: 10.1371/journal.pone.0154544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease is a complex age-related neurodegenerative disorder. Approximately 90% of Parkinson’s disease cases are idiopathic, of unknown origin. The aetiology of Parkinson’s disease is not fully understood but increasing evidence implies a failure in fundamental cellular processes including mitochondrial dysfunction and increased oxidative stress. To dissect the cellular events underlying idiopathic Parkinson’s disease, we use primary cell lines established from the olfactory mucosa of Parkinson’s disease patients. Previous metabolic and transcriptomic analyses identified deficiencies in stress response pathways in patient-derived cell lines. The aim of this study was to investigate whether these deficiencies manifested as increased susceptibility, as measured by cell viability, to a range of extrinsic stressors. We identified that patient-derived cells are more sensitive to mitochondrial complex I inhibition and hydrogen peroxide induced oxidative stress, than controls. Exposure to low levels (50 nM) of rotenone led to increased apoptosis in patient-derived cells. We identified an endogenous deficit in mitochondrial complex I in patient-derived cells, but this did not directly correlate with rotenone-sensitivity. We further characterized the sensitivity to rotenone and identified that it was partly associated with heat shock protein 27 levels. Finally, transcriptomic analysis following rotenone exposure revealed that patient-derived cells express a diminished response to rotenone-induced stress compared with cells from healthy controls. Our cellular model of idiopathic Parkinson’s disease displays a clear susceptibility phenotype to mitochondrial stress. The determination of molecular mechanisms underpinning this susceptibility may lead to the identification of biomarkers for either disease onset or progression.
Collapse
|
140
|
Ben-Reuven L, Reiner O. Modeling the autistic cell: iPSCs recapitulate developmental principles of syndromic and nonsyndromic ASD. Dev Growth Differ 2016; 58:481-91. [PMID: 27111774 DOI: 10.1111/dgd.12280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
The opportunity to model autism spectrum disorders (ASD) through generation of patient-derived induced pluripotent stem cells (iPSCs) is currently an emerging topic. Wide-scale research of altered brain circuits in syndromic ASD, including Rett Syndrome, Fragile X Syndrome, Angelman's Syndrome and sporadic Schizophrenia, was made possible through animal models. However, possibly due to species differences, and to the possible contribution of epigenetics in the pathophysiology of these diseases, animal models fail to recapitulate many aspects of ASD. With the advent of iPSCs technology, 3D cultures of patient-derived cells are being used to study complex neuronal phenotypes, including both syndromic and nonsyndromic ASD. Here, we review recent advances in using iPSCs to study various aspects of the ASD neuropathology, with emphasis on the efforts to create in vitro model systems for syndromic and nonsyndromic ASD. We summarize the main cellular activity phenotypes and aberrant genetic interaction networks that were found in iPSC-derived neurons of syndromic and nonsyndromic autistic patients.
Collapse
Affiliation(s)
- Lihi Ben-Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
141
|
Doulames VM, Plant GW. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury. Int J Mol Sci 2016; 17:530. [PMID: 27070598 PMCID: PMC4848986 DOI: 10.3390/ijms17040530] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023] Open
Abstract
Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury.
Collapse
Affiliation(s)
- Vanessa M Doulames
- Stanford Partnership for Spinal Cord Injury and Repair, Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive Stanford, California, CA 94305, USA.
| | - Giles W Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive Stanford, California, CA 94305, USA.
| |
Collapse
|
142
|
Zhang WB, Ross PJ, Tu Y, Wang Y, Beggs S, Sengar AS, Ellis J, Salter MW. Fyn Kinase regulates GluN2B subunit-dominant NMDA receptors in human induced pluripotent stem cell-derived neurons. Sci Rep 2016; 6:23837. [PMID: 27040756 PMCID: PMC4819183 DOI: 10.1038/srep23837] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/15/2016] [Indexed: 12/28/2022] Open
Abstract
NMDA receptor (NMDAR)-mediated fast excitatory neurotransmission is implicated in a broad range of physiological and pathological processes in the mammalian central nervous system. The function and regulation of NMDARs have been extensively studied in neurons from rodents and other non-human species, and in recombinant expression systems. Here, we investigated human NMDARs in situ by using neurons produced by directed differentiation of human induced pluripotent stem cells (iPSCs). The resultant cells showed electrophysiological characteristics demonstrating that they are bona fide neurons. In particular, human iPSC-derived neurons expressed functional ligand-gated ion channels, including NMDARs, AMPA receptors, GABAA receptors, as well as glycine receptors. Pharmacological and electrophysiological properties of NMDAR-mediated currents indicated that these were dominated by receptors containing GluN2B subunits. The NMDAR currents were suppressed by genistein, a broad-spectrum tyrosine kinase inhibitor. The NMDAR currents were also inhibited by a Fyn-interfering peptide, Fyn(39–57), but not a Src-interfering peptide, Src(40–58). Together, these findings are the first evidence that tyrosine phosphorylation regulates the function of NMDARs in human iPSC-derived neurons. Our findings provide a basis for utilizing human iPSC-derived neurons in screening for drugs targeting NMDARs in neurological disorders.
Collapse
Affiliation(s)
- Wen-Bo Zhang
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - P Joel Ross
- Program in Developmental &Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - YuShan Tu
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Yongqian Wang
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Simon Beggs
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Ameet S Sengar
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - James Ellis
- Program in Developmental &Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael W Salter
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
143
|
Ichiyanagi N, Fujimori K, Yano M, Ishihara-Fujisaki C, Sone T, Akiyama T, Okada Y, Akamatsu W, Matsumoto T, Ishikawa M, Nishimoto Y, Ishihara Y, Sakuma T, Yamamoto T, Tsuiji H, Suzuki N, Warita H, Aoki M, Okano H. Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells. Stem Cell Reports 2016; 6:496-510. [PMID: 26997647 PMCID: PMC4834049 DOI: 10.1016/j.stemcr.2016.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disorder. Although its neuropathology is well understood, the cellular and molecular mechanisms are yet to be elucidated due to limitations in the currently available human genetic data. In this study, we generated induced pluripotent stem cells (iPSC) from two familial ALS (FALS) patients with a missense mutation in the fused-in sarcoma (FUS) gene carrying the heterozygous FUS H517D mutation, and isogenic iPSCs with the homozygous FUS H517D mutation by genome editing technology. These cell-derived motor neurons mimicked several neurodegenerative phenotypes including mis-localization of FUS into cytosolic and stress granules under stress conditions, and cellular vulnerability. Moreover, exon array analysis using motor neuron precursor cells (MPCs) combined with CLIP-seq datasets revealed aberrant gene expression and/or splicing pattern in FALS MPCs. These results suggest that iPSC-derived motor neurons are a useful tool for analyzing the pathogenesis of human motor neuron disorders.
Collapse
Affiliation(s)
- Naoki Ichiyanagi
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Koki Fujimori
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Yano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata 951-8510, Japan.
| | - Chikako Ishihara-Fujisaki
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Yohei Okada
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi 480-1195, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Graduated School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takuya Matsumoto
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshinori Nishimoto
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasuharu Ishihara
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
144
|
Sridhar A, Ohlemacher SK, Langer KB, Meyer JS. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage. Stem Cells Transl Med 2016; 5:417-26. [PMID: 26933039 PMCID: PMC4798730 DOI: 10.5966/sctm.2015-0093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
Abstract
The ability and efficiency of mRNA-reprogrammed human induced pluripotent stem cells (hiPSCs) to yield retinal cell types in a directed, stepwise manner was tested. hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes. Such methods represent a promising new approach for retinal stem cell research, especially translational applications. The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has allowed for the development of novel approaches to studies of human development and disease. However, traditional methods of generating hiPSCs involve the risks of genomic integration and potential constitutive expression of pluripotency factors and often exhibit low reprogramming efficiencies. The recent description of cellular reprogramming using synthetic mRNA molecules might eliminate these shortcomings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed hiPSCs were established and were subsequently differentiated into a retinal fate using established protocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-derived hiPSC counterparts. Thus, given that hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell research, in particular, those for translational applications. Significance In the current report, the ability to derive mRNA-reprogrammed human induced pluripotent stem cells (hiPSCs), followed by the differentiation of these cells toward a retinal lineage, including photoreceptors, retinal ganglion cells, and retinal pigment epithelium, has been demonstrated. The use of mRNA reprogramming to yield pluripotency represents a unique ability to derive pluripotent stem cells without the use of DNA vectors, ensuring the lack of genomic integration and constitutive expression. The studies reported in the present article serve to establish a more reproducible system with which to derive retinal cell types from hiPSCs through the prevention of genomic integration of delivered genes and should also eliminate the risk of constitutive expression of these genes. Such ability has important implications for the study of, and development of potential treatments for, retinal degenerative disorders and the development of novel therapeutic approaches to the treatment of these diseases.
Collapse
Affiliation(s)
- Akshayalakshmi Sridhar
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Sarah K Ohlemacher
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Kirstin B Langer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Jason S Meyer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, USA Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
145
|
Chang KH, Lee-Chen GJ, Wu YR, Chen YJ, Lin JL, Li M, Chen IC, Lo YS, Wu HC, Chen CM. Impairment of proteasome and anti-oxidative pathways in the induced pluripotent stem cell model for sporadic Parkinson's disease. Parkinsonism Relat Disord 2016; 24:81-8. [DOI: 10.1016/j.parkreldis.2016.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022]
|
146
|
Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:9762465. [PMID: 26989423 PMCID: PMC4773578 DOI: 10.1155/2016/9762465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/28/2016] [Indexed: 12/12/2022] Open
Abstract
The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks.
Collapse
|
147
|
Murakawa Y, Yoshihara M, Kawaji H, Nishikawa M, Zayed H, Suzuki H, FANTOM Consortium, Hayashizaki Y. Enhanced Identification of Transcriptional Enhancers Provides Mechanistic Insights into Diseases. Trends Genet 2016; 32:76-88. [DOI: 10.1016/j.tig.2015.11.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022]
|
148
|
Nishiyama Y, Iwanami A, Kohyama J, Itakura G, Kawabata S, Sugai K, Nishimura S, Kashiwagi R, Yasutake K, Isoda M, Matsumoto M, Nakamura M, Okano H. Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field. Neurosci Res 2016; 107:20-9. [PMID: 26804710 DOI: 10.1016/j.neures.2015.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
Stem cells represent a potential cellular resource in the development of regenerative medicine approaches to the treatment of pathologies in which specific cells are degenerated or damaged by genetic abnormality, disease, or injury. Securing sufficient supplies of cells suited to the demands of cell transplantation, however, remains challenging, and the establishment of safe and efficient cell banking procedures is an important goal. Cryopreservation allows the storage of stem cells for prolonged time periods while maintaining them in adequate condition for use in clinical settings. Conventional cryopreservation systems include slow-freezing and vitrification both have advantages and disadvantages in terms of cell viability and/or scalability. In the present study, we developed an advanced slow-freezing technique using a programmed freezer with a magnetic field called Cells Alive System (CAS) and examined its effectiveness on human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs). This system significantly increased cell viability after thawing and had less impact on cellular proliferation and differentiation. We further found that frozen-thawed hiPSC-NS/PCs were comparable with non-frozen ones at the transcriptome level. Given these findings, we suggest that the CAS is useful for hiPSC-NS/PCs banking for clinical uses involving neural disorders and may open new avenues for future regenerative medicine.
Collapse
Affiliation(s)
- Yuichiro Nishiyama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akio Iwanami
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Go Itakura
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Soya Kawabata
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Keiko Sugai
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Soraya Nishimura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Rei Kashiwagi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kaori Yasutake
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Miho Isoda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Chuo-ku, Kobe 650-0047, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
149
|
Intrinsic Neuronal Mechanisms in Axon Regeneration After Spinal Cord Injury. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
150
|
Advances in Stem Cells Biology: New Approaches to Understand Depression. STEM CELLS IN NEUROENDOCRINOLOGY 2016. [DOI: 10.1007/978-3-319-41603-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|