101
|
Angelini C, Pennisi E, Missaglia S, Tavian D. Metabolic lipid muscle disorders: biomarkers and treatment. Ther Adv Neurol Disord 2019; 12:1756286419843359. [PMID: 31040882 PMCID: PMC6477769 DOI: 10.1177/1756286419843359] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Lipid storage myopathies (LSMs) are metabolic disorders of the utilization of fat in muscles due to several different defects. In this review, a molecular update of LSMs is presented and recent attempts of finding treatment options are discussed. The main topics discussed are: primary carnitine deficiency, riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency, neutral lipid storage disorders and carnitine palmitoyl transferase deficiency. The most frequent presentations and genetic abnormalities are summarized. We present their diagnosis utilizing biomedical and morphological biomarkers and possible therapeutic interventions. The treatment of these metabolic disorders is a subject of active translational research but appears, in some cases, still elusive.
Collapse
Affiliation(s)
- Corrado Angelini
- Fondazione Ospedale San Camillo IRCCS, Via
Alberoni 70, Venezia 30126, Italia
| | - Elena Pennisi
- Division of Neurology, S Filippo Neri Hospital,
Rome, Italy
| | - Sara Missaglia
- Laboratory of Cellular Biochemistry and
Molecular Biology, CRIBENS, Catholic University of the Sacred Heart, Milan,
Italy Psychology Department, Catholic University of the Sacred Heart, Milan,
Italy
| | - Daniela Tavian
- Laboratory of Cellular Biochemistry and
Molecular Biology, CRIBENS, Catholic University of the Sacred Heart, Milan,
Italy Psychology Department, Catholic University of the Sacred Heart, Milan,
Italy
| |
Collapse
|
102
|
Chu G, Salzman J. Hyperammonemia after capecitabine associated with occult impairment of the urea cycle. Cancer Med 2019; 8:1996-2004. [PMID: 30977266 PMCID: PMC6536928 DOI: 10.1002/cam4.2036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Cancer patients receiving chemotherapy often complain of “chemobrain” or cognitive impairment, but mechanisms remain elusive. Methods A patient with gastric cancer developed delirium and hyperammonemia after chemotherapy with the 5‐fluorouracil pro‐drug capecitabine. Exome sequencing facilitated a search for mutations among 43 genes associated with hyperammonemia and affecting the urea cycle directly or indirectly. Results The patient's urea cycle was impaired by capecitabine‐induced liver steatosis, and portosystemic shunting of gut ammonia into the systemic circulation. The patient was also heterozygous for amino acid substitution mutations previously reported to create dysfunctional proteins in 2 genes, ORNT2 (ornithine transporter‐2 for the urea cycle), and ETFA (electron transport flavoprotein alpha for fatty acid oxidation). The mutations explained the patient's abnormal plasma amino acid profile and exaggerated response to allopurinol challenge. Global population variations among the 43 hyperammonemia genes were assessed for inactivating mutations, and for amino acid substitutions predicted to be deleterious by complementary algorithms, SIFT and PolyPhen‐2. One or 2 deleterious mutations occur among the 43 genes in 13.9% and 1% of individuals, respectively. Conclusions Capecitabine and 5‐fluorouracil inhibit pyrimidine biosynthesis, decreasing ammonia utilization. These drugs can induce hyperammonemia in susceptible individuals. The risk factors of hyperammonemia, gene mutations and liver dysfunction, are not rare. Diagnosis will trigger appropriate treatment and ameliorate brain toxicity.
Collapse
Affiliation(s)
- Gilbert Chu
- Department of Medicine, Stanford University, Stanford, California.,Department of Biochemistry, Stanford University, Stanford, California
| | - Julia Salzman
- Department of Biochemistry, Stanford University, Stanford, California
| |
Collapse
|
103
|
Gonzalez-Perez P, Torre M, Helgager J, Amato AA. Proximal muscle weakness. Pract Neurol 2019; 19:321-325. [PMID: 30948559 PMCID: PMC6703146 DOI: 10.1136/practneurol-2019-002204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 11/03/2022]
Affiliation(s)
- Paloma Gonzalez-Perez
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew Torre
- Department of Pathology, Harvard Medical School, Brigham Women's Hospital, Boston, Massachusetts, USA
| | - Jeffrey Helgager
- Department of Pathology, Harvard Medical School, Brigham Women's Hospital, Boston, Massachusetts, USA
| | - Anthony A Amato
- Department of Neurology, Harvard Medical School, Brigham Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
104
|
Madsen KL, Preisler N, Buch AE, Stemmerik MG, Laforêt P, Vissing J. Impaired fat oxidation during exercise in multiple acyl-CoA dehydrogenase deficiency. JIMD Rep 2019; 46:79-84. [PMID: 31240159 PMCID: PMC6498824 DOI: 10.1002/jmd2.12024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We investigated the in vivo skeletal muscle metabolism in patients with multiple acyl-CoA dehydrogenase deficiency (MADD) during exercise, and the effect of a glucose infusion. Two adults with MADD on riboflavin and l-carnitine treatment and 10 healthy controls performed an incremental exercise test measuring maximal oxidative capacity (VO2max) and a submaximal exercise test (≤1 hour) on a cycle ergometer. During submaximal exercise, we studied fat and carbohydrate oxidation, using stable isotope tracer methodology and indirect calorimetry. On another day, the patients repeated the submaximal exercise receiving a 10% glucose infusion. The patients had a lower VO2max than controls and stopped the submaximal exercise test at 51 and 58 minutes due to muscle pain and exhaustion. The exercise-induced increase in total fatty acid oxidation was blunted in the patients (7.1 and 1.1 vs 12 ± 4 μmol × kg-1 × min-1 in the healthy controls), but total carbohydrate oxidation was higher (67 and 63 vs 25 ± 11 μmol × kg-1 × min-1 in controls). With glucose infusion, muscle pain decreased and average heart rate during exercise dropped in both patients from 124 to 119 bpm and 138 to 119 bpm. We demonstrate that exercise intolerance in MADD-patients relates to an inability to increase fat oxidation appropriately during exercise, which is compensated partially by an increase in carbohydrate metabolism.
Collapse
Affiliation(s)
- Karen L. Madsen
- Copenhagen Neuromuscular Center, Department of NeurologyCopenhagen Neuromuscular Center, RigshospitaletCopenhagenDenmark
| | - Nicolai Preisler
- Copenhagen Neuromuscular Center, Department of NeurologyCopenhagen Neuromuscular Center, RigshospitaletCopenhagenDenmark
| | - Astrid E. Buch
- Copenhagen Neuromuscular Center, Department of NeurologyCopenhagen Neuromuscular Center, RigshospitaletCopenhagenDenmark
| | - Mads G. Stemmerik
- Copenhagen Neuromuscular Center, Department of NeurologyCopenhagen Neuromuscular Center, RigshospitaletCopenhagenDenmark
| | - Pascal Laforêt
- Neuromuscular Center, Department of Neurology, Neuromuscular CenterRaymond‐Poincaré HospitalGarchesFrance
- INSERM U1179, END‐ICAPVersailles Saint‐Quentin‐en‐Yvelines UniversityMontigny‐le‐BretonneuxFrance
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of NeurologyCopenhagen Neuromuscular Center, RigshospitaletCopenhagenDenmark
| |
Collapse
|
105
|
Late Onset Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) Myopathy Misdiagnosed as Polymyositis. ACTA ACUST UNITED AC 2019; 26:e125-e127. [DOI: 10.1097/rhu.0000000000001000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
106
|
Kim YJ, Ko JM, Song J, Lee KA. Clinical Features of Multiple Acyl-CoA Dehydrogenase Deficiency With ETFDH Variants in the First Korean Cases. Ann Lab Med 2019; 38:616-618. [PMID: 30027710 PMCID: PMC6056397 DOI: 10.3343/alm.2018.38.6.616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/20/2018] [Accepted: 06/19/2018] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yoo Jinie Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea.
| | - Junghan Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung A Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
107
|
ETF-QO Mutants Uncoupled Fatty Acid β-Oxidation and Mitochondrial Bioenergetics Leading to Lipid Pathology. Cells 2019; 8:cells8020106. [PMID: 30709034 PMCID: PMC6406559 DOI: 10.3390/cells8020106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
The electron-transfer flavoprotein dehydrogenase gene (ETFDH) that encodes the ETF-ubiquinone oxidoreductase (ETF-QO) has been reported to be the major cause of multiple acyl-CoA dehydrogenase deficiency (MADD). ETF-QO is an electron carrier that mainly functions in mitochondrial fatty acid β-oxidation and the delivery of electrons to the ubiquinone pool in the mitochondrial respiratory chain. A high frequency of c.250G>A has been found in Taiwanese patients with late-onset MADD. We postulated that the ETFDH c.250G>A mutation may concomitantly impair fatty acid β-oxidation and mitochondrial function. Using MADD patient-derived lymphoblastoid cells and specifically overexpressed ETFDH c.92C>T, c.250G>A, or coexisted c.92C>T and c.250G>A (c.92C>T + c.250G>A) mutated lymphoblastoid cells, we addressed the genotype-phenotype relationship of ETFDH variation in the pathogenesis of MADD. The decreased adenosine triphosphate synthesis, dissipated mitochondrial membrane potentials, reduced mitochondrial bioenergetics, and increased neutral lipid droplets and lipid peroxides were found in the MADD patient-derived lymphoblastoid cells. Riboflavin and/or coenzyme Q10 supplementation rescued cells from lipid droplet accumulation. All three mutant types, c.92C>T, c.250G>A, or c.92C>T + c.250G>A, had increased lipid droplet accumulation after treatment with palmitic acid. These results help to clarify the molecular pathogenesis of MADD as a result of the high frequency of the ETFDH c.250G>A and c.92C>T mutations.
Collapse
|
108
|
Pennisi EM, Garibaldi M, Antonini G. Lipid Myopathies. J Clin Med 2018; 7:E472. [PMID: 30477112 PMCID: PMC6306737 DOI: 10.3390/jcm7120472] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023] Open
Abstract
Disorders of lipid metabolism affect several tissues, including skeletal and cardiac muscle tissues. Lipid myopathies (LM) are rare multi-systemic diseases, which most often are due to genetic defects. Clinically, LM can have acute or chronic clinical presentation. Disease onset can occur in all ages, from early stages of life to late-adult onset, showing with a wide spectrum of clinical symptoms. Muscular involvement can be fluctuant or stable and can manifest as fatigue, exercise intolerance and muscular weakness. Muscular atrophy is rarely present. Acute muscular exacerbations, resulting in rhabdomyolysis crisis are triggered by several factors. Several classifications of lipid myopathies have been proposed, based on clinical involvement, biochemical defect or histopathological findings. Herein, we propose a full revision of all the main clinical entities of lipid metabolism disorders with a muscle involvement, also including some those disorders of fatty acid oxidation (FAO) with muscular symptoms not included among previous lipid myopathies classifications.
Collapse
Affiliation(s)
- Elena Maria Pennisi
- Unit of Neuromuscular Disorders, Neurology, San Filippo Neri Hospital, 00135 Rome, Italy.
| | - Matteo Garibaldi
- Unit of Neuromuscular Diseases, Department of Neurology, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant' Andrea Hospital, 00189 Rome, Italy.
| | - Giovanni Antonini
- Unit of Neuromuscular Diseases, Department of Neurology, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant' Andrea Hospital, 00189 Rome, Italy.
| |
Collapse
|
109
|
Missaglia S, Tavian D, Moro L, Angelini C. Characterization of two ETFDH mutations in a novel case of riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Lipids Health Dis 2018; 17:254. [PMID: 30424791 PMCID: PMC6234560 DOI: 10.1186/s12944-018-0903-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Deficiency of electron transfer flavoprotein dehydrogenase (ETFDH) is associated with multiple acyl-CoA dehydrogenase deficiency (MADD). This disorder is an autosomal recessive lipid storage myopathy (LSM) that exhibits a wide range of clinical features, including myopathy, weakness and multisystem dysfunctions. Many patients with late onset of MADD improve when treated with riboflavin and are also referred to as RR-MADD (riboflavin-responsive multiple Acyl-CoA dehydrogenase disorder). METHODS In this study, we report the clinical and genetic characterization of a novel RR-MADD patient. Biochemical data were obtained from analysis of muscle and plasma samples. DNA and RNA were extracted from peripheral blood, and sequence analysis and expression study of ETFDH gene were performed. Finally, the impact of mutations on ETFDH folding was evaluated using bioinformatic tools. RESULTS Patient initially presented with vomiting, muscle weakness, and acidosis. Muscle biopsy revealed typical myopathological patterns of lipid storage myopathy and blood acylcarnitine profiles showed a combined elevation of long and medium chain acylcarnitines, supporting the diagnosis of RR-MADD. Molecular analysis of ETFDH gene revealed two heterozygous mutations, a novel splice variation in intron 10, c.1285 + 1G > A, and the previously reported c.560C > T missense mutation. RT-PCR analysis showed an alteration of ETFDH RNA splicing which in turn should lead to the production of a truncated protein. The in silico prediction analysis of ETFDH tridimensional structure demonstrated that the missense mutation resulted in instability and loss of protein activation, while the splice site variation induced a dramatic conformational change of the truncated protein. After MCT diet supplemented with carnitine and riboflavin, the patient showed significant biochemical and clinical improvement, in spite of severe molecular defect. CONCLUSION This case report extends the spectrum of ETFDH mutations in MADD, providing further evidence that patients presenting at least one missense mutation in the FAD-binding domain may respond to either carnitine or riboflavin treatment, due to the recovery of some enzymatic activity.
Collapse
Affiliation(s)
- Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Catholic University of the Sacred Heart, pz Buonarroti 30, 20145 Milan, Italy
- Psychology Department, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy
| | - Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Catholic University of the Sacred Heart, pz Buonarroti 30, 20145 Milan, Italy
- Psychology Department, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Lgo Donegani 2, 28100 Novara, Italy
| | - Corrado Angelini
- Fondazione Ospedale San Camillo IRCCS, via Alberoni 70, 30126 Venice, Italy
| |
Collapse
|
110
|
Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency. J Hum Genet 2018; 64:73-85. [PMID: 30401918 DOI: 10.1038/s10038-018-0527-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial fatty acid oxidation disorders (FAODs) are caused by defects in β-oxidation enzymes, including very long-chain acyl-CoA dehydrogenase (VLCAD), trifunctional protein (TFP), carnitine palmitoyltransferase-2 (CPT2), carnitine-acylcarnitine translocase (CACT) and others. During prolonged fasting, infection, or exercise, patients with FAODs present with hypoglycemia, rhabdomyolysis, cardiomyopathy, liver dysfunction, and occasionally sudden death. This article describes the diagnosis, newborn screening, and treatment of long-chain FAODs with a focus on VLCAD deficiency. VLCAD deficiency is generally classified into three phenotypes based on onset time, but the classification should be comprehensively determined based on genotype, residual enzyme activity, and clinical course, due to a lack of apparent genotype-phenotype correlation. With the expansion of newborn screening for FAODs, several issues have arisen, such as missed detection, overdiagnosis (including detection of benign/asymptomatic type), and poor prognosis of the neonatal-onset form. Meanwhile, dietary management and restriction of exercise have been unnecessary for patients with the benign/asymptomatic type of VLCAD deficiency with a high fatty acid oxidation flux score. Although L-carnitine therapy for VLCAD/TFP deficiency has been controversial, supplementation with L-carnitine may be accepted for CPT2/CACT and multiple acyl-CoA dehydrogenase deficiencies. Recently, a double-blind, randomized controlled trial of triheptanoin (seven-carbon fatty acid triglyceride) versus trioctanoin (regular medium-chain triglyceride) was conducted and demonstrated improvement of cardiac functions on triheptanoin. Additionally, although the clinical efficacy of bezafibrate remains controversial, a recent open-label clinical trial showed efficacy of this drug in improving quality of life. These drugs may be promising for the treatment of FAODs, though further studies are required.
Collapse
|
111
|
Feng LF, Chen XH, Li DX, Li XY, Song JQ, Jin Y, Yang YL. [Reye syndrome and sudden death symptoms after oral administration of nimesulide due to upper respiratory tract infection in a boy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:944-949. [PMID: 30477628 PMCID: PMC7389020 DOI: 10.7499/j.issn.1008-8830.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/30/2018] [Indexed: 06/09/2023]
Abstract
A boy aged 6 years and 3 months developed upper respiratory tract infection and pyrexia 2 months ago and was given oral administration of nimesulide by his parents according to directions. Half an hour later, the boy experienced convulsions and cardiopulmonary arrest, and emergency examination found hypoketotic hypoglycemia, metabolic acidosis, significant increases in serum aminotransferases and creatine kinase, and renal damage. Recovery of consciousness and vital signs was achieved after cardiopulmonary resuscitation, but severe mental and movement regression was observed. The boy had a significant reduction in free carnitine in blood and significant increases in medium- and long-chain fatty acyl carnitine, urinary glutaric acid, 3-hydroxy glutaric acid, isovalerylglycine, and ethylmalonic acid, suggesting the possibility of multiple acyl-CoA dehydrogenase deficiency. After the treatment with vitamin B2, L-carnitine, and bezafibrate, the boy gradually improved, and reexamination after 3 months showed normal biochemical parameters. The boy had compound heterozygous mutations in the ETFDH gene, i.e., a known mutation, c.341G>A (p.R114H), from his mother and a novel mutation, c.1484C>G (p.P495R), from his father. Finally, he was diagnosed with multiple acyl-CoA dehydrogenase deficiency. Reye syndrome and sudden death symptoms were caused by nimesulide-induced acute metabolic crisis. It is concluded that inherited metabolic diseases may be main causes of Reye syndrome and sudden death, and biochemical and genetic analyses are the key to identifying underlying diseases.
Collapse
Affiliation(s)
- Li-Fang Feng
- Department of Endocrinology and Metabolism, Tongji Medical College, Wuhan Children's Hospital, Huazhong University of Science and Technology, Wuhan 430015, China.
| | | | | | | | | | | | | |
Collapse
|
112
|
Feng LF, Chen XH, Li DX, Li XY, Song JQ, Jin Y, Yang YL. [Reye syndrome and sudden death symptoms after oral administration of nimesulide due to upper respiratory tract infection in a boy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:944-949. [PMID: 30477628 PMCID: PMC7389020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/30/2018] [Indexed: 11/12/2023]
Abstract
A boy aged 6 years and 3 months developed upper respiratory tract infection and pyrexia 2 months ago and was given oral administration of nimesulide by his parents according to directions. Half an hour later, the boy experienced convulsions and cardiopulmonary arrest, and emergency examination found hypoketotic hypoglycemia, metabolic acidosis, significant increases in serum aminotransferases and creatine kinase, and renal damage. Recovery of consciousness and vital signs was achieved after cardiopulmonary resuscitation, but severe mental and movement regression was observed. The boy had a significant reduction in free carnitine in blood and significant increases in medium- and long-chain fatty acyl carnitine, urinary glutaric acid, 3-hydroxy glutaric acid, isovalerylglycine, and ethylmalonic acid, suggesting the possibility of multiple acyl-CoA dehydrogenase deficiency. After the treatment with vitamin B2, L-carnitine, and bezafibrate, the boy gradually improved, and reexamination after 3 months showed normal biochemical parameters. The boy had compound heterozygous mutations in the ETFDH gene, i.e., a known mutation, c.341G>A (p.R114H), from his mother and a novel mutation, c.1484C>G (p.P495R), from his father. Finally, he was diagnosed with multiple acyl-CoA dehydrogenase deficiency. Reye syndrome and sudden death symptoms were caused by nimesulide-induced acute metabolic crisis. It is concluded that inherited metabolic diseases may be main causes of Reye syndrome and sudden death, and biochemical and genetic analyses are the key to identifying underlying diseases.
Collapse
Affiliation(s)
- Li-Fang Feng
- Department of Endocrinology and Metabolism, Tongji Medical College, Wuhan Children's Hospital, Huazhong University of Science and Technology, Wuhan 430015, China.
| | | | | | | | | | | | | |
Collapse
|
113
|
Kim SY, Ko JM, Choi SA, Cho A, Lee JS, Lim BC, Kim KJ, Chae JH. A 3-Month-Old Boy With Progressive Weakness. Brain Pathol 2018; 28:773-774. [PMID: 30375113 DOI: 10.1111/bpa.12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Soo Yeon Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Jung Min Ko
- Department of Genetics, Seoul National University College of Medicine, Seoul, Korea
| | - Sun Ah Choi
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Anna Cho
- Department of Pediatrics, Ewha Woman's University School of Medicine, Seoul, Korea
| | - Jin Sook Lee
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| |
Collapse
|
114
|
Fischer T, Och U, Marquardt T. Long-term ketone body therapy of severe multiple acyl-CoA dehydrogenase deficiency: A case report. Nutrition 2018; 60:122-128. [PMID: 30557775 DOI: 10.1016/j.nut.2018.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Multiple acyl-CoA dehydrogenase deficiency (MADD) is the most severe disorder of mitochondrial fatty acid β-oxidation. Treatment of this disorder is difficult because the functional loss of the electron transfer flavoprotein makes energy supply from fatty acids impossible. Acetyl-CoA, provided by exogenous ketone bodies such as NaßHB, is the only treatment option in severe cases. Short-term therapy attempts have shown positive results. To our knowledge, no reports exist concerning long-term application of ketone body salts in patients with severe MADD. METHODS This case report is a detailed retrospective metabolic analysis of a boy with severe MADD. Treatment with sodium β-hydroxybutyrate (NaβHB) started 8 d after birth using gradually increasing doses. In the initial phase, metabolic and acid-base parameters were checked multiple times a day. After 8 y of standardized therapy with 16 g NaβHB, substitution with calcium β-hydroxybutyrate (CaβHB) was attempted. In addition to the β-hydroxybutyrate (βHB) supplementation, continuous adjustments were made to the child's nutrition to provide necessary nutrients. RESULTS Treatment with βHB salts leads to adverse effects like gastrointestinal discomfort and alkalosis. Measured concentrations of βHB were predominantly at 0.1 mmol/L or below detectable concentration. Nutritional therapy based on amino acid and acylcarnitine profiles is a necessary part of the therapy in MADD. CONCLUSIONS Therapy with NaβHB is lifesaving in cases of severe MADD but can have significant adverse effects. Supplementation with CaβHB led to gastrointestinal discomfort and had no additional positive clinical effect. The determined tolerable dose of βHB salt for long-term therapy was not high enough for a notable increase of βHB concentrations in blood.
Collapse
Affiliation(s)
- Tobias Fischer
- University of Applied Sciences Muenster, Department of Food, Nutrition, and Facilities, Muenster, Germany; University Hospital Muenster, Department of Pediatrics, Muenster, Germany.
| | - Ulrike Och
- University Hospital Muenster, Department of Pediatrics, Muenster, Germany
| | - Thorsten Marquardt
- University Hospital Muenster, Department of Pediatrics, Muenster, Germany
| |
Collapse
|
115
|
Ryder B, Tolomeo M, Nochi Z, Colella M, Barile M, Olsen RK, Inbar-Feigenberg M. A Novel Truncating FLAD1 Variant, Causing Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) in an 8-Year-Old Boy. JIMD Rep 2018; 45:37-44. [PMID: 30311138 DOI: 10.1007/8904_2018_139] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is a clinically heterogeneous disorder affecting fatty acid and amino acid metabolism. Presentations range from a severe neonatal form with hypoglycemia, metabolic acidosis, and hepatomegaly with or without congenital anomalies to later-onset lipid storage myopathy. Genetic testing for MADD traditionally comprises analysis of ETFA, ETFB, and ETFDH. Patients may respond to pharmacological doses of riboflavin, particularly those with late-onset MADD due to variants in ETFDH. Increasingly other genes involved in riboflavin transport and flavoprotein biosynthesis are recognized as causing a MADD phenotype. Flavin adenine dinucleotide synthase (FADS) deficiency caused by biallelic variants in FLAD1 has been identified in nine previous cases of MADD. FLAD1 missense mutations have been associated with a riboflavin-responsive phenotype; however the effect of riboflavin with biallelic loss of function FLAD1 mutations required further investigation. Herein we describe a novel, truncating variant in FLAD1 causing MADD in an 8-year-old boy. Fibroblast studies showed a dramatic reduction in FADS protein with corresponding reduction in the FAD synthesis rate and FAD cellular content, beyond that previously documented in FLAD1-related MADD. There was apparent biochemical and clinical response to riboflavin treatment, beyond that previously reported in cases of biallelic loss of function variants in FLAD1. Early riboflavin treatment may have attenuated an otherwise severe phenotype.
Collapse
Affiliation(s)
- B Ryder
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada. .,National Metabolic Service, Starship Children's Hospital, Auckland, New Zealand.
| | - M Tolomeo
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Z Nochi
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - M Colella
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - M Barile
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - R K Olsen
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - M Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
116
|
Chokchaiwong S, Kuo YT, Lin SH, Hsu YC, Hsu SP, Liu YT, Chou AJ, Kao SH. Coenzyme Q10 serves to couple mitochondrial oxidative phosphorylation and fatty acid β-oxidation, and attenuates NLRP3 inflammasome activation. Free Radic Res 2018; 52:1445-1455. [PMID: 30003820 DOI: 10.1080/10715762.2018.1500695] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD), an autosomal recessive metabolic disorder of fatty acid metabolism, is mostly caused by mutations in the ETFA, ETFB or ETFDH genes that result in dysfunctions in electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone dehydrogenase (ETFDH). In β-oxidation, fatty acids are processed to generate acyl-CoA, which is oxidised by flavin adenine dinucleotide and transfers an electron to ETF and, through ETFDH, to mitochondrial respiratory complex III to trigger ATP synthesis. Coenzyme Q10 (CoQ10) is believed to be a potential treatment that produces symptom relief in some MADD patients. CoQ10 acts as a key regulator linking ETFDH and mitochondrial respiratory complex III. Our aim is to investigate the effectiveness of CoQ10 in serving in the ETF/ETFDH system to improve mitochondrial function and to reduce lipotoxicity. In this study, we used lymphoblastoid cells with an ETFDH mutation from MADD patients. ETFDH dysfunction caused insufficient β-oxidation, leading to increasing lipid droplet and lipid peroxide accumulation. In contrast, supplementation with CoQ10 significantly recovered mitochondrial function and concurrently decreased the generation of reactive oxygen species and lipid peroxides, inhibited the accumulation of lipid droplets and the formation of the NOD-like receptor family pyrin domain-containing three (NLRP3) inflammasome, and reduced interleukin-1β release and cell death. These results clarify the causal role of CoQ10 in coupling the electron transport chain with β-oxidation, which may promote the development of CoQ10-directed therapies for MADD patients.
Collapse
Affiliation(s)
- Suphannee Chokchaiwong
- a Ph.D. Program in Medical Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Yung-Ting Kuo
- b Department of Pediatrics, School of Medicine , College of Medicine, Taipei Medical University , Taipei , Taiwan.,c Department of Pediatrics , Shuang Ho Hospital, Taipei Medical University , Taipei , Taiwan
| | - Shih-Hsiang Lin
- d School of Medical Laboratory Science and Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Yi-Ching Hsu
- d School of Medical Laboratory Science and Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Sung-Po Hsu
- e Department of Physiology, School of Medicine , College of Medicine, Taipei Medical University , Taipei , Taiwan
| | - Yu-Ting Liu
- f Taipei First Girls' High School , Taipei , Taiwan
| | - An-Je Chou
- f Taipei First Girls' High School , Taipei , Taiwan
| | - Shu-Huei Kao
- a Ph.D. Program in Medical Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan.,d School of Medical Laboratory Science and Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
117
|
Zhao YW, Liu XJ, Zhang W, Wang ZX, Yuan Y. Muscle Magnetic Resonance Imaging for the Differentiation of Multiple Acyl-CoA Dehydrogenase Deficiency and Immune-mediated Necrotizing Myopathy. Chin Med J (Engl) 2018; 131:144-150. [PMID: 29336361 PMCID: PMC5776843 DOI: 10.4103/0366-6999.222323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Clinically, it is difficult to differentiate multiple acyl-CoA dehydrogenase deficiency (MADD) from immune-mediated necrotizing myopathy (IMNM) because they display similar symptoms. This study aimed to determine whether muscle magnetic resonance imaging (MRI) could be used for differential diagnosis between MADD and IMNM. Methods: The study evaluated 25 MADD patients, confirmed by muscle biopsy and ETFDH gene testing, and 30 IMNM patients, confirmed by muscle biopsy. Muscles were assessed for edema and fatty replacement using thigh MRI (tMRI). Degrees and distribution patterns of fatty infiltration and edema in gluteus maximus and thigh muscles were compared. Results: Total fatty infiltration and edema scores (median, [Q1, Q3]) were 4.00 (1.00, 15.00) and 0 (0, 4.00) in MADD and 14.50 (8.00, 20.75) and 22.00 (16.75, 32.00) in IMNM, respectively, which were significantly more severe in IMNM than that in MADD (P = 0.000 and P = 0.004, respectively). Edema scores for gluteus maximus, long head of biceps femoris, and semimembranosus were significantly higher in IMNM than in MADD (all P = 0.000). Fatty infiltration scores for anterior and medial compartments were significantly more severe in IMNM than that in MADD (all P = 0.000). Conclusion: Different patterns of muscle involvement on tMRI can contribute to differential diagnosis between MADD and IMNM when clinical suspicions alone are insufficient, thereby reducing the need for muscle biopsy.
Collapse
Affiliation(s)
- Ya-Wen Zhao
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Xiu-Juan Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhao-Xia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
118
|
Use of a Standard Newborn Screening Test for the Rapid Diagnosis of Inhibited ß-Oxidation in Atypical Myopathy in Horses. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
119
|
Silva AM, Mendonça RH, Soares DC, Callegaro D, Caldas VM, Perissinotti IN, Carvalho MS, Zanoteli E. Pearls & Oy-sters: A curable myopathy manifesting as exercise intolerance and respiratory failure. Neurology 2018; 91:187-190. [DOI: 10.1212/wnl.0000000000005867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
120
|
Gao A, Qiao LW, Duan CY, Zhao NN, Zhang W, Zhang Q. [A novel mutation in the ETFDH gene of an infant with multiple acyl-CoA dehydrogenase deficiency]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:529-533. [PMID: 30022752 PMCID: PMC7389198 DOI: 10.7499/j.issn.1008-8830.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
This article reports the results of tandem mass spectrometry and the mutation features of the ETFDH gene for an infant with multiple acyl-CoA dehydrogenase deficiency. The results of tandem mass spectrometry showed that C14 : 1, C8, C6, C10, and C12 increased. Exon sequencing was performed on this infant and his parents and revealed double heterozygous mutations in the ETFDH gene of the infant: c.992A>T and c.1450T>C. The former was inherited from his mother, and the latter was inherited from his father. c.1450T>C was shown to be the pathogenic mutation in the HGMD database. PolyPhen2, SIFT, and PROVEAN all predicted that the novel mutation c.992A>T might be pathogenic, and the mutant amino acids were highly conserved across various species. The findings expand the mutation spectrum of the ETFDH gene, and provide molecular evidence for the etiological diagnosis of the patient with multiple acyl-CoA dehydrogenase deficiency as well as for the genetic counseling and prenatal diagnosis in the family.
Collapse
Affiliation(s)
- Ang Gao
- Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University/Suzhou Municipal Hospital, Suzhou, Jiangsu 215000, China.
| | | | | | | | | | | |
Collapse
|
121
|
Pinn TL, Divers TJ, Southard T, De Bernardis NP, Wakshlag JJ, Valberg S. Persistent hypoglycemia associated with lipid storage myopathy in a paint foal. J Vet Intern Med 2018; 32:1442-1446. [PMID: 29957835 PMCID: PMC6060329 DOI: 10.1111/jvim.15218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/15/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022] Open
Abstract
A 12‐hours‐old Paint filly was examined because of weakness and dull mentation after birth. Despite IV administered dextrose, the foal remained persistently hypoglycemic with increase in serum activity of muscle and liver enzymes. A postmortem diagnosis of lipid myopathy most similar to multiple acyl‐CoA dehydrogenase deficiency (MADD) was confirmed by findings of myofiber lipid accumulation, elevated urine organic acids, and serum free acylcarnitines with respect to control foals. This report details a case of equine neonatal lipid storage myopathy with many biochemical characteristics of MADD. Lipid storage myopathies should be included as a differential diagnosis in foals with persistent weakness and hypoglycemia.
Collapse
Affiliation(s)
- Toby L Pinn
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York
| | - Thomas J Divers
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York
| | - Teresa Southard
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York
| | | | - Joe J Wakshlag
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York
| | - Stephanie Valberg
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| |
Collapse
|
122
|
Goh LL, Lee Y, Tan ES, Lim JSC, Lim CW, Dalan R. Patient with multiple acyl-CoA dehydrogenase deficiency disease and ETFDH mutations benefits from riboflavin therapy: a case report. BMC Med Genomics 2018; 11:37. [PMID: 29615056 PMCID: PMC5883299 DOI: 10.1186/s12920-018-0356-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/26/2018] [Indexed: 12/03/2022] Open
Abstract
Background Lipid storage myopathy (LSM) is a diverse group of lipid metabolic disorders with great variations in the clinical phenotype and age of onset. Classical multiple acyl-CoA dehydrogenase deficiency (MADD) is known to occur secondary to mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene. Whole exome sequencing (WES) with clinical correlations can be useful in identifying genomic alterations for targeted therapy. Case presentation We report a patient presented with severe muscle weakness and exercise intolerance, suggestive of LSM. Diagnostic testing demonstrated lipid accumulation in muscle fibres and elevated plasma acyl carnitine levels. Exome sequencing of the proband and two of his unaffected siblings revealed compound heterozygous mutations, c.250G > A (p.Ala84Thr) and c.770A > G (p.Tyr257Cys) in the ETFDH gene as the probable causative mutations. In addition, a previously unreported variant c.1042C > T (p.Arg348Trp) in ACOT11 gene was found. This missense variant was predicted to be deleterious but its association with lipid storage in muscle is unclear. The diagnosis of MADD was established and the patient was treated with riboflavin which resulted in rapid clinical and biochemical improvement. Conclusions Our findings support the role of WES as an effective tool in the diagnosis of highly heterogeneous disease and this has important implications in the therapeutic strategy of LSM treatment. Electronic supplementary material The online version of this article (10.1186/s12920-018-0356-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liuh Ling Goh
- Molecular Diagnostic Laboratory, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Yingshan Lee
- Department of Endocrinology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Ee Shien Tan
- Department of Paediatrics, Genetics Services, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - James Soon Chuan Lim
- Biochemical Genetics and National Expanded Newborn Screening, Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Chia Wei Lim
- Molecular Diagnostic Laboratory, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore. .,Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore.
| |
Collapse
|
123
|
Mosegaard S, Bruun GH, Flyvbjerg KF, Bliksrud YT, Gregersen N, Dembic M, Annexstad E, Tangeraas T, Olsen RKJ, Andresen BS. An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Mol Genet Metab 2017; 122:182-188. [PMID: 29122468 DOI: 10.1016/j.ymgme.2017.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 11/23/2022]
Abstract
Vitamin B2, riboflavin is essential for cellular function, as it participates in a diversity of redox reactions central to human metabolism, through its role as precursor for the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are electron carriers. The electron transfer flavoprotein (ETF) and its dehydrogenase (ETFDH), uses FAD as cofactor. The ETF and ETFDH are forming the electron transport pathway for many mitochondrial flavoprotein dehydrogenases involved in fatty acid, amino acid and choline metabolism. A variation in either ETF or ETFDH causes multiple acyl-CoA dehydrogenation deficiency (MADD), but genetic variations in the riboflavin metabolism or transportation of riboflavin can also cause MADD. The most common variations are located in the riboflavin transporter 2 (RFVT2) and 3 (RFVT3), that are highly expressed in brain and intestinal tissues, respectively. Deficiency of riboflavin transporter 1 (RFVT1), encoded by the SLC52A1 gene, highly expressed in the placenta, has only been reported once. We here report a case of transient MADD, caused by a heterozygous intronic variation, c.1134+11G>A, in the SLC52A1 gene encoding RFVT1. This variation creates a binding site for the splice inhibitory hnRNP A1 protein and causes exon 4 skipping. Riboflavin deficiency and maternal malnutrition during pregnancy might have been the determining factor in the outcome of this case.
Collapse
Affiliation(s)
- Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Karen Freund Flyvbjerg
- Department of Biochemistry and Molecular Biology, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ellen Annexstad
- Ostfold Hospital Trust, Women's and Children's Department, Norway
| | - Trine Tangeraas
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
124
|
van der Westhuizen FH, Smuts I, Honey E, Louw R, Schoonen M, Jonck LM, Dercksen M. A novel mutation in ETFDH manifesting as severe neonatal-onset multiple acyl-CoA dehydrogenase deficiency. J Neurol Sci 2017; 384:121-125. [PMID: 29249369 DOI: 10.1016/j.jns.2017.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/19/2017] [Accepted: 11/14/2017] [Indexed: 02/08/2023]
Abstract
Neonatal-onset multiple acyl-CoA dehydrogenase deficiency (MADD type I) is an autosomal recessive disorder of the electron transfer flavoprotein function characterized by a severe clinical and biochemical phenotype, including congenital abnormalities with unresponsiveness to riboflavin treatment as distinguishing features. From a retrospective study, relying mainly on metabolic data, we have identified a novel mutation, c.1067G>A (p.Gly356Glu) in exon 8 of ETFDH, in three South African Caucasian MADD patients with the index patient presenting the hallmark features of type I MADD and two patients with compound heterozygous (c.1067G>A+c.1448C>T) mutations presenting with MADD type III. SDS-PAGE western blot confirmed the significant effect of this mutation on ETFDH structural instability. The identification of this novel mutation in three families originating from the South African Afrikaner population is significant to direct screening and strategies for this disease, which amongst the organic acidemias routinely screened for, is relatively frequently observed in this population group.
Collapse
Affiliation(s)
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | - Engela Honey
- Department of Genetics, University of Pretoria, South Africa
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Lindi-Maryn Jonck
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Marli Dercksen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
125
|
Vengalil S, Preethish-Kumar V, Polavarapu K, Christopher R, Gayathri N, Natarajan A, Manjunath M, Nashi S, Prasad C, Nalini A. Fatty acid oxidation defects presenting as primary myopathy and prominent dropped head syndrome. Neuromuscul Disord 2017; 27:986-996. [DOI: 10.1016/j.nmd.2017.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/11/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
|
126
|
Chen M, Peng J, Wei W, Wang R, Xu H, Liu H. A novel ETFDH mutation in an adult patient with late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Int J Neurosci 2017; 128:291-294. [PMID: 28914566 DOI: 10.1080/00207454.2017.1380641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM OF THE STUDY To report a novel mutation in the electron transfer flavoprotein dehydrogenase (ETFDH) gene in an adult patient with late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. MATERIALS AND METHODS The genomic DNAs from a patient whose main clinical presentations are muscles weakness and hypoglycemia was analysed. RESULTS The patient was identified to carry compound heterozygous mutations in ETFDH gene. Two missense mutations c.814 G > A and c.389 A > T were found. CONCLUSION This is the first report of c.814G > A mutation in ETFDH in adult patient with MADD.
Collapse
Affiliation(s)
- Min Chen
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Jing Peng
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Wei Wei
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Rui Wang
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Hongliang Xu
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Hongbo Liu
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| |
Collapse
|
127
|
Cui YJ, Song CL, Cheng YB. [Paroxysmal muscle weakness, liver enlargement, and hypoglycemia in a boy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1104-1108. [PMID: 29046209 PMCID: PMC7389283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/21/2017] [Indexed: 11/12/2023]
Abstract
A boy aged 11 years was admitted due to intermittent weakness and difficulty in walking for 6 years, and hepatomegaly, glycopenia and unconsciousness for 4 years. The laboratory examinations showed severe metabolic acidosis, hypoglycemia, and abnormal liver function. CT scan showed marked liver enlargement with fat density shadow. The boy was given fluid infusion, correction of acidosis, intravenous injection of glucose, L-carnitine, compound vitamin B, and coenzyme Q10, but he was in a persistent coma and it was difficult to correct refractory metabolic acidosis and hypoglycemia. The boy died. Blood and urinary organic acid screening and gene detection confirmed that the boy had late-onset glutaric aciduria type II (GAIIc) caused by electron-transferring-flavoprotein dehydrogenase (ETFDH) gene defect. GAIIc is an inherited metabolic disease with a low incidence, resulting in a high misdiagnosis rate. GAIIc should be considered for children with recurrent weakness or reduced activity endurance, hypoglycemia, and marked liver enlargement with abnormal liver function. Urinary organic acid analysis and blood tandem mass spectrometry can help with the early diagnosis of GAIIc, and ETFDH gene analysis helps to make a confirmed diagnosis.
Collapse
Affiliation(s)
- Ya-Jie Cui
- Department of ICU, Zhengzhou Children's Hospital, Zhengzhou 450003, China.
| | | | | |
Collapse
|
128
|
Cui YJ, Song CL, Cheng YB. [Paroxysmal muscle weakness, liver enlargement, and hypoglycemia in a boy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1104-1108. [PMID: 29046209 PMCID: PMC7389283 DOI: 10.7499/j.issn.1008-8830.2017.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
A boy aged 11 years was admitted due to intermittent weakness and difficulty in walking for 6 years, and hepatomegaly, glycopenia and unconsciousness for 4 years. The laboratory examinations showed severe metabolic acidosis, hypoglycemia, and abnormal liver function. CT scan showed marked liver enlargement with fat density shadow. The boy was given fluid infusion, correction of acidosis, intravenous injection of glucose, L-carnitine, compound vitamin B, and coenzyme Q10, but he was in a persistent coma and it was difficult to correct refractory metabolic acidosis and hypoglycemia. The boy died. Blood and urinary organic acid screening and gene detection confirmed that the boy had late-onset glutaric aciduria type II (GAIIc) caused by electron-transferring-flavoprotein dehydrogenase (ETFDH) gene defect. GAIIc is an inherited metabolic disease with a low incidence, resulting in a high misdiagnosis rate. GAIIc should be considered for children with recurrent weakness or reduced activity endurance, hypoglycemia, and marked liver enlargement with abnormal liver function. Urinary organic acid analysis and blood tandem mass spectrometry can help with the early diagnosis of GAIIc, and ETFDH gene analysis helps to make a confirmed diagnosis.
Collapse
Affiliation(s)
- Ya-Jie Cui
- Department of ICU, Zhengzhou Children's Hospital, Zhengzhou 450003, China.
| | | | | |
Collapse
|
129
|
Sander J, Terhardt M, Sander S, Janzen N. Quantification of Methylenecyclopropyl Compounds and Acyl Conjugates by UPLC-MS/MS in the Study of the Biochemical Effects of the Ingestion of Canned Ackee (Blighia sapida) and Lychee (Litchi chinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2603-2608. [PMID: 28290200 DOI: 10.1021/acs.jafc.7b00224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Consumption of ackee (Blighia sapida) and lychee (Litchi chinensis) fruit has led to severe poisoning. Considering their expanded agricultural production, toxicological evaluation has become important. Therefore, the biochemical effects of eating 1 g/kg canned ackee, containing 99.2 μmol/kg hypoglycin A, and 5 g/kg canned lychee, containing 1.3 μmol/kg hypoglycin A, were quantified in a self-experiment. Using ultra-high-performance liquid chromatography/mass spectrometry, hypoglycin A, methylenecyclopropylacetyl-glycine, and methylenecyclopropylformyl-glycine, as well as the respective carnitine conjugates, were found in urine after ingesting ackee. Hypoglycin A and its glycine derivative were also present in urine after eating lychee. Excretion of physiological acyl conjugates was significantly increased in the ackee experiment. Ingestion of ackee led to up to 15.1 nmol/L methylenecyclopropylacetyl-glycine and traces of methylenecyclopropylformyl-carnitine in the serum. These compounds were not found in the serum after eating lychee. Hypoglycin A accumulated in the serum in both experiments.
Collapse
Affiliation(s)
- Johannes Sander
- Screening-Labor Hannover, P.O. Box 91 10 09, 30430 Hannover, Germany
| | - Michael Terhardt
- Screening-Labor Hannover, P.O. Box 91 10 09, 30430 Hannover, Germany
| | - Stefanie Sander
- Screening-Labor Hannover, P.O. Box 91 10 09, 30430 Hannover, Germany
| | - Nils Janzen
- Screening-Labor Hannover, P.O. Box 91 10 09, 30430 Hannover, Germany
- Department of Clinical Chemistry, Hannover Medical School , Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
130
|
Auranen M, Paetau A, Piirilä P, Pohju A, Salmi T, Lamminen A, Löfberg M, Mosegaard S, Olsen RK, Tyni T. Patient with multiple acyl-CoA dehydrogenation deficiency disease and FLAD1 mutations benefits from riboflavin therapy. Neuromuscul Disord 2017; 27:581-584. [PMID: 28433476 DOI: 10.1016/j.nmd.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/30/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
Abstract
Multiple acyl-CoA dehydrogenation deficiency is genetically heterogenous metabolic disease with mutations in genes involved in electron transfer to the mitochondrial respiratory chain. Disease symptoms vary from severe neonatal form to late-onset presentation with metabolic acidosis, lethargy, vomiting, muscle pain and weakness. Riboflavin therapy has been shown to ameliorate diseases symptoms in some of these patients. Recently, mutations in FAD synthase have been described to cause multiple acyl-CoA dehydrogenation deficiency. We describe here the effect of riboflavin supplementation therapy in a previously reported adult patient with multiple acyl-CoA dehydrogenation deficiency having compound heterozygous gene variations in FLAD1 (MIM: 610595) encoding FAD synthase. We present thorough clinical history including laboratory investigations, muscle MRI, muscle biopsy and spiroergometric analyses comprising of a follow-up of 20 years. Our data suggest that patients with adult-onset multiple acyl-CoA dehydrogenation deficiency with FLAD1 gene mutations also benefit from long-term riboflavin therapy.
Collapse
Affiliation(s)
- M Auranen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland.
| | - A Paetau
- Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, Finland
| | - P Piirilä
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - A Pohju
- Clinical Nutrition Unit, Helsinki University Hospital, Finland
| | - T Salmi
- Department of Clinical Neurophysiology, Medical Imaging Center, Helsinki University Hospital, Finland
| | - A Lamminen
- Department of Radiology, Medical Imaging Center, Helsinki University Hospital, Finland
| | - M Löfberg
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| | - S Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Health, Aarhus University Hospital and Aarhus University, Denmark
| | - R K Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Health, Aarhus University Hospital and Aarhus University, Denmark
| | - T Tyni
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Department of Pediatric Neurology, Hospital for Children and Adolescence, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
131
|
Scarpelini B, Zanoni M, Sucupira MCA, Truong HHM, Janini LMR, Segurado IDC, Diaz RS. Plasma Metabolomics Biosignature According to HIV Stage of Infection, Pace of Disease Progression, Viremia Level and Immunological Response to Treatment. PLoS One 2016; 11:e0161920. [PMID: 27941971 PMCID: PMC5152829 DOI: 10.1371/journal.pone.0161920] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/15/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We evaluated plasma samples HIV-infected individuals with different phenotypic profile among five HIV-infected elite controllers and five rapid progressors after recent HIV infection and one year later and from 10 individuals subjected to antiretroviral therapy, five of whom were immunological non-responders (INR), before and after one year of antiretroviral treatment compared to 175 samples from HIV-negative patients. A targeted quantitative tandem mass spectrometry metabolomics approach was used in order to determine plasma metabolomics biosignature that may relate to HIV infection, pace of HIV disease progression, and immunological response to treatment. RESULTS Twenty-five unique metabolites were identified, including five metabolites that could distinguish rapid progressors and INRs at baseline. Severe deregulation in acylcarnitine and sphingomyelin metabolism compatible with mitochondrial deficiencies was observed. β-oxidation and sphingosine-1-phosphate-phosphatase-1 activity were down-regulated, whereas acyl-alkyl-containing phosphatidylcholines and alkylglyceronephosphate synthase levels were elevated in INRs. Evidence that elite controllers harbor an inborn error of metabolism (late-onset multiple acyl-coenzyme A dehydrogenase deficiency [MADD]) was detected. CONCLUSIONS Blood-based markers from metabolomics show a very high accuracy of discriminating HIV infection between varieties of controls and have the ability to predict rapid disease progression or poor antiretroviral immunological response. These metabolites can be used as biomarkers of HIV natural evolution or treatment response and provide insight into the mechanisms of the disease.
Collapse
Affiliation(s)
- Bruno Scarpelini
- Federal University of Sao Paulo, Department of Medicine, Sao Paulo—SP, Brazil
| | - Michelle Zanoni
- Federal University of Sao Paulo, Department of Medicine, Sao Paulo—SP, Brazil
| | | | - Hong-Ha M. Truong
- University of California at San Francisco, Department of Medicine, San Francisco, CA, United States of America
| | - Luiz Mario Ramos Janini
- Federal University of Sao Paulo, Department of Medicine, Sao Paulo—SP, Brazil
- Federal University of Sao Paulo, Department of Microbiology, Sao Paulo—SP, Brazil
| | | | - Ricardo Sobhie Diaz
- Federal University of Sao Paulo, Department of Medicine, Sao Paulo—SP, Brazil
- * E-mail:
| |
Collapse
|
132
|
Olsen RKJ, Koňaříková E, Giancaspero TA, Mosegaard S, Boczonadi V, Mataković L, Veauville-Merllié A, Terrile C, Schwarzmayr T, Haack TB, Auranen M, Leone P, Galluccio M, Imbard A, Gutierrez-Rios P, Palmfeldt J, Graf E, Vianey-Saban C, Oppenheim M, Schiff M, Pichard S, Rigal O, Pyle A, Chinnery PF, Konstantopoulou V, Möslinger D, Feichtinger RG, Talim B, Topaloglu H, Coskun T, Gucer S, Botta A, Pegoraro E, Malena A, Vergani L, Mazzà D, Zollino M, Ghezzi D, Acquaviva C, Tyni T, Boneh A, Meitinger T, Strom TM, Gregersen N, Mayr JA, Horvath R, Barile M, Prokisch H. Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency. Am J Hum Genet 2016; 98:1130-1145. [PMID: 27259049 PMCID: PMC4908180 DOI: 10.1016/j.ajhg.2016.04.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/13/2016] [Indexed: 12/27/2022] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.
Collapse
MESH Headings
- Adult
- Blotting, Western
- Case-Control Studies
- Cells, Cultured
- Electron Transport
- Female
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Flavin-Adenine Dinucleotide/metabolism
- Frameshift Mutation/genetics
- Gene Expression Profiling
- Humans
- Infant
- Infant, Newborn
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Mitochondrial Diseases/drug therapy
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/pathology
- Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy
- Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics
- Multiple Acyl Coenzyme A Dehydrogenase Deficiency/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mutagenesis, Site-Directed
- Nucleotidyltransferases/genetics
- Protein Binding
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Riboflavin/pharmacology
- Skin/drug effects
- Skin/metabolism
- Skin/pathology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Vitamin B Complex/pharmacology
- Young Adult
Collapse
Affiliation(s)
- Rikke K J Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark.
| | - Eliška Koňaříková
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Teresa A Giancaspero
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark
| | - Veronika Boczonadi
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Lavinija Mataković
- Department of Paediatrics, Paracelsus Medical University, SALK Salzburg, 5020 Salzburg, Austria
| | - Alice Veauville-Merllié
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie Est, Centre Hospitalier Universitaire Lyon, 69500 Bron, France
| | - Caterina Terrile
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tobias B Haack
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mari Auranen
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, 340 Helsinki, Finland
| | - Piero Leone
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Michele Galluccio
- Department DiBEST (Biology, Ecology, and Earth Sciences), University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Apolline Imbard
- Biochemistry Hormonology Laboratory, Robert-Debré Hospital, 75019 Paris, France; Pharmacy Faculty, Paris Sud University, 92019 Chatenay-Malabry, France
| | - Purificacion Gutierrez-Rios
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christine Vianey-Saban
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie Est, Centre Hospitalier Universitaire Lyon, 69500 Bron, France
| | - Marcus Oppenheim
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London WCIN 3BG, UK
| | - Manuel Schiff
- INSERM UMR 1141, Hôpital Robert Debré, 75019 Paris, France; Reference Center for Inherited Metabolic Diseases, Robert-Debré Hospital, Assistance Publique - Hôpitaux de Paris, 75019 Paris, France; Faculté de Médecine Denis Diderot, Université Paris Diderot (Paris 7), 75013 Paris, France
| | - Samia Pichard
- Reference Center for Inherited Metabolic Diseases, Robert-Debré Hospital, Assistance Publique - Hôpitaux de Paris, 75019 Paris, France
| | - Odile Rigal
- Biochemistry Hormonology Laboratory, Robert-Debré Hospital, 75019 Paris, France
| | - Angela Pyle
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Patrick F Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Dorothea Möslinger
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - René G Feichtinger
- Department of Paediatrics, Paracelsus Medical University, SALK Salzburg, 5020 Salzburg, Austria
| | - Beril Talim
- Pathology Unit, Department of Pediatrics, Hacettepe University Children's Hospital, 06100 Ankara, Turkey
| | - Haluk Topaloglu
- Neurology Unit, Department of Pediatrics, Hacettepe University Children's Hospital, 06100 Ankara, Turkey
| | - Turgay Coskun
- Metabolism Unit, Department of Pediatrics, Hacettepe University Children's Hospital, 06100 Ankara, Turkey
| | - Safak Gucer
- Pathology Unit, Department of Pediatrics, Hacettepe University Children's Hospital, 06100 Ankara, Turkey
| | - Annalisa Botta
- Medical Genetics Section, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Elena Pegoraro
- Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy
| | - Adriana Malena
- Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy
| | - Lodovica Vergani
- Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy
| | - Daniela Mazzà
- Italy Institute of Medical Genetics, Catholic University of Roma, 00168 Rome, Italy
| | - Marcella Zollino
- Italy Institute of Medical Genetics, Catholic University of Roma, 00168 Rome, Italy
| | - Daniele Ghezzi
- Molecular Neurogenetics Unit, Foundation IRCCS Neurological Institute C. Besta, 20126 Milan, Italy
| | - Cecile Acquaviva
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie Est, Centre Hospitalier Universitaire Lyon, 69500 Bron, France
| | - Tiina Tyni
- Department of Pediatric Neurology, Hospital for Children and Adolescence, Helsinki University Central Hospital, 280 Helsinki, Finland
| | - Avihu Boneh
- Murdoch Childrens Research Institute and University of Melbourne, Melbourne, VIC 3010, Australia
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark
| | - Johannes A Mayr
- Department of Paediatrics, Paracelsus Medical University, SALK Salzburg, 5020 Salzburg, Austria
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Maria Barile
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
133
|
Wang Q, Yang YL. [Complex heterogeneity phenotypes and genotypes of glutaric aciduria type 1]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:460-465. [PMID: 27165598 PMCID: PMC7390359 DOI: 10.7499/j.issn.1008-8830.2016.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Glutaric aciduria type 1 is a rare autosomal recessive disorder. GCDH gene mutations cause glutaryl-CoA dehydrogenase deficiency and accumulation of glutaric acid and 3-hydroxyglutaric acid, resulting in damage of striatum and other brain nucleus and neurodegeneration. Patients with glutaric aciduria type 1 present with complex heterogeneous phenotypes and genotypes. The symptoms are extremely variable. The ages of the clinical onset of the patients range from the fetus period to adulthood. The patients with mild glutaric aciduria type 1 are almost asymptomatic before onset, however, severe glutaric aciduria type 1 may cause death or disability due to acute encephalopathy. Acute metabolic crisis in patients with underlying glutaric aciduria type 1 is often triggered by febrile illnesses, trauma, hunger, high-protein foods and vaccination during a vulnerable period of brain development in infancy or early childhood. The early-onset patients usually have a poor prognosis. Urinary organic acids analysis, blood acylcarnitines analysis and GCDH study are important for the diagnosis of this disorder. Neonatal screening is essential for the early diagnosis and the improvement of prognosis.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| | | |
Collapse
|
134
|
Béhin A, Acquaviva-Bourdain C, Souvannanorath S, Streichenberger N, Attarian S, Bassez G, Brivet M, Fouilhoux A, Labarre-Villa A, Laquerrière A, Pérard L, Kaminsky P, Pouget J, Rigal O, Vanhulle C, Eymard B, Vianey-Saban C, Laforêt P. Multiple acyl-CoA dehydrogenase deficiency (MADD) as a cause of late-onset treatable metabolic disease. Rev Neurol (Paris) 2016; 172:231-41. [PMID: 27038534 DOI: 10.1016/j.neurol.2015.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/11/2015] [Accepted: 11/15/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare, treatable, beta-oxidation disorder responsible for neuromuscular symptoms in adults. This case series describes the clinical and biochemical features of 13 French patients with late-onset MADD. METHODS AND RESULTS Thirteen ambulant patients (eight women, five men), with a median age at onset of 27 years, initially experienced exercise intolerance (n=9), isolated muscle weakness (n=1) and a multisystemic pattern with either central nervous system or hepatic dysfunction (n=3). During the worsening period, moderate rhabdomyolysis (n=5), a pseudomyasthenic pattern (n=5) and acute respiratory failure (n=1) have been observed. Weakness typically affected the proximal limbs and axial muscles, and there was sometimes facial asymmetry (n=3). Moderate respiratory insufficiency was noted in one case. Median baseline creatine kinase was 190IU/L. Lactacidemia was sometimes moderately increased at rest (3/10) and after exercise (1/3). The acylcarnitine profile was characteristic, with increases in all chain-length acylcarnitine species. Electromyography revealed a myogenic pattern, while muscle biopsy showed lipidosis, sometimes with COX-negative fibers (n=2). The mitochondrial respiratory chain was impaired in five cases, with coenzyme Q10 decreased in two cases. All patients harbored mutations in the ETFDH gene (four homozygous, seven compound heterozygous, two single heterozygous), with nine previously unidentified mutations. All patients were good responders to medical treatment, but exercise intolerance and/or muscular weakness persisted in 11 of them. CONCLUSION Late-onset forms of MADD may present as atypical beta-oxidation disorders. Acylcarnitine profiling and muscle biopsy remain the most decisive investigations for assessing the diagnosis. These tests should thus probably be performed more widely, particularly in unexplained cases of neuromuscular and multisystemic disorders.
Collapse
Affiliation(s)
- A Béhin
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| | - C Acquaviva-Bourdain
- Centre de Référence des Maladies Héréditaires du Métabolisme, Inserm U820, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France
| | - S Souvannanorath
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - N Streichenberger
- Service de Neuropathologie, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Université Claude Bernard Lyon I, 69500 Bron, France
| | - S Attarian
- AP-HM, Centre de Référence des Maladies Neuromusculaires et de la SLA, CHU de La Timone, 13005 Marseille, France
| | - G Bassez
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Ouest, CHU Henri-Mondor, Créteil, France
| | - M Brivet
- AP-HP, Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Robert-Debré, 75020 Paris, France
| | - A Fouilhoux
- Centre de Référence lyonnais des Maladies Héréditaires du Métabolisme, Groupement Hospitalier Est, Hôpital Femme Mère-Enfant, CHU de Lyon, 69500 Bron, France
| | - A Labarre-Villa
- Centre de Référence Rhône-Alpes des Maladies Neuromusculaires, CHU de Grenoble, 38000 Grenoble, France
| | - A Laquerrière
- Service d'Anatomie et Cytologie pathologiques, CHU de Rouen, 76000 Rouen, France
| | - L Pérard
- Service de Médecine Interne, Hôpital Édouard-Herriot, 69437 Lyon cedex 03, France
| | - P Kaminsky
- Centre de Référence des Maladies Neuromusculaires, CHU de Nancy (Hôpitaux de Brabois), 54500 Vandœuvre-Lès-Nancy, France
| | - J Pouget
- AP-HM, Centre de Référence des Maladies Neuromusculaires et de la SLA, CHU de La Timone, 13005 Marseille, France
| | - O Rigal
- AP-HP, Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Robert-Debré, 75020 Paris, France
| | - C Vanhulle
- Centre de Compétences Pathologies Neuromusculaires Enfants, Néonatalogie et Réanimation Pédiatrique, CHU de Rouen, 76000 Rouen, France
| | - B Eymard
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - C Vianey-Saban
- Centre de Référence des Maladies Héréditaires du Métabolisme, Inserm U820, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France
| | - P Laforêt
- AP-HP, Service de Biochimie, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
135
|
Yamada K, Kobayashi H, Bo R, Takahashi T, Purevsuren J, Hasegawa Y, Taketani T, Fukuda S, Ohkubo T, Yokota T, Watanabe M, Tsunemi T, Mizusawa H, Takuma H, Shioya A, Ishii A, Tamaoka A, Shigematsu Y, Sugie H, Yamaguchi S. Clinical, biochemical and molecular investigation of adult-onset glutaric acidemia type II: Characteristics in comparison with pediatric cases. Brain Dev 2016; 38:293-301. [PMID: 26403312 DOI: 10.1016/j.braindev.2015.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/06/2015] [Accepted: 08/13/2015] [Indexed: 01/14/2023]
Abstract
INTRODUCTION An increasing number of adult patients have been diagnosed with fatty acid β-oxidation disorders with the rising use of diagnostic technologies. In this study, clinical, biochemical, and molecular characteristics of 2 Japanese patients with adult-onset glutaric acidemia type II (GA2) were investigated and compared with those of pediatric cases. METHODS The patients were a 58-year-old male and a 31-year-old male. In both cases, episodes of myopathic symptoms, including myalgia, muscle weakness, and liver dysfunction of unknown cause, had been noted for the past several years. Muscle biopsy, urinary organic acid analysis (OA), acylcarnitine (AC) analysis in dried blood spots (DBS) and serum, immunoblotting, genetic analysis, and an in vitro probe acylcarnitine (IVP) assay were used for diagnosis and investigation. RESULTS In both cases, there was no obvious abnormality of AC in DBS or urinary OA, although there was a increase in medium- and long-chain ACs in serum; also, fat deposits were observed in the muscle biopsy. Immunoblotting and gene analysis revealed that both patients had GA2 due to a defect in electron transfer flavoprotein dehydrogenase (ETFDH). The IVP assay indicated no special abnormalities in either case. CONCLUSION Late-onset GA2 is separated into the intermediate and myopathic forms. In the myopathic form, episodic muscular symptoms or liver dysfunction are primarily exhibited after later childhood. Muscle biopsy and serum (or plasma) AC analysis allow accurate diagnosis in contrast with other biochemical tests, such as analysis of AC in DBS, urinary OA, or the IVP assay, which show fewer abnormalities in the myopathic form compared to intermediate form.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo, Shimane, Japan.
| | - Hironori Kobayashi
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Ryosuke Bo
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Tomoo Takahashi
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Jamiyan Purevsuren
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Yuki Hasegawa
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Seiji Fukuda
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Takuya Ohkubo
- Department of Neurology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Mutsufusa Watanabe
- Department of Internal Medicine, Tokyo Metropolitan Bokutoh Hospital, Sumida-ku, Tokyo, Japan
| | - Taiji Tsunemi
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Hiroshi Takuma
- Department of Neurology, University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, Japan
| | - Ayako Shioya
- Department of Neurology, University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, Japan
| | - Akiko Ishii
- Department of Neurology, University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, Japan
| | - Akira Tamaoka
- Department of Neurology, University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, Japan
| | - Yosuke Shigematsu
- Department of Pediatrics, University of Fukui Faculty of Medical Sciences, Yoshida-gun, Fukui, Japan
| | - Hideo Sugie
- Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Shizuoka, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
136
|
Wang Z, Hong D, Zhang W, Li W, Shi X, Zhao D, Yang X, Lv H, Yuan Y. Severe sensory neuropathy in patients with adult-onset multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord 2016; 26:170-5. [DOI: 10.1016/j.nmd.2015.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022]
|
137
|
Ioannides ZA, McGill J, Robertson T, Henderson RD. Neurological disorders that may deteriorate with intensive physical rehabilitation. Intern Med J 2015; 45:1193-5. [PMID: 26347994 DOI: 10.1111/imj.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/06/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Z A Ioannides
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - J McGill
- Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - T Robertson
- Department of Anatomical Pathology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - R D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
138
|
Bent spine syndrome as an initial manifestation of late-onset multiple acyl-CoA dehydrogenase deficiency: a case report and literature review. BMC Neurol 2015. [PMID: 26205240 PMCID: PMC4513616 DOI: 10.1186/s12883-015-0380-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive inherited disease of metabolic dysfunction clinically characterized by fluctuating proximal muscle weakness, excise intolerance, and dramatic riboflavin responsiveness. Dropped head syndrome can occasionally be observed in some severe patients with late-onset MADD; however, bent spine syndrome as an initial symptom had not been reported in patients with late-onset MADD. Case presentation A 46-year-old man lost the ability to hold his trunk upright, and had difficulty in raising his head, but he had no obvious symptoms of limb weakness. Meanwhile, he developed persistent numbness of limbs and lips around. Myopathological features and combined elevation of multiple acylcarnitines indicated that the axial myopathy might be caused by lipid storage myopathy. Cervical and lumbosacral MRI revealed a lot of abnormal signals diffusing along paravertebral muscles, while the abnormal signals almost disappeared after riboflavin treatment. Nerve conduction study indicated the patient suffering from predominantly sensory neuropathy and mildly motor neuropathy. Muscle pathology also demonstrated no typical neurogenic change, which was consistent with the electrophysiological findings. Causative mutations were found in the ETFDH gene. Conclusion We report the first case of late-onset MADD with sensory neuropathy initially manifesting as bent spine syndrome and dropped head syndrome.
Collapse
|
139
|
Olsen RKJ, Cornelius N, Gregersen N. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism. J Inherit Metab Dis 2015; 38:703-19. [PMID: 26025548 PMCID: PMC4493798 DOI: 10.1007/s10545-015-9861-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/25/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
Mitochondria play a key role in overall cell physiology and health by integrating cellular metabolism with cellular defense and repair mechanisms in response to physiological or environmental changes or stresses. In fact, dysregulation of mitochondrial stress responses and its consequences in the form of oxidative stress, has been linked to a wide variety of diseases including inborn errors of metabolism. In this review we will summarize how the functional state of mitochondria -- and especially the concentration of reactive oxygen species (ROS), produced in connection with the respiratory chain -- regulates cellular stress responses by redox regulation of nuclear gene networks involved in repair systems to maintain cellular homeostasis and health. Based on our own and other's studies we re-introduce the ROS triangle model and discuss how inborn errors of mitochondrial metabolism, by production of pathological amounts of ROS, may cause disturbed redox signalling and induce chronic cell stress with non-resolving or compromised cell repair responses and increased susceptibility to cell stress induced cell death. We suggest that this model may have important implications for those inborn errors of metabolism, where mitochondrial dysfunction plays a major role, as it allows the explanation of oxidative stress, metabolic reprogramming and altered signalling growth pathways that have been reported in many of the diseases. It is our hope that the model may facilitate novel ideas and directions that can be tested experimentally and used in the design of future new approaches for pre-symptomatic diagnosis and prognosis and perhaps more effective treatments of inborn errors of metabolism.
Collapse
Affiliation(s)
- Rikke K J Olsen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark,
| | | | | |
Collapse
|
140
|
Scalco RS, Gardiner AR, Pitceathly RD, Zanoteli E, Becker J, Holton JL, Houlden H, Jungbluth H, Quinlivan R. Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 2015; 10:51. [PMID: 25929793 PMCID: PMC4522153 DOI: 10.1186/s13023-015-0264-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/09/2015] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyolysis (RM) is a clinical emergency characterized by fulminant skeletal muscle damage and release of intracellular muscle components into the blood stream leading to myoglobinuria and, in severe cases, acute renal failure. Apart from trauma, a wide range of causes have been reported including drug abuse and infections. Underlying genetic disorders are also a cause of RM and can often pose a diagnostic challenge, considering their marked heterogeneity and comparative rarity. In this paper we review the range of rare genetic defects known to be associated with RM. Each gene has been reviewed for the following: clinical phenotype, typical triggers for RM and recommended diagnostic approach. The purpose of this review is to highlight the most important features associated with specific genetic defects in order to aid the diagnosis of patients presenting with hereditary causes of recurrent RM.
Collapse
Affiliation(s)
- Renata Siciliani Scalco
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Department of Neurology, HSL, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil. .,CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil.
| | - Alice R Gardiner
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Robert Ds Pitceathly
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London (KCL), London, UK.
| | - Edmar Zanoteli
- Department of Neurology, School of Medicine, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.
| | - Jefferson Becker
- Department of Neurology, HSL, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Heinz Jungbluth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London (KCL), London, UK. .,Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas NHS Foundation Trust, London, UK. .,Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College London, London, UK.
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, UK.
| |
Collapse
|