101
|
Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. The Muscle Stem Cell Niche in Health and Disease. Curr Top Dev Biol 2017; 126:23-65. [PMID: 29305000 DOI: 10.1016/bs.ctdb.2017.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regulation of stem cells that maintain and regenerate postnatal tissues depends on extrinsic signals originating from their microenvironment, commonly referred to as the stem cell niche. Complex higher-order regulatory interrelationships with the tissue and factors in the systemic circulation are integrated and propagated to the stem cells through the niche. The stem cell niche in skeletal muscle tissue is both a paradigm for a structurally and functionally relatively static niche that maintains stem cell quiescence during tissue homeostasis, and a highly dynamic regenerative niche that is subject to extensive structural remodeling and a flux of different support cell populations. Conditions ranging from aging to chronically degenerative skeletal muscle diseases affect the composition of the niche and thereby impair the regenerative potential of muscle stem cells. A holistic and integrative understanding of the extrinsic mechanisms regulating muscle stem cells in health and disease in a broad systemic context will be imperative for the identification of regulatory hubs in the niche interactome that can be targeted to maintain, restore, or enhance the regenerative capacity of muscle tissue. Here, we review the microenvironmental regulation of muscle stem cells, summarize how niche dysfunction can contribute to disease, and discuss emerging therapeutic implications.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Institute of Health Sciences, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne, Doctoral Program in Biotechnology and Bioengineering, Lausanne, Switzerland
| | - Addolorata Pisconti
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Emmeran Le Moal
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - C Florian Bentzinger
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
102
|
Hogan KA, Cho DS, Arneson PC, Samani A, Palines P, Yang Y, Doles JD. Tumor-derived cytokines impair myogenesis and alter the skeletal muscle immune microenvironment. Cytokine 2017; 107:9-17. [PMID: 29153940 DOI: 10.1016/j.cyto.2017.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 12/31/2022]
Abstract
Muscle wasting is a decline in skeletal muscle mass and function that is associated with aging, obesity, and a spectrum of pathologies including cancer. Cancer-associated wasting not only reduces quality of life, but also directly impacts cancer mortality, chemotherapeutic efficacy, and surgical outcomes. There is an incomplete understanding of the role of tumor-derived factors in muscle wasting and sparse knowledge of how these factors impact in vivo muscle regeneration. Here, we identify several cytokines/chemokines that negatively impact in vitro myogenic differentiation. We show that one of these cytokines, CXCL1, potently antagonizes in vivo muscle regeneration and interferes with in vivo muscle satellite cell homeostasis. Strikingly, CXCL1 triggers a robust and specific neutrophil/M2 macrophage response that likely underlies or exacerbates muscle repair/regeneration defects. Taken together, these data highlight the pleiotropic nature of a novel tumor-derived cytokine and underscore the importance of cytokines in muscle progenitor cell regulation.
Collapse
Affiliation(s)
- Kelly A Hogan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dong Seong Cho
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Paige C Arneson
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Adrienne Samani
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Patrick Palines
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yanan Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
103
|
Finnerty CC, McKenna CF, Cambias LA, Brightwell CR, Prasai A, Wang Y, El Ayadi A, Herndon DN, Suman OE, Fry CS. Inducible satellite cell depletion attenuates skeletal muscle regrowth following a scald-burn injury. J Physiol 2017; 595:6687-6701. [PMID: 28833130 PMCID: PMC5663820 DOI: 10.1113/jp274841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Severe burns result in significant skeletal muscle cachexia that impedes recovery. Activity of satellite cells, skeletal muscle stem cells, is altered following a burn injury and likely hinders regrowth of muscle. Severe burn injury induces satellite cell proliferation and fusion into myofibres with greater activity in muscles proximal to the injury site. Conditional depletion of satellite cells attenuates recovery of myofibre area and volume following a scald burn injury in mice. Skeletal muscle regrowth following a burn injury requires satellite cell activity, underscoring the therapeutic potential of satellite cells in the prevention of prolonged frailty in burn survivors. ABSTRACT Severe burns result in profound skeletal muscle atrophy; persistent muscle atrophy and weakness are major complications that hamper recovery from burn injury. Many factors contribute to the erosion of muscle mass following burn trauma, and we have previously shown concurrent activation and apoptosis of muscle satellite cells following a burn injury in paediatric patients. To determine the necessity of satellite cells during muscle recovery following a burn injury, we utilized a genetically modified mouse model (Pax7CreER -DTA) that allows for the conditional depletion of satellite cells in skeletal muscle. Additionally, mice were provided 5-ethynyl-2'-deoxyuridine to determine satellite cell proliferation, activation and fusion. Juvenile satellite cell-wild-type (SC-WT) and satellite cell-depleted (SC-Dep) mice (8 weeks of age) were randomized to sham or burn injury consisting of a dorsal scald burn injury covering 30% of total body surface area. Both hindlimb and dorsal muscles were studied at 7, 14 and 21 days post-burn. SC-Dep mice had >93% depletion of satellite cells compared to SC-WT (P < 0.05). Burn injury induced robust atrophy in muscles located both proximal and distal to the injury site (∼30% decrease in fibre cross-sectional area, P < 0.05). Additionally, burn injury induced skeletal muscle regeneration, satellite cell proliferation and fusion. Depletion of satellite cells impaired post-burn recovery of both muscle fibre cross-sectional area and volume (P < 0.05). These findings support an integral role for satellite cells in the aetiology of lean tissue recovery following a severe burn injury.
Collapse
Affiliation(s)
- Celeste C. Finnerty
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
- Institute for Translational ScienceUniversity of Texas Medical BranchGalvestonTXUSA
| | - Colleen F. McKenna
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTXUSA
| | - Lauren A. Cambias
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTXUSA
| | - Camille R. Brightwell
- Division of Rehabilitation SciencesUniversity of Texas Medical Branch, GalvestonTXUSA
| | - Anesh Prasai
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
| | - Ye Wang
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
| | - Amina El Ayadi
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
| | - David N. Herndon
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
- Institute for Translational ScienceUniversity of Texas Medical BranchGalvestonTXUSA
| | - Oscar E. Suman
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
| | - Christopher S. Fry
- Shriners Hospital for ChildrenGalvestonTXUSA
- Institute for Translational ScienceUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
104
|
McKenna CF, Fry CS. Altered satellite cell dynamics accompany skeletal muscle atrophy during chronic illness, disuse, and aging. Curr Opin Clin Nutr Metab Care 2017; 20:447-452. [PMID: 28795971 PMCID: PMC5810415 DOI: 10.1097/mco.0000000000000409] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review explores recent research investigating the contribution of satellite cells (skeletal muscle stem cells) during muscle fiber atrophy as seen in periods of disuse, illness, and aging. RECENT FINDINGS Studies indicate reduced satellite cell activity and density in a variety of acute and chronic conditions characterized by robust muscle wasting. The direct contribution of satellite cells to unloading/denervation and chronic illness-induced atrophy remains controversial. Inflammation that accompanies acute trauma and illness likely impedes proper satellite cell differentiation and myogenesis, promoting the rapid onset of muscle wasting in these conditions. Transgenic mouse studies provide surprising evidence that age-related declines in satellite cell function and abundance are not causally related to the onset of sarcopenia in sedentary animals. SUMMARY Recent clinical and preclinical studies indicate reduced abundance and dysregulated satellite cell activity that accompany muscle atrophy during periods of disuse, illness, and aging, providing evidence for their therapeutic potential.
Collapse
Affiliation(s)
- Colleen F. McKenna
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| | - Christopher S. Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
105
|
Abstract
Skeletal muscle regeneration is an efficient stem cell-based repair system that ensures healthy musculature. For this repair system to function continuously throughout life, muscle stem cells must contribute to the process of myofiber repair as well as repopulation of the stem cell niche. The decision made by the muscle stem cells to commit to the muscle repair or to remain a stem cell depends upon patterns of gene expression, a process regulated at the epigenetic level. Indeed, it is well accepted that dynamic changes in epigenetic landscapes to control DNA accessibility and expression is a critical component during myogenesis for the effective repair of damaged muscle. Changes in the epigenetic landscape are governed by various posttranslational histone tail modifications, nucleosome repositioning, and DNA methylation events which collectively allow the control of changes in transcription networks during transitions of satellite cells from a dormant quiescent state toward terminal differentiation. This chapter focuses upon the specific epigenetic changes that occur during muscle stem cell-mediated regeneration to ensure myofiber repair and continuity of the stem cell compartment. Furthermore, we explore open questions in the field that are expected to be important areas of exploration as we move toward a more thorough understanding of the epigenetic mechanism regulating muscle regeneration.
Collapse
Affiliation(s)
- Daniel C L Robinson
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; University of Ottawa, Ottawa, ON, Canada
| | - Francis J Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
106
|
Cho DS, Doles JD. Single cell transcriptome analysis of muscle satellite cells reveals widespread transcriptional heterogeneity. Gene 2017; 636:54-63. [PMID: 28893664 DOI: 10.1016/j.gene.2017.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/03/2017] [Accepted: 09/07/2017] [Indexed: 02/03/2023]
Abstract
Tissue specific stem cells are indispensable contributors to adult tissue maintenance, repair, and regeneration. In skeletal muscle, satellite cells (SCs) are the resident muscle stem cell population and are required to maintain skeletal muscle homeostasis throughout life. Increasing evidence suggests that SCs are a heterogeneous cell population with substantial biochemical and functional diversity. A major limitation in the field is an incomplete understanding of the nature and extent of this cellular heterogeneity. Single cell analyses are well suited to addressing this issue, especially when coupled to unbiased profiling paradigms such as high throughout RNA sequencing. We performed single cell RNA sequencing (scRNA-seq) on freshly isolated muscle satellite cells and found a surprising degree of heterogeneity at multiple levels, from muscle-specific transcripts to the broader SC transcriptome. We leveraged several comparative bioinformatics techniques and found that individual SCs enrich for unique transcript clusters. We propose that these gene expression "fingerprints" may contribute to observed functional SC diversity. Overall, these studies underscore the importance of several established SC signaling pathways/processes on a single cell level, implicate novel regulators of SC heterogeneity, and lay the groundwork for further investigation into SC heterogeneity in health and disease.
Collapse
Affiliation(s)
- Dong Seong Cho
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
107
|
Fujita R, Zismanov V, Jacob JM, Jamet S, Asiev K, Crist C. Fragile X mental retardation protein regulates skeletal muscle stem cell activity by regulating the stability of Myf5 mRNA. Skelet Muscle 2017; 7:18. [PMID: 28882193 PMCID: PMC5588675 DOI: 10.1186/s13395-017-0136-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023] Open
Abstract
Background Regeneration of adult tissues relies on adult stem cells that are primed to enter a differentiation program, while typically remaining quiescent. In mouse skeletal muscle, these features are reconciled by multiple translational control mechanisms that ensure primed muscle stem cells (MuSCs) are not activated. In quiescent MuSCs, this concept is illustrated by reversible microRNA silencing of Myf5 translation, mediated by microRNA-31 and fragile X mental retardation protein (FMRP). Methods In this work, we take advantage of FMRP knockout (Fmr1−/−) mice to support the role for FMRP in maintaining stem cell properties of the MuSC. We compare the activity of MuSCs in vivo after acute injury and engraftment, as well as ex vivo during culture. We use RNA immunoprecipitation and 3’UTR poly-adenine (poly(A)) length assays to assess the impact of FMRP on the stability of transcripts for myogenic regulatory factors. Results We show that RNA-binding FMRP is required to maintain the MuSC pool. More specifically, FMRP is required for stem cell properties of muscle stem cells, which include MuSC capacity to prime the myogenic program, their self-renewal, and their capacity to efficiently regenerate muscle. We provide evidence that FMRP regulation of MuSC activity occurs in part by the capacity of FMRP to directly bind Myf5 transcripts and impact rates of Myf5 deadenylation. Conclusions Our results provide further evidence supporting a role for post-transcriptional silencing platforms by RNA-binding proteins in maintaining stemness properties of adult stem cells. In addition, deregulated MuSC activity in the absence of Fmr1 may have implications for fragile X syndrome, which is associated with muscle hypotonia during infancy.
Collapse
Affiliation(s)
- Ryo Fujita
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Victoria Zismanov
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Jean-Marie Jacob
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1B1, Canada.,Current address: Unité Stroma, Inflammation and Tissue Repair, Institut Pasteur, Paris, 75724, France
| | - Solène Jamet
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
| | - Krum Asiev
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada.,Department of Radiation Oncology, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
| | - Colin Crist
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada. .,Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1B1, Canada.
| |
Collapse
|
108
|
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize the unique regenerative milieu within mature mammalian extraocular muscles (EOMs). This will aid in understanding disease propensity for and sparing of EOMs in skeletal muscle diseases as well as the recalcitrance of the EOM to injury. RECENT FINDINGS The EOMs continually remodel throughout life and contain an extremely enriched number of myogenic precursor cells that differ in number and functional characteristics from those in limb skeletal muscle. The EOMs also contain a large population of Pitx2-positive myogenic precursor cells that provide the EOMs with many of their unusual biological characteristics, such as myofiber remodeling and skeletal muscle disease sparing. This environment provides for rapid and efficient remodeling and regeneration after various types of injury. In addition, the EOMs show a remarkable ability to respond to perturbations of single muscles with coordinated changes in the other EOMs that move in the same plane. SUMMARY These data will inform Ophthalmologists as they work toward developing new treatments for eye movement disorders, new approaches for repair after nerve or direct EOMs injury, as well as suggest potential explanations for the unusual disease propensity and disease sparing characteristics of human EOM.
Collapse
Affiliation(s)
- Mayank Verma
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Krysta Fitzpatrick
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| | - Linda K McLoon
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
109
|
Murach KA, Confides AL, Ho A, Jackson JR, Ghazala LS, Peterson CA, Dupont-Versteegden EE. Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice. J Physiol 2017; 595:6299-6311. [PMID: 28736900 DOI: 10.1113/jp274611] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Satellite cell depletion does not affect diaphragm adaptations to voluntary wheel running in young or aged mice. Satellite cell depletion early in life (4 months of age) has minimal effect on diaphragm phenotype by old age (24 months). Prolonged satellite cell depletion in the diaphragm does not result in excessive extracellular matrix accumulation, in contrast to what has been reported in hind limb muscles. Up-regulation of Pax3 mRNA+ cells after satellite cell depletion in young and aged mice suggests that Pax3+ cells may compensate for a loss of Pax7+ satellite cells in the diaphragm. Future investigations should focus on the role of Pax3+ cells in the diaphragm during adaptation to exercise and ageing. ABSTRACT Satellite cell contribution to unstressed diaphragm is higher compared to hind limb muscles, which is probably attributable to constant activation of this muscle to drive ventilation. Whether satellite cell depletion negatively impacts diaphragm quantitative and qualitative characteristics under stressed conditions in young and aged mice is unknown. We therefore challenged the diaphragm with prolonged running activity in the presence and absence of Pax7+ satellite cells in young and aged mice using an inducible Pax7CreER -R26RDTA model. Mice were vehicle (Veh, satellite cell-replete) or tamoxifen (Tam, satellite cell-depleted) treated at 4 months of age and were then allowed to run voluntarily at 6 months (young) and 22 months (aged). Age-matched, cage-dwelling, Veh- and Tam-treated mice without wheel access served as activity controls. Diaphragm muscles were analysed from young (8 months) and aged (24 months) mice. Satellite cell depletion did not alter diaphragm mean fibre cross-sectional area, fibre type distribution or extracellular matrix content in young or aged mice, regardless of running activity. Resting in vivo diaphragm function was also unaffected by satellite cell depletion. Myonuclear density was maintained in young satellite cell-depleted mice regardless of running, although it was modestly reduced in aged sedentary (-7%) and running (-19%) mice without satellite cells (P < 0.05). Using fluorescence in situ hybridization, we detected higher Pax3 mRNA+ cell density in both young and aged satellite cell-depleted diaphragm muscle (P < 0.05), which may compensate for the loss of Pax7+ satellite cells.
Collapse
Affiliation(s)
- Kevin A Murach
- College of Health Sciences, Department of Rehabilitation Sciences, and the Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Amy L Confides
- College of Health Sciences, Department of Rehabilitation Sciences, and the Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Angel Ho
- College of Health Sciences, Department of Rehabilitation Sciences, and the Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Janna R Jackson
- College of Health Sciences, Department of Rehabilitation Sciences, and the Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Lina S Ghazala
- College of Health Sciences, Department of Rehabilitation Sciences, and the Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- College of Health Sciences, Department of Rehabilitation Sciences, and the Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Esther E Dupont-Versteegden
- College of Health Sciences, Department of Rehabilitation Sciences, and the Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
110
|
Choo HJ, Canner JP, Vest KE, Thompson Z, Pavlath GK. A tale of two niches: differential functions for VCAM-1 in satellite cells under basal and injured conditions. Am J Physiol Cell Physiol 2017; 313:C392-C404. [PMID: 28701357 DOI: 10.1152/ajpcell.00119.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022]
Abstract
Cell-cell adhesion molecules play key roles in maintaining quiescence or promoting activation of various stem cells in their niche. Muscle stem cells called satellite cells (SC) are critical for skeletal muscle regeneration after injury, but little is known about the role of adhesion molecules in regulating the behavior of these stem cells. Vascular cell adhesion molecule-1 (VCAM-1) is a cell-cell adhesion protein expressed on quiescent and activated SC whose function is unknown in this context. We deleted Vcam1 from SC using an inducible Cre recombinase in young mice. In the injured niche, Vcam1-/- SC underwent premature lineage progression to a more differentiated state as well as apoptosis leading to a transient delay in myofiber growth during regeneration. Apoptosis was also increased in Vcam1-/- SC in vitro concomitant with decreased levels of phosphorylated Akt, a prosurvival signal activated by VCAM-1 signaling in other cell types. During muscle regeneration, we observed an influx of immune cells expressing α4 integrin, a component of the major, high-affinity VCAM-1 ligand, α4β1 integrin. Furthermore, α4 integrin mRNA and protein were induced in SC 2 days after injury. These results suggest that SC interact with other SC as well as immune cells through α4β1 integrin in the injured niche to promote expansion of SC. In the uninjured niche, multiple cell types also expressed α4 integrin. However, only basal fusion of Vcam1-/- SC with myofibers was decreased, contributing to decreased myofiber growth. These studies define differential roles for VCAM-1 in SC depending on the state of their niche.
Collapse
Affiliation(s)
- Hyo-Jung Choo
- Department of Pharmacology, Emory University, Atlanta, Georgia; and.,Department of Cell Biology, Emory University, Atlanta, Georgia
| | - James P Canner
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| | - Katherine E Vest
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| | - Zachary Thompson
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| | - Grace K Pavlath
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| |
Collapse
|
111
|
Murach KA, White SH, Wen Y, Ho A, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice. Skelet Muscle 2017; 7:14. [PMID: 28693603 PMCID: PMC5504676 DOI: 10.1186/s13395-017-0132-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/26/2017] [Indexed: 01/30/2023] Open
Abstract
Background Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Methods Pax7CreER-R26RDTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6–9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Results Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p < 0.05). Satellite cells did not recover in SC- mice after overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p < 0.05), and mature SC- mice (p < 0.05). In contrast, muscle fiber hypertrophy was prevented in young SC- mice. Muscle fiber number increased only in mature mice after overload (p < 0.05), and eMyHC expression was variable, specifically in mature SC+ mice. Conclusions Reliance on satellite cells for overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice. Electronic supplementary material The online version of this article (doi:10.1186/s13395-017-0132-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin A Murach
- Department of Rehabilitation Sciences, College of Health Sciences, 900 South Limestone, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA
| | - Sarah H White
- Department of Rehabilitation Sciences, College of Health Sciences, 900 South Limestone, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA.,Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Yuan Wen
- Department of Physiology, College of Medicine, 800 Rose Street, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA
| | - Angel Ho
- Department of Rehabilitation Sciences, College of Health Sciences, 900 South Limestone, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA
| | - Esther E Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences, 900 South Limestone, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, 800 Rose Street, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA
| | - Charlotte A Peterson
- Department of Rehabilitation Sciences, College of Health Sciences, 900 South Limestone, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA
| |
Collapse
|
112
|
Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength. Proc Natl Acad Sci U S A 2017; 114:6675-6684. [PMID: 28607093 PMCID: PMC5495271 DOI: 10.1073/pnas.1705420114] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscles harbor quiescent muscle-specific stem cells (MuSCs) capable of tissue regeneration throughout life. Muscle injury precipitates a complex inflammatory response in which a multiplicity of cell types, cytokines, and growth factors participate. Here we show that Prostaglandin E2 (PGE2) is an inflammatory cytokine that directly targets MuSCs via the EP4 receptor, leading to MuSC expansion. An acute treatment with PGE2 suffices to robustly augment muscle regeneration by either endogenous or transplanted MuSCs. Loss of PGE2 signaling by specific genetic ablation of the EP4 receptor in MuSCs impairs regeneration, leading to decreased muscle force. Inhibition of PGE2 production through nonsteroidal anti-inflammatory drug (NSAID) administration just after injury similarly hinders regeneration and compromises muscle strength. Mechanistically, the PGE2 EP4 interaction causes MuSC expansion by triggering a cAMP/phosphoCREB pathway that activates the proliferation-inducing transcription factor, Nurr1 Our findings reveal that loss of PGE2 signaling to MuSCs during recovery from injury impedes muscle repair and strength. Through such gain- or loss-of-function experiments, we found that PGE2 signaling acts as a rheostat for muscle stem-cell function. Decreased PGE2 signaling due to NSAIDs or increased PGE2 due to exogenous delivery dictates MuSC function, which determines the outcome of regeneration. The markedly enhanced and accelerated repair of damaged muscles following intramuscular delivery of PGE2 suggests a previously unrecognized indication for this therapeutic agent.
Collapse
|
113
|
Liu W, Klose A, Forman S, Paris ND, Wei-LaPierre L, Cortés-Lopéz M, Tan A, Flaherty M, Miura P, Dirksen RT, Chakkalakal JV. Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. eLife 2017; 6. [PMID: 28583253 PMCID: PMC5462534 DOI: 10.7554/elife.26464] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/20/2017] [Indexed: 01/04/2023] Open
Abstract
Neuromuscular junction degeneration is a prominent aspect of sarcopenia, the age-associated loss of skeletal muscle integrity. Previously, we showed that muscle stem cells activate and contribute to mouse neuromuscular junction regeneration in response to denervation (Liu et al., 2015). Here, we examined gene expression profiles and neuromuscular junction integrity in aged mouse muscles, and unexpectedly found limited denervation despite a high level of degenerated neuromuscular junctions. Instead, degenerated neuromuscular junctions were associated with reduced contribution from muscle stem cells. Indeed, muscle stem cell depletion was sufficient to induce neuromuscular junction degeneration at a younger age. Conversely, prevention of muscle stem cell and derived myonuclei loss was associated with attenuation of age-related neuromuscular junction degeneration, muscle atrophy, and the promotion of aged muscle force generation. Our observations demonstrate that deficiencies in muscle stem cell fate and post-synaptic myogenesis provide a cellular basis for age-related neuromuscular junction degeneration and associated skeletal muscle decline. DOI:http://dx.doi.org/10.7554/eLife.26464.001
Collapse
Affiliation(s)
- Wenxuan Liu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
| | - Alanna Klose
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
| | - Sophie Forman
- Department of Biology, University of Rochester, Rochester, United States
| | - Nicole D Paris
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
| | | | - Aidi Tan
- Bioinformatics Division and Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,TNLIST/Department of Automation, Tsinghua University, Beijing, China
| | - Morgan Flaherty
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, United States
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
| | - Joe V Chakkalakal
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States.,Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, United States.,The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
114
|
Call JA, Wilson RJ, Laker RC, Zhang M, Kundu M, Yan Z. Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle. Am J Physiol Cell Physiol 2017; 312:C724-C732. [PMID: 28356270 DOI: 10.1152/ajpcell.00348.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/22/2023]
Abstract
Autophagy is a conserved cellular process for degrading aggregate proteins and dysfunctional organelle. It is still debatable if autophagy and mitophagy (a specific process of autophagy of mitochondria) play important roles in myogenic differentiation and functional regeneration of skeletal muscle. We tested the hypothesis that autophagy is critical for functional regeneration of skeletal muscle. We first observed time-dependent increases (3- to 6-fold) of autophagy-related proteins (Atgs), including Ulk1, Beclin1, and LC3, along with reduced p62 expression during C2C12 differentiation, suggesting increased autophagy capacity and flux during myogenic differentiation. We then used cardiotoxin (Ctx) or ischemia-reperfusion (I/R) to induce muscle injury and regeneration and observed increases in Atgs between days 2 and 7 in adult skeletal muscle followed by increased autophagy flux after day 7 Since Ulk1 has been shown to be essential for mitophagy, we asked if Ulk1 is critical for functional regeneration in skeletal muscle. We subjected skeletal muscle-specific Ulk1 knockout mice (MKO) to Ctx or I/R. MKO mice had significantly impaired recovery of muscle strength and mitochondrial protein content post-Ctx or I/R. Imaging analysis showed that MKO mice have significantly attenuated recovery of mitochondrial network at 7 and 14 days post-Ctx. These findings suggest that increased autophagy protein and flux occur during muscle regeneration and Ulk1-mediated mitophagy is critical for recovery for the mitochondrial network and hence functional regeneration.
Collapse
Affiliation(s)
- Jarrod A Call
- Department of Medicine, University of Virginia, Charlottesville, Virginia.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; and
| | - Rebecca J Wilson
- Department of Medicine, University of Virginia, Charlottesville, Virginia.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; and
| | - Rhianna C Laker
- Department of Medicine, University of Virginia, Charlottesville, Virginia.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; and
| | - Mei Zhang
- Department of Medicine, University of Virginia, Charlottesville, Virginia.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; and
| | - Mondira Kundu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhen Yan
- Department of Medicine, University of Virginia, Charlottesville, Virginia; .,Department of Pharmacology, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; and
| |
Collapse
|
115
|
Pawlikowski B, Vogler TO, Gadek K, Olwin BB. Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev Dyn 2017; 246:359-367. [PMID: 28249356 DOI: 10.1002/dvdy.24495] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) are essential for self-renewal of skeletal muscle stem cells (satellite cells) and required for maintenance and repair of skeletal muscle. Satellite cells express high levels of FGF receptors 1 and 4, low levels of FGF receptor 3, and little or no detectable FGF receptor 2. Of the multiple FGFs that influence satellite cell function in culture, FGF2 and FGF6 are the only members that regulate satellite cell function in vivo by activating ERK MAPK, p38α/β MAPKs, PI3 kinase, PLCγ and STATs. Regulation of FGF signaling is complex in satellite cells, requiring Syndecan-4, a heparan sulfate proteoglycan, as well as ß1-integrin and fibronectin. During aging, reduced responsiveness to FGF diminishes satellite cell self-renewal, leading to impaired skeletal muscle regeneration and depletion of satellite cells. Mislocalization of ß1-integrin, reductions in fibronectin, and alterations in heparan sulfate content all contribute to reduced FGF responsiveness in satellite cells. How these cell surface proteins regulate satellite cell self-renewal is incompletely understood. Here we summarize the current knowledge, highlighting the role(s) for FGF signaling in skeletal muscle regeneration, satellite cell behavior, and age-induced muscle wasting. Developmental Dynamics 246:359-367, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bradley Pawlikowski
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Thomas Orion Vogler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Katherine Gadek
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Bradley B Olwin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| |
Collapse
|
116
|
A Twist2-dependent progenitor cell contributes to adult skeletal muscle. Nat Cell Biol 2017; 19:202-213. [PMID: 28218909 PMCID: PMC5332283 DOI: 10.1038/ncb3477] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/18/2017] [Indexed: 02/06/2023]
Abstract
Skeletal muscle possesses remarkable regenerative potential due to satellite cells, an injury-responsive stem cell population located beneath the muscle basal lamina that expresses Pax7. By lineage tracing of progenitor cells expressing the Twist2 (Tw2) transcription factor in mice, we discovered a myogenic lineage that resides outside the basal lamina of adult skeletal muscle. Tw2+ progenitors are molecularly and anatomically distinct from satellite cells, are highly myogenic in vitro, and can fuse with themselves and with satellite cells. Tw2+ progenitors contribute specifically to type IIb/x myofibers during adulthood and muscle regeneration, and their genetic ablation causes wasting of type IIb myofibers. We show that Tw2 expression maintains progenitor cells in an undifferentiated state that is poised to initiate myogenesis in response to appropriate cues that extinguish Tw2 expression. Tw2-expressing myogenic progenitors represent a previously unrecognized, fiber-type specific stem cell involved in post-natal muscle growth and regeneration.
Collapse
|
117
|
Goh Q, Millay DP. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy. eLife 2017; 6:20007. [PMID: 28186492 PMCID: PMC5338923 DOI: 10.7554/elife.20007] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022] Open
Abstract
Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.
Collapse
Affiliation(s)
- Qingnian Goh
- Department of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Douglas P Millay
- Department of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| |
Collapse
|
118
|
Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun 2017; 8:14328. [PMID: 28094257 PMCID: PMC5247606 DOI: 10.1038/ncomms14328] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
Satellite cells (SCs) are myogenic stem cells required for regeneration of adult skeletal muscles. A proper balance among quiescence, activation and differentiation is essential for long-term maintenance of SCs and their regenerative function. Here we show a function of Pten (phosphatase and tensin homologue) in quiescent SCs. Deletion of Pten in quiescent SCs leads to their spontaneous activation and premature differentiation without proliferation, resulting in depletion of SC pool and regenerative failure. However, prior to depletion, Pten-null activated SCs can transiently proliferate upon injury and regenerate injured muscles, but continually decline during regeneration, suggesting an inability to return to quiescence. Mechanistically, Pten deletion increases Akt phosphorylation, which induces cytoplasmic translocation of FoxO1 and suppression of Notch signalling. Accordingly, constitutive activation of Notch1 prevents SC depletion despite Pten deletion. Our findings delineate a critical function of Pten in maintaining SC quiescence and reveal an interaction between Pten and Notch signalling. Pten is known to regulate haematopoietic stem cell functions. Here the authors show that Pten alteration of Notch signalling has stage-specific muscle regenerative functions in muscle stem cells by preventing premature differentiation of quiescent cells and enhancing the self-renewal of activated cells.
Collapse
|
119
|
Bi P, Yue F, Sato Y, Wirbisky S, Liu W, Shan T, Wen Y, Zhou D, Freeman J, Kuang S. Stage-specific effects of Notch activation during skeletal myogenesis. eLife 2016; 5. [PMID: 27644105 PMCID: PMC5070950 DOI: 10.7554/elife.17355] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/17/2016] [Indexed: 12/16/2022] Open
Abstract
Skeletal myogenesis involves sequential activation, proliferation, self-renewal/differentiation and fusion of myogenic stem cells (satellite cells). Notch signaling is known to be essential for the maintenance of satellite cells, but its function in late-stage myogenesis, i.e. post-differentiation myocytes and post-fusion myotubes, is unknown. Using stage-specific Cre alleles, we uncovered distinct roles of Notch1 in mononucleated myocytes and multinucleated myotubes. Specifically, constitutive Notch1 activation dedifferentiates myocytes into Pax7 quiescent satellite cells, leading to severe defects in muscle growth and regeneration, and postnatal lethality. By contrast, myotube-specific Notch1 activation improves the regeneration and exercise performance of aged and dystrophic muscles. Mechanistically, Notch1 activation in myotubes upregulates the expression of Notch ligands, which modulate Notch signaling in the adjacent satellite cells to enhance their regenerative capacity. These results highlight context-dependent effects of Notch activation during myogenesis, and demonstrate that Notch1 activity improves myotube's function as a stem cell niche.
Collapse
Affiliation(s)
- Pengpeng Bi
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Yusuke Sato
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Sara Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, United States
| | - Weiyi Liu
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Tizhong Shan
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Yefei Wen
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Daoguo Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Jennifer Freeman
- School of Health Sciences, Purdue University, West Lafayette, United States.,Center for Cancer Research, Purdue University, West Lafayette, United States
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, United States.,Center for Cancer Research, Purdue University, West Lafayette, United States
| |
Collapse
|
120
|
Fry CS, Porter C, Sidossis LS, Nieten C, Reidy PT, Hundeshagen G, Mlcak R, Rasmussen BB, Lee JO, Suman OE, Herndon DN, Finnerty CC. Satellite cell activation and apoptosis in skeletal muscle from severely burned children. J Physiol 2016; 594:5223-36. [PMID: 27350317 PMCID: PMC5023709 DOI: 10.1113/jp272520] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Severe burns result in profound skeletal muscle atrophy that hampers recovery. The activity of skeletal muscle stem cells, satellite cells, acutely following a severe burn is unknown and may contribute to the recovery of lean muscle. Severe burn injury induces skeletal muscle regeneration and myonuclear apoptosis. Satellite cells undergo concurrent apoptosis and activation acutely following a burn, with a net reduction in satellite cell content compared to healthy controls. The activation and apoptosis of satellite cells probably impacts the recovery of lean tissue following a severe burn, contributing to prolonged frailty in burn survivors. ABSTRACT Severe burns result in profound skeletal muscle atrophy; persistent muscle loss and weakness are major complications that hamper recovery from burn injury. Many factors contribute to the erosion of muscle mass following burn trauma and we propose that an impaired muscle satellite cell response is key in the aetiology of burn-induced cachexia. Muscle biopsies from the m. vastus lateralis were obtained from 12 male pediatric burn patients (>30% total body surface area burn) and 12 young, healthy male subjects. Satellite cell content, activation and apoptosis were determined via immunohistochemistry, as were muscle fibre regeneration and myonuclear apoptosis. Embryonic myosin heavy chain expression and central nucleation, indices of skeletal muscle regeneration, were elevated in burn patients (P < 0.05). Myonuclear apoptosis, quantified by TUNEL positive myonuclei and cleaved caspase-3 positive myonuclei, was also elevated in burn patients (P < 0.05). Satellite cell content was reduced in burn patients, with approximately 20% of satellite cells positive for TUNEL staining, indicating DNA damage associated with apoptosis (P < 0.05). Additionally, a significant percentage of satellite cells in burn patients expressed Ki67, a marker for cellular proliferation (P < 0.05). Satellite cell activation was also observed in burn patients with increased expression of MyoD compared to healthy controls (P < 0.05). Robust skeletal muscle atrophy occurs after burn injury, even in muscles located distally to the site of injury. The activation and apoptosis of satellite cells probably impacts the recovery of lean tissue following a severe burn, contributing to prolonged frailty in burn survivors.
Collapse
Affiliation(s)
- Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children, Galveston, TX, USA
| | - Craig Porter
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children, Galveston, TX, USA
| | - Labros S Sidossis
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children, Galveston, TX, USA
| | - Christopher Nieten
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children, Galveston, TX, USA
| | - Paul T Reidy
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX, USA
| | - Gabriel Hundeshagen
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children, Galveston, TX, USA
| | - Ronald Mlcak
- Shriners Hospitals for Children, Galveston, TX, USA
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Jong O Lee
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children, Galveston, TX, USA
| | - Oscar E Suman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children, Galveston, TX, USA
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children, Galveston, TX, USA
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA. .,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA. .,Shriners Hospitals for Children, Galveston, TX, USA.
| |
Collapse
|
121
|
Anderson JE, Do MKQ, Daneshvar N, Suzuki T, Dort J, Mizunoya W, Tatsumi R. The role of semaphorin3A in myogenic regeneration and the formation of functional neuromuscular junctions on new fibres. Biol Rev Camb Philos Soc 2016; 92:1389-1405. [PMID: 27296513 DOI: 10.1111/brv.12286] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 01/03/2023]
Abstract
Current research on skeletal muscle injury and regeneration highlights the crucial role of nerve-muscle interaction in the restoration of innervation during that process. Activities of muscle satellite or stem cells, recognized as the 'currency' of myogenic repair, have a pivotal role in these events, as shown by ongoing research. More recent investigation of myogenic signalling events reveals intriguing roles for semaphorin3A (Sema3A), secreted by activated satellite cells, in the muscle environment during development and regeneration. For example, Sema3A makes important contributions to regulating the formation of blood vessels, balancing bone formation and bone remodelling, and inflammation, and was recently implicated in the establishment of fibre-type distribution through effects on myosin heavy chain gene expression. This review highlights the active or potential contributions of satellite-cell-derived Sema3A to regulation of the processes of motor neurite ingrowth into a regenerating muscle bed. Successful restoration of functional innervation during muscle repair is essential; this review emphasizes the integrative role of satellite-cell biology in the progressive coordination of adaptive cellular and tissue responses during the injury-repair process in voluntary muscle.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Junio Dort
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| |
Collapse
|
122
|
Schroder E, Hodge B, Riley L, Zhang X, Esser K. Reply from Elizabeth Schroder, Brian Hodge, Lance Riley, Xiping Zhang and Karyn Esser. J Physiol 2016; 594:3163-4. [DOI: 10.1113/jp272165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 01/29/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Elizabeth Schroder
- Center for Muscle Biology and Department of Physiology; College of Medicine, University of Kentucky; Lexington KY USA
| | - Brian Hodge
- Center for Muscle Biology and Department of Physiology; College of Medicine, University of Kentucky; Lexington KY USA
| | - Lance Riley
- Center for Muscle Biology and Department of Physiology; College of Medicine, University of Kentucky; Lexington KY USA
| | - Xiping Zhang
- Center for Muscle Biology and Department of Physiology; College of Medicine, University of Kentucky; Lexington KY USA
| | - Karyn Esser
- Center for Muscle Biology and Department of Physiology; College of Medicine, University of Kentucky; Lexington KY USA
| |
Collapse
|
123
|
Isolation, Culture, Functional Assays, and Immunofluorescence of Myofiber-Associated Satellite Cells. Methods Mol Biol 2016; 1460:141-62. [PMID: 27492171 DOI: 10.1007/978-1-4939-3810-0_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adult skeletal muscle stem cells, termed satellite cells, regenerate and repair the functional contractile cells in adult skeletal muscle called myofibers. Satellite cells reside in a niche between the basal lamina and sarcolemma of myofibers. Isolating single myofibers and their associated satellite cells provides a culture system that partially mimics the in vivo environment. We describe methods for isolating and culturing intact individual myofibers and their associated satellite cells from the mouse extensor digitorum longus muscle. Following dissection and isolation of individual myofibers we provide protocols for myofiber transplantation, satellite cell transfection, immune detection of satellite cell antigens, and assays to examine satellite cell self-renewal and proliferation.
Collapse
|