101
|
Liao X, Wu M, Hao Y, Deng H. Exploring the Preventive Effect and Mechanism of Senile Sarcopenia Based on "Gut-Muscle Axis". Front Bioeng Biotechnol 2020; 8:590869. [PMID: 33251202 PMCID: PMC7674676 DOI: 10.3389/fbioe.2020.590869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related sarcopenia probably leads to chronic systemic inflammation and plays a vital role in the development of the complications of the disease. Gut microbiota, an environmental factor, is the medium of nutritional support to muscle cells, having significant impact on sarcopenia. Consequently, a significant amount of studies explored and showed the presence of gut microbiome–muscle axis (gut–muscle axis for short), which was possibly considered as the disease interventional target of age-related sarcopenia. However, a variety of nutrients probably affect the changes of the gut–muscle axis so as to affect the healthy balance of skeletal muscle. Therefore, it is necessary to study the mechanism of intestinal–muscle axis, and nutrients play a role in the treatment of senile sarcopenia through this mechanism. This review summarizes the available literature on mechanisms and specific pathways of gut–muscle axis and discusses the potential role and therapeutic feasibility of gut microbiota in age-related sarcopenia to understand the development of age-related sarcopenia and figure out the novel perspective of the potential therapeutic interventional targets.
Collapse
Affiliation(s)
- Xiaoshan Liao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengting Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuting Hao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Deng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
102
|
Wei HC, Xing SJ, Chen P, Wu XF, Gu X, Luo L, Liang XF, Xue M. Plant protein diet-induced hypoimmunity by affecting the spiral valve intestinal microbiota and bile acid enterohepatic circulation in Amur sturgeon (Acipenser schrenckii). FISH & SHELLFISH IMMUNOLOGY 2020; 106:421-430. [PMID: 32798694 DOI: 10.1016/j.fsi.2020.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
An 8-week growth trial was conducted to study enterohepatic recirculation of bile acid metabolism and the intestinal microbiota of Amur sturgeon (Acipenser schrenckii) fed with three diets, including 540 g/kg, 270 g/kg or 0 g/kg fishmeal, which was correspondingly replaced by a plant protein blend (named P0, P50 and P100, respectively). The diets were designed to be isonitrogenous, isoenergetic and essential nutrients balanced. With rising levels of dietary plant protein, disruption of the spiral valve intestinal microbiota and more morbidity with liver disease were observed in the P100 group, although there were no haematological abnormalities observed. An obvious bile acids enterohepatic circulation disorder was found with phenotypes of increased liver bile acids compensatory synthesis, and reduced expression of bile acid receptors (FXR and TGR5), which induced BA accumulative toxicity. Accompanied by increased oxidative stress, it further induced hepatic lesions and hypoimmunity, which were non-negligible reasons for the high mortality and low utilization ability of plant protein by Amur sturgeon.
Collapse
Affiliation(s)
- H C Wei
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - S J Xing
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - P Chen
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - X F Wu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - X Gu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - L Luo
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - X F Liang
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - M Xue
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Agriculture and Rural Ministry Quality and Safety Risk Evaluation Laboratory of Feed and Feed Additives for Animal Husbandry, Beijing, 100081, China.
| |
Collapse
|
103
|
Stofan M, Guo GL. Bile Acids and FXR: Novel Targets for Liver Diseases. Front Med (Lausanne) 2020; 7:544. [PMID: 33015098 PMCID: PMC7516013 DOI: 10.3389/fmed.2020.00544] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from cholesterol and have been shown to be essential for lipid homeostasis. BAs regulate a variety of metabolic functions via modulating nuclear and membrane receptors. Farnesoid X receptor (FXR) is the most important nuclear receptor for maintaining BA homeostasis. FXR plays a tissue-specific role in suppressing BA synthesis and promoting BA enterohepatic circulation. Disruption of FXR in mice have been implicated in liver diseases commonly occurring in humans, including cholestasis, non-alcoholic fatty liver diseases, and hepatocellular carcinoma. Strategically targeting FXR activity has been rapidly used to develop novel therapies for the prevention and/or treatment of cholestasis and non-alcoholic steatohepatitis. This review provides an updated literature review on BA homeostasis and FXR modulator development.
Collapse
Affiliation(s)
- Mary Stofan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States.,Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ, United States
| |
Collapse
|
104
|
Li C, Yang J, Wang Y, Qi Y, Yang W, Li Y. Farnesoid X Receptor Agonists as Therapeutic Target for Cardiometabolic Diseases. Front Pharmacol 2020; 11:1247. [PMID: 32982723 PMCID: PMC7479173 DOI: 10.3389/fphar.2020.01247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiometabolic diseases are characterized as a combination of multiple risk factors for cardiovascular disease (CVD) and metabolic diseases including diabetes mellitus and dyslipidemia. Cardiometabolic diseases are closely associated with cell glucose and lipid metabolism, inflammatory response and mitochondrial function. Farnesoid X Receptor (FXR), a metabolic nuclear receptor, are found to be activated by primary BAs such as chenodeoxycholic acid (CDCA), cholic acid (CA) and synthetic agonists such as obeticholic acid (OCA). FXR plays crucial roles in regulating cholesterol homeostasis, lipid metabolism, glucose metabolism, and intestinal microorganism. Recently, emerging evidence suggests that FXR agonists are functional for metabolic syndrome and cardiovascular diseases and are considered as a potential therapeutic agent. This review will discuss the pathological mechanism of cardiometabolic disease and reviews the potential mechanisms of FXR agonists in the treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Wang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingzi Qi
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqing Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
105
|
Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev 2020; 101:683-731. [PMID: 32790577 DOI: 10.1152/physrev.00049.2019] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, bile acids (BAs) have become established as important signaling molecules that enable fine-tuned inter-tissue communication from the liver, their site of production, over the intestine, where they are modified by the gut microbiota, to virtually any organ, where they exert their pleiotropic physiological effects. The chemical variety of BAs, to a large extent determined by the gut microbiome, also allows for a complex fine-tuning of adaptive responses in our body. This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.
Collapse
Affiliation(s)
- Alessia Perino
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Hadrien Demagny
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Laura Velazquez-Villegas
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| |
Collapse
|
106
|
Li T, Tuo B. Pathophysiology of hepatic Na +/H + exchange (Review). Exp Ther Med 2020; 20:1220-1229. [PMID: 32742358 PMCID: PMC7388279 DOI: 10.3892/etm.2020.8888] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are a family of membrane proteins that contribute to exchanging one intracellular proton for one extracellular sodium. The family of NHEs consists of nine known members, NHE1-9. Each isoform represents a different gene product that has unique tissue expression, membrane localization, physiological effects, pathological regulation and sensitivity to drug inhibitors. NHE1 was the first to be discovered and is often referred to as the 'housekeeping' isoform of the NHE family. NHEs are not only involved in a variety of physiological processes, including the control of transepithelial Na+ absorption, intracellular pH, cell volume, cell proliferation, migration and apoptosis, but also modulate complex pathological events. Currently, the vast majority of review articles have focused on the role of members of the NHE family in inflammatory bowel disease, intestinal infectious diarrhea and digestive system tumorigenesis, but only a few reviews have discussed the role of NHEs in liver disease. Therefore, the present review described the basic biology of NHEs and highlighted their physiological and pathological effects in the liver.
Collapse
Affiliation(s)
- Tingting Li
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
107
|
Abstract
PURPOSE OF REVIEW Studies have identified several effects of bile acids (BAs) in glucose homeostasis, energy expenditure, and body weight control, through receptor-dependent and independent mechanisms. BAs are produced from cholesterol and characterized by their structures, which result from enzymes in the liver and the gut microbiota. The aim of this review is to characterize the effects of BA structure and composition on diabetes. RECENT FINDINGS The hydroxyl groups of BAs interact with binding pockets of receptors and enzymes that affect glucose homeostasis. Human and animal studies show that BA composition is associated with insulin resistance and food intake regulation. The hydroxylation of BAs and BA composition contributes to glucose regulation. Modulation of BA composition has the potential to improve glucose metabolism.
Collapse
Affiliation(s)
- Sei Higuchi
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Russ Berrie Pavilion, Room 315, 1150 St. Nicholas Ave., New York, NY, 10032, USA.
| |
Collapse
|
108
|
Wu Y, Zhou A, Tang L, Lei Y, Tang B, Zhang L. Bile Acids: Key Regulators and Novel Treatment Targets for Type 2 Diabetes. J Diabetes Res 2020; 2020:6138438. [PMID: 32733968 PMCID: PMC7383344 DOI: 10.1155/2020/6138438] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), characterized by insulin resistance and unclear pathogenesis, is a serious menace to human health. Bile acids are the end products of cholesterol catabolism and play an important role in maintaining cholesterol homeostasis. Furthermore, increasing studies suggest that bile acids may regulate glucose tolerance, insulin sensitivity, and energy metabolism, suggesting that bile acids may represent a potential therapeutic target for T2DM. This study summarizes the metabolism of bile acids and, more importantly, changes in their concentrations, constitution, and receptors in diabetes. Furthermore, we provide an overview of the mechanisms underlying the role of bile acids in glucose and lipid metabolism, as well as the occurrence and development of T2DM. Bile acid-targeted therapy may represent a valid approach for T2DM treatment.
Collapse
Affiliation(s)
- Yingjie Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510030, China
| | - An Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yuanyuan Lei
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Linjing Zhang
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
109
|
You D, Lyn-Cook LE, Gatti DM, Bell N, Mayeux PR, James LP, Mattes WB, Larson GJ, Harrill AH. Nitrosative Stress and Lipid Homeostasis as a Mechanism for Zileuton Hepatotoxicity and Resistance in Genetically Sensitive Mice. Toxicol Sci 2020; 175:220-235. [PMID: 32170957 PMCID: PMC7253212 DOI: 10.1093/toxsci/kfaa037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Zileuton is an orally active inhibitor of leukotriene synthesis for maintenance treatment of asthma, for which clinical usage has been associated with idiosyncratic liver injury. Mechanistic understanding of zileuton toxicity is hampered by the rarity of the cases and lack of an animal model. A promising model for mechanistic study of rare liver injury is the Diversity Outbred (J:DO) mouse population, with genetic variation similar to that found in humans. In this study, female DO mice were administered zileuton or vehicle daily for 7 days (i.g.). Serum liver enzymes were elevated in the zileuton group, with marked interindividual variability in response. Zileuton exposure-induced findings in susceptible DO mice included microvesicular fatty change, hepatocellular mitosis, and hepatocellular necrosis. Inducible nitric oxide synthase and nitrotyrosine abundance were increased in livers of animals with necrosis and those with fatty change, implicating nitrosative stress as a possible injury mechanism. Conversely, DO mice lacking adverse liver pathology following zileuton exposure experienced decreased hepatic concentrations of resistin and increased concentrations of insulin and leptin, providing potential clues into mechanisms of toxicity resistance. Transcriptome pathway analysis highlighted mitochondrial dysfunction and altered fatty acid oxidation as key molecular perturbations associated with zileuton exposure, and suggested that interindividual differences in cytochrome P450 metabolism, glutathione-mediated detoxification, and farnesoid X receptor signaling may contribute to zileuton-induced liver injury (ZILI). Taken together, DO mice provided a platform for investigating mechanisms of toxicity and resistance in context of ZILI which may lead to targeted therapeutic interventions.
Collapse
Affiliation(s)
- Dahea You
- Division of the National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Lascelles E Lyn-Cook
- Graduate Program in Interdisciplinary Biomedical Sciences, The University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, Arkansas 72205
| | | | - Natalie Bell
- Division of the National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
- East Carolina University, Greenville, North Carolina 27858
| | | | - Laura P James
- Department of Pediatrics, The University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, Arkansas 27705
| | - William B Mattes
- Division of Systems Biology, The National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Gary J Larson
- Social & Scientific Systems, Inc., Durham, North Carolina 27703
| | - Alison H Harrill
- Division of the National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
- Department of Environmental and Occupational Health, The University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, Arkansas 72205
| |
Collapse
|
110
|
Li H, Xi Y, Xin X, Tian H, Hu Y. Gypenosides regulate farnesoid X receptor-mediated bile acid and lipid metabolism in a mouse model of non-alcoholic steatohepatitis. Nutr Metab (Lond) 2020; 17:34. [PMID: 32377219 PMCID: PMC7195801 DOI: 10.1186/s12986-020-00454-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Gypenosides (Gyp) are the main ingredient of the Chinese medicine, Gynostemma pentaphyllum. They are widely used in Asia as a hepatoprotective agent. Here, we elucidated the mechanism of Gyp in non-alcoholic steatohepatitis (NASH) with a focus on farnesoid X receptor (FXR)-mediated bile acid and lipid metabolic pathways. Methods NASH was induced in mice by high-fat diet (HFD) feeding, while mice in the control group were given a normal diet. At the end of week 10, HFD-fed mice were randomly divided into HFD, HFD plus Gyp, and HFD plus obeticholic acid (OCA, FXR agonist) groups and were given the corresponding treatments for 4 weeks. Next, we analyzed the histopathological changes as well as the liver triglyceride (TG) level and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), fasting blood glucose (FBG), fasting insulin (FINS), TG, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels as well as the bile acid profile. We carried out RT-PCR and western blotting to detect HFD-induced alterations in gene/protein expression related to bile acid and lipid metabolism. Results The HFD group had histopathological signs of hepatic steatosis and vacuolar degeneration. The liver TG and serum ALT, AST, FBG, FINS, TC, and LDL-C levels as well as the total bile acid level were significantly higher in the HFD group than in the control group (P < 0.01). In addition, we observed significant changes in the expression of proteins involved in bile acid or lipid metabolism (P < 0.05). Upon treatment with Gyp or OCA, signs of hepatic steatosis and alterations in different biochemical parameters were significantly improved (P < 0.05). Further, HFD-induced alterations in the expression genes involved in bile acid and lipid metabolism, such as CYP7A1, BSEP, SREBP1, and FASN, were significantly alleviated. Conclusions Gyp can improve liver lipid and bile acid metabolism in a mouse model of NASH, and these effects may be related to activation of the FXR signaling pathway.
Collapse
Affiliation(s)
- Hongshan Li
- 1Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Liver Disease Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, 315010 Zhejiang China
| | - Yingfei Xi
- 4Medical School of Ningbo University, Ningbo, Zhejiang China
| | - Xin Xin
- 1Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huajie Tian
- 1Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Hu
- 1Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
111
|
Wei M, Huang F, Zhao L, Zhang Y, Yang W, Wang S, Li M, Han X, Ge K, Qu C, Rajani C, Xie G, Zheng X, Zhao A, Bian Z, Jia W. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine 2020; 55:102766. [PMID: 32408110 PMCID: PMC7225614 DOI: 10.1016/j.ebiom.2020.102766] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The composition of the bile acid (BA) pool is closely associated with obesity and is modified by gut microbiota. Perturbations of gut microbiota shape the BA composition, which, in turn, may alter important BA signaling and affect host metabolism. METHODS We investigated BA composition of high BMI subjects from a human cohort study and a high fat diet (HFD) obesity prone (HF-OP) / HFD obesity resistant (HF-OR) mice model. Gut microbiota was analysed by metagenomics sequencing. GLP-1 secretion and gene regulation studies involved ELISA, qPCR, Western blot, Immunohistochemistry, and Immunofluorescence staining. FINDINGS We found that the proportion of non-12-OH BAs was significantly decreased in the unhealthy high BMI subjects. The HF-OR mice had an enhanced level of non-12-OH BAs. Non-12-OH BAs including ursodeoxycholate (UDCA), chenodeoxycholate (CDCA), and lithocholate (LCA) were decreased in the HF-OP mice and associated with altered gut microbiota. Clostridium scindens was decreased in HF-OP mice and had a positive correlation with UDCA and LCA. Gavage of Clostridium scindens in mice increased the levels of hepatic non-12-OH BAs, accompanied by elevated serum 7α-hydroxy-4-cholesten-3-one (C4) levels. In HF-OP mice, altered BA composition was associated with significantly downregulated expression of GLP-1 in ileum and PGC1α, UCP1 in brown adipose tissue. In addition, we identified that UDCA attenuated the high fat diet-induced obesity via enhancing levels of non-12-OH BAs. INTERPRETATION Our study highlights that dysregulated BA signaling mediated by gut microbiota contributes to obesity susceptibility, suggesting modulation of BAs could be a promising strategy for obesity therapy.
Collapse
Affiliation(s)
- Meilin Wei
- Shanghai Key Laboratory of Diabetes Mellitus and Centre for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Fengjie Huang
- Shanghai Key Laboratory of Diabetes Mellitus and Centre for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ling Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yunjing Zhang
- Shanghai Key Laboratory of Diabetes Mellitus and Centre for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wei Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shouli Wang
- Shanghai Key Laboratory of Diabetes Mellitus and Centre for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Mengci Li
- Shanghai Key Laboratory of Diabetes Mellitus and Centre for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaolong Han
- Shanghai Key Laboratory of Diabetes Mellitus and Centre for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Kun Ge
- Shanghai Key Laboratory of Diabetes Mellitus and Centre for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chun Qu
- Shanghai Key Laboratory of Diabetes Mellitus and Centre for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cynthia Rajani
- University of Hawaii Cancer Centre, 701 Ilalo st, Honolulu, HI 96813, USA
| | - Guoxiang Xie
- Shanghai Key Laboratory of Diabetes Mellitus and Centre for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China; University of Hawaii Cancer Centre, 701 Ilalo st, Honolulu, HI 96813, USA
| | - Xiaojiao Zheng
- Shanghai Key Laboratory of Diabetes Mellitus and Centre for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Aihua Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Centre for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Centre for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China; University of Hawaii Cancer Centre, 701 Ilalo st, Honolulu, HI 96813, USA; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
112
|
Gai Z, Gui T, Alecu I, Lone MA, Hornemann T, Chen Q, Visentin M, Hiller C, Hausler S, Kullak-Ublick GA. Farnesoid X receptor activation induces the degradation of hepatotoxic 1-deoxysphingolipids in non-alcoholic fatty liver disease. Liver Int 2020; 40:844-859. [PMID: 31883408 DOI: 10.1111/liv.14340] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Patients with non-alcoholic fatty liver disease (NAFLD) exhibit higher levels of plasma 1-deoxysphingolipids than healthy individuals. The aim of this study was to investigate the role of farnesoid X receptor (FXR) in 1-deoxysphingolipid de novo synthesis and degradation. METHODS Mice were fed with a high-fat diet (HFD) to induce obesity and NAFLD, and then treated with the FXR ligand obeticholic acid (OCA). Histology and gene expression analysis were performed on liver tissue. Sphingolipid patterns from NAFLD patients and mouse models were assessed by liquid chromatography-mass spectrometry. The molecular mechanism underlying the effect of FXR activation on sphingolipid metabolism was studied in Huh7 cells and primary cultured hepatocytes, as well as in a 1-deoxysphinganine-treated mouse model. RESULTS 1-deoxysphingolipids were increased in both NAFLD patients and mouse models. FXR activation by OCA protected the liver against oxidative stress, apoptosis, and reduced 1-deoxysphingolipid levels, both in a HFD-induced mouse model of obesity and in 1-deoxysphinganine-treated mice. In vitro, FXR activation lowered intracellular 1-deoxysphingolipid levels by inducing Cyp4f-mediated degradation, but not by inhibiting de novo synthesis, thereby protecting hepatocytes against doxSA-induced cytotoxicity, mitochondrial damage, and apoptosis. Overexpression of Cyp4f13 in cells was sufficient to ameliorate doxSA-induced cytotoxicity. Treatment with the Cyp4f pan-inhibitor HET0016 or FXR knock-down fully abolished the protective effect of OCA, indicating that OCA-mediated 1-deoxysphingolipid degradation is FXR and Cyp4f dependent. CONCLUSIONS Our study identifies FXR-Cyp4f as a novel regulatory pathway for 1-deoxysphingolipid metabolism. FXR activation represents a promising therapeutic strategy for patients with metabolic syndrome and NAFLD.
Collapse
Affiliation(s)
- Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Irina Alecu
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Museer A Lone
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Qingfa Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Hiller
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephanie Hausler
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| |
Collapse
|
113
|
Li T, Chiang JYL. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr 2020; 9:152-169. [PMID: 32355674 PMCID: PMC7188552 DOI: 10.21037/hbsn.2019.09.03] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized from cholesterol only in hepatocytes. Bile acids circulating in the enterohepatic system act as physiological detergent molecules to help solubilize biliary cholesterol and emulsify dietary lipids and fat-soluble vitamins in small intestine. Bile acids are signaling molecules that activate nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor TGR5. FXR critically regulates bile acid homeostasis by mediating bile acid feedback inhibition of hepatic bile acid synthesis. In addition, bile acid-activated cellular signaling pathways regulate metabolic homeostasis, immunity, and cell proliferation in various metabolically active organs. In the small and large intestine, gut bacterial enzymes modify primary bile acids to generate secondary bile acids to help shape the bile acid pool composition and subsequent biological effects. In turn, bile acids exhibit anti-microbial properties and modulate gut microbiota to influence host metabolism and immunity. Currently, bile acid-based therapies including systemic and intestine-restricted FXR agonists, TGR5 agonists, fibroblast growth factor 19 analogue, intestine FXR antagonists, and intestine apical sodium-bile acid transporter (ASBT) inhibitors have been developed as promising treatments for non-alcoholic steatohepatitis (NASH). These pharmacological agents improved metabolic and inflammatory disorders via distinct mechanisms of action that are subjects of extensive research interest. More recently, human and experimental alcoholic liver disease (ALD) has been associated with disrupted bile acid homeostasis. In additional, new findings showed that targeting bile acid metabolism and signaling may be promising therapeutic approaches for treating ALD.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
114
|
Zhang N, Chen W, Yin H, Liu W, He X. Biliary Jejunostomy Might Improve Glucose in Type 2 Diabetes Patients. Obes Surg 2020; 30:1446-1451. [PMID: 31811623 DOI: 10.1007/s11695-019-04319-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSES Biliopancreatic diversion could improve type 2 diabetes mellitus. Our aim was to investigate the effects of biliary jejunostomy on the improvement of glucose. MATERIALS AND METHODS Twenty-seven type 2 diabetes patients underwent biliary jejunostomy between January 2013 and January 2018 in our hospital and were followed up. Demographic data, operation details, body weight, food intake, effects on diabetes control, and biomedical parameters were collected and analyzed. RESULTS As defined previously, 3 of 27 diabetes patients were "under control," 8 patients were "in remission," and 12 patients were "improved." The fasting glucose decreased from 9.7 ± 2.1 mmol/L before surgery to 7.9 ± 1.8 mmol/L 12 months after surgery (P = 0.001). The level of hemoglobin A1c in these patients was 9.1 ± 2.3% before surgery, and it decreased to 7.2 ± 1.3% 12 months after surgery (P < 0.001). There was no significant difference in the body weight index (P = 0.78) or food intake (P = 0.18) between the time prior to surgery and 12 months afterward. The average level of total bile acids increased significantly after surgery, from 6.7 ± 2.2 μmol/L before surgery to 8.6 ± 2.9 μmol/L 12 months after surgery (P < 0.001). CONCLUSIONS Fasting glucose in type 2 diabetes patients was improved after biliary jejunostomy. Increasing bile acids levels might play an important role in the remission of type 2 diabetes.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Weijie Chen
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | | | - Wei Liu
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Xiaodong He
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China.
| |
Collapse
|
115
|
Clark BJ. The START-domain proteins in intracellular lipid transport and beyond. Mol Cell Endocrinol 2020; 504:110704. [PMID: 31927098 DOI: 10.1016/j.mce.2020.110704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
The Steroidogenic Acute Regulatory Protein-related Lipid Transfer (START) domain is a ~210 amino acid sequence that folds into an α/β helix-grip structure forming a hydrophobic pocket for lipid binding. The helix-grip fold structure defines a large superfamily of proteins, and this review focuses on the mammalian START domain family members that include single START domain proteins with identified ligands, and larger multi-domain proteins that may have novel roles in metabolism. Much of our understanding of the mammalian START domain proteins in lipid transport and changes in metabolism has advanced through studies using knockout mouse models, although for some of these proteins the identity and/or physiological role of ligand binding remains unknown. The findings that helped define START domain lipid-binding specificity, lipid transport, and changes in metabolism are presented to highlight that fundamental questions remain regarding the biological function(s) for START domain-containing proteins.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
116
|
Suleiman JB, Mohamed M, Bakar ABA. A systematic review on different models of inducing obesity in animals: Advantages and limitations. J Adv Vet Anim Res 2020; 7:103-114. [PMID: 32219116 PMCID: PMC7096124 DOI: 10.5455/javar.2020.g399] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Several animals have been in the limelight of basic research associated with metabolic diseases like obesity. Obesity can be considered as a significant public health concern in the world. It raises the chances for a variety of disease conditions that includes diabetes, hypertension, liver disease, and cancers, which, in turn, decreases the overall lifespan of adult men and women. The World Health Organization has considered obesity as a global epidemic. Researchers have made several attempts to classify human obesity, but none have been successful. Animal obesity can be classified based on their etiology; however, till now, no animal model of obesity can replicate models of the human condition, they have only provided clues into the causes, aftermaths, and preventive remedy to human adiposity. Over the years, there are varieties of animal models used to induce obesity. Some of them include monogenic, polygenic, surgical, seasonal, and other models of obesity. Apart from the advantages of these models, most of them are accompanied by limitations. The primary purpose of this review is, therefore, to highlight the several models with their advantages and limitations. By knowing the benefits and limitations of animal models of obesity, researchers may be at liberty to select the appropriate one for the study of obesity.
Collapse
Affiliation(s)
- Joseph Bagi Suleiman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| |
Collapse
|
117
|
Abstract
Advances in our understanding of how the gut microbiota contributes to human health and diseases have expanded our insight into how microbial composition and function affect the human host. Heart failure is associated with splanchnic circulation congestion, leading to bowel wall oedema and impaired intestinal barrier function. This situation is thought to heighten the overall inflammatory state via increased bacterial translocation and the presence of bacterial products in the systemic blood circulation. Several metabolites produced by gut microorganisms from dietary metabolism have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. These findings suggest that the gut microbiome functions like an endocrine organ by generating bioactive metabolites that can directly or indirectly affect host physiology. In this Review, we discuss several newly discovered gut microbial metabolic pathways, including the production of trimethylamine and trimethylamine N-oxide, short-chain fatty acids, and secondary bile acids, that seem to participate in the development and progression of cardiovascular diseases, including heart failure. We also discuss the gut microbiome as a novel therapeutic target for the treatment of cardiovascular disease, and potential strategies for targeting intestinal microbial processes.
Collapse
Affiliation(s)
- W H Wilson Tang
- Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department for Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Center for Clinical Genomics, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.
| | - Daniel Y Li
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| | - Stanley L Hazen
- Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department for Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
118
|
Verzijl CRC, Van De Peppel IP, Struik D, Jonker JW. Pegbelfermin (BMS-986036): an investigational PEGylated fibroblast growth factor 21 analogue for the treatment of nonalcoholic steatohepatitis. Expert Opin Investig Drugs 2020; 29:125-133. [PMID: 31899984 DOI: 10.1080/13543784.2020.1708898] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and is strongly associated with obesity and insulin resistance. NAFLD refers to a spectrum of disorders ranging from asymptomatic hepatic steatosis (nonalcoholic fatty liver, NAFL) to nonalcoholic steatohepatitis (NASH), which increases the risk of developing more severe forms of liver disease such as progressive fibrosis, cirrhosis, and liver cancer. Currently, there are no food and drug administration (FDA) approved drugs to treat NASH. Pegbelfermin (BMS-986036) is a PEGylated fibroblast growth factor 21 (FGF21) analogue that is under investigation for the treatment of NASH.Areas covered: We reviewed the (pre)clinical pegbelfermin studies and compared these with other studies that assessed FGF21 and FGF21 analogues in the treatment of NASH.Expert opinion: With no FDA approved treatments available for NASH, there is an urgent need for novel therapies. Pegbelfermin is a systemic treatment with pleiotropic effects on various tissues. Short-term adverse effects are limited, but more research is required to study potential long-term safety issues. In a phase 2a trial, pegbelfermin has shown promising improvements in several NASH related outcomes. However, clinical trials demonstrating long-term benefits on hard outcomes such as liver histology, cirrhosis development, or survival are required for further validation.
Collapse
Affiliation(s)
- Cristy R C Verzijl
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ivo P Van De Peppel
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dicky Struik
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
119
|
Warmbrunn MV, Herrema H, Aron-Wisnewsky J, Soeters MR, Van Raalte DH, Nieuwdorp M. Gut microbiota: a promising target against cardiometabolic diseases. Expert Rev Endocrinol Metab 2020; 15:13-27. [PMID: 32066294 DOI: 10.1080/17446651.2020.1720511] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Cardiometabolic diseases (CMD) are a group of interrelated disorders such as metabolic syndrome, type 2 diabetes mellitus and cardiovascular diseases (CVD). As the prevalence of these diseases increases globally, efficient new strategies are necessary to target CMD and modifiable risk factors. In the past decade, evidence has accumulated regarding the influence of gut microbiota (GM) on CMD, providing new targets for therapeutic interventions.Areas covered: This narrative review discusses the pathophysiologic link between CMD, GM, and potential microbiota-based targets against atherosclerosis and modifiable risk factors for atherosclerosis. Low-grade inflammation can be induced through GM and its derived metabolites. CMD are influenced by GM and microbiota-derived metabolites such as short-chain fatty acids (SCFA), secondary bile acids, trimethylamine N-oxide (TMAO), and the composition of GM can modulate host metabolism. All of the above can lead to promising therapeutic targets.Expert opinion: Most data are derived from animal models or human association studies; therefore, more translational and interventional research in humans is necessary to validate these promising findings. Reproduced findings such as aberrant microbiota patterns or circulating biomarkers could be targeted depending on individual metabolic profiles, moving toward personalized medicine in CMD.
Collapse
Affiliation(s)
- Moritz V Warmbrunn
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Judith Aron-Wisnewsky
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (Nutriomics), Paris, France
- Assistance Publique Hôpitaux De Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel H Van Raalte
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC, Location VUMC at Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, ICar at Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC, Location VUMC at Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, ICar at Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
120
|
Evaluation of metabolic changes in liver and serum of streptozotocin-induced diabetic rats after Mango diet supplementation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
121
|
Brønden A, Knop FK. Gluco-Metabolic Effects of Pharmacotherapy-Induced Modulation of Bile Acid Physiology. J Clin Endocrinol Metab 2020; 105:5601203. [PMID: 31630179 DOI: 10.1210/clinem/dgz025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/04/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
CONTEXT The discovery and characterization of the bile acid specific receptors farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) have facilitated a wealth of research focusing on the link between bile acid physiology and glucose metabolism. Modulation of FXR and TGR5 activation have been demonstrated to affect the secretion of glucagon-like peptide 1, insulin, and glucagon as well as energy expenditure and gut microbiota composition, with potential beneficial effects on glucose metabolism. EVIDENCE ACQUISITION A search strategy based on literature searches in on PubMed with various combinations of the key words FXR, TGR5, agonist, apical sodium-dependent bile acid transporter (ASBT), bile acid sequestrant, metformin, and glucose metabolism has been applied to obtain material for the present review. Furthermore, manual searches including scanning of reference lists in relevant papers and conference proceedings have been performed. EVIDENCE SYNTHESIS This review provides an outline of the link between bile acid and glucose metabolism, with a special focus on the gluco-metabolic impact of treatment modalities with modulating effects on bile acid physiology; including FXR agonists, TGR5 agonists, ASBT inhibitors, bile acid sequestrants, and metformin. CONCLUSIONS Any potential beneficial gluco-metabolic effects of FXR agonists remain to be established, whereas the clinical relevance of TGR5-based treatment modalities seems limited because of substantial safety concerns of TGR5 agonists observed in animal models. The glucose-lowering effects of ASBT inhibitors, bile acid sequestrants, and metformin are at least partly mediated by modulation of bile acid circulation, which might allow an optimization of these bile acid-modulating treatment modalities. (J Clin Endocrinol Metab XX: 00-00, 2019).
Collapse
Affiliation(s)
- Andreas Brønden
- Center for Clinical M etabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Filip K Knop
- Center for Clinical M etabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Steno Diabetes Copenhagen, DK-2820 Gentofte, Denmark
| |
Collapse
|
122
|
Hu H, Lin A, Kong M, Yao X, Yin M, Xia H, Ma J, Liu H. Intestinal microbiome and NAFLD: molecular insights and therapeutic perspectives. J Gastroenterol 2020; 55:142-158. [PMID: 31845054 PMCID: PMC6981320 DOI: 10.1007/s00535-019-01649-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of dysregulated lipid and glucose metabolism, which is often associated with obesity, dyslipidemia and insulin resistance. In view of the high morbidity and health risks of NAFLD, the lack of effective cure has drawn great attention. In recent years, a line of evidence has suggested a close linkage between the intestine and liver diseases such as NAFLD. We summarized the composition and characteristics of intestinal microbes and reviewed molecular insights into the intestinal microbiome in development and progression of NAFLD. Intestinal microbes mainly include bacteria, archaea, viruses and fungi, and the crosstalk between non-bacterial intestinal microbes and human liver diseases should be paid more attention. Intestinal microbiota imbalance may not only increase the intestinal permeability to gut microbes but also lead to liver exposure to harmful substances that promote hepatic lipogenesis and fibrosis. Furthermore, we focused on reviewing the latest "gut-liver axis"-targeting treatment, including the application of antibiotics, probiotics, prebiotics, synbiotics, farnesoid X receptor agonists, bile acid sequestrants, gut-derived hormones, adsorbents and fecal microbiota transplantation for NAFLD. In this review, we also discussed the potential mechanisms of "gut-liver axis" manipulation and efficacy of these therapeutic strategies for NAFLD treatment.
Collapse
Affiliation(s)
- Haiming Hu
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Aizhen Lin
- grid.477392.cHubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei China
| | - Mingwang Kong
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Xiaowei Yao
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Mingzhu Yin
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Hui Xia
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Jun Ma
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Hongtao Liu
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| |
Collapse
|
123
|
Identification of isotschimgine as a novel farnesoid X receptor agonist with potency for the treatment of obesity in mice. Biochem Biophys Res Commun 2020; 521:639-645. [DOI: 10.1016/j.bbrc.2019.10.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/24/2019] [Indexed: 01/07/2023]
|
124
|
Reimer KC, Wree A, Roderburg C, Tacke F. New drugs for NAFLD: lessons from basic models to the clinic. Hepatol Int 2019; 14:8-23. [PMID: 31802390 DOI: 10.1007/s12072-019-10001-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
Abstract
The term nonalcoholic fatty liver disease (NAFLD) comprises a spectrum of increasingly harmful conditions ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) to liver fibrosis and end-stage cirrhosis. NAFLD is the currently most common form of chronic liver disease in both adults and children worldwide. As NAFLD evolves as a global pandemic alongside the still growing prevalence of metabolic syndrome, obesity, and diabetes, it is inevitable to develop effective counterstrategies. Over the last decades, great effort has been dedicated to the understanding of the pathogenesis of NAFLD. This includes the development of an array of models for NAFLD, ranging from advanced in vitro (primary cells, 3D cultures, biochip, spheroids, organoids) to in vivo rodent models (particularly in mice). Based on these approaches novel therapies have been proposed and subsequently evaluated for patients with advanced forms of NAFLD, in particular those with NASH and liver fibrosis or cirrhosis. In this review, we delineate the current understanding of disease pathophysiology and depict how novel therapeutic strategies aim to exploit these different mechanisms to ameliorate, treat, or stop progression of NASH. We also discuss obstacles and chances along the way from basic models to promising clinical treatment options.
Collapse
Affiliation(s)
- Katharina C Reimer
- Department of Medicine II, Nephrology/Rheumatology/Clinical Immunology, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité University Medical Center, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medical Center, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medical Center, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
125
|
Obeticholic acid prevents carbon tetrachloride-induced liver fibrosis through interaction between farnesoid X receptor and Smad3. Int Immunopharmacol 2019; 77:105911. [DOI: 10.1016/j.intimp.2019.105911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
|
126
|
Kostrzewski T, Maraver P, Ouro-Gnao L, Levi A, Snow S, Miedzik A, Rombouts K, Hughes D. A Microphysiological System for Studying Nonalcoholic Steatohepatitis. Hepatol Commun 2019; 4:77-91. [PMID: 31909357 PMCID: PMC6939502 DOI: 10.1002/hep4.1450] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the most severe form of nonalcoholic fatty liver disease (NAFLD), which to date has no approved drug treatments. There is an urgent need for better understanding of the genetic and molecular pathways that underlie NAFLD/NASH, and currently available preclinical models, be they in vivo or in vitro, do not fully represent key aspects of the human disease state. We have developed a human in vitro co‐culture NASH model using primary human hepatocytes, Kupffer cells and hepatic stellate cells, which are cultured together as microtissues in a perfused three‐dimensional microphysiological system (MPS). The microtissues were cultured in medium containing free fatty acids for at least 2 weeks, to induce a NASH‐like phenotype. The co‐culture microtissues within the MPS display a NASH‐like phenotype, showing key features of the disease including hepatic fat accumulation, the production of an inflammatory milieu, and the expression of profibrotic markers. Addition of lipopolysaccharide resulted in a more pro‐inflammatory milieu. In the model, obeticholic acid ameliorated the NASH phenotype. Microtissues were formed from both wild‐type and patatin‐like phospholipase domain containing 3 (PNPLA3) I148M mutant hepatic stellate cells. Stellate cells carrying the mutation enhanced the overall disease state of the model and in particular produced a more pro‐inflammatory milieu. Conclusion: The MPS model displays a phenotype akin to advanced NAFLD or NASH and has utility as a tool for exploring mechanisms underlying the disease. Furthermore, we demonstrate that in co‐culture the PNPLA3 I148M mutation alone can cause hepatic stellate cells to enhance the overall NASH disease phenotype.
Collapse
Affiliation(s)
| | - Paloma Maraver
- CN Bio Innovations Ltd. Welwyn Garden City Hertfordshire United Kingdom
| | - Larissa Ouro-Gnao
- CN Bio Innovations Ltd. Welwyn Garden City Hertfordshire United Kingdom
| | - Ana Levi
- Institute for Liver and Digestive Health, Regenerative Medicine and Fibrosis Group, Royal Free University College London United Kingdom
| | - Sophie Snow
- CN Bio Innovations Ltd. Welwyn Garden City Hertfordshire United Kingdom
| | - Alina Miedzik
- CN Bio Innovations Ltd. Welwyn Garden City Hertfordshire United Kingdom
| | - Krista Rombouts
- Institute for Liver and Digestive Health, Regenerative Medicine and Fibrosis Group, Royal Free University College London United Kingdom
| | - David Hughes
- CN Bio Innovations Ltd. Welwyn Garden City Hertfordshire United Kingdom
| |
Collapse
|
127
|
Fukui H. Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far? Diseases 2019; 7:diseases7040058. [PMID: 31726747 PMCID: PMC6956030 DOI: 10.3390/diseases7040058] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence supports that gut dysbiosis may relate to various liver diseases. Alcoholics with high intestinal permeability had a decrease in the abundance of Ruminnococcus. Intestinal dysmotility, increased gastric pH, and altered immune responses in addition to environmental and genetic factors are likely to cause alcohol-associated gut microbial changes. Alcohol-induced dysbiosis may be associated with gut barrier dysfunction, as microbiota and their products modulate barrier function by affecting epithelial pro-inflammatory responses and mucosal repair functions. High levels of plasma endotoxin are detected in alcoholics, in moderate fatty liver to advanced cirrhosis. Decreased abundance of Faecalibacterium prausnitzii, an anti-inflammatory commensal, stimulating IL-10 secretion and inhibiting IL-12 and interferon-γ expression. Proteobacteria, Enterobacteriaceae, and Escherichia were reported to be increased in NAFLD (nonalcoholic fatty liver disease) patients. Increased abundance of fecal Escherichia to elevated blood alcohol levels in these patients and gut microbiota enriched in alcohol-producing bacteria produce more alcohol (alcohol hypothesis). Some undetermined pathological sequences related to gut dysbiosis may facilitate energy-producing and proinflammatory conditions for the progression of NAFLD. A shortage of autochthonous non-pathogenic bacteria and an overgrowth of potentially pathogenic bacteria are common findings in cirrhotic patients. The ratio of the amounts of beneficial autochthonous taxa (Lachnospiraceae + Ruminococaceae + Veillonellaceae + Clostridiales Incertae Sedis XIV) to those of potentially pathogenic taxa (Enterobacteriaceae + Bacteroidaceae) was low in those with early death and organ failure. Cirrhotic patients with decreased microbial diversity before liver transplantation were more likely to develop post-transplant infections and cognitive impairment related to residual dysbiosis. Patients with PSC had marked reduction of bacterial diversity. Enterococcus and Lactobacillus were increased in PSC patients (without liver cirrhosis.) Treatment-naive PBC patients were associated with altered composition and function of gut microbiota, as well as a lower level of diversity. As serum anti-gp210 antibody has been considered as an index of disease progression, relatively lower species richness and lower abundance of Faecalibacterium spp. in gp210-positive patients are interesting. The dysbiosis-induced altered bacterial metabolites such as a hepatocarcinogenesis promotor DCA, together with a leaky gut and bacterial translocation. Gut protective Akkermansia and butyrate-producing genera were decreased, while genera producing-lipopolysaccharide were increased in early hepatocellular carcinoma (HCC) patients.
Collapse
Affiliation(s)
- Hiroshi Fukui
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8522, Japan
| |
Collapse
|
128
|
Abstract
Nonalcoholic steatohepatitis (NASH) is the second leading cause of liver transplantation in the US with a high risk of liver-related morbidities and mortality. Given the global burden of NASH, development of appropriate therapeutic strategies is an important clinical need. Where applicable, lifestyle modification remains the primary recommendation for the treatment of NASH, even though such changes are difficult to sustain and even insufficient to cure NASH. Bariatric surgery resolves NASH in such patients where lifestyle modifications have failed, and is recommended for morbidly obese patients with NASH. Thus, pharmacotherapies are of high value for NASH treatment. Though no drug has been approved by the US Food and Drug Administration for treatment of NASH, substantial progress in pharmacological development has been made in the last few years. Agents such as vitamin E and pioglitazone are recommended in patients with NASH, and yet concerns about their side effects remain. Many agents targeting various vital molecules and pathways, including those impacting metabolic perturbations, inflammatory cascades, and oxidative stress, are in clinical trials for the treatment of NASH. Some agents have shown promising results in phase II or III clinical trials, but more studies are required to assess their long-term effects. Herein, we review the potential strategies and challenges in therapeutic approaches to treating NASH.
Collapse
Affiliation(s)
- Ming-Ming Chen
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Jing-Jing Cai
- †Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yao Yu
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
| | - Zhi-Gang She
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Basic Medical School, Wuhan University, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| | - Hongliang Li
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Basic Medical School, Wuhan University, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
129
|
Pockros PJ, Fuchs M, Freilich B, Schiff E, Kohli A, Lawitz EJ, Hellstern PA, Owens-Grillo J, Van Biene C, Shringarpure R, MacConell L, Shapiro D, Cohen DE. CONTROL: A randomized phase 2 study of obeticholic acid and atorvastatin on lipoproteins in nonalcoholic steatohepatitis patients. Liver Int 2019; 39:2082-2093. [PMID: 31402538 DOI: 10.1111/liv.14209] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is a chronic and severe form of nonalcoholic fatty liver disease that can progress to cirrhosis and hepatocellular carcinoma and is a risk factor for cardiovascular disease. Although NASH has no approved treatments, obeticholic acid (OCA), a synthetic bile acid and farnesoid X receptor (FXR) agonist, was shown to improve histological features of NASH and fibrosis. Considering that FXR activation influences plasma lipoprotein concentrations, the Combination OCA aNd sTatins for monitoRing Of Lipids (CONTROL) study evaluated how statins can regulate lipoprotein metabolism with OCA treatment in patients with NASH. METHODS This randomized, double-blind, placebo-controlled, phase 2 study began with a 5-week screening/statin washout; 84 patients with NASH were randomly assigned (1:1:1:1) to receive placebo or 5 mg, 10 mg or 25 mg OCA once daily during the 16-week double-blind phase. Concurrent once daily atorvastatin (10 mg/days) was initiated at Week 4 with subsequent titration. Enrolled patients had biopsy-confirmed diagnosis of NASH with no evidence of hepatic decompensation. Plasma was collected to analyse lipoprotein parameters. RESULTS At Week 4, all OCA groups had an increase from baseline in mean low-density lipoprotein cholesterol (LDLc) and mean LDL particle concentration (LDLpc), mostly owing to large, less atherogenic LDLc particles. Atorvastatin 10 mg decreased LDLc and LDLpc levels below baseline in all OCA groups by Week 8; higher doses did not provide additional clinical benefits. CONCLUSIONS The CONTROL study showed that OCA-induced increases in LDLc in patients with NASH were mitigated with atorvastatin. The combination of OCA and atorvastatin was generally safe and well tolerated (NCT02633956).
Collapse
Affiliation(s)
- Paul J Pockros
- Division of Gastroenterology/Hepatology, Scripps Clinic, and the Scripps Translational Science Institute, La Jolla, CA, USA
| | - Michael Fuchs
- Division of Gastroenterology, Virginia Commonwealth University and Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| | | | - Eugene Schiff
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anita Kohli
- Institute for Liver Health, Chandler, AZ, USA
| | - Eric J Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | - David E Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
130
|
Patel BM, Goyal RK. Liver and insulin resistance: New wine in old bottle!!! Eur J Pharmacol 2019; 862:172657. [DOI: 10.1016/j.ejphar.2019.172657] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
131
|
AbdulHameed MDM, Pannala VR, Wallqvist A. Mining Public Toxicogenomic Data Reveals Insights and Challenges in Delineating Liver Steatosis Adverse Outcome Pathways. Front Genet 2019; 10:1007. [PMID: 31681434 PMCID: PMC6813744 DOI: 10.3389/fgene.2019.01007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Exposure to chemicals contributes to the development and progression of fatty liver, or steatosis, a process characterized by abnormal accumulation of lipids within liver cells. However, lack of knowledge on how chemicals cause steatosis has prevented any large-scale assessment of the 80,000+ chemicals in current use. To address this gap, we mined a large, publicly available toxicogenomic dataset associated with 18 known steatogenic chemicals to assess responses across assays (in vitro and in vivo) and species (i.e., rats and humans). We identified genes that were differentially expressed (DEGs) in rat in vivo, rat in vitro, and human in vitro studies in which rats or in vitro primary cell lines were exposed to the chemicals at different doses and durations. Using these DEGs, we performed pathway enrichment analysis, analyzed the molecular initiating events (MIEs) of the steatosis adverse outcome pathway (AOP), and predicted metabolite changes using metabolic network analysis. Genes indicative of oxidative stress were among the DEGs most frequently observed in the rat in vivo studies. Nox4, a pro-fibrotic gene, was down-regulated across these chemical exposure conditions. We identified eight genes (Cyp1a1, Egr1, Ccnb1, Gdf15, Cdk1, Pdk4, Ccna2, and Ns5atp9) and one pathway (retinol metabolism), associated with steatogenic chemicals and whose response was conserved across the three in vitro and in vivo systems. Similarly, we found the predicted metabolite changes, such as increases of saturated and unsaturated fatty acids, conserved across the three systems. Analysis of the target genes associated with the MIEs of the current steatosis AOP did not provide a clear association between these 18 chemicals and the MIEs, underlining the multi-factorial nature of this disease. Notably, our overall analysis implicated mitochondrial toxicity as an important and overlooked MIE for chemical-induced steatosis. The integrated toxicogenomics approach to identify genes, pathways, and metabolites based on known steatogenic chemicals, provide an important mean to assess development of AOPs and gauging the relevance of new testing strategies.
Collapse
Affiliation(s)
- Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
132
|
Nikolaou N, Gathercole LL, Marchand L, Althari S, Dempster NJ, Green CJ, van de Bunt M, McNeil C, Arvaniti A, Hughes BA, Sgromo B, Gillies RS, Marschall HU, Penning TM, Ryan J, Arlt W, Hodson L, Tomlinson JW. AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease. Metabolism 2019; 99:67-80. [PMID: 31330134 PMCID: PMC6744372 DOI: 10.1016/j.metabol.2019.153947] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome. Steroid hormones and bile acids are potent regulators of hepatic carbohydrate and lipid metabolism. Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates steroid hormones and catalyzes a fundamental step in bile acid synthesis. METHODS Human liver biopsies were obtained from 34 obese patients and AKR1D1 mRNA expression levels were measured using qPCR. Genetic manipulation of AKR1D1 was performed in human HepG2 and Huh7 liver cell lines. Metabolic assessments were made using transcriptome analysis, western blotting, mass spectrometry, clinical biochemistry, and enzyme immunoassays. RESULTS In human liver biopsies, AKR1D1 expression decreased with advancing steatosis, fibrosis and inflammation. Expression was decreased in patients with type 2 diabetes. In human liver cell lines, AKR1D1 knockdown decreased primary bile acid biosynthesis and steroid hormone clearance. RNA-sequencing identified disruption of key metabolic pathways, including insulin action and fatty acid metabolism. AKR1D1 knockdown increased hepatocyte triglyceride accumulation, insulin sensitivity, and glycogen synthesis, through increased de novo lipogenesis and decreased β-oxidation, fueling hepatocyte inflammation. Pharmacological manipulation of bile acid receptor activation prevented the induction of lipogenic and carbohydrate genes, suggesting that the observed metabolic phenotype is driven through bile acid rather than steroid hormone availability. CONCLUSIONS Genetic manipulation of AKR1D1 regulates the metabolic phenotype of human hepatoma cell lines, driving steatosis and inflammation. Taken together, the observation that AKR1D1 mRNA is down-regulated with advancing NAFLD suggests that it may have a crucial role in the pathogenesis and progression of the disease.
Collapse
Affiliation(s)
- Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Laura L Gathercole
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Lea Marchand
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Sara Althari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Niall J Dempster
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Martijn van de Bunt
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Catriona McNeil
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Anastasia Arvaniti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Beverly A Hughes
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Bruno Sgromo
- Department of Upper GI Surgery, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Richard S Gillies
- Department of Upper GI Surgery, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Trevor M Penning
- Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 1315 BRB II/III 421 Curie Blvd, Philadelphia, PA 19104-6160, United States of America
| | - John Ryan
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK.
| |
Collapse
|
133
|
Venetsanaki V, Karabouta Z, Polyzos SA. Farnesoid X nuclear receptor agonists for the treatment of nonalcoholic steatohepatitis. Eur J Pharmacol 2019; 863:172661. [PMID: 31536725 DOI: 10.1016/j.ejphar.2019.172661] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects 20-40% of the general population. Despite significant disease burden and mortality associated with advanced disease, i.e., nonalcoholic steatohepatitis (NASH), there is currently no approved medication for NASH. Farnesoid X receptor agonists have been investigated as candidates for the treatment of NASH. Obeticholic acid, approved for the treatment of primary biliary cholangitis, has gained significant attention after showing promising results in patients with NASH and fibrosis. Three trials investigating the effect of obeticholic acid in patients with NASH have been completed and the preliminary results of an ongoing one have also been made public. Generally, treatment with obeticholic acid improved hepatic histology, including inflammation and fibrosis, the latter being the main histological predictor of advanced disease. Nonetheless, there were adverse effects, the most common being pruritus and unfavorable changes in the lipid profile. Pruritus led to discontinuation of treatment in some patients. Obeticholic acid, however, is not the only farnesoid X receptor agonist currently investigated for the treatment of NASH. Another farnesoid X receptor agonist, cilofexor, in combination with firsocostat, an acetyl-CoA carboxylase inhibitor, improved hepatic steatosis, liver stiffness, liver function tests and serum fibrosis markers, without causing pruritus after 12 weeks of treatment. In conclusion, current evidence regarding the effect of farnesoid X receptor agonists on hepatic histology in patients with NASH is promising, but several safety issues need further evaluation.
Collapse
Affiliation(s)
- Vasiliki Venetsanaki
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Zacharoula Karabouta
- Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
134
|
Qi W, Clark JM, Suvorov A, Park Y. Ivermectin decreases triglyceride accumulation by inhibiting adipogenesis of 3T3-L1 preadipocytes. Food Chem Toxicol 2019; 131:110576. [DOI: 10.1016/j.fct.2019.110576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
|
135
|
Lim JY, Liu C, Hu KQ, Smith DE, Wu D, Lamon-Fava S, Ausman LM, Wang XD. Dietary β-Cryptoxanthin Inhibits High-Refined Carbohydrate Diet-Induced Fatty Liver via Differential Protective Mechanisms Depending on Carotenoid Cleavage Enzymes in Male Mice. J Nutr 2019; 149:1553-1564. [PMID: 31212314 DOI: 10.1093/jn/nxz106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND β-Cryptoxanthin (BCX), a provitamin A carotenoid shown to protect against nonalcoholic fatty liver disease (NAFLD), can be cleaved by β-carotene-15,15'-oxygenase (BCO1) to generate vitamin A, and by β-carotene-9',10'-oxygenase (BCO2) to produce bioactive apo-carotenoids. BCO1/BCO2 polymorphisms have been associated with variations in plasma carotenoid amounts in both humans and animals. OBJECTIVES We investigated whether BCX feeding inhibits high refined-carbohydrate diet (HRCD)-induced NAFLD, dependent or independent of BCO1/BCO2. METHODS Six-week-old male wild-type (WT) and BCO1-/-/BCO2-/- double knockout (DKO) mice were randomly fed HRCD (66.5% of energy from carbohydrate) with or without BCX (10 mg/kg diet) for 24 wk. Pathological and biochemical variables were analyzed in the liver and mesenteric adipose tissues (MATs). Data were analyzed by 2-factor ANOVA. RESULTS Compared to their respective HRCD controls, BCX reduced hepatic steatosis severity by 33‒43% and hepatic total cholesterol by 43‒70% in both WT and DKO mice (P < 0.01). Hepatic concentrations of BCX, but not retinol and retinyl palmitate, were 33-fold higher in DKO mice than in WT mice (P < 0.001). BCX feeding increased the hepatic fatty acid oxidation protein peroxisome proliferator-activated receptor-α, and the cholesterol efflux gene ATP-binding cassette transporter5, and suppressed the lipogenesis gene acetyl-CoA carboxylase 1 (Acc1) in the MAT of WT mice but not DKO mice (P < 0.05). BCX feeding decreased the hepatic lipogenesis proteins ACC and stearoyl-CoA desaturase-1 (3-fold and 5-fold) and the cholesterol synthesis genes 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase and HMG-CoA synthase 1 (2.7-fold and 1.8-fold) and increased the cholesterol catabolism gene cholesterol 7α-hydroxylase (1.9-fold) in the DKO but not WT mice (P < 0.05). BCX feeding increased hepatic protein sirtuin1 (2.5-fold) and AMP-activated protein kinase (9-fold) and decreased hepatic farnesoid X receptor protein (80%) and the inflammatory cytokine gene Il6 (6-fold) in the MAT of DKO mice but not WT mice (P < 0.05). CONCLUSION BCX feeding mitigates HRCD-induced NAFLD in both WT and DKO mice through different mechanisms in the liver-MAT axis, depending on the presence or absence of BCO1/BCO2.
Collapse
Affiliation(s)
- Ji Ye Lim
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chun Liu
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Kang-Quan Hu
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Donald E Smith
- Comparative Biology Unit, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Nutritional Immunology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Lynne M Ausman
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
136
|
Pu S, Wu X, Yang X, Zhang Y, Dai Y, Zhang Y, Wu X, Liu Y, Cui X, Jin H, Cao J, Li R, Cai J, Cao Q, Hu L, Gao Y. The Therapeutic Role of Xenobiotic Nuclear Receptors Against Metabolic Syndrome. Curr Drug Metab 2019; 20:15-22. [PMID: 29886826 DOI: 10.2174/1389200219666180611083155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/05/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes, with an increased prevalence and various progressive complications, has become a significant global health challenge. The concrete mechanisms responsible for the development of diabetes still remain incompletely unknown, although substantial researches have been conducted to search for the effective therapeutic targets. This review aims to reveal the novel roles of Xenobiotic Nuclear Receptors (XNRs), including the Peroxisome Proliferator-Activated Receptor (PPAR), the Farnesoid X Receptor (FXR), the Liver X Receptor (LXR), the Pregnane X Receptor (PXR) and the Constitutive Androstane Receptor (CAR), in the development of diabetes and provide potential strategies for research and treatment of metabolic diseases. METHODS We retrieved a large number of original data about these five XNRs and organized to focus on their recently discovered functions in diabetes and its complications. RESULTS Increasing evidences have suggested that PPAR, FXR, LXR ,PXR and CAR are involved in the development of diabetes and its complications through different mechanisms, including the regulation of glucose and lipid metabolism, insulin and inflammation response and related others. CONCLUSION PPAR, FXR, LXR, PXR, and CAR, as the receptors for numerous natural or synthetic compounds, may be the most effective therapeutic targets in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Shuqi Pu
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojie Wu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Yunzhan Zhang
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunkai Dai
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueling Zhang
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, China
| | - Xiaoting Wu
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, China
| | - Yan Liu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiaona Cui
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Haiyong Jin
- Department of Otolaryngology, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianhong Cao
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruliu Li
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhong Cai
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qizhi Cao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Ling Hu
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
137
|
Carino A, Biagioli M, Marchianò S, Fiorucci C, Zampella A, Monti MC, Scarpelli P, Ricci P, Distrutti E, Fiorucci S. Ursodeoxycholic acid is a GPBAR1 agonist and resets liver/intestinal FXR signaling in a model of diet-induced dysbiosis and NASH. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1422-1437. [PMID: 31325638 DOI: 10.1016/j.bbalip.2019.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022]
Abstract
Obeticholic acid (OCA) is a farnesoid-X-receptor (FXR) ligand, shown effective in reducing steatosis and fibrosis in NASH patients. However, OCA causes major side effects including pruritus, while increases the risk for liver decompensation in cirrhotic patients. Ursodeoxycholic acid (UDCA), is a safe and unexpensive bile acid used in the treatment of liver disorders whose mechanism of action is poorly defined. Here we have compared the effects of OCA and UDCA in a mouse model of NASH. In mice exposed to a diet rich in fat/cholesterol and fructose (HFD-F), treatment with OCA or UDCA effectively prevented body weight gain, insulin resistance, as demonstrated by OGTT, and AST plasma levels. After 12 weeks HFD-F mice developed liver microvesicular steatosis, inflammation and mild fibrosis, increased expression of inflammatory (TNFα, IL6, F4/80) and fibrosis (αSma, Col1α1, Tgfβ) markers, reduced liver expression of FXR, dysregulated liver FXR signaling and elevated levels of Tauro-α and β-muricholic acid (T-α and βMCA), two FXR antagonists in mice. Both compounds prevented these changes and improved liver histopathology. OCA reduced primary bile acid synthesis worsening the T-CA/T-βMCA ratio. UDCA effectively transactivated GPBAR1 in vitro. By RNAseq analysis we found that among over 2400 genes modulated by the HFD-F, only 32 and 60 genes were modulated by OCA and UDCA, with only 3 genes (Dbp, Adh7, Osgin1) being modulated by both agents. Both agents partially prevented the intestinal dysbiosis. CONCLUSIONS: UDCA is a GPBAR1 ligand and exerts beneficial effects in a rodent model of NASH by activating non-overlapping pathway with OCA.
Collapse
Affiliation(s)
- Adriana Carino
- University of Perugia, Department of Surgical and Biomedical Sciences, Perugia, Italy
| | - Michele Biagioli
- University of Perugia, Department of Surgical and Biomedical Sciences, Perugia, Italy
| | - Silvia Marchianò
- University of Perugia, Department of Surgical and Biomedical Sciences, Perugia, Italy
| | - Chiara Fiorucci
- University of Perugia, Department of Surgical and Biomedical Sciences, Perugia, Italy
| | - Angela Zampella
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | | | - Paolo Scarpelli
- University of Perugia, Department of Surgical and Biomedical Sciences, Perugia, Italy
| | - Patrizia Ricci
- University of Perugia, Department of Surgical and Biomedical Sciences, Perugia, Italy
| | | | - Stefano Fiorucci
- University of Perugia, Department of Surgical and Biomedical Sciences, Perugia, Italy.
| |
Collapse
|
138
|
Zhang DY, Zhu L, Liu HN, Tseng YJ, Weng SQ, Liu TT, Dong L, Shen XZ. The protective effect and mechanism of the FXR agonist obeticholic acid via targeting gut microbiota in non-alcoholic fatty liver disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2249-2270. [PMID: 31308634 PMCID: PMC6617567 DOI: 10.2147/dddt.s207277] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/02/2019] [Indexed: 12/25/2022]
Abstract
Background: It is reported that various diseases such as non-alcoholic fatty liver disease (NAFLD) are associated with imbalance of microbiome. And FXR has been well investigated in liver diseases. Purpose: The objective of this study was to identify the role of farnesoid X receptor agonist obeticholic acid via targeting gut microbiota in NAFLD. Patients and methods: Male C57BL/6 mice were fed either a normal-chow diet or a high-fat diet (HFD). Obeticholic acid(30mg/(kg·d)) and/or a combination of antibiotics were administered orally by gavage to mice for 12 weeks. Gut microbiota profiles were established through 16S rRNA amplicon sequencing. The effects of obeticholic acid on liver inflammation, the gut barrier, endotoxemia, gut microbiome and composition of the bile acid were also investigated. Results: Obeticholic acid treatment can significantly improve obesity, circulation metabolism disorders, liver inflammation and fibrosis, and intestinal barrier damage caused by HFD. Removal of normal commensal bacteria can weaken the effect of obeticholic acid. The gut microbial structure was changed, and abundance of Blautia was increased significantly after treated with obeticholic acid. After obeticholic acid treatment, the concentration of taurine-bound bile acid caused by HFD was reduced in the liver. Conclusion: Taken together, these data suggest that obeticholic acid has aprotective effect on NAFLD via changing the components of gut microbiota, specifically increasing the abundance of Blautia.
Collapse
Affiliation(s)
- Dan-Ying Zhang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| | - Lin Zhu
- Department of Geriatrics, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| | - Hai-Ning Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| | - Yu-Jen Tseng
- Department of Gastroenterology, Huashan Hospital of Fudan University, Shanghai 200040, People's Republic of China
| | - Shu-Qiang Weng
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| | - Ling Dong
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
139
|
Jayakumar S, Loomba R. Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Aliment Pharmacol Ther 2019; 50:144-158. [PMID: 31149745 PMCID: PMC6771496 DOI: 10.1111/apt.15314] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/24/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent disorder associated with obesity and diabetes. Few treatment options are effective for patients with NAFLD, but connections between the gut microbiome and NAFLD and NAFLD-associated conditions suggest that modulation of the gut microbiota could be a novel therapeutic option. AIM To examine the effect of the gut microbiota on pathophysiologic causes of NAFLD and assess the potential of microbiota-targeting therapies for NAFLD. METHODS A PubMed search of the literature was performed; relevant articles were included. RESULTS The composition of bacteria in the gastrointestinal tract can enhance fat deposition, modulate energy metabolism and alter inflammatory processes. Emerging evidence suggests a role for the gut microbiome in obesity and metabolic syndrome. NAFLD is often considered the hepatic manifestation of metabolic syndrome, and there has been tremendous progress in understanding the association of gut microbiome composition with NAFLD disease severity. We discuss the role of the gut microbiome in NAFLD pathophysiology and whether the microbiome composition can differentiate the two categories of NAFLD: nonalcoholic fatty liver (NAFL, the non-progressive form) vs nonalcoholic steatohepatitis (NASH, the progressive form). The association between gut microbiome and fibrosis progression in NAFLD is also discussed. Finally, we review whether modulation of the gut microbiome plays a role in improving treatment outcomes for patients with NAFLD. CONCLUSIONS Multiple pathophysiologic pathways connect the gut microbiome with the pathophysiology of NAFLD. Therefore, therapeutics that effectively target the gut microbiome may be beneficial for the treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Saumya Jayakumar
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia,Division of Epidemiology, Department of Family Medicine and Public HealthUniversity of California at San DiegoLa JollaCalifornia
| |
Collapse
|
140
|
Roth JD, Veidal SS, Fensholdt LKD, Rigbolt KTG, Papazyan R, Nielsen JC, Feigh M, Vrang N, Young M, Jelsing J, Adorini L, Hansen HH. Combined obeticholic acid and elafibranor treatment promotes additive liver histological improvements in a diet-induced ob/ob mouse model of biopsy-confirmed NASH. Sci Rep 2019; 9:9046. [PMID: 31227742 PMCID: PMC6588626 DOI: 10.1038/s41598-019-45178-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Obeticholic acid (OCA) and elafibranor (ELA) are selective and potent agonists for the farnesoid X receptor (FXR) and dual peroxisome proliferator-activated receptor α/δ (PPAR-α/δ), respectively. Both agents have demonstrated clinical efficacy in nonalcoholic steatohepatitis (NASH). The present study used OCA and ELA to compare the effects of mono- and combination therapies on metabolic and histological endpoints in Lepob/ob mice with established diet-induced and biopsy-confirmed NASH (ob/ob-NASH). ob/ob-NASH mice were fed the AMLN diet high in trans-fat, fructose and cholesterol for 15 weeks, whereafter they received vehicle, OCA (30 mg/kg, PO, QD), ELA (3, 10 mg/kg, PO, QD), or combinations (OCA + ELA) for eight weeks. Within-subject comparisons were performed on histomorphometric changes, including fractional area of liver fat, galectin-3 and Col1a1. OCA and ELA monotherapies improved all quantitative histopathological parameters and OCA + ELA combinations exerted additive effects on metabolic and histological endpoints. In agreement with their different molecular mechanisms of action, OCA and ELA monotherapies elicited distinct hepatic gene expression profiles and their combination led to profound transcriptome changes associated with further improvements in lipid handling and insulin signaling, suppression of immune responses and reduced extracellular matrix formation. In conclusion, these findings provide preclinical proof-of-concept for combined FXR and PPAR-α/δ agonist-based therapies in NASH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mark Young
- Intercept Pharmaceuticals, San Diego, CA, USA
| | | | | | | |
Collapse
|
141
|
FBXW7 suppresses HMGB1-mediated innate immune signaling to attenuate hepatic inflammation and insulin resistance in a mouse model of nonalcoholic fatty liver disease. Mol Med 2019; 25:29. [PMID: 31215394 PMCID: PMC6582600 DOI: 10.1186/s10020-019-0099-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Background Innate immune dysfunction contributes to the development and progression of nonalcoholic fatty liver disease (NAFLD), however, its pathogenesis is still incompletely understood. Identifying the key innate immune component responsible for the pathogenesis of NAFLD and clarifying the underlying mechanisms may provide therapeutic targets for NAFLD. Recently, F-box- and WD repeat domain-containing 7 (FBXW7) exhibits a regulatory role in hepatic glucose and lipid metabolism. This study aims to investigate whether FBXW7 controls high-mobility group box 1 protein (HMGB1)-mediated innate immune signaling to improve NAFLD and the mechanism underlying this action. Methods Mice were fed a high-fat diet (HFD) for 12 or 20 weeks to establish NAFLD model. Hepatic overexpression or knockdown of FBXW7 was induced by tail-vein injection of recombinant adenovirus. Some Ad-FBXW7-injected mice fed a HFD were injected intraperitoneally with recombinant mouse HMGB1 to confirm the protective role of FBXW7 in NAFLD via inhibition of HMGB1. Results FBXW7 improves NAFLD and related metabolic parameters without remarkable influence of body weight and food intake. Moreover, FBXW7 markedly ameliorated hepatic inflammation and insulin resistance in the HFD-fed mice. Furthermore, FBXW7 dramatically attenuated the expression and release of HMGB1 in the livers of HFD-fed mice, which is associated with inhibition of protein kinase R (PKR) signaling. Thereby, FBXW7 restrains Toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE) signaling in HFD-fed mouse livers. In addition, exogenous HMGB1 treatment abolished FBXW7-mediated inhibition of hepatic inflammation and insulin resistance in HFD-fed mouse livers. Conclusions Our results demonstrate a protective role of FBXW7 in NAFLD by abating HMGB1-mediated innate immune signaling to suppress inflammation and consequent insulin resistance, suggesting that FBXW7 is a potential target for therapeutic intervention in NAFLD development. Electronic supplementary material The online version of this article (10.1186/s10020-019-0099-9) contains supplementary material, which is available to authorized users.
Collapse
|
142
|
Trauner M, Nevens F, Shiffman ML, Drenth JPH, Bowlus CL, Vargas V, Andreone P, Hirschfield GM, Pencek R, Malecha ES, MacConell L, Shapiro D. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study. Lancet Gastroenterol Hepatol 2019; 4:445-453. [PMID: 30922873 DOI: 10.1016/s2468-1253(19)30094-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis using 3-year interim data from the 5-year open-label extension of the pivotal phase 3 POISE trial. METHODS In the double-blind phase of POISE, 217 patients with primary biliary cholangitis with inadequate response to or intolerance to ursodeoxycholic acid were randomised to receive placebo, obeticholic acid 5 to 10 mg, or obeticholic acid 10 mg once daily for 12 months. During the open-label extension phase, patients received variable, adjusted doses of obeticholic acid. Markers of cholestasis and liver injury, alkaline phosphatase (ALP), and total and direct bilirubin were evaluated, and safety was assessed for up to 48 months of treatment with obeticholic acid. All analyses in the open-label extension were done in the safety population, defined as any patient randomised in the double-blind phase who received at least one dose of obeticholic acid during the open-label extension. This trial is registered at ClinicalTrials.gov (NCT01473524) and with EudraCT (2011-004728-36). FINDINGS 193 patients were treated during the open-label extension. In this 3-year interim analysis, ALP concentrations were significantly reduced compared with baseline at 12 months (mean change -105·2 U/L [SD 87·6]), 24 months (-101·0 U/L [98·5]), 36 months (-108·6 U/L [95·7]), and 48 months (-95·6 U/L [121·1]; p<0·0001 for all yearly time points). Total bilirubin concentrations were stabilised, with significant reductions versus baseline at 12 months (mean change -0·9 μmol/L [SD 4·1]; p=0·0042) and 48 months (-0·8 μmol/L [3·8]; p=0·016). Stabilisation was also noted for direct bilirubin, with a significant change from baseline at 12 months (mean change -0·5 μmol/L [SD 3·0]; p=0·021). However, changes in total and direct bilirubin were not significant at other time points. Obeticholic acid was generally well tolerated, with pruritus (149 [77%] patients) and fatigue (63 [33%]) being the most common adverse events. No serious adverse events were considered related to obeticholic acid. INTERPRETATION Interim analyses suggest long-term efficacy and safety of obeticholic acid in patients with primary biliary cholangitis who are intolerant to or inadequately responsive to ursodeoxycholic acid. FUNDING Intercept Pharmaceuticals.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | - Victor Vargas
- Liver Unit, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, CIBERehd, Barcelona, Spain
| | - Pietro Andreone
- Center for Research and Study of Hepatitis, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gideon M Hirschfield
- Centre for Liver Research, NIHR Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | |
Collapse
|
143
|
Chenodeoxycholic Acid Ameliorates AlCl 3-Induced Alzheimer's Disease Neurotoxicity and Cognitive Deterioration via Enhanced Insulin Signaling in Rats. Molecules 2019; 24:molecules24101992. [PMID: 31137621 PMCID: PMC6571973 DOI: 10.3390/molecules24101992] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Insulin resistance is a major risk factor for Alzheimer’s disease (AD). Chenodeoxycholic acid (CDCA) and synthetic Farnesoid X receptor (FXR) ligands have shown promising outcomes in ameliorating insulin resistance associated with various medical conditions. This study aimed to investigate whether CDCA treatment has any potential in AD management through improving insulin signaling. Adult male Wistar rats were randomly allocated into three groups and treated for six consecutive weeks; control (vehicle), AD-model (AlCl3 50 mg/kg/day i.p) and CDCA-treated group (AlCl3 + CDCA 90 mg/kg/day p.o from day 15). CDCA improved cognition as assessed by Morris Water Maze and Y-maze tests and preserved normal histological features. Moreover, CDCA lowered hippocampal beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and amyloid-beta 42 (Aβ42). Although no significant difference was observed in hippocampal insulin level, CDCA reduced insulin receptor substrate-1 phosphorylation at serine-307 (pSer307-IRS1), while increased protein kinase B (Akt) activation, glucose transporter type 4 (GLUT4), peroxisome proliferator-activated receptor gamma (PPARγ) and glucagon-like peptide-1 (GLP-1). Additionally, CDCA activated cAMP response element-binding protein (CREB) and enhanced brain-derived neurotrophic factor (BDNF). Ultimately, CDCA was able to improve insulin sensitivity in the hippocampi of AlCl3-treated rats, which highlights its potential in AD management.
Collapse
|
144
|
Manka P, Zeller A, Syn WK. Fibrosis in Chronic Liver Disease: An Update on Diagnostic and Treatment Modalities. Drugs 2019; 79:903-927. [DOI: 10.1007/s40265-019-01126-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
145
|
Carino A, Marchianò S, Biagioli M, Fiorucci C, Zampella A, Monti MC, Morretta E, Bordoni M, Di Giorgio C, Roselli R, Ricci P, Distrutti E, Fiorucci S. Transcriptome Analysis of Dual FXR and GPBAR1 Agonism in Rodent Model of NASH Reveals Modulation of Lipid Droplets Formation. Nutrients 2019; 11:nu11051132. [PMID: 31117231 PMCID: PMC6567134 DOI: 10.3390/nu11051132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive, chronic, liver disease whose prevalence is growing worldwide. Despite several agents being under development for treating NASH, there are no drugs currently approved. The Farnesoid-x-receptor (FXR) and the G-protein coupled bile acid receptor 1 (GPBAR1), two bile acid activated receptors, have been investigated for their potential in treating NASH. Here we report that BAR502, a steroidal dual ligand for FXR/GPBAR1, attenuates development of clinical and liver histopathology features of NASH in mice fed a high fat diet (HFD) and fructose (F). By RNAseq analysis of liver transcriptome we found that BAR502 restores FXR signaling in the liver of mice feed HFD-F, and negatively regulates a cluster of genes including Srebf1 (Srepb1c) and its target genes-fatty acid synthase (Fasn) and Cell death-inducing DFF45-like effector (CIDE) genes, Cidea and Cidec-involved in lipid droplets formation and triglycerides storage in hepatocytes. Additionally, BAR502 increased the intestinal expression of Fgf15 and Glp1 and energy expenditure by white adipose tissues. Finally, exposure to BAR502 reshaped the intestinal microbiota by increasing the amount of Bacteroidaceae. In conclusion, we have shown that dual FXR/GPBAR1 agonism might have utility in treatment of NASH.
Collapse
Affiliation(s)
- Adriana Carino
- Department of Surgical and Biomedical Sciences, University of Perugia, 06132 Perugia, Italy.
| | - Silvia Marchianò
- Department of Surgical and Biomedical Sciences, University of Perugia, 06132 Perugia, Italy.
| | - Michele Biagioli
- Department of Surgical and Biomedical Sciences, University of Perugia, 06132 Perugia, Italy.
| | - Chiara Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, 06132 Perugia, Italy.
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy.
| | | | - Elva Morretta
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | - Martina Bordoni
- Department of Surgical and Biomedical Sciences, University of Perugia, 06132 Perugia, Italy.
| | - Cristina Di Giorgio
- Department of Surgical and Biomedical Sciences, University of Perugia, 06132 Perugia, Italy.
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy.
| | - Patrizia Ricci
- Department of Surgical and Biomedical Sciences, University of Perugia, 06132 Perugia, Italy.
| | | | - Stefano Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, 06132 Perugia, Italy.
| |
Collapse
|
146
|
Hernandez ED, Zheng L, Kim Y, Fang B, Liu B, Valdez RA, Dietrich WF, Rucker PV, Chianelli D, Schmeits J, Bao D, Zoll J, Dubois C, Federe GC, Chen L, Joseph SB, Klickstein LB, Walker J, Molteni V, McNamara P, Meeusen S, Tully DC, Badman MK, Xu J, Laffitte B. Tropifexor-Mediated Abrogation of Steatohepatitis and Fibrosis Is Associated With the Antioxidative Gene Expression Profile in Rodents. Hepatol Commun 2019; 3:1085-1097. [PMID: 31388629 PMCID: PMC6672390 DOI: 10.1002/hep4.1368] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/27/2019] [Indexed: 12/15/2022] Open
Abstract
Farnesoid X receptor (FXR) agonism is emerging as an important potential therapeutic mechanism of action for multiple chronic liver diseases. The bile acid‐derived FXR agonist obeticholic acid (OCA) has shown promise in a phase 2 study in patients with nonalcoholic steatohepatitis (NASH). Here, we report efficacy of the novel nonbile acid FXR agonist tropifexor (LJN452) in two distinct preclinical models of NASH. The efficacy of tropifexor at <1 mg/kg doses was superior to that of OCA at 25 mg/kg in the liver in both NASH models. In a chemical and dietary model of NASH (Stelic animal model [STAM]), tropifexor reversed established fibrosis and reduced the nonalcoholic fatty liver disease activity score and hepatic triglycerides. In an insulin‐resistant obese NASH model (amylin liver NASH model [AMLN]), tropifexor markedly reduced steatohepatitis, fibrosis, and profibrogenic gene expression. Transcriptome analysis of livers from AMLN mice revealed 461 differentially expressed genes following tropifexor treatment that included a combination of signatures associated with reduction of oxidative stress, fibrogenesis, and inflammation. Conclusion: Based on preclinical validation in animal models, tropifexor is a promising investigational therapy that is currently under phase 2 development for NASH.
Collapse
Affiliation(s)
- Eloy D Hernandez
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Lianxing Zheng
- Novartis Institutes for BioMedical Research Cambridge MA
| | - Young Kim
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Bin Fang
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Bo Liu
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Reginald A Valdez
- Novartis Institutes for BioMedical Research Cambridge MA.,Comparative Biology and Safety Sciences Amgen, Inc. Cambridge MA
| | | | - Paul V Rucker
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | | | - James Schmeits
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Dingjiu Bao
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Jocelyn Zoll
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Claire Dubois
- Genomics Institute of the Novartis Research Foundation La Jolla CA.,Inception Sciences, Inc. San Diego CA
| | - Glenn C Federe
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Lihao Chen
- Novartis Institutes for BioMedical Research Cambridge MA
| | - Sean B Joseph
- Genomics Institute of the Novartis Research Foundation La Jolla CA.,California Institute for Biomedical Research La Jolla CA
| | | | - John Walker
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | | | - Peter McNamara
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Shelly Meeusen
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - David C Tully
- Novartis Institutes for BioMedical Research Emeryville CA
| | | | - Jie Xu
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Bryan Laffitte
- Genomics Institute of the Novartis Research Foundation La Jolla CA.,Inception Sciences, Inc. San Diego CA
| |
Collapse
|
147
|
Flynn CR, Albaugh VL, Abumrad NN. Metabolic Effects of Bile Acids: Potential Role in Bariatric Surgery. Cell Mol Gastroenterol Hepatol 2019; 8:235-246. [PMID: 31075353 PMCID: PMC6664228 DOI: 10.1016/j.jcmgh.2019.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
Bariatric surgery is the most effective and durable treatment for morbid obesity, with an unexplained yet beneficial side effect of restoring insulin sensitivity and improving glycemia, often before weight loss is observed. Among the many contributing mechanisms often cited, the altered handling of intestinal bile acids is of considerable therapeutic interest. Here, we review a growing body of literature examining the metabolic effects of bile acids ranging from their physical roles in dietary fat handling within the intestine to their functions as endocrine and paracrine hormones in potentiating responses to bariatric surgery. The roles of 2 important bile acid receptors, Takeda G-protein coupled receptor (also known as G-protein coupled bile acid receptor) and farnesoid X receptor, are highlighted as is downstream signaling through glucagon-like polypeptide 1 and its cognate receptor. Additional improvements in other phenotypes and potential contributions of commensal gut bacteria, such as Akkermansia muciniphila, which are manifest after Roux-en-Y gastric bypass and other emulations, such as gallbladder bile diversion to the ileum, are also discussed.
Collapse
Affiliation(s)
- Charles R. Flynn
- Correspondence Address correspondence to: Charles R. Flynn, PhD, 1161 21st Avenue S, CCC-2308 MCN, Nashville, Tennessee 37232-2730. fax: (615) 343-6456.
| | | | | |
Collapse
|
148
|
Sandoval DA. Mechanisms for the metabolic success of bariatric surgery. J Neuroendocrinol 2019; 31:e12708. [PMID: 30882956 PMCID: PMC9205614 DOI: 10.1111/jne.12708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
To date, bariatric surgery remains the most effective strategy for the treatment of obesity and its comorbidities. However, given the enormity of the obesity epidemic, and sometimes variable results, it is not a feasible strategy for the treatment of all obese patients. A simple PubMed search for 'bariatric surgery' reveals over 28 000 papers that have been published since the 1940s when the first bariatric surgeries were performed. However, there is still an incomplete understanding of the mechanisms for the weight loss and metabolic success of surgery. An understanding of the mechanisms is important because it may lead to greater understanding of the pathophysiology of obesity and thus surgery-alternative strategies for the treatment of all obese patients. In this review, the potential mechanisms that underlie the success of surgery are discussed, with a focus on the potential endocrine, neural and other circulatory factors (eg, bile acids) that have been proposed to play a role.
Collapse
|
149
|
Pierre JF, Li Y, Gomes CK, Rao P, Chang EB, Ping Yin D. Bile Diversion Improves Metabolic Phenotype Dependent on Farnesoid X Receptor (FXR). Obesity (Silver Spring) 2019; 27:803-812. [PMID: 30933435 PMCID: PMC6788773 DOI: 10.1002/oby.22440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The current study investigated whether bile diversion (BD) improves metabolic phenotype under farnesoid X receptor (FXR) deficiency. METHODS BD was performed in high-fat diet (HFD)-fed FXR knockout (FXRko) and wild-type (WT) animals. Metabolic phenotypes, circulating enteroendocrine hormones, total bile acids (BAs) and BA composition, and cecal gut microbiota were analyzed. RESULTS FXR-deficient mice were resistant to HFD-induced obesity; however, FXR-deficient mice also developed hyperglycemia and exhibited increased liver weight, liver steatosis, and circulating triglycerides. BD increased circulating total BAs and taurine-b-muricholic acid, which were in line with normalized hyperglycemia and improved glucose tolerance in HFD-fed WT mice. FXR deficiency also increased total BAs and taurine-b-muricholic acid, but these animals remained hyperglycemic. While BD improved metabolic phenotype in HFD-fed FXRko mice, these improvements were not as effective as in WT mice. BD increased liver expression of fibroblast growth factor 21 and peroxisome proliferator-activated receptor γ coactivator-1β and elevated circulating glucagon-like peptide-1 levels in WT mice but not in FXRko mice. FXR deficiency altered gut microbiota composition with a specific increase in phylum Proteobacteria that may act as a possible microbial signature of some diseases. These cellular and molecular changes in FXRko mice may contribute to resistance toward improved metabolism. CONCLUSIONS FXR signaling plays a pivotal role in improved metabolic phenotype following BD surgery.
Collapse
Affiliation(s)
- Joseph F. Pierre
- Department of Medicine, the University of Chicago, Chicago, IL, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yuxin Li
- Department of Surgery,the University of Chicago, Chicago, IL, USA
| | - Charles K. Gomes
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Prahlad Rao
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Eugene B. Chang
- Department of Medicine, the University of Chicago, Chicago, IL, USA
| | - Deng Ping Yin
- Department of Surgery,the University of Chicago, Chicago, IL, USA
| |
Collapse
|
150
|
Festa C, Finamore C, Marchianò S, Di Leva FS, Carino A, Monti MC, del Gaudio F, Ceccacci S, Limongelli V, Zampella A, Fiorucci S, De Marino S. Investigation around the Oxadiazole Core in the Discovery of a New Chemotype of Potent and Selective FXR Antagonists. ACS Med Chem Lett 2019; 10:504-510. [PMID: 30996787 DOI: 10.1021/acsmedchemlett.8b00534] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/08/2019] [Indexed: 01/07/2023] Open
Abstract
Recent findings have shown that Farnesoid X Receptor (FXR) antagonists might be useful in the treatment of cholestasis and related metabolic disorders. In this paper, we report the discovery of a new chemotype of FXR antagonists featured by a 3,5-disubstituted oxadiazole core. In total, 35 new derivatives were designed and synthesized, and notably, compounds 3f and 13, containing a piperidine ring, displayed the best antagonistic activity against FXR with promising cellular potency (IC50 = 0.58 ± 0.27 and 0.127 ± 0.02 μM, respectively). The excellent pharmacokinetic properties make compound 3f the most promising lead identified in this study.
Collapse
Affiliation(s)
- Carmen Festa
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, Naples 80131, Italy
| | - Claudia Finamore
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, Naples 80131, Italy
| | - Silvia Marchianò
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, Perugia 06132, Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, Naples 80131, Italy
| | - Adriana Carino
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, Perugia 06132, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Federica del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Sara Ceccacci
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, Naples 80131, Italy
- Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology, Università della Svizzera italiana (USI), Via G. Buffi 13, Lugano CH-6900, Switzerland
| | - Angela Zampella
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, Naples 80131, Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, Perugia 06132, Italy
| | - Simona De Marino
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, Naples 80131, Italy
| |
Collapse
|