101
|
Naderan M, Jahanrad A. Topographic, tomographic and biomechanical corneal changes during pregnancy in patients with keratoconus: a cohort study. Acta Ophthalmol 2017; 95:e291-e296. [PMID: 27781383 DOI: 10.1111/aos.13296] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 09/16/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE This study aimed at evaluating the effect of pregnancy on topographic, tomographic and biomechanical parameters of patients with keratoconus (KC) in comparison with non-pregnant patients with KC. METHOD In a cohort study, patients with KC, whose disease was stable for at least 2 years, were evaluated before pregnancy, at their third trimester of pregnancy (34th week of pregnancy) and 6 months after pregnancy. As the control group, an equivalent number of age- and severity-matched non-pregnant female patients with KC were evaluated at the corresponding times. All subjects were evaluated with respect to central and thinnest corneal thickness (CCT and TCT), keratometry values, and maximum anterior and posterior elevation measurements (AE and PE) by Pentacam. Furthermore, corneal biomechanical properties including corneal hysteresis (CH) and corneal resistance factor (CRF) were measured using the ocular response analyser. RESULTS Twenty-two eyes of 11 patients were equally enrolled in each group. The results revealed that there was a statistically significant difference between the means of all measurements during the course of study (p < 0.001, repeated measures analysis of variance). The values of CCT, TCT, CH, CRF, IOPg and IOPcc were significantly decreased; however, keratometry values, AE, PE and refraction measurements were significantly increased during the study period (p < 0.001). In contrast, no significant differences were observed regarding the study variables in the control group (p > 0.05). According to the Amsler-Krumeich classification, severity of KC increased during the pregnancy and postpregnancy periods (p = 0.038). CONCLUSION The obtained results revealed that KC progressed during the pregnancy period and continued to the post-partum period, indicating that pregnancy may be a risk factor for KC progression. Patients with KC, who intend to become pregnant, may consider corneal cross-linking treatment in an attempt to stop KC progression.
Collapse
Affiliation(s)
- Mohammad Naderan
- School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | | |
Collapse
|
102
|
Misery L, Talagas M. Innervation of the Male Breast: Psychological and Physiological Consequences. J Mammary Gland Biol Neoplasia 2017; 22:109-115. [PMID: 28551701 DOI: 10.1007/s10911-017-9380-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/12/2017] [Indexed: 12/25/2022] Open
Abstract
Breasts, including the nipple and areola, have two functions: lactation and as an erogenous area. Male breasts are much less studied that those of women. In men, breasts have only an erotic function. Because there is dense and very well organized innervation of the nipple-areola complex in men, nipple erection occurs frequently and via different mechanisms from penile erection. Although it seems to be less important for men than for women and it is poorly studied, the erotic value of breast stimulation is notable. Consequently, there is a need to include this aspect in sexological and andrological studies and to preserve breasts and their innervation or to reconstruct them in cases of surgical intervention.
Collapse
Affiliation(s)
- Laurent Misery
- Laboratory of Neurosciences of Brest, University of Western Brittany, Brest, France.
- Department of Dermatology and Venerology, University Hospital of Brest, 29609, Brest, France.
| | - Matthieu Talagas
- Laboratory of Neurosciences of Brest, University of Western Brittany, Brest, France
- Department of Pathology, University Hospital of Brest, Brest, France
| |
Collapse
|
103
|
Abstract
Fibrosis is a major player in cardiovascular disease, both as a contributor to the development of disease, as well as a post-injury response that drives progression. Despite the identification of many mechanisms responsible for cardiovascular fibrosis, to date no treatments have emerged that have effectively reduced the excess deposition of extracellular matrix associated with fibrotic conditions. Novel treatments have recently been identified that hold promise as potential therapeutic agents for cardiovascular diseases associated with fibrosis, as well as other fibrotic conditions. The purpose of this review is to provide an overview of emerging antifibrotic agents that have shown encouraging results in preclinical or early clinical studies, but have not yet been approved for use in human disease. One of these agents is bone morphogenetic protein-7 (BMP7), which has beneficial effects in multiple models of fibrotic disease. Another approach discussed involves altering the levels of micro-RNA (miR) species, including miR-29 and miR-101, which regulate the expression of fibrosis-related gene targets. Further, the antifibrotic potential of agonists of the peroxisome proliferator-activated receptors will be discussed. Finally, evidence will be reviewed in support of the polypeptide hormone relaxin. Relaxin is long known for its extracellular remodeling properties in pregnancy, and is rapidly emerging as an effective antifibrotic agent in a number of organ systems. Moreover, relaxin has potent vascular and renal effects that make it a particularly attractive approach for the treatment of cardiovascular diseases. In each case, the mechanism of action and the applicability to various fibrotic diseases will be discussed.
Collapse
Affiliation(s)
- Benita L McVicker
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, OmahaNE, United States
| | - Robert G Bennett
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,The Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, OmahaNE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, OmahaNE, United States
| |
Collapse
|
104
|
Kaftanovskaya EM, Soula M, Myhr C, Ho BA, Moore SN, Yoo C, Cervantes B, How J, Marugan J, Agoulnik IU, Agoulnik AI. Human Relaxin Receptor Is Fully Functional in Humanized Mice and Is Activated by Small Molecule Agonist ML290. J Endocr Soc 2017; 1:712-725. [PMID: 28825052 PMCID: PMC5562169 DOI: 10.1210/js.2017-00112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Relaxin, a small peptide hormone of the insulin/relaxin family, demonstrated antifibrotic, organ protective, vasodilatory, and proangiogenic properties in clinical trials and several animal models of human diseases. Relaxin family peptide receptor 1 (RXFP1) is the relaxin cognate G protein-coupled receptor. We have identified a series of small molecule agonists of human RXFP1. The lead compound ML290 demonstrated preferred absorption, distribution, metabolism, and excretion profiles, is easy to synthesize, and has high stability in vivo. However, ML290 does not activate rodent RXFP1s and therefore cannot be tested in common preclinical animal models. Here we describe the production and analysis of a mouse transgenic model, a knock-out/knock-in of the human RXFP1 (hRXFP1) complementary DNA into the mouse Rxfp1 (mRxfp1) gene. Insertion of the vector into the mRxfp1 locus caused disruption of mRxfp1 and expression of hRXFP1. The transcriptional expression pattern of the hRXFP1 allele was similar to mRxfp1. Female mice homozygous for hRXFP1 showed relaxation of the pubic symphysis at parturition and normal development of mammary nipples and vaginal epithelium, indicating full complementation of mRxfp1 gene ablation. Intravenous injection of relaxin led to an increase in heart rate in humanized and wild-type females but not in Rxfp1-deficient mice, whereas ML290 increased heart rate in humanized but not wild-type animals, suggesting specific target engagement by ML290. Moreover, intraperitoneal injection of ML290 caused a decrease in blood osmolality. Taken together, our data show humanized RXFP1 mice can be used for testing relaxin receptor modulators in various preclinical studies.
Collapse
Affiliation(s)
- Elena M Kaftanovskaya
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| | - Mariluz Soula
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| | - Courtney Myhr
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| | - Brian A Ho
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| | - Stefanie N Moore
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida 33199
| | - Changwon Yoo
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida 33199
| | - Briana Cervantes
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| | - Javier How
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| | - Juan Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| |
Collapse
|
105
|
Agoulnik AI, Agoulnik IU, Hu X, Marugan J. Synthetic non-peptide low molecular weight agonists of the relaxin receptor 1. Br J Pharmacol 2017; 174:977-989. [PMID: 27771940 PMCID: PMC5406302 DOI: 10.1111/bph.13656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/15/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022] Open
Abstract
Relaxin is a small heterodimeric peptide hormone of the insulin/relaxin superfamily produced mainly in female and male reproductive organs. It has potent antifibrotic, vasodilatory and angiogenic effects and regulates the normal function of various physiological systems. Preclinical studies and recent clinical trials have shown the promise of recombinant relaxin as a therapeutic agent in the treatment of cardiovascular and fibrotic diseases. However, there are the universal drawbacks of peptide-based pharmacology that apply to relaxin: a short half-life in vivo requires its continuous delivery, and there are high costs of production, storage and treatment, as well as the possibility of immune responses. All these issues can be resolved by the development of low non-peptide MW agonists of the relaxin receptors which are stable, bioavailable, easily synthesized and specific. In this review, we describe the discovery and characterization of the first series of such compounds. The lead compound, ML290, binds to an allosteric site of the relaxin GPCR, RXFP1. ML290 shows high activity and efficacy, measured by cAMP response, in cells expressing endogenous or transfected RXFP1. Relaxin-like effects of ML290 were shown in various functional cellular assays in vitro. ML290 has excellent absorption, distribution, metabolism and excretion properties and in vivo stability. The identified series of low MW agonists does not activate rodent RXFP1 receptors and thus, the production of a RXFP1 humanized mouse model is needed for preclinical studies. The future analysis and clinical perspectives of relaxin receptor agonists are discussed. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | - Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMDUSA
| | - Juan Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMDUSA
| |
Collapse
|
106
|
Jung KH, Choi IK, Lee HS, Yan HH, Son MK, Ahn HM, Hong J, Yun CO, Hong SS. Oncolytic adenovirus expressing relaxin (YDC002) enhances therapeutic efficacy of gemcitabine against pancreatic cancer. Cancer Lett 2017; 396:155-166. [PMID: 28315430 DOI: 10.1016/j.canlet.2017.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is a highly lethal disease for which limited therapeutic options are available. Pancreatic cancer exhibits a pronounced collagen-rich stromal reaction, which induces chemoresistance by inhibiting drug diffusion into the tumor. Complementary treatment with oncolytic virus such as an oncolytic adenovirus expressing relaxin (YDC002) is an innovative treatment option for combating chemoresistant pancreatic cancer. Here, we examined the ability of combined treatment with gemcitabine and YDC002, which degrades extracellular matrix (ECM), to efficiently treat chemoresistant and desmoplastic pancreatic cancer. Gemcitabine alone exhibited similarly low cytotoxicity toward pancreatic cancer cells throughout the concentration range (1-50 μM) used, whereas the combination of YDC002 and a subtherapeutic dose of gemcitabine (0.01-0.05 μM) resulted in potent anticancer effects through effective induction of apoptosis. Importantly, YDC002 combined with gemcitabine significantly attenuated the expression of major ECM components including collagens, fibronectin, and elastin in tumor spheroids and xenograft tumors compared with gemcitabine alone, resulting in potent induction of apoptosis, gemcitabine-mediated cytotoxicity, and an oncolytic effect through degradation of tumor ECM. Our results demonstrate that YDC002 can selectively degrade aberrant ECM and attenuate the ECM-induced chemoresistance observed in desmoplastic pancreatic tumor, resulting in a potent antitumor effect through effective induction of apoptosis.
Collapse
Affiliation(s)
- Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Il-Kyu Choi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 133-791, Seoul, Republic of Korea; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Hee-Seung Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Hong Hua Yan
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Mi Kwon Son
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Hyo Min Ahn
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 133-791, Seoul, Republic of Korea
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 133-791, Seoul, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 133-791, Seoul, Republic of Korea.
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea.
| |
Collapse
|
107
|
Kania A, Gugula A, Grabowiecka A, de Ávila C, Blasiak T, Rajfur Z, Lewandowski MH, Hess G, Timofeeva E, Gundlach AL, Blasiak A. Inhibition of oxytocin and vasopressin neuron activity in rat hypothalamic paraventricular nucleus by relaxin-3-RXFP3 signalling. J Physiol 2017; 595:3425-3447. [PMID: 28098344 DOI: 10.1113/jp273787] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Relaxin-3 is a stress-responsive neuropeptide that acts at its cognate receptor, RXFP3, to alter behaviours including feeding. In this study, we have demonstrated a direct, RXFP3-dependent, inhibitory action of relaxin-3 on oxytocin and vasopressin paraventricular nucleus (PVN) neuron electrical activity, a putative cellular mechanism of orexigenic actions of relaxin-3. We observed a Gαi/o -protein-dependent inhibitory influence of selective RXFP3 activation on PVN neuronal activity in vitro and demonstrated a direct action of RXFP3 activation on oxytocin and vasopressin PVN neurons, confirmed by their abundant expression of RXFP3 mRNA. Moreover, we demonstrated that RXFP3 activation induces a cadmium-sensitive outward current, which indicates the involvement of a characteristic magnocellular neuron outward potassium current. Furthermore, we identified an abundance of relaxin-3-immunoreactive axons/fibres originating from the nucleus incertus in close proximity to the PVN, but associated with sparse relaxin-3-containing fibres/terminals within the PVN. ABSTRACT The paraventricular nucleus of the hypothalamus (PVN) plays an essential role in the control of food intake and energy expenditure by integrating multiple neural and humoral inputs. Recent studies have demonstrated that intracerebroventricular and intra-PVN injections of the neuropeptide relaxin-3 or selective relaxin-3 receptor (RXFP3) agonists produce robust feeding in satiated rats, but the cellular and molecular mechanisms of action associated with these orexigenic effects have not been identified. In the present studies, using rat brain slices, we demonstrated that relaxin-3, acting through its cognate G-protein-coupled receptor, RXFP3, hyperpolarized a majority of putative magnocellular PVN neurons (88%, 22/25), including cells producing the anorexigenic neuropeptides, oxytocin and vasopressin. Importantly, the action of relaxin-3 persisted in the presence of tetrodotoxin and glutamate/GABA receptor antagonists, indicating its direct action on PVN neurons. Similar inhibitory effects on PVN oxytocin and vasopressin neurons were produced by the RXFP3 agonist, RXFP3-A2 (82%, 80/98 cells). In situ hybridization histochemistry revealed a strong colocalization of RXFP3 mRNA with oxytocin and vasopressin immunoreactivity in rat PVN neurons. A smaller percentage of putative parvocellular PVN neurons was sensitive to RXFP3-A2 (40%, 16/40 cells). These data, along with a demonstration of abundant peri-PVN and sparse intra-PVN relaxin-3-immunoreactive nerve fibres, originating from the nucleus incertus, the major source of relaxin-3 neurons, identify a strong inhibitory influence of relaxin-3-RXFP3 signalling on the electrical activity of PVN oxytocin and vasopressin neurons, consistent with the orexigenic effect of RXFP3 activation observed in vivo.
Collapse
Affiliation(s)
- Alan Kania
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland
| | - Agnieszka Grabowiecka
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland
| | - Camila de Ávila
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 0A6
| | - Tomasz Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland
| | - Zenon Rajfur
- Faculty of Physics, Astronomy and Applied Computer Science, Institute of Physics, Jagiellonian University, 30-348, Krakow, Poland
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland.,Institute of Pharmacology, Polish Academy of Sciences, 31-343, Krakow, Poland
| | - Elena Timofeeva
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 0A6
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, VIC, 3010, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, VIC, 3010, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland
| |
Collapse
|
108
|
Bergfelt DR, Blum JL, Steinetz BG, Steinman KJ, O'Brien JK, Robeck TR. Relaxin as a hormonal aid to evaluate pregnancy and pregnancy loss in bottlenose dolphins (Tursiops truncatus). Gen Comp Endocrinol 2017; 242:24-29. [PMID: 26724576 PMCID: PMC4919223 DOI: 10.1016/j.ygcen.2015.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/26/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Abstract
This study was conducted to critically evaluate weekly and monthly circulating concentrations of immunoreactive relaxin throughout pregnancies that resulted in live births, stillbirths, and abortions in aquarium-based bottlenose dolphins. A relaxin RIA was used to analyze serum collected during 74 pregnancies involving 41 dolphins and 8 estrous cycles as well as 8 non-pregnant dolphins. Pregnancies resulted in live births (n=60), stillbirths (n=7), or abortions (n=7). Relative to parturition (Month 0), monthly changes (P<0.0001) in relaxin was indicated by relatively low concentrations during early pregnancy (Months -12 to -9) which subsequently increased (P<0.05) during mid- (Months -8 to -5) to late (Months -4 to -1) pregnancy; relaxin was highest (P<0.05) at the time of parturition. Post-parturition (Month 1), concentrations decreased (P<0.05). During the first 4weeks post-ovulation, relaxin concentrations were not different between pregnant and non-pregnant dolphins (status-by-week interaction, P=0.59). Status-by-month interaction (P<0.0002) involving different pregnancy outcomes was due, impart, to an increase in relaxin during early pregnancy (P<0.05) that was comparable among dolphins with live births, stillbirths, and abortions except concentrations were lower (P<0.05; 52%) at mid-pregnancy in association with pregnancy loss. Thereafter, concentrations increased (P<0.05) during late pregnancy in dolphins with stillbirths but not in dolphins with abortions. In conclusion, this study provided new information on the pregnancy-specific nature of relaxin, critical evaluation of the fundamental characteristics of relaxin during pregnancy and pregnancy loss, and clarification on the strengths and limitations of relaxin as a diagnostic aid to determine pregnancy status and assess maternal-fetal health in bottlenose dolphins.
Collapse
Affiliation(s)
- Don R Bergfelt
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre KN 00265, Saint Kitts and Nevis, West Indies.
| | - Jason L Blum
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, United States.
| | - Bernard G Steinetz
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, United States.
| | - Karen J Steinman
- SeaWorld and Busch Gardens Reproductive Research Center, San Diego, CA 92109, United States.
| | - Justin K O'Brien
- SeaWorld and Busch Gardens Reproductive Research Center, San Diego, CA 92109, United States.
| | - Todd R Robeck
- SeaWorld and Busch Gardens Reproductive Research Center, San Diego, CA 92109, United States.
| |
Collapse
|
109
|
Yellon SM. Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol Reprod 2017; 96:13-23. [PMID: 28395330 PMCID: PMC5803764 DOI: 10.1095/biolreprod.116.142844] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/01/2016] [Accepted: 11/28/2016] [Indexed: 01/05/2023] Open
Abstract
Major clinical challenges for obstetricians and neonatologists result from early cervix remodeling and preterm birth. Complications related to cervix remodeling or delivery account for significant morbidity in newborns and peripartum mothers. Understanding morphology and structure of the cervix in pregnant women is limited mostly to the period soon before and after birth. However, evidence in rodent models supports a working hypothesis that a convergence of factors promotes a physiological inflammatory process that degrades the extracellular collagen matrix and enhances biomechanical distensibility of the cervix well before the uterus develops the contractile capabilities for labor. Contributing factors to this remodeling process include innervation, mechanical stretch, hypoxia, and proinflammatory mediators. Importantly, the softening and shift to ripening occurs while progesterone is near peak concentrations in circulation across species. Since progesterone is required to maintain pregnancy, the premise of this review is that loss of responsiveness to progesterone constitutes a common final mechanism for remodeling the mammalian cervix in preparation for birth at term. Various inputs are suggested to promote signaling between stromal cells and resident macrophages to drive proinflammatory processes that advance the soft cervix into ripening. With infection, pathophysiological processes may prematurely drive components of this remodeling mechanism and lead to preterm birth. Identification of critical molecules and pathways from studies in various rodent models hold promise for novel endpoints to assess risk and provide innovative approaches to treat preterm birth or promote the progress of ripening at term.
Collapse
Affiliation(s)
- Steven M. Yellon
- Longo Center for Perinatal Biology, Departments of Basic Sciences Division of Physiology and Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
110
|
Huang H, Chang HH, Xu Y, Reddy DS, Du J, Zhou Y, Dong Z, Falck JR, Wang MH. Epoxyeicosatrienoic Acid Inhibition Alters Renal Hemodynamics During Pregnancy. Exp Biol Med (Maywood) 2016; 231:1744-52. [PMID: 17138762 DOI: 10.1177/153537020623101112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study we examined the expression of cytochrome P450 (CYP) 2C and CYP2J Isoforms in renal proximal tubules and microvessels isolated from rats at different stages of pregnancy. We also selectively inhibited epoxyeicosatrienoic acid (EET) production by the administration of N-methanesulfonyl-6-(2-proparyloxyphenyl)hexanamide (MSPPOH 20 mg/kg/day iv) to rats during Days 14–17 of gestation and to age-matched virgin rats and determined the consequent effects on renal function. Western blot analysis showed that CYP2C11, CYP2C23, and CYP2J2 expression was significantly increased in the renal microvessels of pregnant rats on Day 12 of gestation. In the proximal tubules, CYP2C23 expression was significantly increased throughout pregnancy, while the expression of CYP2C11 was increased in early and late pregnancy and the expression of CYP2J2 was increased in middle and late pregnancy. MSPPOH treatment significantly Increased pregnant rats’ mean arterial pressure, renal vascular resistance, and sodium balance but significantly decreased renal blood flow, glomerular filtration rate, and urinary sodium excretion, as well as fetal pups’ body weight and length. In contrast, MSPPOH treatment had no effect on renal hemodynamics or urinary sodium excretion in age-matched virgin rats. In pregnant rats, MSPPOH treatment also caused selective inhibition of renal cortical EET production and significantly decreased the expression of CYP2C11, CYP2C23, and CYP2J2 in the renal cortex, renal microvessels, and proximal tubules. These results suggest that upregulation of renal vascular and tubular EETs contributes to the control of blood pressure and renal function during pregnancy.
Collapse
Affiliation(s)
- Hui Huang
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Jelinic M, Kahlberg N, Parry LJ, Tare M. Does serelaxin treatment alter passive mechanical wall properties in small resistance arteries? Microcirculation 2016; 23:631-636. [DOI: 10.1111/micc.12321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/15/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Maria Jelinic
- School of BioSciences; The University of Melbourne; Parkville Victoria Australia
| | - Nicola Kahlberg
- School of BioSciences; The University of Melbourne; Parkville Victoria Australia
| | - Laura J. Parry
- School of BioSciences; The University of Melbourne; Parkville Victoria Australia
| | - Marianne Tare
- Department of Physiology; Monash University; Parkville Victoria Australia
- School of Rural Health; Monash University; Parkville Victoria Australia
| |
Collapse
|
112
|
Lin M, Mita M, Egertová M, Zampronio CG, Jones AM, Elphick MR. Cellular localization of relaxin-like gonad-stimulating peptide expression in Asterias rubens: New insights into neurohormonal control of spawning in starfish. J Comp Neurol 2016; 525:1599-1617. [PMID: 27806429 PMCID: PMC5396301 DOI: 10.1002/cne.24141] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 02/04/2023]
Abstract
Gamete maturation and spawning in starfish is triggered by a gonad-stimulating substance (GSS), which is present in extracts of the radial nerve cords. Purification of GSS from the starfish Patiria pectinifera identified GSS as a relaxin-like polypeptide, which is now known as relaxin-like gonad-stimulating peptide (RGP). Cells expressing RGP in the radial nerve cord of P. pectinifera have been visualized, but the presence of RGP-expressing cells in other parts of the starfish body has not been investigated. Here we addressed this issue in the starfish Asterias rubens. An A. rubens RGP (AruRGP) precursor cDNA was sequenced and the A chain and B chain that form AruRGP were detected in A. rubens radial nerve cord extracts using mass spectrometry. Comparison of the bioactivity of AruRGP and P. pectinifera RGP (PpeRGP) revealed that both polypeptides induce oocyte maturation and ovulation in A. rubens ovarian fragments, but AruRGP is more potent than PpeRGP. Analysis of the expression of AruRGP in A. rubens using mRNA in situ hybridization revealed cells expressing RGP in the radial nerve cords, circumoral nerve ring, and tube feet. Furthermore, a band of RGP-expressing cells was identified in the body wall epithelium lining the cavity that surrounds the sensory terminal tentacle and optic cushion at the tips of the arms. Discovery of these RGP-expressing cells closely associated with sensory organs in the arm tips is an important finding because these cells are candidate physiological mediators for hormonal control of starfish spawning in response to environmental cues. J. Comp. Neurol. 525:1599-1617, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ming Lin
- Queen Mary University of London, School of Biological & Chemical Sciences, London, UK
| | - Masatoshi Mita
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Michaela Egertová
- Queen Mary University of London, School of Biological & Chemical Sciences, London, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, London, UK
| |
Collapse
|
113
|
Sheikh IA, Ahmad E, Jamal MS, Rehan M, Assidi M, Tayubi IA, AlBasri SF, Bajouh OS, Turki RF, Abuzenadah AM, Damanhouri GA, Beg MA, Al-Qahtani M. Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update. BMC Genomics 2016; 17:759. [PMID: 27766960 PMCID: PMC5073925 DOI: 10.1186/s12864-016-3089-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Preterm birth (PTB), birth at <37 weeks of gestation, is a significant global public health problem. World-wide, about 15 million babies are born preterm each year resulting in more than a million deaths of children. Preterm neonates are more prone to problems and need intensive care hospitalization. Health issues may persist through early adulthood and even be carried on to the next generation. Majority (70 %) of PTBs are spontaneous with about a half without any apparent cause and the other half associated with a number of risk factors. Genetic factors are one of the significant risks for PTB. The focus of this review is on single nucleotide gene polymorphisms (SNPs) that are reported to be associated with PTB. RESULTS A comprehensive evaluation of studies on SNPs known to confer potential risk of PTB was done by performing a targeted PubMed search for the years 2007-2015 and systematically reviewing all relevant studies. Evaluation of 92 studies identified 119 candidate genes with SNPs that had potential association with PTB. The genes were associated with functions of a wide spectrum of tissue and cell types such as endocrine, tissue remodeling, vascular, metabolic, and immune and inflammatory systems. CONCLUSIONS A number of potential functional candidate gene variants have been reported that predispose women for PTB. Understanding the complex genomic landscape of PTB needs high-throughput genome sequencing methods such as whole-exome sequencing and whole-genome sequencing approaches that will significantly enhance the understanding of PTB. Identification of high risk women, avoidance of possible risk factors, and provision of personalized health care are important to manage PTB.
Collapse
Affiliation(s)
- Ishfaq A. Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, PO Box 80216, Jeddah, 21589 Saudi Arabia
| | - Ejaz Ahmad
- King Fahd Medical Research Center, King Abdulaziz University, PO Box 80216, Jeddah, 21589 Saudi Arabia
| | - Mohammad S. Jamal
- King Fahd Medical Research Center, King Abdulaziz University, PO Box 80216, Jeddah, 21589 Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, PO Box 80216, Jeddah, 21589 Saudi Arabia
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Iftikhar A. Tayubi
- Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Samera F. AlBasri
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama S. Bajouh
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rola F. Turki
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M. Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghazi A. Damanhouri
- King Fahd Medical Research Center, King Abdulaziz University, PO Box 80216, Jeddah, 21589 Saudi Arabia
| | - Mohd A. Beg
- King Fahd Medical Research Center, King Abdulaziz University, PO Box 80216, Jeddah, 21589 Saudi Arabia
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
114
|
Marshall SA, Senadheera SN, Parry LJ, Girling JE. The Role of Relaxin in Normal and Abnormal Uterine Function During the Menstrual Cycle and Early Pregnancy. Reprod Sci 2016; 24:342-354. [DOI: 10.1177/1933719116657189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sarah A. Marshall
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Laura J. Parry
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Jane E. Girling
- Department of Obstetrics and Gynaecology, Gynaecology Research Centre, The University of Melbourne and Royal Women’s Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
115
|
Robeck TR, Steinman KJ, O'Brien JK. Characterization and longitudinal monitoring of serum progestagens and estrogens during normal pregnancy in the killer whale (Orcinus orca). Gen Comp Endocrinol 2016; 236:83-97. [PMID: 27401258 DOI: 10.1016/j.ygcen.2016.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 11/21/2022]
Abstract
The secretory patterns of progestagens and estrogens were characterized throughout 28 normal pregnancies until two month post-partum in eleven killer whales. HPLC analysis of serum from different reproductive stages (luteal phase, EARLY, MID, and LATE pregnancy) identified three major immunoreactive progestagen peaks; progesterone (P4), 5α-pregnane-3,20-dione (5α-DHP) and pregnanediol, with 5α-DHP approximately half of that for P4 in the luteal phase, and EARLY, but approximately 2/3 of P4 during MID and LATE pregnancy. At birth, 5α-DHP was the only significant (>10% immunoreactivity) immunoreactive progestagen detected in placental (umbilical cord) serum. Maternal recognition of pregnancy appears to occur between day 21 and 28 post-ovulation when a significant deviation in progestagen concentrations between conceptive and non-conceptive cycles was detected. Progestagen concentrations during pregnancy displayed a bimodal pattern with significant peaks (P<0.05) in EARLY (indexed month post-conception [IMPC] 2, 3, 4) and MID (IMPC 9, 10) before decreasing (P<0.05) over an 11day interval to luteal phase concentrations on the day of parturition. Among estrogens, estriol was secreted in the highest concentrations but only estrone (free and conjugated) and estradiol increased (P<0.001) during pregnancy, with peaks observed during the final month of gestation, and an influence (P<0.05) of fetal sex on estradiol production was detected. Collective findings indicate that P4 derived from the corpus luteum is the major biologically active progestagen during the luteal phase and pregnancy, and that 5α-DHP production, possibly from both luteal and placental sources, increases during the second half of pregnancy.
Collapse
Affiliation(s)
- Todd R Robeck
- SeaWorld Parks and Entertainment, Inc., SeaWorld and Busch Gardens Reproductive Research Center, San Diego, CA 92109, USA.
| | - Karen J Steinman
- SeaWorld Parks and Entertainment, Inc., SeaWorld and Busch Gardens Reproductive Research Center, San Diego, CA 92109, USA
| | - Justine K O'Brien
- SeaWorld Parks and Entertainment, Inc., SeaWorld and Busch Gardens Reproductive Research Center, San Diego, CA 92109, USA
| |
Collapse
|
116
|
Alperin M, Kaddis T, Pichika R, Esparza MC, Lieber RL. Pregnancy-induced adaptations in intramuscular extracellular matrix of rat pelvic floor muscles. Am J Obstet Gynecol 2016; 215:210.e1-7. [PMID: 26875952 DOI: 10.1016/j.ajog.2016.02.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/12/2016] [Accepted: 02/05/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Birth trauma to pelvic floor muscles is a major risk factor for pelvic floor disorders. Intramuscular extracellular matrix determines muscle stiffness, supports contractile component, and shields myofibers from mechanical strain. OBJECTIVE Our goal was to determine whether pregnancy alters extracellular matrix mechanical and biochemical properties in a rat model, which may provide insights into the pathogenesis of pelvic floor muscle birth injury. To examine whether pregnancy effects were unique to pelvic floor muscles, we also studied a hind limb muscle. STUDY DESIGN Passive mechanical properties of coccygeus, iliocaudalis, pubocaudalis, and tibialis anterior were compared among 3-month old Sprague-Dawley virgin, late-pregnant, and postpartum rats. Muscle tangent stiffness was calculated as the slope of the stress-sarcomere length curve between 2.5 and 4.0 μm, obtained from a stress-relaxation protocol at a bundle level. Elastin and collagen isoform concentrations were quantified by the use of enzyme-linked immunosorbent assay. Enzymatic and glycosylated collagen crosslinks were determined by high-performance liquid chromatography. Data were compared by the use of repeated-measures, 2-way analysis of variance with Tukey post-hoc testing. Correlations between mechanical and biochemical parameters were assessed by linear regressions. Significance was set to P < .05. Results are reported as mean ± SEM. RESULTS Pregnancy significantly increased stiffness in coccygeus (P < .05) and pubocaudalis (P < .0001) relative to virgin controls, with no change in iliocaudalis. Postpartum, pelvic floor muscle stiffness did not differ from virgins (P > .3). A substantial increase in collagen V in coccygeus and pubocaudalis was observed in late-pregnant, compared with virgin, animals, (P < .001). Enzymatic crosslinks decreased in coccygeus (P < .0001) and pubocaudalis (P < .02) in pregnancy, whereas glycosylated crosslinks were significantly elevated in late-pregnant rats in all pelvic floor muscles (P < .05). Correlations between muscle stiffness and biochemical parameters were inconsistent. In contrast to the changes observed in pelvic floor muscles, the tibialis anterior was unaltered by pregnancy. CONCLUSIONS In contrast to other pelvic tissues, pelvic floor muscle stiffness increased in pregnancy, returning to prepregnancy state postpartum. This adaptation may shield myofibers from excessive mechanical strain during parturition. Biochemical alterations in pelvic floor muscle extracellular matrix due to pregnancy include increase in collagen V and a differential response in enzymatic vs glycosylated collagen crosslinks. The relationships between pelvic floor muscle biochemical and mechanical parameters remain unclear.
Collapse
|
117
|
Xie X, Xia W, Fei X, Xu Q, Yang X, Qiu D, Wang M. Relaxin Inhibits High Glucose-Induced Matrix Accumulation in Human Mesangial Cells by Interfering with TGF-β1 Production and Mesangial Cells Phenotypic Transition. Biol Pharm Bull 2016; 38:1464-9. [PMID: 26424011 DOI: 10.1248/bpb.b15-00127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). DN is characterized by glomerular extracellular matrix accumulation, mesangial expansion, basement membrane thickening, and renal interstitial fibrosis. To date, mounting evidence has shown that H2 relaxin possesses powerful antifibrosis properties; however, the mechanisms of H2 relaxin on diabetic nephropathy remain unknown. Here, we aimed to explore whether H2 relaxin can reduce production of extracellular matrix (ECM) secreted by human mesangial cells (HMC). HMC were exposed to 5.5 mM glucose (NG) or 30 mM glucose (HG) with or without H2 relaxin. Fibronectin (FN) and collagen type IV levels in the culture supernatants were examined by solid-phase enzyme-linked immunoadsorbent assay (ELISA). Western blot was used to detect the expression of α-smooth muscle actin (α-SMA) protein. Quantitative polymerase chain reaction (qPCR) method was employed to analyze transforming growth factor (TGF)-β1 mRNA expression. Compared with the normal glucose group, the levels of fibronectin and collagen type were markedly increased after being cultured in high glucose medium. Compared with the high glucose group, remarkable decreases of fibronectin, collagen type IV, α-smooth muscle actin, and TGF-β1 mRNA expression were observed in the H2 relaxin-treated group. The mechanism by which H2 relaxin reduced high glucose-induced overproduction of ECM may be associated with inhibition of TGF-β1 mRNA expression and mesangial cells' phenotypic transition. H2 relaxin is a potentially effective modality for the treatment of DN.
Collapse
Affiliation(s)
- Xiangcheng Xie
- Department of Nephrology, Hangzhou First People's Hospital, Affiliated Hangzhou Hospital of Nanjing Medical University
| | | | | | | | | | | | | |
Collapse
|
118
|
Mi Y, Coonce M, Fiete D, Steirer L, Dveksler G, Townsend RR, Baenziger JU. Functional Consequences of Mannose and Asialoglycoprotein Receptor Ablation. J Biol Chem 2016; 291:18700-17. [PMID: 27405760 DOI: 10.1074/jbc.m116.738948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Indexed: 11/06/2022] Open
Abstract
The mannose receptor (ManR, Mrc1) and asialoglycoprotein receptor (ASGR, Asgr1 and Asgr2) are highly abundant endocytic receptors expressed by sinusoidal endothelial cells and parenchymal cells in the liver, respectively. We genetically manipulated either receptor individually or in combination, revealing phenotypic changes in female and male mice associated with changes in circulating levels of many glycoproteins. Both receptors rise and fall in response to progesterone during pregnancy. Thirty percent of Asgr2(-/-) and 65% of Mrc1(-/-)Asgr2(-/-) mice are unable to initiate parturition at the end of pregnancy, whereas Mrc1(-/-) mice initiate normally. Twenty five percent of Mrc1(-/-)Asgr2(-/-) male mice develop priapism when mating due to thrombosis of the penile vein, but neither Mrc1(-/-) nor Asgr2(-/-) mice do so. The half-life for luteinizing hormone (LH) clearance increases in Mrc1(-/-) and Mrc1(-/-)Asgr2(-/-) mice but not in Asgr2(-/-) mice; however, LH and testosterone are elevated in all three knockouts. The ManR clears LH thus regulating testosterone production, whereas the ASGR appears to mediate clearance of an unidentified glycoprotein that increases LH levels. More than 40 circulating glycoproteins are elevated >3.0-fold in pregnant Mrc1(-/-)Asgr2(-/-) mice. Pregnancy-specific glycoprotein 23, undetectable in WT mice (<50 ng/ml plasma), reaches levels of 1-10 mg/ml in the plasma of Mrc1(-/-)Asgr2(-/-) and Asgr2(-/-) mice, indicating it is cleared by the ASGR. Elevation of multiple coagulation factors in Mrc1(-/-)Asgr2(-/-) mice may account for priapism seen in males. These male and female phenotypic changes underscore the key roles of the ManR and ASGR in controlling circulating levels of numerous glycoproteins critical for regulating reproductive hormones and blood coagulation.
Collapse
Affiliation(s)
- Yiling Mi
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Marcy Coonce
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Dorothy Fiete
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Lindsay Steirer
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Gabriela Dveksler
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - R Reid Townsend
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jacques U Baenziger
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
119
|
Sarwar M, Du XJ, Dschietzig TB, Summers RJ. The actions of relaxin on the human cardiovascular system. Br J Pharmacol 2016; 174:933-949. [PMID: 27239943 DOI: 10.1111/bph.13523] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
The insulin-like peptide relaxin, originally identified as a hormone of pregnancy, is now known to exert a range of pleiotropic effects including vasodilatory, anti-fibrotic, angiogenic, anti-apoptotic and anti-inflammatory effects in both males and females. Relaxin produces these effects by binding to a cognate receptor RXFP1 and activating a variety of signalling pathways including cAMP, cGMP and MAPKs as well as by altering gene expression of TGF-β, MMPs, angiogenic growth factors and endothelin receptors. The peptide has been shown to be effective in halting or reversing many of the adverse effects including fibrosis in animal models of cardiovascular disease including ischaemia/reperfusion injury, myocardial infarction, hypertensive heart disease and cardiomyopathy. Relaxin given to humans is safe and produces favourable haemodynamic changes. Serelaxin, the recombinant form of relaxin, is now in extended phase III clinical trials for the treatment of acute heart failure. Previous clinical studies indicated that a 48 h infusion of relaxin improved 180 day mortality, yet the mechanism underlying this effect is not clear. This article provides an overview of the cellular mechanism of effects of relaxin and summarizes its beneficial actions in animal models and in the clinic. We also hypothesize potential mechanisms for the clinical efficacy of relaxin, identify current knowledge gaps and suggest new ways in which relaxin could be useful therapeutically. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Mohsin Sarwar
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Thomas B Dschietzig
- Immundiagnostik AG, Bensheim, Germany.,Campus Mitte, Medical Clinic for Cardiology and Angiology, Charité-University Medicine Berlin, Berlin, Germany.,Relaxera Pharmazeutische Gesellschaft mbH & Co. KG, Bensheim, Germany
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| |
Collapse
|
120
|
Owens BD, Cameron KL, Clifton KB, Svoboda SJ, Wolf JM. Association Between Serum Relaxin and Subsequent Shoulder Instability. Orthopedics 2016; 39:e724-8. [PMID: 27111077 DOI: 10.3928/01477447-20160421-01] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 02/05/2016] [Indexed: 02/03/2023]
Abstract
Ligamentous laxity correlates with shoulder instability. Relaxin is a hormone that has been linked to laxity in the knee and has been shown to be a risk factor for anterior cruciate ligament (ACL) injury. This study prospectively evaluated the association between relaxin and acute shoulder instability. A prospective cohort study of 1050 young athletes was performed between 2006 and 2010. The authors conducted a nested case-control analysis within this cohort to evaluate the association between preinjury serum relaxin concentration and the likelihood of subsequent shoulder instability. The study compared 53 patients who had shoulder instability and 53 control subjects who were matched for sex, age, height, and weight. The serum relaxin concentration in preinjury baseline samples was tested with enzyme-linked immunosorbent assay analysis in duplicate. Independent t tests were performed to identify differences in mean serum relaxin concentration between patients with shoulder instability and uninjured control subjects. Logistic regression was used to evaluate whether preinjury baseline serum relaxin concentration was associated with the subsequent likelihood of shoulder instability. Of the 53 patients with instability, 13 (25%) had a detectable serum relaxin concentration compared with 9 (17%) of uninjured control subjects (P=.34). Mean serum relaxin concentration in the injury group was 3.69±1.78 pg/mL and 2.20±0.97 pg/mL in uninjured control subjects (P=.02). Increased serum relaxin concentration was associated with the subsequent likelihood of acute shoulder instability. Subjects were 2.18 times (odds ratio, 2.18; 95% confidence interval, 1.01-4.76) more likely to have acute shoulder instability during the follow-up period for every 1-pg/mL increase in serum relaxin concentration at baseline. The findings suggest that serum relaxin concentration is associated with a risk of subsequent shoulder instability in young athletes. Further research on the role of relaxin in shoulder instability is warranted. [Orthopedics. 2016; 39(4):e724-e728.].
Collapse
|
121
|
Wu F, Mayer JP, Zaykov AN, Zhang F, Liu F, DiMarchi RD. Chemical Synthesis of Human Insulin-Like Peptide-6. Chemistry 2016; 22:9777-83. [DOI: 10.1002/chem.201601410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Fangzhou Wu
- Department of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - John P. Mayer
- Department of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Alexander N. Zaykov
- Department of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Fa Zhang
- Department of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Fa Liu
- Novo Nordisk Research Center Indianapolis; 5225 Exploration Drive Indianapolis Indiana 46241 USA
| | - Richard D. DiMarchi
- Department of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| |
Collapse
|
122
|
Antifibrotic Actions of Serelaxin – New Roles for an Old Player. Trends Pharmacol Sci 2016; 37:485-497. [DOI: 10.1016/j.tips.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/25/2022]
|
123
|
Pini A, Boccalini G, Lucarini L, Catarinicchia S, Guasti D, Masini E, Bani D, Nistri S. Protection from Cigarette Smoke-Induced Lung Dysfunction and Damage by H2 Relaxin (Serelaxin). J Pharmacol Exp Ther 2016; 357:451-8. [PMID: 27048661 DOI: 10.1124/jpet.116.232215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2023] Open
Abstract
Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD), which is characterized by airway remodeling, lung inflammation and fibrosis, emphysema, and respiratory failure. The current therapies can improve COPD management but cannot arrest its progression and reduce mortality. Hence, there is a major interest in identifying molecules susceptible of development into new drugs to prevent or reduce CS-induced lung injury. Serelaxin (RLX), or recombinant human relaxin-2, is a promising candidate because of its anti-inflammatory and antifibrotic properties highlighted in lung disease models. Here, we used a guinea pig model of CS-induced lung inflammation, and remodeling reproducing some of the hallmarks of COPD. Animals exposed chronically to CS (8 weeks) were treated with vehicle or RLX, delivered by osmotic pumps (1 or 10 μg/day) or aerosol (10 μg/ml/day) during CS treatment. Controls were nonsmoking animals. RLX maintained airway compliance to a control-like pattern, likely because of its capability to counteract lung inflammation and bronchial remodeling. In fact, treatment of CS-exposed animals with RLX reduced the inflammatory recruitment of leukocytes, accompanied by a significant reduction of the release of proinflammatory cytokines (tumor necrosis factor α and interleukin-1β). Moreover, RLX was able to counteract the adverse bronchial remodeling and emphysema induced by CS exposure by reducing goblet cell hyperplasia, smooth muscle thickening, and fibrosis. Of note, RLX delivered by aerosol has shown a comparable efficacy to systemic administration in reducing CS-induced lung dysfunction and damage. In conclusion, RLX emerges as a new molecule to counteract CS-induced inflammatory lung diseases.
Collapse
Affiliation(s)
- Alessandro Pini
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Giulia Boccalini
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Laura Lucarini
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Stefano Catarinicchia
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Daniele Guasti
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Emanuela Masini
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Daniele Bani
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Silvia Nistri
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| |
Collapse
|
124
|
Vannuccini S, Bocchi C, Severi FM, Challis JR, Petraglia F. Endocrinology of human parturition. ANNALES D'ENDOCRINOLOGIE 2016; 77:105-13. [DOI: 10.1016/j.ando.2016.04.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
125
|
New targets for renal interstitial fibrosis: relaxin family peptide receptor 1-angiotensin type 2 receptor heterodimers. Kidney Int 2016; 86:9-10. [PMID: 24978374 PMCID: PMC4076695 DOI: 10.1038/ki.2014.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent findings have shown that relaxin has potent anti-fibrotic effects within the kidney; however, the signal transduction mechanisms involved in the renoprotective effects of relaxin are not well understood. Chow et al demonstrate that the relaxin receptor, RXFP1, forms heterodimer complexes with the angiotensin type 2 receptor, AT2, even in the absence of ligand and that these heterodimer complexes are required for relaxin’s antifibrotic effects. These findings identify a previously unknown link between relaxin and angiotensin II signaling that could be a potential new target for slowing the progression of fibrotic renal diseases.
Collapse
|
126
|
Artan M, Jeong DE, Lee D, Kim YI, Son HG, Husain Z, Kim J, Altintas O, Kim K, Alcedo J, Lee SJV. Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides. Genes Dev 2016; 30:1047-57. [PMID: 27125673 PMCID: PMC4863736 DOI: 10.1101/gad.279448.116] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/07/2016] [Indexed: 11/24/2022]
Abstract
Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans' life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs.
Collapse
Affiliation(s)
- Murat Artan
- Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Young-Il Kim
- Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Heehwa G Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Zahabiya Husain
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | - Jinmahn Kim
- Department of Cognitive and Brain Sciences, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu 42988, South Korea
| | - Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Kyuhyung Kim
- Department of Cognitive and Brain Sciences, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu 42988, South Korea
| | - Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | - Seung-Jae V Lee
- Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
127
|
Abstract
Outcomes for patients with acute heart failure remain suboptimal and treatments principally target improvement of symptoms. To date there has been no therapy approved for acute heart failure shown to improve mortality or readmission risk post-discharge. Serelaxin, a recombinant form of the naturally occurring polypeptide hormone relaxin, has demonstrated promise in preclinical and early clinical trials as a potentially novel therapy for acute heart failure. It is postulated through its anti-fibrotic and vasodilatory effects that this agent can improve outcomes in both the short and long term in these patients. Randomized clinical data has suggested that the medication is safe and well tolerated. However, definitive outcomes data is currently being assessed in a large multi-center trial.
Collapse
Affiliation(s)
- Danyaal S Moin
- a Division of Cardiology , Stony Brook University School of Medicine , Stony Brook , NY , USA
| | - Michelle W Bloom
- a Division of Cardiology , Stony Brook University School of Medicine , Stony Brook , NY , USA
| | - Lampros Papadimitriou
- a Division of Cardiology , Stony Brook University School of Medicine , Stony Brook , NY , USA
| | - Javed Butler
- a Division of Cardiology , Stony Brook University School of Medicine , Stony Brook , NY , USA
| |
Collapse
|
128
|
Haase N, Golic M, Herse F, Rugor J, Linz D, Solano ME, Müller DN, Dechend R. Relaxin Treatment in an Ang-II-Based Transgenic Preeclamptic-Rat Model. PLoS One 2016; 11:e0150743. [PMID: 26963382 PMCID: PMC4786114 DOI: 10.1371/journal.pone.0150743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
Abstract
Relaxin is a peptide related to pregnancy that induces nitric oxide-related and gelatinase-related effects, allowing vasodilation and pregnancy-related adjustments permitting parturition to occur. Relaxin controls the hemodynamic and renovascular adaptive changes that occur during pregnancy. Interest has evolved regarding relaxin and a therapeutic principle in preeclampsia and heart failure. Preeclampsia is a pregnancy disorder, featuring hypertension, proteinuria and placental anomalies. We investigated relaxin in an established transgenic rat model of preeclampsia, where the phenotype is induced by angiotensin (Ang)-II production in mid pregnancy. We gave recombinant relaxin to preeclamtic rats at day 9 of gestation. Hypertension and proteinuria was not ameliorated after relaxin administration. Intrauterine growth retardation of the fetus was unaltered by relaxin. Heart-rate responses and relaxin levels documented drug effects. In this Ang-II-based model of preeclampsia, we could not show a salubrious effect on preeclampsia.
Collapse
Affiliation(s)
- Nadine Haase
- Experimental and Clinical Research Center, a joint cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz and the Charité Medical Faculty, Berlin, Germany
| | - Michaela Golic
- Experimental and Clinical Research Center, a joint cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz and the Charité Medical Faculty, Berlin, Germany
| | - Florian Herse
- Experimental and Clinical Research Center, a joint cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz and the Charité Medical Faculty, Berlin, Germany
| | - Julianna Rugor
- Experimental and Clinical Research Center, a joint cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz and the Charité Medical Faculty, Berlin, Germany
| | - Dominik Linz
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Maria Emilia Solano
- Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik N. Müller
- Experimental and Clinical Research Center, a joint cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz and the Charité Medical Faculty, Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, a joint cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz and the Charité Medical Faculty, Berlin, Germany
- HELIOS-Klinikum Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
129
|
Kim JK, Lee JI, Paik YH, Yun CO, Chang HY, Lee SY, Lee KS. A single adenovirus-mediated relaxin delivery attenuates established liver fibrosis in rats. J Gene Med 2016; 18:16-26. [DOI: 10.1002/jgm.2872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ja Kyung Kim
- Department of Internal Medicine; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Jung Il Lee
- Department of Internal Medicine; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Yong-Han Paik
- Department of Internal Medicine Samsung Medical Centre; Sungkyunkwan University School of Medicine; Seoul Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering; Hanyang University; Seoul Republic of Korea
| | - Hye Young Chang
- Medical Research Centre, Gangnam Severance Hospital; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Su Yeon Lee
- Medical Research Centre, Gangnam Severance Hospital; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Kwan Sik Lee
- Department of Internal Medicine; Yonsei University College of Medicine; Seoul Republic of Korea
| |
Collapse
|
130
|
White MF, Copps KD. The Mechanisms of Insulin Action. ENDOCRINOLOGY: ADULT AND PEDIATRIC 2016:556-585.e13. [DOI: 10.1016/b978-0-323-18907-1.00033-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
131
|
Squecco R, Garella R, Idrizaj E, Nistri S, Francini F, Baccari MC. Relaxin Affects Smooth Muscle Biophysical Properties and Mechanical Activity of the Female Mouse Colon. Endocrinology 2015; 156:4398-410. [PMID: 26360621 DOI: 10.1210/en.2015-1428] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hormone relaxin (RLX) has been reported to influence gastrointestinal motility in mice. However, at present, nothing is known about the effects of RLX on the biophysical properties of the gastrointestinal smooth muscle cells (SMCs). Other than extending previous knowledge of RLX on colonic motility, the purpose of this study was to investigate the ability of the hormone to induce changes in resting membrane potential (RMP) and on sarcolemmal ion channels of colonic SMCs of mice that are related to its mechanical activity. To this aim, we used a combined mechanical and electrophysiological approach. In the mechanical experiments, we observed that RLX caused a decay of the basal tone coupled to an increase of the spontaneous contractions, completely abolished by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one (ODQ). The electrophysiological results indicate for the first time that RLX directly affects the SMC biophysical properties inducing hyperpolarization of RMP and cycles of slow hyperpolarization/depolarization oscillations. The effects of RLX on RMP were abolished by ODQ as well as by a specific inhibitor of the cGMP-dependent protein kinase, KT5823. RLX reduced Ca(2+) entry through the voltage-dependent L-type channels and modulated either voltage- or ATP-dependent K(+) channels. These effects were abolished by ODQ, suggesting the involvement of the nitric oxide/guanylate cyclase pathway in the effects of RLX on RMP and ion channel modulation. These actions of RLX on membrane properties may contribute to the regulation of the proximal colon motility by the nitric oxide/cGMP/cGMP-dependent protein kinase pathway.
Collapse
MESH Headings
- Animals
- Biophysical Phenomena/drug effects
- Calcium/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Carbazoles/pharmacology
- Colon/cytology
- Colon/drug effects
- Colon/metabolism
- Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors
- Female
- Gastrointestinal Motility
- Guanylate Cyclase/antagonists & inhibitors
- KATP Channels/drug effects
- KATP Channels/metabolism
- Membrane Potentials/drug effects
- Mice
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Myenteric Plexus/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oxadiazoles/pharmacology
- Patch-Clamp Techniques
- Potassium Channels, Voltage-Gated/drug effects
- Potassium Channels, Voltage-Gated/metabolism
- Quinoxalines/pharmacology
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Relaxin/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcolemma/drug effects
- Sarcolemma/metabolism
Collapse
Affiliation(s)
- Roberta Squecco
- Sections of Physiology (R.S., R.G., E.I., F.F., M.C.B.) and Anatomy and Histology (S.N.), Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Rachele Garella
- Sections of Physiology (R.S., R.G., E.I., F.F., M.C.B.) and Anatomy and Histology (S.N.), Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Eglantina Idrizaj
- Sections of Physiology (R.S., R.G., E.I., F.F., M.C.B.) and Anatomy and Histology (S.N.), Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Silvia Nistri
- Sections of Physiology (R.S., R.G., E.I., F.F., M.C.B.) and Anatomy and Histology (S.N.), Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Fabio Francini
- Sections of Physiology (R.S., R.G., E.I., F.F., M.C.B.) and Anatomy and Histology (S.N.), Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Maria Caterina Baccari
- Sections of Physiology (R.S., R.G., E.I., F.F., M.C.B.) and Anatomy and Histology (S.N.), Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
132
|
Díez J, Ruilope LM. Serelaxin for the treatment of acute heart failure: a review with a focus on end-organ protection. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2015; 2:119-30. [PMID: 27418970 PMCID: PMC4853824 DOI: 10.1093/ehjcvp/pvv046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022]
Abstract
Acute heart failure (AHF) is a complex clinical syndrome characterized by fluid overload and haemodynamic abnormalities (short-term clinical consequences) and the development of end-organ damage (long-term consequences). Current therapies for the treatment of AHF, such as loop diuretics and vasodilators, help to relieve haemodynamic imbalance and congestion, but have not been shown to prevent (and may even contribute to) end-organ damage, or to provide long-term clinical benefit. Serelaxin is the recombinant form of human relaxin-2, a naturally occurring hormone involved in mediating haemodynamic changes during pregnancy. Preclinical and clinical studies have investigated the effects mediated by serelaxin and the suitability of this agent for the treatment of patients with AHF. Data suggest that serelaxin acts via multiple pathways to improve haemodynamics at the vascular, cardiac, and renal level and provide effective congestion relief. In addition, this novel agent may protect the heart, kidneys, and liver from damage by inhibiting inflammation, oxidative stress, cell death, and tissue fibrosis, and stimulating angiogenesis. Serelaxin may therefore improve both short- and long-term outcomes in patients with AHF. In this review, we examine the unique mechanisms underlying the potential benefits of serelaxin for the treatment of AHF, in particular, those involved in mediating end-organ protection.
Collapse
Affiliation(s)
- Javier Díez
- Program of Cardiovascular Diseases, Centre for Applied Medical Research and Department of Cardiology and Cardiac Surgery, University of Navarra Clinic, University of Navarra, Av. Pío XII 55, Pamplona 31008, Spain
| | - Luis M Ruilope
- Research Institute, Hypertension Unit, Hospital 12 de Octubre and Department of Public Health and Preventive Medicine, University Autónoma, Madrid, Spain
| |
Collapse
|
133
|
Physiological roles of relaxin in prefertilizing activities of spermatozoa. Anim Reprod Sci 2015; 161:1-15. [DOI: 10.1016/j.anireprosci.2015.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/21/2015] [Accepted: 07/31/2015] [Indexed: 01/18/2023]
|
134
|
Coldren KM, Brown R, Hasser EM, Heesch CM. Relaxin increases sympathetic nerve activity and activates spinally projecting neurons in the paraventricular nucleus of nonpregnant, but not pregnant, rats. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1553-68. [PMID: 26400184 DOI: 10.1152/ajpregu.00186.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022]
Abstract
Pregnancy is characterized by increased blood volume and baseline sympathetic nerve activity (SNA), vasodilation, and tachycardia. Relaxin (RLX), an ovarian hormone elevated in pregnancy, activates forebrain sites involved in control of blood volume and SNA through ANG II-dependent mechanisms and contributes to adaptations during pregnancy. In anesthetized, arterial baroreceptor-denervated nonpregnant (NP) rats, RLX microinjected into the subfornical organ (SFO; 0.77 pmol in 50 nl) produced sustained increases in lumbar SNA (8 ± 3%) and mean arterial pressure (MAP; 26 ± 4 mmHg). Low-dose intracarotid artery infusion of RLX (155 pmol·ml(-1)·h(-1); 1.5 h) had minor transient effects on AP and activated neurons [increased Fos-immunoreactivity (IR)] in the SFO and in spinally projecting (19 ± 2%) and arginine-vasopressin (AVP)-IR (21 ± 5%) cells in the paraventricular nucleus of the hypothalamus of NP, but not pregnant (P), rats. However, mRNA for RLX and ANG II type 1a receptors in the SFO was preserved in pregnancy. RLX receptor-IR is present in the region of the SFO in NP and P rats and is localized in astrocytes, the major source of angiotensinogen in the SFO. These data provide an anatomical substrate for a role of RLX in the resetting of AVP secretion and increased baseline SNA in pregnancy. Since RLX and ANG II receptor expression was preserved in the SFO of P rats, we speculate that the lack of response to exogenous RLX may be due to maximal activation by elevated endogenous levels of RLX in near-term pregnancy.
Collapse
Affiliation(s)
- K Max Coldren
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Randall Brown
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri; and
| | - Eileen M Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Cheryl M Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri; and
| |
Collapse
|
135
|
Galvis V, Sherwin T, Tello A, Merayo J, Barrera R, Acera A. Keratoconus: an inflammatory disorder? Eye (Lond) 2015; 29:843-59. [PMID: 25931166 PMCID: PMC4506344 DOI: 10.1038/eye.2015.63] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 03/08/2015] [Indexed: 02/06/2023] Open
Abstract
Keratoconus has been classically defined as a progressive, non-inflammatory condition, which produces a thinning and steepening of the cornea. Its pathophysiological mechanisms have been investigated for a long time. Both genetic and environmental factors have been associated with the disease. Recent studies have shown a significant role of proteolytic enzymes, cytokines, and free radicals; therefore, although keratoconus does not meet all the classic criteria for an inflammatory disease, the lack of inflammation has been questioned. The majority of studies in the tears of patients with keratoconus have found increased levels of interleukin-6 (IL-6), tumor necrosis factor-α(TNF-α), and matrix metalloproteinase (MMP)-9. Eye rubbing, a proven risk factor for keratoconus, has been also shown recently to increase the tear levels of MMP-13, IL-6, and TNF-α. In the tear fluid of patients with ocular rosacea, IL-1α and MMP-9 have been reported to be significantly elevated, and cases of inferior corneal thinning, resembling keratoconus, have been reported. We performed a literature review of published biochemical changes in keratoconus that would support that this could be, at least in part, an inflammatory condition.
Collapse
Affiliation(s)
- V Galvis
- Centro Oftalmologico Virgilio Galvis, Floridablanca, Colombia
- Faculty of Health Sciences, Universidad Autonoma de Bucaramanga, Floridablanca, Colombia
| | - T Sherwin
- Faculty of Medical and Health Sciences, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - A Tello
- Centro Oftalmologico Virgilio Galvis, Floridablanca, Colombia
- Faculty of Health Sciences, Universidad Autonoma de Bucaramanga, Floridablanca, Colombia
| | - J Merayo
- Instituto Oftalmologico Fernandez-Vega, Oviedo, Spain
| | - R Barrera
- Centro Oftalmologico Virgilio Galvis, Floridablanca, Colombia
| | - A Acera
- Bioftalmik Applied Research, Derio, Spain
| |
Collapse
|
136
|
Royce SG, Lim CXF, Patel KP, Wang B, Samuel CS, Tang MLK. Intranasally administered serelaxin abrogates airway remodelling and attenuates airway hyperresponsiveness in allergic airways disease. Clin Exp Allergy 2015; 44:1399-408. [PMID: 25113628 DOI: 10.1111/cea.12391] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/03/2014] [Accepted: 05/08/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND The peptide hormone relaxin plays a key role in the systemic hemodynamic and renovascular adaptive changes that occur during pregnancy, which is linked to its antiremodelling effects. Serelaxin (a recombinant form of human gene-2 relaxin) has been shown to inhibit lung fibrosis in various disease models and reverse airway remodelling and airway hyperresponsiveness (AHR) in allergic airways disease (AAD). OBJECTIVE Although continuous systemic delivery of exogenous serelaxin alleviates allergic fibrosis and AHR, more direct routes for administration into the lung have not been investigated. Thus, intranasal administration of serelaxin was evaluated for its ability to reverse airway remodelling and AHR associated with AAD. METHODS Female Balb/c mice were subjected to a 9-week model of chronic AAD. Subgroups of animals (n = 12/group) were then treated intranasally with serelaxin (0.8 mg/mL) or vehicle once daily for 14 days (from weeks 9-11). Saline-sensitized/challenged mice treated with intranasal saline served as additional controls. Differential bronchoalveolar lavage (BAL) cell counts, ovalbumin (OVA)-specific IgE levels, tissue inflammation, parameters of airway remodelling and AHR were then assessed. RESULTS Chronic AAD was associated with significant increases in differential BAL cell counts, OVA-specific IgE levels, inflammation, epithelial thickening, goblet cell metaplasia, TGF-β1 expression, epithelial Smad2 phosphorylation (pSmad2), subepithelial collagen thickness, total lung collagen concentration and AHR (all P < 0.05 vs. respective measurements from saline-treated mice). Daily intranasal delivery of serelaxin significantly diminished AAD-induced epithelial thickening, epithelial pSmad2, subepithelial and total lung collagen content (fibrosis) and AHR (all P < 0.05 vs. vehicle-treated AAD mice). CONCLUSIONS AND CLINICAL RELEVANCE Intranasal delivery of serelaxin can effectively reduce airway remodelling and AHR, when administered once daily. Respirable preparations of serelaxin may have therapeutic potential for the prevention and/or reversal of established airway remodelling and AHR in asthma.
Collapse
Affiliation(s)
- S G Royce
- Allergy and Immune Disorders, Murdoch Children's Research Institute, Melbourne, Vic., Australia; Department of Pharmacology, Monash University, Melbourne, Vic., Australia
| | | | | | | | | | | |
Collapse
|
137
|
Feugang JM, Greene JM, Sanchez-Rodríguez HL, Stokes JV, Crenshaw MA, Willard ST, Ryan PL. Profiling of relaxin and its receptor proteins in boar reproductive tissues and spermatozoa. Reprod Biol Endocrinol 2015; 13:46. [PMID: 25990010 PMCID: PMC4445784 DOI: 10.1186/s12958-015-0043-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/08/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Relaxin levels in seminal plasma have been associated with positive effects on sperm motility and quality, and thus having potential roles in male fertility. However, the origin of seminal relaxin, within the male reproductive tract, and the moment of its release in the vicinity of spermatozoa remain unclear. Here, we assessed the longitudinal distribution of relaxin and its receptors RXFP1 and RXFP2 in the reproductive tract, sex accessory glands, and spermatozoa of adult boars. METHODS Spermatozoa were harvested from three fertile boars and reproductive tract (testes and epididymis) and sex accessory gland (prostate and seminal vesicles) tissues were collected post-mortem from each boar. Epididymis ducts were sectioned into caput, corpus, and cauda regions, and spermatozoa were mechanically collected. All samples were subjected to immunofluorescence and/or western immunoblotting for relaxin, RXFP1, and RXFP2 detection. Immunolabeled-spermatozoa were submitted to flow cytometry analyses and data were statistically analyzed with ANOVA. RESULTS Both receptors were detected in all tissues, with a predominance of mature and immature isoforms of RXFP1 and RXFP2, respectively. Relaxin signals were found in the testes, with Leydig cells displaying the highest intensity compared to other testicular cells. The testicular immunofluorescence intensity of relaxin was greater than that of other tissues. Epithelial basal cells exhibited the highest relaxin immunofluorescence intensity within the epididymis and the vas deferens. The luminal immunoreactivity to relaxin was detected in the seminiferous tubule, epididymis, and vas deferens ducts. Epididymal and ejaculated spermatozoa were immunopositive to relaxin, RXFP1, and RXFP2, and epididymal corpus-derived spermatozoa had the highest immunoreactivities across epididymal sections. Both vas deferens-collected and ejaculated spermatozoa displayed comparable, but lowest immunofluorescence signals among groups. The entire sperm length was immunopositive to both relaxin and receptors, with relaxin signal being robust in the acrosome area and RXFP2, homogeneously distributed than RXFP1 on the head of ejaculated spermatozoa. CONCLUSIONS Immunolocalization indicates that relaxin-receptor complexes may have important roles in boar reproduction and that spermatozoa are already exposed to relaxin upon their production. The findings suggest autocrine and/or paracrine actions of relaxin on spermatozoa, either before or after ejaculation, which have possible roles on the fertilizing potential of spermatozoa.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Jonathan M Greene
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Pathobiology & Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Pathobiological Sciences, Robert P. Hanson Biomedical Sciences Laboratories, University of Wisconsin, Madison, WI, 53706, USA.
| | - Hector L Sanchez-Rodríguez
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Animal Science, Mayaguez Campus, University of Puerto Rico, Mayaguez, Puerto Rico.
| | - John V Stokes
- Department of Basic Sciences, Flow Cytometry facility core, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Mark A Crenshaw
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Biochemistry and Molecular Biology & Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Pathobiology & Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
138
|
Varr BC, Maurer MS. Emerging role of serelaxin in the therapeutic armamentarium for heart failure. Curr Atheroscler Rep 2015; 16:447. [PMID: 25108571 DOI: 10.1007/s11883-014-0447-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute heart failure (AHF) remains a major cause of morbidity and mortality, with an increasing prevalence anticipated over the next few decades as the population ages, heightening already significant health and economic burdens to society. New therapies for AHF have stalled over the past decade for a multitude of reasons, principal among them the heterogeneous population of patients affected with potentially multiple operative pathophysiologic mechanisms making a single targeted therapy a challenge. Serelaxin, a recombinant form of human relaxin-2, mediates adaptive cardiovascular effects during pregnancy that could be beneficial in the AHF population, primarily through nitric oxide-mediated vasodilation. Serelaxin is a novel therapeutic agent that has shown promise in the treatment of AHF in predefined subpopulations, though studies powered for "hard" outcomes are still pending. In this review, we examine the clinical investigations to date involving serelaxin in patients with heart failure and its possible emerging role in the future therapy of AHF.
Collapse
Affiliation(s)
- Brandon C Varr
- Division of Cardiology, Columbia University Medical Center, New York, NY, USA,
| | | |
Collapse
|
139
|
Feugang JM, Rodríguez-Muñoz JC, Dillard DS, Crenshaw MA, Willard ST, Ryan PL. Beneficial effects of relaxin on motility characteristics of stored boar spermatozoa. Reprod Biol Endocrinol 2015; 13:24. [PMID: 25880070 PMCID: PMC4393568 DOI: 10.1186/s12958-015-0021-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/19/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Relaxin is detected in seminal plasma of many species and its association with sperm motility may be beneficial in some aspects of assisted reproduction. Here, we immunolocalized relaxin receptors and investigated the effects of exogenous relaxin on motility characteristics, viability, and cAMP content of boar spermatozoa after storage. METHODS Commercial doses of boar semen were obtained on the collection day (Day 0) and kept in shipping containers at room temperature for up to 4 days (Day 4). On Day 0, spermatozoa were fixed for immunofluorescence detection of relaxin receptors RXFP1 and RXFP2 (Experiment 1). Semen aliquots were taken from the same dose at Day 0, Day 1, and Day 2 (Experiment 2a), and Day 2 and Day 4 (Experiment 2b) for analyses. Alive spermatozoa were purified and incubated (1 h-37°C) with 0, 50, or 100 ng relaxin/ml (Experiment 2a) and 0, 100, or 500 ng relaxin/ml (Experiment 2b). Afterward, aliquots of each treatment group were subjected to motility (Experiments 2), viability (Experiment 3) analyses, and cAMP quantification (Experiment 4). Data (3-4 independent replicates) were statistically analyzed (ANOVA followed by pairwise comparisons) and p values less or equal to 0.05 was set for significant difference. RESULTS Both RXFP1 and RXFP2 receptors were immunolocalized on the entire spermatozoon. Relaxin concentration of 100 ng/ml significantly improved the proportions of motile, progressive, and rapid spermatozoa up to Day 2. Only 500 ng relaxin/ml provided beneficial effects on Day 4. The viability of spermatozoa was not affected by relaxin (100 ng/ml) during storage, but the extent of mitochondria membrane damages was significantly decreased. Furthermore, relaxin did not affect the cAMP contents of spermatozoa during storage, in our conditions. CONCLUSIONS Relaxin could be a valuable motility booster of stored- or aged-spermatozoa for assisted reproduction techniques. However, the related-intracellular signaling cascades of relaxin in boar spermatozoa remain undetermined.
Collapse
Affiliation(s)
- Jean M Feugang
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Juan C Rodríguez-Muñoz
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Darby S Dillard
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Mark A Crenshaw
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Scott T Willard
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
- Department of Biochemistry and Molecular Biology & Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Peter L Ryan
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| |
Collapse
|
140
|
Kaftanovskaya EM, Huang Z, Lopez C, Conrad K, Agoulnik AI. Conditional deletion of the relaxin receptor gene in cells of smooth muscle lineage affects lower reproductive tract in pregnant mice. Biol Reprod 2015; 92:91. [PMID: 25715795 DOI: 10.1095/biolreprod.114.127209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Relaxin hormone secreted into the circulation during pregnancy was discovered through its effects on pubic symphysis relaxation and parturition. Genetic inactivation of the relaxin gene or its cognate relaxin family peptide receptor 1 (RXFP1) in mice caused failure of parturition and mammary nipple enlargement, as well as increased collagen fiber density in the cervix and vagina. However, the relaxin effect on discrete cells and tissues has yet to be determined. Using transgenic mice with a knockin LacZ reporter in the Rxfp1 allele, we showed strong expression of this gene in vaginal and cervical stromal cells, as well as pubic ligament cells. We produced a floxed Rxfp1 allele that was used in combination with the Tagln-cre transgene to generate mice with a smooth muscle-specific gene knockout. In pregnant females, the ROSA26 reporter activated by Tagln-cre was detected in smooth muscle cells of the cervix, vagina, uterine artery, and in cells of the pubic symphysis. In late pregnant females with conditional gene ablation, the length of pubic symphysis was significantly reduced compared with wild-type or heterozygous Rxfp1(+/-) females. Denser collagen content was revealed by Masson trichrome staining in reproductive tract organs, uterine artery, and pubic symphysis. The cervical and vaginal epithelium was less developed than in heterozygous or wild-type females, although nipple size was normal and the dams were able to nurse their pups. In summary, our data indicate that relaxin/RXFP1 signaling in smooth muscle cells is important for normal collagen turnover and relaxation of the pubic symphysis during pregnancy.
Collapse
Affiliation(s)
- Elena M Kaftanovskaya
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Zaohua Huang
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Carolina Lopez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Kirk Conrad
- Departments of Physiology and Functional Genomics, and of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
141
|
Bastu E, Gokulu SG, Dural O, Yasa C, Bulgurcuoglu S, Karamustafaoglu Balci B, Celik C, Buyru F. The association between follicular fluid levels of cathepsin B, relaxin or AMH with clinical pregnancy rates in infertile patients. Eur J Obstet Gynecol Reprod Biol 2015; 187:30-4. [PMID: 25739053 DOI: 10.1016/j.ejogrb.2015.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the relationship of cathepsin B, relaxin and anti-Mullerian hormone (AMH) in follicular fluid (FF) with pregnancy rates in infertility patients. STUDY DESIGN Seventy-nine infertile couples who underwent ICSI were included in the study. The FF levels of cathepsin B, relaxin and AMH were measured using ELISA kits. RESULTS The FF cathepsin B levels were statistically higher in pregnant patients compared with non-pregnant patients (0.20±0.13 versus 0.13±0.03; P<0.001). There were statistically significant differences in the total number of oocytes (10.00±6.85 versus 5.96±3.94); the mean number of M2 oocytes (8.65±5.63 versus 4.58±3.36) between the pregnant and non-pregnant patients (P<0.05). There were no significant correlations between pregnancy rates and relaxin and AMH (P>0.05). The area under the curve of cathepsin B for prediction of pregnancy was 0.662 (p=0.024, 95% Confidence Interval 0.528-0.797). CONCLUSIONS This study demonstrated that increased level of cathepsin B in FF significantly correlates with a better chance of clinical pregnancy. Further studies are needed to clarify the role of cathepsin B in the reproductive process of humans.
Collapse
Affiliation(s)
- Ercan Bastu
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey.
| | - Sevki Goksun Gokulu
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey
| | - Ozlem Dural
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Cenk Yasa
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Sibel Bulgurcuoglu
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | | | - Cem Celik
- Bahceci Health Group, Istanbul, Turkey
| | - Faruk Buyru
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| |
Collapse
|
142
|
Halls ML, Bathgate RAD, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 2015; 67:389-440. [PMID: 25761609 PMCID: PMC4394689 DOI: 10.1124/pr.114.009472] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Cyclic AMP/physiology
- Humans
- International Agencies
- Ligands
- Models, Molecular
- Pharmacology/trends
- Pharmacology, Clinical/trends
- Protein Isoforms/agonists
- Protein Isoforms/chemistry
- Protein Isoforms/classification
- Protein Isoforms/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/agonists
- Receptors, Peptide/chemistry
- Receptors, Peptide/classification
- Receptors, Peptide/metabolism
- Relaxin/agonists
- Relaxin/analogs & derivatives
- Relaxin/antagonists & inhibitors
- Relaxin/metabolism
- Second Messenger Systems
- Societies, Scientific
- Terminology as Topic
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Ross A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Steve W Sutton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Thomas B Dschietzig
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| |
Collapse
|
143
|
Huang Z, Myhr C, Bathgate RAD, Ho BA, Bueno A, Hu X, Xiao J, Southall N, Barnaeva E, Agoulnik IU, Marugan JJ, Ferrer M, Agoulnik AI. Activation of Relaxin Family Receptor 1 from Different Mammalian Species by Relaxin Peptide and Small-Molecule Agonist ML290. Front Endocrinol (Lausanne) 2015; 6:128. [PMID: 26347712 PMCID: PMC4538381 DOI: 10.3389/fendo.2015.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
Relaxin peptide (RLN), which signals through the relaxin family peptide 1 (RXFP1) GPCR receptor, has shown therapeutic effects in an acute heart failure clinical trial. We have identified a small-molecule agonist of human RXFP1, ML290; however, it does not activate the mouse receptor. To find a suitable animal model for ML290 testing and to gain mechanistic insights into the interaction of various ligands with RXFP1, we have cloned rhesus macaque, pig, rabbit, and guinea pig RXFP1s and analyzed their activation by RLN and ML290. HEK293T cells expressing macaque or pig RXFP1 responded to relaxin and ML290 treatment as measured by an increase of cAMP production. Guinea pig RXFP1 responded to relaxin but had very low response to ML290 treatment only at highest concentrations used. The rabbit RXFP1 amino acid sequence was the most divergent, with a number of unique substitutions within the ectodomain and the seven-transmembrane domain (7TM). Two splice variants of rabbit RXFP1 derived through alternative splicing of the fourth exon were identified. In contrast to the other species, rabbit RXFP1s were activated by ML290, but not with human, pig, mouse, or rabbit RLNs. Using FLAG-tagged constructs, we have shown that both rabbit RXFP1 variants are expressed on the cell surface. No binding of human Eu-labeled RLN to rabbit RXFP1 was detected, suggesting that in this species, RXFP1 might be non-functional. We used chimeric rabbit-human and guinea pig-human constructs to identify regions important for RLN or ML290 receptor activation. Chimeras with the human ectodomain and rabbit 7TM domain were activated by RLN, whereas substitution of part of the guinea pig 7TM domain with the human sequence only partially restored ML290 activation, confirming the allosteric mode of action for the two ligands. Our data demonstrate that macaque and pig models can be used for ML290 testing.
Collapse
Affiliation(s)
- Zaohua Huang
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Courtney Myhr
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ross A. D. Bathgate
- Department of Biochemistry and Molecular Biology, Florey Department of Neuroscience and Mental Health, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Brian A. Ho
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Amaya Bueno
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jingbo Xiao
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Noel Southall
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Elena Barnaeva
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Irina U. Agoulnik
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Juan J. Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Marc Ferrer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Alexander I. Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- *Correspondence: Alexander I. Agoulnik, Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, AHCI 419B, Miami, FL 33199, USA,
| |
Collapse
|
144
|
Yegorov S, Bogerd J, Good SV. The relaxin family peptide receptors and their ligands: new developments and paradigms in the evolution from jawless fish to mammals. Gen Comp Endocrinol 2014; 209:93-105. [PMID: 25079565 DOI: 10.1016/j.ygcen.2014.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
Relaxin family peptide receptors (Rxfps) and their ligands, relaxin (Rln) and insulin-like (Insl) peptides, are broadly implicated in the regulation of reproductive and neuroendocrine processes in mammals. Most placental mammals harbour genes for four receptors, namely rxfp1, rxfp2, rxfp3 and rxfp4. The number and identity of rxfps in other vertebrates are immensely variable, which is probably attributable to intraspecific variation in reproductive and neuroendocrine regulation. Here, we highlight several interesting, but greatly overlooked, aspects of the rln/insl-rxfp evolutionary history: the ancient origin, recruitment of novel receptors, diverse roles of selection, differential retention and lineage-specific loss of genes over evolutionary time. The tremendous diversity of rln/insl and rxfp genes appears to have arisen from two divergent receptors and one ligand that were duplicated by whole genome duplications (WGD) in early vertebrate evolution, although several genes, notably relaxin in mammals, were also duplicated via small scale duplications. Duplication and loss of genes have varied across lineages: teleosts retained more WGD-derived genes, dominated by those thought to be involved in neuroendocrine regulation (rln3, insl5 and rxfp 3/4 genes), while eutherian mammals witnessed the diversification and rapid evolution of genes involved in reproduction (rln/insl3). Several genes that arose early in evolutionary history were lost in most mammals, but retained in teleosts and, to a lesser extent, in early diverging tetrapods. To elaborate on their evolutionary history, we provide updated phylogenies of the Rxfp1/2 and Rxfp3/4 receptors and their ligands, including new sequences from early diverging vertebrate taxa such as coelacanth, skate, spotted gar, and lamprey. We also summarize the recent progress made towards understanding the functional biology of Rxfps in non-mammalian taxa, providing a new conceptual framework for research on Rxfp signaling across vertebrates.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada
| | - Jan Bogerd
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sara V Good
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada.
| |
Collapse
|
145
|
Tan T, Davis FM, Gruber DD, Massengill JC, Robertson JL, De Vita R. Histo-mechanical properties of the swine cardinal and uterosacral ligaments. J Mech Behav Biomed Mater 2014; 42:129-37. [PMID: 25482216 DOI: 10.1016/j.jmbbm.2014.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/07/2014] [Accepted: 11/18/2014] [Indexed: 11/16/2022]
Abstract
The focus of this study was to determine the structural and mechanical properties of two major ligaments that support the uterus, cervix, and vagina: the cardinal ligament (CL) and the uterosacral ligament (USL). The adult swine was selected as animal model. Histological analysis was performed on longitudinal and cross sections of CL and USL specimens using Masson׳s trichrome and Verhoeff-van Giesson staining methods. Scanning electron microscopy was employed to visualize the through-thickness organization of the collagen fibers. Quasi-static uniaxial tests were conducted on specimens that were harvested from the CL/USL complex of a single swine. Dense connective tissue with a high content of elastin and collagen fibers was observed in the USL. Loose connective tissue with a considerable amount of smooth muscle cells and ground substance was detected in both the CL and USL. Collagen fibers, smooth muscle cells, blood vessels, and nerve fibers were arranged primarily in the plane of the ligaments. The USL was significantly stronger than the CL with higher ultimate stress and tangent modulus of the linear region of the stress-strain curve. Knowledge about the mechanical properties of the CL and USL will aid in the design of novel mesh materials, stretching routines, and surgical procedures for pelvic floor disorders.
Collapse
Affiliation(s)
- Ting Tan
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Frances M Davis
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniel D Gruber
- Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Jason C Massengill
- Department of Urogynecology, Wright-Patterson Medical Center, Ohio, OH 45433, USA
| | - John L Robertson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Raffaella De Vita
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
146
|
Vrachnis N, Grigoriadis C, Siristatidis C, Vlachadis N, Balakitsas N, Mastorakos G, Iliodromiti Z. The Janus face of maternal serum relaxin: a facilitator of birth, might it also induce preterm birth? J Matern Fetal Neonatal Med 2014; 28:2187-91. [PMID: 25363010 DOI: 10.3109/14767058.2014.981804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Preterm birth is a major cause of neonatal morbidity and mortality in the developed world. In order to better understand the pathophysiological pathway of this condition, the role of genetic factors and/or inflammation-associated molecules, as well as of socioeconomic parameters, is therefore under intense investigation. The purpose of this review study was to examine the potential role of maternal serum relaxin levels in the etiology of preterm birth. METHODS Electronic databases (Pubmed, Embase, Cochrane Library) were searched for previously published research studies that investigated the biological role of relaxin and the mechanisms in which this hormone is involved during pregnancy and labor. RESULTS It is evident that while relaxin is an essential endometrial/decidual angiogentic factor playing a vital role in maternal accommodation of pregnancy, elevated levels of this hormone could well be associated with preterm birth. CONCLUSIONS There are strong indications that maternal serum hyperrelaxinemia correlates with an increased risk of preterm birth.
Collapse
Affiliation(s)
- Nikolaos Vrachnis
- a 2nd Department of Obstetrics and Gynecology , Medical School, Aretaieion Hospital and
| | | | - Charalampos Siristatidis
- b 3rd Department of Obstetrics and Gynecology , Medical School, Attiko Hospital, University of Athens , Athens , Greece
| | - Nikolaos Vlachadis
- a 2nd Department of Obstetrics and Gynecology , Medical School, Aretaieion Hospital and
| | - Nikolaos Balakitsas
- a 2nd Department of Obstetrics and Gynecology , Medical School, Aretaieion Hospital and
| | - George Mastorakos
- a 2nd Department of Obstetrics and Gynecology , Medical School, Aretaieion Hospital and
| | - Zoe Iliodromiti
- a 2nd Department of Obstetrics and Gynecology , Medical School, Aretaieion Hospital and
| |
Collapse
|
147
|
Singh S, Simpson RL, Bennett RG. Relaxin activates peroxisome proliferator-activated receptor γ (PPARγ) through a pathway involving PPARγ coactivator 1α (PGC1α). J Biol Chem 2014; 290:950-9. [PMID: 25389293 DOI: 10.1074/jbc.m114.589325] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Relaxin activation of its receptor RXFP1 triggers multiple signaling pathways. Previously, we have shown that relaxin activates PPARγ transcriptional activity in a ligand-independent manner, but the mechanism for this effect was unknown. In this study, we examined the signaling pathways of downstream of RXFP1 leading to PPARγ activation. Using cells stably expressing RXFP1, we found that relaxin regulation of PPARγ activity requires accumulation of cAMP and subsequent activation of cAMP-dependent protein kinase (PKA). The activated PKA subsequently phosphorylated cAMP response element-binding protein (CREB) at Ser-133 to activate it directly, as well as indirectly through mitogen activated protein kinase p38 MAPK. Activated CREB was required for relaxin stimulation of PPARγ activity, while there was no evidence for a role of the nitric oxide or ERK MAPK pathways. Relaxin increased the mRNA and protein levels of the coactivator protein PGC1α, and this effect was dependent on PKA, and was completely abrogated by a dominant-negative form of CREB. This mechanism was confirmed in a hepatic stellate cell line stably that endogenously expresses RXFP1. Reduction of PGC1α levels using siRNA diminished the regulation of PPARγ by relaxin. These results suggest that relaxin activates the cAMP/PKA and p38 MAPK pathways to phosphorylate CREB, resulting in increased PGC1α levels. This provides a mechanism for the ligand-independent activation of PPARγ in response to relaxin.
Collapse
Affiliation(s)
- Sudhir Singh
- From the Medical Research Service, The Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105 and the Departments of Biochemistry & Molecular Biology, Internal Medicine and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Ronda L Simpson
- From the Medical Research Service, The Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105 and the Departments of Biochemistry & Molecular Biology, Internal Medicine and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Robert G Bennett
- From the Medical Research Service, The Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105 and the Departments of Biochemistry & Molecular Biology, Internal Medicine and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
148
|
Arroyo JI, Hoffmann FG, Opazo JC. Evolution of the relaxin/insulin-like gene family in anthropoid primates. Genome Biol Evol 2014; 6:491-9. [PMID: 24493383 PMCID: PMC3971578 DOI: 10.1093/gbe/evu023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The relaxin/insulin-like gene family includes signaling molecules that perform a variety of physiological roles mostly related to reproduction and neuroendocrine regulation. Several previous studies have focused on the evolutionary history of relaxin genes in anthropoid primates, with particular attention on resolving the duplication history of RLN1 and RLN2 genes, which are found as duplicates only in apes. These studies have revealed that the RLN1 and RLN2 paralogs in apes have a more complex history than their phyletic distribution would suggest. In this regard, alternative scenarios have been proposed to explain the timing of duplication, and the history of gene gain and loss along the organismal tree. In this article, we revisit the question and specifically reconstruct phylogenies based on coding and noncoding sequence in anthropoid primates to readdress the timing of the duplication event giving rise to RLN1 and RLN2 in apes. Results from our phylogenetic analyses based on noncoding sequence revealed that the duplication event that gave rise to the RLN1 and RLN2 occurred in the last common ancestor of catarrhine primates, between ∼44.2 and 29.6 Ma, and not in the last common ancestor of apes or anthropoids, as previously suggested. Comparative analyses based on coding and noncoding sequence suggests an event of convergent evolution at the sequence level between co-ortholog genes, the single-copy RLN gene found in New World monkeys and the RLN1 gene of apes, where changes in a fraction of the convergent sites appear to be driven by positive selection.
Collapse
Affiliation(s)
- José Ignacio Arroyo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | |
Collapse
|
149
|
Boccalini G, Sassoli C, Formigli L, Bani D, Nistri S. Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: involvement of the Notch-1 pathway. FASEB J 2014; 29:239-49. [PMID: 25342127 DOI: 10.1096/fj.14-254854] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In animal models, the cardiotropic hormone relaxin has been shown to protect the heart against ischemia and reperfusion-induced damage, acting by multiple mechanisms that primarily involve the coronary vessels. This in vitro study evaluates whether relaxin also has a direct protective action on cardiac muscle cells. H9c2 rat cardiomyoblasts and primary mouse cardiomyocytes were subjected to hypoxia and reoxygenation. In some experiments, relaxin was added preventatively before hypoxia; in others, at reoxygenation. To elucidate its mechanisms of action, we focused on Notch-1, which is involved in heart pre- and postconditioning to ischemia. Inactivated RLX was used as negative control. Relaxin (17 nmol/L, EC50 4.7 nmol/L), added 24 h before hypoxia or at reoxygenation, protected against cardiomyocyte injury. In fact, relaxin significantly increased cell viability (assayed by trypan blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), decreased apoptosis (assayed by TUNEL and bax/bcl-2 ratio), and reduced nitroxidative damage (assayed by nitrotyrosine expression and 8-hydroxy-deoxyguanosine levels). These effects were partly attributable to the ability of relaxin to upregulate Notch-1 signaling; indeed, blockade of Notch-1 activation with the specific inhibitor DAPT reduced relaxin-induced cardioprotection during hypoxia and reoxygenation. This study adds new mechanistic insights on the cardioprotective role of relaxin on ischemic and oxidative damage.
Collapse
Affiliation(s)
- Giulia Boccalini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Lucia Formigli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Silvia Nistri
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| |
Collapse
|
150
|
Bergfelt DR, Peter AT, Beg MA. Relaxin: a hormonal aid to diagnose pregnancy status in wild mammalian species. Theriogenology 2014; 82:1187-98. [PMID: 25234789 DOI: 10.1016/j.theriogenology.2014.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/26/2014] [Accepted: 07/27/2014] [Indexed: 11/15/2022]
Abstract
In the beginning of 1960s, seminal studies characterizing circulating concentrations of immunoreactive relaxin in companion dogs and evaluating the differences in concentrations among pregnant, nonpregnant, and pseudopregnant bitches indicated the potential for relaxin to be applied clinically as a diagnostic aid to detect pregnancy status in wild animal species. A brief historical overview of the nature of relaxin and early work to develop and validate immunologic methods to analyze relaxin in the blood of rodents and pigs is initially discussed, which is followed by a summary of the development and validation of relaxin immunoassays to diagnose pregnancy in companion dogs and cats. Thereafter, observation of the pregnancy-specific increase in circulating concentrations of relaxin in laboratory, companion, and farm animal species leads to discussion on the application of radioimmunoassays, enzyme immunoassays, and a rapid immunomigration assay to diagnose pregnancy in wild terrestrial (e.g., wolves, lions, elephants, rhinoceros, panda) and marine (e.g., seals, dolphins) mammal species. A reference table is included with a comprehensive list of numerous species and essential reagents that have been used in various in-house and commercial immunoassays to successfully analyze relaxin quantitatively and qualitatively in blood (serum or plasma) and to some extent in urine. Although the detection of relaxin concentrations has the potential to aid in the diagnosis of pregnancy in many wild animal species, there are challenges in other species. Future efforts should focus on validation of nonradiolabeled relaxin immunoassays for broader application among species and improving techniques (e.g., extraction, purification) to analyze relaxin in samples other than blood (e.g., urine, feces, saliva, blow, skin, blubber) that can be collected in a less-invasive or -stressful manner and processed accordingly for basic and applied purposes, especially with application toward conservation of threatened or endangered species.
Collapse
Affiliation(s)
- Don R Bergfelt
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, St Kitts, West Indies.
| | - Augustine T Peter
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Mohd A Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|