101
|
Scahill RI, Andre R, Tabrizi SJ, Aylward EH. Structural imaging in premanifest and manifest Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2017; 144:247-261. [PMID: 28947121 DOI: 10.1016/b978-0-12-801893-4.00020-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Huntington disease (HD) neuropathology has a devastating effect on brain structure and consequently brain function; neuroimaging provides a means to assess these effects in gene carriers. In this chapter we first outline the unique utility of structural imaging in understanding HD and discuss some of the acquisition and analysis techniques currently available. We review the existing literature to summarize what we know so far about structural brain changes across the spectrum of disease from premanifest through to manifest disease. We then consider how these neuroimaging findings relate to patient function and nonimaging biomarkers, and can be used to predict disease onset. Finally we review the utility of imaging measures for assessment of treatment efficacy in clinical trials.
Collapse
Affiliation(s)
- Rachael I Scahill
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Ralph Andre
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom.
| | - Elizabeth H Aylward
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
102
|
Johnson PL, Potts GF, Sanchez-Ramos J, Cimino CR. Self-reported impulsivity in Huntington’s disease patients and relationship to executive dysfunction and reward responsiveness. J Clin Exp Neuropsychol 2016; 39:694-706. [DOI: 10.1080/13803395.2016.1257702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Geoffrey F. Potts
- Department of Psychology, University of South Florida, Tampa, FL, USA
| | | | - Cynthia R. Cimino
- Department of Psychology, University of South Florida, Tampa, FL, USA
- Department of Neurology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
103
|
Lokhande S, Patra BN, Ray A. A link between chromatin condensation mechanisms and Huntington's disease: connecting the dots. MOLECULAR BIOSYSTEMS 2016; 12:3515-3529. [PMID: 27714015 DOI: 10.1039/c6mb00598e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Huntington's disease is a rare neurodegenerative disorder whose complex pathophysiology exhibits system-wide changes in the body, with striking and debilitating clinical features targeting the central nervous system. Among the various molecular functions affected in this disease, mitochondrial dysfunction and transcriptional dysregulation are some of the most studied aspects of this disease. However, there is evidence of the involvement of a mutant Huntingtin protein in the processes of DNA damage, chromosome condensation and DNA repair. This review attempts to briefly recapitulate the clinical features, model systems used to study the disease, major molecular processes affected, and, more importantly, examines recent evidence for the involvement of the mutant Huntingtin protein in the processes regulating chromosome condensation, leading to DNA damage response and neuronal death.
Collapse
Affiliation(s)
- Sonali Lokhande
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | - Biranchi N Patra
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | - Animesh Ray
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| |
Collapse
|
104
|
El Massioui N, Lamirault C, Yagüe S, Adjeroud N, Garces D, Maillard A, Tallot L, Yu-Taeger L, Riess O, Allain P, Nguyen HP, von Hörsten S, Doyère V. Impaired Decision Making and Loss of Inhibitory-Control in a Rat Model of Huntington Disease. Front Behav Neurosci 2016; 10:204. [PMID: 27833538 PMCID: PMC5080295 DOI: 10.3389/fnbeh.2016.00204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/05/2016] [Indexed: 11/13/2022] Open
Abstract
Cognitive deficits associated with Huntington disease (HD) are generally dominated by executive function disorders often associated with disinhibition and impulsivity/compulsivity. Few studies have directly examined symptoms and consequences of behavioral disinhibition in HD and its relation with decision-making. To assess the different forms of impulsivity in a transgenic model of HD (tgHD rats), two tasks assessing cognitive/choice impulsivity were used: risky decision-making with a rat gambling task (RGT) and intertemporal choices with a delay discounting task (DD). To assess waiting or action impulsivity the differential reinforcement of low rate of responding task (DRL) was used. In parallel, the volume as well as cellular activity of the amygdala was analyzed. In contrast to WT rats, 15 months old tgHD rats exhibited a poor efficiency in the RGT task with difficulties to choose advantageous options, a steep DD curve as delays increased in the DD task and a high rate of premature and bursts responses in the DRL task. tgHD rats also demonstrated a concomitant and correlated presence of both action and cognitive/choice impulsivity in contrast to wild type (WT) animals. Moreover, a reduced volume associated with an increased basal cellular activity of the central nucleus of amygdala indicated a dysfunctional amygdala in tgHD rats, which could underlie inhibitory dyscontrol. In conclusion, tgHD rats are a good model for impulsivity disorder that could be used more widely to identify potential pharmacotherapies to treat these invasive symptoms in HD.
Collapse
Affiliation(s)
- Nicole El Massioui
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, Centre National de la Recherche Scientifique (CNRS) Université Paris Sud, Université Paris Saclay Orsay, France
| | - Charlotte Lamirault
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, Centre National de la Recherche Scientifique (CNRS) Université Paris Sud, Université Paris Saclay Orsay, France
| | - Sara Yagüe
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, Centre National de la Recherche Scientifique (CNRS) Université Paris Sud, Université Paris Saclay Orsay, France
| | - Najia Adjeroud
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, Centre National de la Recherche Scientifique (CNRS) Université Paris Sud, Université Paris SaclayOrsay, France; Neuropsychological Unit, Department of Neurology, CHU AngersFrance
| | - Daniel Garces
- The Graduate Center, City University of New York (CUNY) New York, NY, USA
| | - Alexis Maillard
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, Centre National de la Recherche Scientifique (CNRS) Université Paris Sud, Université Paris Saclay Orsay, France
| | - Lucille Tallot
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, Centre National de la Recherche Scientifique (CNRS) Université Paris Sud, Université Paris Saclay Orsay, France
| | - Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of TuebingenTuebingen, Germany; Center for Rare Diseases, University of TuebingenTuebingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of TuebingenTuebingen, Germany; Center for Rare Diseases, University of TuebingenTuebingen, Germany
| | - Philippe Allain
- Neuropsychological Unit, Department of Neurology, CHU Angers France
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of TuebingenTuebingen, Germany; Center for Rare Diseases, University of TuebingenTuebingen, Germany
| | - Stephan von Hörsten
- Experimental Therapy, Franz Penzoldt Center, Friedrich-Alexander University, Erlangen-Nürnberg Germany
| | - Valérie Doyère
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, Centre National de la Recherche Scientifique (CNRS) Université Paris Sud, Université Paris Saclay Orsay, France
| |
Collapse
|
105
|
Singh‐Bains MK, Waldvogel HJ, Faull RLM. The role of the human globus pallidus in Huntington's disease. Brain Pathol 2016; 26:741-751. [PMID: 27529459 PMCID: PMC8029019 DOI: 10.1111/bpa.12429] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 11/27/2022] Open
Abstract
Huntington's disease (HD) is characterized by pronounced pathology of the basal ganglia, with numerous studies documenting the pattern of striatal neurodegeneration in the human brain. However, a principle target of striatal outflow, the globus pallidus (GP), has received limited attention in comparison, despite being a core component of the basal ganglia. The external segment (GPe) is a major output of the dorsal striatum, connecting widely to other basal ganglia nuclei via the indirect motor pathway. The internal segment (GPi) is a final output station of both the direct and indirect motor pathways of the basal ganglia. The ventral pallidum (VP), in contrast, is a primary output of the limbic ventral striatum. Currently, there is a lack of consensus in the literature regarding the extent of GPe and GPi neurodegeneration in HD, with a conflict between pallidal neurons being preserved, and pallidal neurons being lost. In addition, no current evidence considers the fate of the VP in HD, despite it being a key structure involved in reward and motivation. Understanding the involvement of these structures in HD will help to determine their involvement in basal ganglia pathway dysfunction in the disease. A clear understanding of the impact of striatal projection loss on the main neurons that receive striatal input, the pallidal neurons, will aid in the understanding of disease pathogenesis. In addition, a clearer picture of pallidal involvement in HD may contribute to providing a morphological basis to the considerable variability in the types of motor, behavioral, and cognitive symptoms in HD. This review aims to highlight the importance of the globus pallidus, a critical component of the cortical-basal ganglia circuits, and its role in the pathogenesis of HD. This review also summarizes the current literature relating to human studies of the globus pallidus in HD.
Collapse
Affiliation(s)
- Malvindar K. Singh‐Bains
- Centre for Brain Research, University of AucklandAucklandNew Zealand
- Department of Anatomy with Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, University of AucklandAucklandNew Zealand
- Department of Anatomy with Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, University of AucklandAucklandNew Zealand
- Department of Anatomy with Medical ImagingUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
106
|
Vorisek I, Syka M, Vargova L. Brain Diffusivity and Structural Changes in the R6/2 Mouse Model of Huntington Disease. J Neurosci Res 2016; 95:1474-1484. [DOI: 10.1002/jnr.23965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ivan Vorisek
- Department of Neuroscience; Institute of Experimental Medicine AS CR, v.v.i.; Prague Czech Republic
| | - Michael Syka
- Department of Neuroscience; Institute of Experimental Medicine AS CR, v.v.i.; Prague Czech Republic
- International Clinical Research Center, St. Anne's University Hospital; Brno Czech Republic
| | - Lydia Vargova
- Department of Neuroscience; Institute of Experimental Medicine AS CR, v.v.i.; Prague Czech Republic
- Department of Neuroscience; Charles University, 2nd Faculty of Medicine; Prague Czech Republic
| |
Collapse
|
107
|
Begeti F, Schwab LC, Mason SL, Barker RA. Hippocampal dysfunction defines disease onset in Huntington's disease. J Neurol Neurosurg Psychiatry 2016; 87:975-81. [PMID: 26833174 DOI: 10.1136/jnnp-2015-312413] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/03/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterised by a triad of motor, psychiatric and cognitive deficits with the latter classically attributed to disruption of frontostriatal networks. However, emerging evidence from animal models of HD suggests that some of the early cognitive deficits may have a hippocampal basis. The objective of this study was to link previous rodent findings in this area to clinical practice. METHODS In this study, 94 participants included patients with early HD, premanifest HD and age-matched controls underwent hippocampal-based cognitive assessments. These included a virtual reality version of the Morris water maze, a task involved participants having to swim through a virtual pool to find a submerged platform using a joystick, and the Cambridge Neuropsychological Test Automated Battery (CANTAB) paired associates learning task, a test also known to rely on hippocampal integrity. RESULTS Patients with early HD showed impaired performance in both the virtual Morris water maze and the CANTAB paired associates learning. Such deficits were also correlated with estimated years to diagnosis in premanifest participants. CONCLUSIONS This study highlights the merit of using analogous tests in the laboratory and clinic and demonstrates that hippocampal impairments are an early feature of HD in patients as previously shown in rodent models of the disease. As such, they could be used not only to assist in the diagnosis of disease onset, but may also be useful as an outcome measure in future therapeutic trials.
Collapse
Affiliation(s)
- Faye Begeti
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Laetitia C Schwab
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Sarah L Mason
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK Department of Neurology, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
108
|
Huang WJ, Chen WW, Zhang X. Huntington's disease: Molecular basis of pathology and status of current therapeutic approaches. Exp Ther Med 2016; 12:1951-1956. [PMID: 27698679 PMCID: PMC5038571 DOI: 10.3892/etm.2016.3566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/27/2016] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease (HD) is a frequent and incurable hereditary neurodegenerative disorder that impairs motor and cognitive functions. Mutations in huntingtin (HTT) protein, which is essential for neuronal development, lead to the development of HD. An increase in the number of CAG repeats within the HTT gene, which lead to an expansion of polyglutamine tract in the resulting mutated HTT protein, which is toxic, is the causative factor of HD. Although the molecular basis of HD is known, there is no known cure for this disease other than symptomatic relief treatment approaches. The toxicity of mutHTT appears to be more detrimental to striatal medium spiny neurons, which degenerate in this disease. Therapeutic strategies addressing a reduction in the mutHTT content at the transcriptional level using zinc finger proteins and at the translational level with RNA interference and antisense oligonucleotides or promoting the proteosomal degradation of mutHTT are being studied extensively in preclinical models and also to a limited extent in clinical trials. The post-translational modification of mutHTT is another possibility that is currently being investigated for drug development. In addition to the pharmacological approaches, several lines of evidence suggested the potential therapeutic use of stem cell therapy, in particular using the patient-derived induced pluripotent stem cells, to replace the lost striatal neurons. The multi-pronged clinical investigations currently underway may identify therapies and potentially improve the quality of life for the HD patients in future.
Collapse
Affiliation(s)
- Wen-Juan Huang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wei-Wei Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Xia Zhang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
109
|
Deng YP, Reiner A. Cholinergic interneurons in the Q140 knockin mouse model of Huntington's disease: Reductions in dendritic branching and thalamostriatal input. J Comp Neurol 2016; 524:3518-3529. [PMID: 27219491 DOI: 10.1002/cne.24013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 12/19/2022]
Abstract
We have previously found that thalamostriatal axodendritic terminals are reduced as early as 1 month of age in heterozygous Q140 HD mice (Deng et al. [] Neurobiol Dis 60:89-107). Because cholinergic interneurons are a major target of thalamic axodendritic terminals, we examined the VGLUT2-immunolabeled thalamic input to striatal cholinergic interneurons in heterozygous Q140 males at 1 and 4 months of age, using choline acetyltransferase (ChAT) immunolabeling to identify cholinergic interneurons. Although blinded neuron counts showed that ChAT+ perikarya were in normal abundance in Q140 mice, size measurements indicated that they were significantly smaller. Sholl analysis further revealed the dendrites of Q140 ChAT+ interneurons were significantly fewer and shorter. Consistent with the light microscopic data, ultrastructural analysis showed that the number of ChAT+ dendritic profiles per unit area of striatum was significantly decreased in Q140 striata, as was the abundance of VGLUT2+ axodendritic terminals making synaptic contact with ChAT+ dendrites per unit area of striatum. The density of thalamic terminals along individual cholinergic dendrites was, however, largely unaltered, indicating that the reduction in the areal striatal density of axodendritic thalamic terminals on cholinergic neurons was due to their dendritic territory loss. These results show that the abundance of thalamic input to individual striatal cholinergic interneurons is reduced early in the life span of Q140 mice, raising the possibility that this may occur in human HD as well. Because cholinergic interneurons differentially affect striatal direct vs. indirect pathway spiny projection neurons, their reduced thalamic excitatory drive may contribute to early abnormalities in movement in HD. J. Comp. Neurol. 524:3518-3529, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yun-Ping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163.
| |
Collapse
|
110
|
GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte-neuron interactions. Cell Death Dis 2016; 7:e2206. [PMID: 27124580 PMCID: PMC4855649 DOI: 10.1038/cddis.2016.104] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2-4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr(216) being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr(216) was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD.
Collapse
|
111
|
van Wouwe NC, Kanoff KE, Claassen DO, Ridderinkhof KR, Hedera P, Harrison MB, Wylie SA. The Allure of High-Risk Rewards in Huntington's disease. J Int Neuropsychol Soc 2016; 22:426-35. [PMID: 26708084 PMCID: PMC5381648 DOI: 10.1017/s1355617715001241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Huntington's disease (HD) is a neurodegenerative disorder that produces a bias toward risky, reward-driven decisions in situations where the outcomes of decisions are uncertain and must be discovered. However, it is unclear whether HD patients show similar biases in decision-making when learning demands are minimized and prospective risks and outcomes are known explicitly. We investigated how risk decision-making strategies and adjustments are altered in HD patients when reward contingencies are explicit. METHODS HD (N=18) and healthy control (HC; N=17) participants completed a risk-taking task in which they made a series of independent choices between a low-risk/low reward and high-risk/high reward risk options. RESULTS Computational modeling showed that compared to HC, who showed a clear preference for low-risk compared to high-risk decisions, the HD group valued high-risks more than low-risk decisions, especially when high-risks were rewarded. The strategy analysis indicated that when high-risk options were rewarded, HC adopted a conservative risk strategy on the next trial by preferring the low-risk option (i.e., they counted their blessings and then played the surer bet). In contrast, following a rewarded high-risk choice, HD patients showed a clear preference for repeating the high-risk choice. CONCLUSIONS These results indicate a pattern of high-risk/high-reward decision bias in HD that persists when outcomes and risks are certain. The allure of high-risk/high-reward decisions in situations of risk certainty and uncertainty expands our insight into the dynamic decision-making deficits that create considerable clinical burden in HD.
Collapse
Affiliation(s)
| | - Kristen E. Kanoff
- Department of Neurology, Vanderbilt University Medical Center, Tennessee
| | - Daniel O. Claassen
- Department of Neurology, Vanderbilt University Medical Center, Tennessee
| | - K. Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, the Netherlands
- Amsterdam Brain & Cognition (ABC), University of Amsterdam, the Netherlands
| | - Peter Hedera
- Department of Neurology, Vanderbilt University Medical Center, Tennessee
| | | | - Scott A. Wylie
- Department of Neurology, Vanderbilt University Medical Center, Tennessee
| |
Collapse
|
112
|
Chandra A, Sharma A, Calingasan NY, White JM, Shurubor Y, Yang XW, Beal MF, Johri A. Enhanced mitochondrial biogenesis ameliorates disease phenotype in a full-length mouse model of Huntington's disease. Hum Mol Genet 2016; 25:2269-2282. [PMID: 27008868 DOI: 10.1093/hmg/ddw095] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/17/2016] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a devastating illness and at present there is no disease modifying therapy or cure for it; and management of the disease is limited to a few treatment options for amelioration of symptoms. Recently, we showed that the administration of bezafibrate, a pan-PPAR agonist, increases the expression of PGC-1α and mitochondrial biogenesis, and improves phenotype and survival in R6/2 transgenic mouse model of HD. Since the R6/2 mice represent a 'truncated' huntingtin (Htt) mouse model of HD, we tested the efficacy of bezafibrate in a 'full-length' Htt mouse model, the BACHD mice. Bezafibrate treatment restored the impaired PPARγ, PPARδ, PGC-1α signaling pathway, enhanced mitochondrial biogenesis and improved antioxidant defense in the striatum of BACHD mice. Untreated BACHD mice show robust and progressive motor deficits, as well as late-onset and selective neuropathology in the striatum, which was markedly ameliorated in the BACHD mice treated with bezafibrate. Our data demonstrate the efficacy of bezafibrate in ameliorating both neuropathological features and disease phenotype in BACHD mice, and taken together with our previous studies with the R6/2 mice, highlight the strong therapeutic potential of bezafibrate for treatment of HD.
Collapse
Affiliation(s)
- Abhishek Chandra
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Abhijeet Sharma
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Noel Y Calingasan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joshua M White
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yevgeniya Shurubor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior; Department of Psychiatry and Biobehavioral Sciences; and Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - M Flint Beal
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ashu Johri
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
113
|
Brocardo PS, McGinnis E, Christie BR, Gil-Mohapel J. Time-Course Analysis of Protein and Lipid Oxidation in the Brains of Yac128 Huntington's Disease Transgenic Mice. Rejuvenation Res 2016; 19:140-8. [PMID: 26371883 DOI: 10.1089/rej.2015.1736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Huntington's disease (HD) is caused by an expansion of cytosine-adenine-guanine (CAG) repeats within the coding region of the HD gene, which expresses the protein huntingtin and is characterized by selective degeneration of specific neuronal populations, mainly in the striatum and the cortex. The mechanisms that account for this selective neuronal death are multifaceted, but oxidative stress might play an important role in this process. To determine whether changes in the intracellular redox state will result in oxidative damage to cellular macromolecules with disease progression, we analyzed levels of lipid peroxidation (with the thiobarbituric acid reactive substances [TBARS] assay) and protein carbonyl formation (using the 2,4-dinitrophenylhydrazine reaction) in the cerebellum, cerebral cortex, prefrontal cortex, striatum, and hippocampus of the YAC128 HD mouse model at 3, 6, and 12 months of age. With the exception of a transient increase in protein carbonyl levels in the YAC128 prefrontal cortex at 6 months of age, levels of lipid peroxidation and protein oxidation were not significantly different between YAC128 mice and their age-matched wild-type counterparts in any of the brain regions analyzed up to 12 months of age. However, age-related increases in oxidative stress were observed in various brain regions. These results suggest that lipid and protein oxidative damage is not a major contributor to neurodegeneration in the YAC128 brain up to 12 months of age.
Collapse
Affiliation(s)
- Patricia S Brocardo
- 1 Division of Medical Sciences and UBC Island Medical Program, University of Victoria , Victoria, British Columbia, Canada
- 2 Department of Morphological Sciences, Federal University of Santa Catarina , Florianópolis, Santa Catarina, Brazil
| | - Eric McGinnis
- 1 Division of Medical Sciences and UBC Island Medical Program, University of Victoria , Victoria, British Columbia, Canada
| | - Brian R Christie
- 1 Division of Medical Sciences and UBC Island Medical Program, University of Victoria , Victoria, British Columbia, Canada
- 3 Brain Research Centre and Program in Neuroscience, University of British Columbia , Vancouver, British Columbia, Canada
- 4 Department of Cellular and Physiological Sciences, University of British Columbia , Vancouver, British Columbia, Canada
| | - Joana Gil-Mohapel
- 1 Division of Medical Sciences and UBC Island Medical Program, University of Victoria , Victoria, British Columbia, Canada
| |
Collapse
|
114
|
Fisher SP, Schwartz MD, Wurts-Black S, Thomas AM, Chen TM, Miller MA, Palmerston JB, Kilduff TS, Morairty SR. Quantitative Electroencephalographic Analysis Provides an Early-Stage Indicator of Disease Onset and Progression in the zQ175 Knock-In Mouse Model of Huntington's Disease. Sleep 2016; 39:379-91. [PMID: 26446107 DOI: 10.5665/sleep.5448] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/05/2015] [Indexed: 01/09/2023] Open
Abstract
STUDY OBJECTIVES Patients with Huntington's disease (HD) show a high prevalence of sleep disorders that typically occur prior to the onset of motoric symptoms and neurodegeneration. Our understanding of the pathophysiological alterations in premanifest HD is limited, hindering the ability to measure disease modification in response to treatment. We used a full-length knock-in HD model to determine early changes in the electroencephalogram (EEG) and sleep that may predict the onset and progression of the disease. METHODS A 10-month longitudinal study was designed to determine the effect of the HD mutation on the EEG and sleep/wake changes in heterozygous (HET) and homozygous (HOM) zQ175 mice and wild-type (WT) littermates from 8 to 48 w of age. Mice were instrumented with tethered headmounts to record EEG/electromyography signals. Telemeters were implanted to continuously measure locomotor activity (LMA) and body temperature (Tb). Sleep deprivation (SDep) was performed at 8, 12, 16, 24, 32, and 48 w of age. RESULTS The HD mutation disrupted the EEG field potential from 8-12 w in an age- and mutant huntington dose-dependent manner, prior to changes in sleep/wake states, LMA, and Tb. Prominent effects of the HD mutation on the EEG included a progressive reduction in low frequency power, a slowing of rapid eye movement peak theta frequency, and the emergence of state-dependent beta/gamma oscillations. There was no effect of genotype on the relative increase in nonrapid eye movement delta power or sleep time in response to SDep. CONCLUSIONS The expression of the Huntington's disease (HD) mutation results in complex EEG alterations that occur prior to deficits in behavioral measures and are one of the earliest phenotypes uncovered in this mouse model. Despite these EEG changes, homeostatic responses to sleep loss were preserved in HET and HOM zQ175 mice. Greater insight into the localization and response of these EEG alterations to novel therapies may enable early intervention and improve outcomes for patients with HD.
Collapse
Affiliation(s)
- Simon P Fisher
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California
| | - Michael D Schwartz
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California
| | - Sarah Wurts-Black
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California
| | - Alexia M Thomas
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California
| | - Tsui-Ming Chen
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California
| | - Michael A Miller
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California
| | - Jeremiah B Palmerston
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California
| | - Stephen R Morairty
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California
| |
Collapse
|
115
|
Golas MM, Sander B. Use of human stem cells in Huntington disease modeling and translational research. Exp Neurol 2016; 278:76-90. [PMID: 26826449 DOI: 10.1016/j.expneurol.2016.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
Huntington disease (HD) is a devastating neurological disorder caused by an extended CAG repeat in exon 1 of the gene that encodes the huntingtin (HTT) protein. HD pathology involves a loss of striatal medium spiny neurons (MSNs) and progressive neurodegeneration affects the striatum and other brain regions. Because HTT is involved in multiple cellular processes, the molecular mechanisms of HD pathogenesis should be investigated on multiple levels. On the cellular level, in vitro stem cell models, such as induced pluripotent stem cells (iPSCs) derived from HD patients and HD embryonic stem cells (ESCs), have yielded progress. Approaches to differentiate functional MSNs from ESCs, iPSCs, and neural stem/progenitor cells (NSCs/NPCs) have been established, enabling MSN differentiation to be studied and disease phenotypes to be recapitulated. Isolation of target stem cells and precursor cells may also provide a resource for grafting. In animal models, transplantation of striatal precursors differentiated in vitro to the striatum has been reported to improve disease phenotype. Initial clinical trials examining intrastriatal transplantation of fetal neural tissue suggest a more favorable clinical course in a subset of HD patients, though shortcomings persist. Here, we review recent advances in the development of cellular HD models and approaches aimed at cell regeneration with human stem cells. We also describe how genome editing tools could be used to correct the HTT mutation in patient-specific stem cells. Finally, we discuss the potential and the remaining challenges of stem cell-based approaches in HD research and therapy development.
Collapse
Affiliation(s)
- Monika M Golas
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Bjoern Sander
- Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
116
|
Kerschbamer E, Biagioli M. Huntington's Disease as Neurodevelopmental Disorder: Altered Chromatin Regulation, Coding, and Non-Coding RNA Transcription. Front Neurosci 2016; 9:509. [PMID: 26793052 PMCID: PMC4710752 DOI: 10.3389/fnins.2015.00509] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/21/2015] [Indexed: 01/05/2023] Open
Affiliation(s)
- Emanuela Kerschbamer
- NeuroEpigenetics Laboratory, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Marta Biagioli
- NeuroEpigenetics Laboratory, Centre for Integrative Biology, University of Trento Trento, Italy
| |
Collapse
|
117
|
Pavese N, Tai YF. Genetic and degenerative disorders primarily causing other movement disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:507-523. [PMID: 27432681 DOI: 10.1016/b978-0-444-53485-9.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this chapter, we will discuss the contributions of structural and functional imaging to the diagnosis and management of genetic and degenerative diseases that lead to the occurrence of movement disorders. We will mainly focus on Huntington's disease, Wilson's disease, dystonia, and neurodegeneration with brain iron accumulation, as they are the more commonly encountered clinical conditions within this group.
Collapse
Affiliation(s)
- Nicola Pavese
- Division of Brain Sciences, Imperial College London, UK; Aarhus University, Denmark.
| | - Yen F Tai
- Division of Brain Sciences, Imperial College London, UK
| |
Collapse
|
118
|
Minkova L, Eickhoff SB, Abdulkadir A, Kaller CP, Peter J, Scheller E, Lahr J, Roos RA, Durr A, Leavitt BR, Tabrizi SJ, Klöppel S. Large-scale brain network abnormalities in Huntington's disease revealed by structural covariance. Hum Brain Mapp 2016; 37:67-80. [PMID: 26453902 PMCID: PMC6867397 DOI: 10.1002/hbm.23014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/10/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that can be diagnosed with certainty decades before symptom onset. Studies using structural MRI have identified grey matter (GM) loss predominantly in the striatum, but also involving various cortical areas. So far, voxel-based morphometric studies have examined each brain region in isolation and are thus unable to assess the changes in the interrelation of brain regions. Here, we examined the structural covariance in GM volumes in pre-specified motor, working memory, cognitive flexibility, and social-affective networks in 99 patients with manifest HD (mHD), 106 presymptomatic gene mutation carriers (pre-HD), and 108 healthy controls (HC). After correction for global differences in brain volume, we found that increased GM volume in one region was associated with increased GM volume in another. When statistically comparing the groups, no differences between HC and pre-HD were observed, but increased positive correlations were evident for mHD, relative to pre-HD and HC. These findings could be explained by a HD-related neuronal loss heterogeneously affecting the examined network at the pre-HD stage, which starts to dominate structural covariance globally at the manifest stage. Follow-up analyses identified structural connections between frontoparietal motor regions to be linearly modified by disease burden score (DBS). Moderator effects of disease load burden became significant at a DBS level typically associated with the onset of unequivocal HD motor signs. Together with existing findings from functional connectivity analyses, our data indicates a critical role of these frontoparietal regions for the onset of HD motor signs.
Collapse
Affiliation(s)
- Lora Minkova
- Department of Psychiatry and PsychotherapyUniversity Medical Center FreiburgFreiburgGermany
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
- Department of PsychologyLaboratory for Biological and Personality Psychology, University of FreiburgFreiburgGermany
| | - Simon B. Eickhoff
- Department of Clinical Neuroscience and Medical PsychiatryHeinrich‐Heine UniversityDüsseldorfGermany
- Research Center Jülich, Institute of Neuroscience and Medicine (INM‐1), Department of Psychiatry, Psychotherapy and Psychosomatics, University HospitalJülichGermany
| | - Ahmed Abdulkadir
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
- Department of Computer ScienceUniversity of FreiburgFreiburgGermany
| | - Christoph P. Kaller
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
- Department of NeurologyUniversity Medical Center FreiburgFreiburgGermany
- BrainLinks‐BrainTools Cluster of Excellence, University of FreiburgFreiburgGermany
| | - Jessica Peter
- Department of Psychiatry and PsychotherapyUniversity Medical Center FreiburgFreiburgGermany
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
| | - Elisa Scheller
- Department of Psychiatry and PsychotherapyUniversity Medical Center FreiburgFreiburgGermany
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
| | - Jacob Lahr
- Department of Psychiatry and PsychotherapyUniversity Medical Center FreiburgFreiburgGermany
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
| | - Raymund A. Roos
- Department of NeurologyLeiden University Medical CentreLeidenNetherlands
| | - Alexandra Durr
- Department of Genetics and CytogeneticsPitié‐ Salpêtrière University HospitalParisFrance
| | - Blair R. Leavitt
- Department of Medical GeneticsCentre for Molecular Medicine and Therapeutics, University of British ColumbiaVancouverCanada
| | - Sarah J. Tabrizi
- Department of Neurodegenerative DiseaseUniversity College London, Institute of NeurologyLondonUnited Kingdom
| | - Stefan Klöppel
- Department of Psychiatry and PsychotherapyUniversity Medical Center FreiburgFreiburgGermany
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
- Department of NeurologyUniversity Medical Center FreiburgFreiburgGermany
| | | |
Collapse
|
119
|
Gregory S, Cole JH, Farmer RE, Rees EM, Roos RA, Sprengelmeyer R, Durr A, Landwehrmeyer B, Zhang H, Scahill RI, Tabrizi SJ, Frost C, Hobbs NZ. Longitudinal Diffusion Tensor Imaging Shows Progressive Changes in White Matter in Huntington’s Disease. J Huntingtons Dis 2015; 4:333-46. [DOI: 10.3233/jhd-150173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sarah Gregory
- Wellcome Trust Centre for Neuroimaging, UCL, London, WC1N 3BG, UK
| | - James H. Cole
- UCL Institute of Neurology, University College London, UK
- Computational, Cognitive & Clinical Neuroimaging Laboratory, Department of Medicine, Imperial College London, UK
| | - Ruth E. Farmer
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine London, UK
| | - Elin M. Rees
- UCL Institute of Neurology, University College London, UK
| | - Raymund A.C. Roos
- Department of Neurology, Leiden University Medical Centre, 2300RC Leiden, The Netherlands
| | | | - Alexandra Durr
- Department of Genetics and Cytogenetics, INSERM UMR S679, APHP Hôpital de la Salpêtrière, Paris, France
| | | | - Hui Zhang
- Centre for Medical Image Computing, University College London, UK
| | | | | | - Chris Frost
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine London, UK
| | - Nicola Z. Hobbs
- UCL Institute of Neurology, University College London, UK
- IXICO Plc., London, UK
| |
Collapse
|
120
|
Agar E. The role of cannabinoids and leptin in neurological diseases. Acta Neurol Scand 2015; 132:371-80. [PMID: 25880465 DOI: 10.1111/ane.12411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 01/14/2023]
Abstract
Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer's, Parkinson's, Huntington's, multiple sclerosis and epilepsy. Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear. Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides. Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson's and Alzheimer's. Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases. Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.
Collapse
Affiliation(s)
- E. Agar
- Department of Physiology; Faculty of Medicine; University of Ondokuz Mayis; Samsun Turkey
| |
Collapse
|
121
|
van Wamelen DJ, Roos RA, Aziz NA. Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease. Neurodegener Dis Manag 2015; 5:549-59. [PMID: 26621387 DOI: 10.2217/nmt.15.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aside from the well-known motor, cognitive and psychiatric signs and symptoms, Huntington disease (HD) is also frequently complicated by circadian rhythm and sleep disturbances. Despite the observation that these disturbances often precede motor onset and have a high prevalence, no studies are available in HD patients which assess potential treatments. In this review, we will briefly outline the nature of circadian rhythm and sleep disturbances in HD and subsequently focus on potential treatments based on findings in other neurodegenerative diseases with similarities to HD, such as Parkinson and Alzheimer disease. The most promising treatment options to date for circadian rhythm and sleep disruption in HD include melatonin (agonists) and bright light therapy, although further corroboration in clinical trials is warranted.
Collapse
Affiliation(s)
- Daniel J van Wamelen
- Department of Neurology, Leiden University Medical Center, K5-Q 110, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Raymund Ac Roos
- Department of Neurology, Leiden University Medical Center, K5-Q 110, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Nasir A Aziz
- Department of Neurology, Leiden University Medical Center, K5-Q 110, PO Box 9600, 2300RC Leiden, The Netherlands
| |
Collapse
|
122
|
Kreilaus F, Spiro AS, Hannan AJ, Garner B, Jenner AM. Brain Cholesterol Synthesis and Metabolism is Progressively Disturbed in the R6/1 Mouse Model of Huntington’s Disease: A Targeted GC-MS/MS Sterol Analysis. J Huntingtons Dis 2015; 4:305-18. [DOI: 10.3233/jhd-150170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Fabian Kreilaus
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Adena S. Spiro
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkvillie, VIC, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Andrew M. Jenner
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, NSW, Australia
| |
Collapse
|
123
|
Minkova L, Scheller E, Peter J, Abdulkadir A, Kaller CP, Roos RA, Durr A, Leavitt BR, Tabrizi SJ, Klöppel S. Detection of Motor Changes in Huntington's Disease Using Dynamic Causal Modeling. Front Hum Neurosci 2015; 9:634. [PMID: 26635585 PMCID: PMC4658414 DOI: 10.3389/fnhum.2015.00634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/06/2015] [Indexed: 11/17/2022] Open
Abstract
Deficits in motor functioning are one of the hallmarks of Huntington's disease (HD), a genetically caused neurodegenerative disorder. We applied functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to assess changes that occur with disease progression in the neural circuitry of key areas associated with executive and cognitive aspects of motor control. Seventy-seven healthy controls, 62 pre-symptomatic HD gene carriers (preHD), and 16 patients with manifest HD symptoms (earlyHD) performed a motor finger-tapping fMRI task with systematically varying speed and complexity. DCM was used to assess the causal interactions among seven pre-defined regions of interest, comprising primary motor cortex, supplementary motor area (SMA), dorsal premotor cortex, and superior parietal cortex. To capture heterogeneity among HD gene carriers, DCM parameters were entered into a hierarchical cluster analysis using Ward's method and squared Euclidian distance as a measure of similarity. After applying Bonferroni correction for the number of tests, DCM analysis revealed a group difference that was not present in the conventional fMRI analysis. We found an inhibitory effect of complexity on the connection from parietal to premotor areas in preHD, which became excitatory in earlyHD and correlated with putamen atrophy. While speed of finger movements did not modulate the connection from caudal to pre-SMA in controls and preHD, this connection became strongly negative in earlyHD. This second effect did not survive correction for multiple comparisons. Hierarchical clustering separated the gene mutation carriers into three clusters that also differed significantly between these two connections and thereby confirmed their relevance. DCM proved useful in identifying group differences that would have remained undetected by standard analyses and may aid in the investigation of between-subject heterogeneity.
Collapse
Affiliation(s)
- Lora Minkova
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany ; Freiburg Brain Imaging Center, University Medical Center Freiburg Freiburg, Germany ; Laboratory for Biological and Personality Psychology, Department of Psychology, University of Freiburg Freiburg, Germany
| | - Elisa Scheller
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany ; Freiburg Brain Imaging Center, University Medical Center Freiburg Freiburg, Germany
| | - Jessica Peter
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany ; Freiburg Brain Imaging Center, University Medical Center Freiburg Freiburg, Germany
| | - Ahmed Abdulkadir
- Freiburg Brain Imaging Center, University Medical Center Freiburg Freiburg, Germany ; Department of Computer Science, University of Freiburg Freiburg, Germany
| | - Christoph P Kaller
- Freiburg Brain Imaging Center, University Medical Center Freiburg Freiburg, Germany ; Department of Neurology, University Medical Center Freiburg Freiburg, Germany ; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg Freiburg, Germany
| | - Raymund A Roos
- Department of Neurology, Leiden University Medical Centre Leiden, Netherlands
| | - Alexandra Durr
- Department of Genetics and Cytogenetics, Pitié-Salpêtrière University Hospital Paris, France
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia Vancouver, Canada
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany ; Freiburg Brain Imaging Center, University Medical Center Freiburg Freiburg, Germany ; Department of Neurology, University Medical Center Freiburg Freiburg, Germany
| | | |
Collapse
|
124
|
Manfré G, Doyère V, Bossi S, Riess O, Nguyen HP, El Massioui N. Impulsivity trait in the early symptomatic BACHD transgenic rat model of Huntington disease. Behav Brain Res 2015; 299:6-10. [PMID: 26592164 DOI: 10.1016/j.bbr.2015.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 10/22/2022]
Abstract
Impulsivity trait was characterized in 3-5 months old BACHD rats, a transgenic model of Huntington disease, using (1) the delay discounting task to assess cognitive/choice impulsivity, and (2) the Differential Reinforcement of Low Rate of Responding task to evaluate motor/action impulsivity. Transgenic animals showed a high level of choice impulsivity and, to a lesser extent, action impulsivity. Our results provide the first evidence that the transgenic BACHD rat (TG5 line) displays impulsivity disorder as early as 3 months old, as described in early symptomatic HD patients, thus adding to the face validity of the rat model.
Collapse
Affiliation(s)
- Giuseppe Manfré
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; IMPRS for Cognitive and Systems Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Valérie Doyère
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris-Sud, Orsay F-91405, France; CNRS, Orsay F-91405, France
| | - Simon Bossi
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris-Sud, Orsay F-91405, France; CNRS, Orsay F-91405, France
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Nicole El Massioui
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris-Sud, Orsay F-91405, France; CNRS, Orsay F-91405, France.
| |
Collapse
|
125
|
Kreilaus F, Spiro AS, McLean CA, Garner B, Jenner AM. Evidence for altered cholesterol metabolism in Huntington's disease post mortem brain tissue. Neuropathol Appl Neurobiol 2015; 42:535-46. [PMID: 26373857 DOI: 10.1111/nan.12286] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
AIMS Cholesterol plays an essential role in membrane structure and function, being especially important in the brain. Alteration of brain cholesterol synthesis and metabolism has been demonstrated in several Huntington's disease (HD) mouse and cell models; however, less is known about these alterations in human tissue. This study aimed to identify alterations to cholesterol synthetic and metabolic pathways in human HD brain tissue. METHODS A broad range of cholesterol synthetic precursors, metabolites and oxidation products were measured by gas chromatography-tandem mass spectrometry in five regions of human post mortem HD brain and compared with age- and sex-matched control tissues. The level of enzymes that regulate cholesterol homeostasis, cholesterol 24-hydroxylase and delta(24)-sterol reductase were investigated by Western blotting and qPCR in putamen. RESULTS The most significant changes were localized to the putamen, where a 60% decrease in 24(S)-hydroxycholesterol, 30% increase in cholesterol and 100-200% increase in synthetic precursors (lathosterol, zymosterol and desmosterol) was detected. The enzymes cholesterol 24-hydroxylase and delta(24)-sterol reductase were also significantly decreased in HD putamen as compared with control tissues. Free radical-generated cholesterol oxidation products 7-keto cholesterol and 7β-hydroxycholesterol were also increased by 50-70% in HD putamen. CONCLUSION Human HD brain has significantly decreased cholesterol metabolism and disrupted cholesterol homeostasis. Our data also indicate that lipid oxidative stress accompanies HD pathology.
Collapse
Affiliation(s)
- Fabian Kreilaus
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia. .,School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| | - Adena S Spiro
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Andrew M Jenner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia. .,School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
126
|
Miguez A, García-Díaz Barriga G, Brito V, Straccia M, Giralt A, Ginés S, Canals JM, Alberch J. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington's disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Hum Mol Genet 2015; 24:4958-70. [PMID: 26063761 DOI: 10.1093/hmg/ddv218] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/07/2015] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by motor and cognitive impairments, involving striatum, cortex and hippocampus. Synaptic and memory dysfunction in HD mouse models have been related to low levels of brain-derived neurotrophic factor (BDNF) and imbalance between TrkB and p75(NTR) receptors. In addition, astrocyte over-activation has also been suggested to contribute to HD cognitive deficits. Fingolimod (FTY720), a modulator of sphingosine-1 phosphate (S1P) receptors, has been shown to increase BDNF levels and to reduce astrogliosis, proving its potential to regulate trophic support and inflammatory response. In this view, we have investigated whether FTY720 improves synaptic plasticity and memory in the R6/1 mouse model of HD, through regulation of BDNF signaling and astroglial reactivity. Chronic administration of FTY720 from pre-symptomatic stages ameliorated long-term memory deficits and dendritic spine loss in CA1 hippocampal neurons from R6/1 mice. Furthermore, FTY720 delivery prevented astrogliosis and over-activation of nuclear factor kappa beta (NF-κB) signaling in the R6/1 hippocampus, reducing tumor necrosis factor alpha (TNFα) and induced nitric oxide synthase (iNOS) levels. TNFα decrease correlated with the normalization of p75(NTR) expression in the hippocampus of FTY720-treated R6/1 mice, thus preventing p75(NTR)/TrkB imbalance. In addition, FTY720 increased cAMP levels and promoted phosphorylation of CREB and RhoA in the hippocampus of R6/1 mice, further supporting its role in the enhancement of synaptic plasticity. Our findings provide new insights into the mechanism of action of FTY720 and reveal a novel therapeutic strategy to treat memory deficits in HD.
Collapse
Affiliation(s)
- Andrés Miguez
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gerardo García-Díaz Barriga
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Verónica Brito
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marco Straccia
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Albert Giralt
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Ginés
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Josep M Canals
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Alberch
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
127
|
Carroll JB, Deik A, Fossale E, Weston RM, Guide JR, Arjomand J, Kwak S, Clish CB, MacDonald ME. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation. PLoS One 2015; 10:e0134465. [PMID: 26295712 PMCID: PMC4546654 DOI: 10.1371/journal.pone.0134465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/10/2015] [Indexed: 01/01/2023] Open
Abstract
The HTT CAG expansion mutation causes Huntington's Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident in brain, where the striatum featured signature accumulation of a set of lipids including sphingomyelin, phosphatidylcholine, cholesterol ester and triglyceride species. Importantly, in the presence of the CAG mutation, metabolite changes were unmasked in peripheral tissues by an interaction with dietary fat, implying that the design of studies to discover metabolic changes in HD mutation carriers should include metabolic perturbations.
Collapse
Affiliation(s)
- Jeffrey B. Carroll
- Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, Washington, United States of America
- * E-mail:
| | - Amy Deik
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Elisa Fossale
- Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Rory M. Weston
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, Washington, United States of America
| | - Jolene R. Guide
- Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jamshid Arjomand
- CHDI Foundation, Inc., Princeton, New Jersey, United States of America
| | - Seung Kwak
- CHDI Foundation, Inc., Princeton, New Jersey, United States of America
| | - Clary B. Clish
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Marcy E. MacDonald
- Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
128
|
Xie W, Wang JQ, Wang QC, Wang Y, Yao S, Tang TS. Adult neural progenitor cells from Huntington's disease mouse brain exhibit increased proliferation and migration due to enhanced calcium and ROS signals. Cell Prolif 2015; 48:517-31. [PMID: 26269226 DOI: 10.1111/cpr.12205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Huntington's disease (HD) is an inherited human neurodegenerative disorder characterized by uncontrollable movement, psychiatric disturbance and cognitive decline. Impaired proliferative/differentiational potentials of adult neural progenitor cells (ANPCs) have been thought to be a pathogenic mechanism involved in it. In this study, we aimed to elucidate intrinsic properties of ANPCs subjected to neurodegenerative condition in YAC128 HD mice. MATERIALS AND METHODS ANPCs were isolated from the SVZ regions of 4-month-old WT and YAC128 mice. Cell proliferation, migration and neuronal differentiation in vitro were compared between these two genotypes with/without Ca(2+) inhibitors or ROS scavenger treatments. Differences in ANPC proliferation and differentiation capabilities in vivo between the two genotypes were evaluated using Ki-67 and Doublecortin (DCX) immunofluorescence respectively. RESULTS Compared to WT ANPCs, YAC128 ANPCs had significantly enhanced cell proliferation, migration and neuronal differentiation in vitro, accompanied by increased Ca(2+) and ROS signals. Raised proliferation and migration in YAC128 ANPCs were abolished by Ca(2+) signalling antagonists and ROS scavenging. However, in vivo, HD ANPCs failed to show any elevated proliferation or differentiation. CONCLUSIONS Increased Ca(2+) signalling and higher level of ROS conferred HD ANPC enhancement of proliferation and migration potentials. However, the in vivo micro-environment did not support endogenous ANPCs to respond appropriately to neuronal loss in these YAC128 mouse brains.
Collapse
Affiliation(s)
- Wenjuan Xie
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiu-Qiang Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiao-Chu Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sheng Yao
- Department of Neurology, Navy General Hospital, Beijing, 100048, China
| | - Tie-Shan Tang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
129
|
Swarnkar S, Chen Y, Pryor WM, Shahani N, Page DT, Subramaniam S. Ectopic expression of the striatal-enriched GTPase Rhes elicits cerebellar degeneration and an ataxia phenotype in Huntington's disease. Neurobiol Dis 2015; 82:66-77. [PMID: 26048156 DOI: 10.1016/j.nbd.2015.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease (HD) is caused by an expansion of glutamine repeats in the huntingtin protein (mHtt) that invokes early and prominent damage of the striatum, a region that controls motor behaviors. Despite its ubiquitous expression, why certain brain regions, such as the cerebellum, are relatively spared from neuronal loss by mHtt remains unclear. Previously, we implicated the striatal-enriched GTPase, Rhes (Ras homolog enriched in the striatum), which binds and SUMOylates mHtt and increases its solubility and cellular cytotoxicity, as the cause for striatal toxicity in HD. Here, we report that Rhes deletion in HD mice (N171-82Q), which express the N-terminal fragment of human Htt with 82 glutamines (Rhes(-/-)/N171-82Q), display markedly reduced HD-related behavioral deficits, and absence of lateral ventricle dilatation (secondary to striatal atrophy), compared to control HD mice (N171-82Q). To further validate the role of GTPase Rhes in HD, we tested whether ectopic Rhes expression would elicit a pathology in a brain region normally less affected in HD. Remarkably, ectopic expression of Rhes in the cerebellum of N171-82Q mice, during the asymptomatic period led to an exacerbation of motor deficits, including loss of balance and motor incoordination with ataxia-like features, not apparent in control-injected N171-82Q mice or Rhes injected wild-type mice. Pathological and biochemical analysis of Rhes-injected N171-82Q mice revealed a cerebellar lesion with marked loss of Purkinje neuron layer parvalbumin-immunoreactivity, induction of caspase 3 activation, and enhanced soluble forms of mHtt. Similarly reintroducing Rhes into the striatum of Rhes deleted Rhes(-/-)Hdh(150Q/150Q) knock-in mice, elicited a progressive HD-associated rotarod deficit. Overall, these studies establish that Rhes plays a pivotal role in vivo for the selective toxicity of mHtt in HD.
Collapse
Affiliation(s)
- Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Youjun Chen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - William M Pryor
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA.
| |
Collapse
|
130
|
Abstract
OBJECTIVE This review provides a brief account of the clinically relevant functional neuroanatomy of the thalamus, before considering the utility of various modalities utilized to image the thalamus and technical challenges therein, and going on to provide an overview of studies utilizing structural imaging techniques to map thalamic morphology in the spectrum of neurodegenerative disorders. METHODS A systematic search was conducted for peer-reviewed studies involving structural neuroimaging modalities investigating the morphology (shape and/or size) of the thalamus in the spectrum of neurodegenerative disorders. RESULTS While the precise role of the thalamus in the healthy brain remains unclear, there is a large body of knowledge accumulating which defines more precisely its functional connectivity within the connectome, and a burgeoning literature implicating its involvement in neurodegenerative disorders. It is proposed that correlation of clinical features with thalamic morphology (as a component of a quantifiable subcortical connectome) will provide a better understanding of neuropsychiatric dysfunction in various neurodegenerative disorders, potentially yielding clinically useful endophenotypes and disease biomarkers. CONCLUSION Thalamic biomarkers in the neurodegenerative disorders have great potential to provide clinically meaningful knowledge regarding not only disease onset and progression but may yield targets of and perhaps a way of gauging response to future disease-modifying modalities.
Collapse
Affiliation(s)
- Brian D Power
- School of Medicine Fremantle, The University of Notre Dame Australia, Fremantle, WA, Australia Clinical Research Centre, North Metropolitan Health Service - Mental Health, Perth, WA, Australia
| | - Jeffrey C L Looi
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, ACT, Australia
| |
Collapse
|
131
|
Hikishima K, Ando K, Komaki Y, Kawai K, Yano R, Inoue T, Itoh T, Yamada M, Momoshima S, Okano HJ, Okano H. Voxel-based morphometry of the marmoset brain: In vivo detection of volume loss in the substantia nigra of the MPTP-treated Parkinson's disease model. Neuroscience 2015; 300:585-92. [PMID: 26012491 DOI: 10.1016/j.neuroscience.2015.05.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/14/2015] [Accepted: 05/16/2015] [Indexed: 11/30/2022]
Abstract
Movement dysfunction in Parkinson's disease (PD) is caused by the degeneration of dopaminergic (DA) neurons in the substantia nigra (SN). Here, we established a method for voxel-based morphometry (VBM) and automatic tissue segmentation of the marmoset monkey brain using a 7-T animal scanner and applied the method to assess DA degeneration in a PD model, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated animals, with tyrosine-hydroxylase staining. The most significant decreases of local tissue volume were detected in the bilateral SN of MPTP-treated marmoset brains (-53.0% in right and -46.5% in left) and corresponded with the location of DA neurodegeneration found in histology (-65.4% in right). In addition to the SN, the decreases were also confirmed in the locus coeruleus, and lateral hypothalamus. VBM using 7-T MRI was effective in detecting volume loss in the SN of the PD-model marmoset. This study provides a potential basis for the application of VBM with ultra-high field MRI in the clinical diagnosis of PD. The developed method may also offer value in automatic whole-brain evaluation of structural changes for the marmoset monkey.
Collapse
Affiliation(s)
- K Hikishima
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan
| | - K Ando
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Y Komaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan
| | - K Kawai
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - R Yano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - T Inoue
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - T Itoh
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - M Yamada
- Faculty of Radiological Technology, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - S Momoshima
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan
| | - H J Okano
- Division of Regenerative Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - H Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, Brain Science Institute RIKEN, Wako, Japan.
| |
Collapse
|
132
|
Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes. Neuron 2015; 85:1212-26. [PMID: 25789755 DOI: 10.1016/j.neuron.2015.02.026] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/27/2014] [Accepted: 02/05/2015] [Indexed: 11/21/2022]
Abstract
Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington's disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remains unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knockin mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target.
Collapse
|
133
|
Mo C, Hannan AJ, Renoir T. Environmental factors as modulators of neurodegeneration: Insights from gene–environment interactions in Huntington's disease. Neurosci Biobehav Rev 2015; 52:178-92. [DOI: 10.1016/j.neubiorev.2015.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/13/2015] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
|
134
|
Martín-Flores N, Romaní-Aumedes J, Rué L, Canal M, Sanders P, Straccia M, Allen ND, Alberch J, Canals JM, Pérez-Navarro E, Malagelada C. RTP801 Is Involved in Mutant Huntingtin-Induced Cell Death. Mol Neurobiol 2015; 53:2857-2868. [PMID: 25876513 DOI: 10.1007/s12035-015-9166-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/30/2015] [Indexed: 01/16/2023]
Abstract
RTP801 expression is induced by cellular stress and has a pro-apoptotic function in non-proliferating differentiated cells such as neurons. In several neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease, elevated levels of RTP801 have been observed, which suggests a role for RTP801 in neuronal death. Neuronal death is also a pathological hallmark in Huntington's disease (HD), an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Currently, the exact mechanisms underlying mutant huntingtin (mhtt)-induced toxicity are still unclear. Here, we investigated whether RTP801 is involved in (mhtt)-induced cell death. Ectopic exon-1 mhtt elevated RTP801 mRNA and protein levels in nerve growth factor (NGF)-differentiated PC12 cells and in rat primary cortical neurons. In neuronal PC12 cells, mhtt also contributed to RTP801 protein elevation by reducing its proteasomal degradation rate, in addition to promoting RTP801 gene expression. Interestingly, silencing RTP801 expression with short hairpin RNAs (shRNAs) blocked mhtt-induced cell death in NGF-differentiated PC12 cells. However, RTP801 protein levels were not altered in the striatum of Hdh(Q7/Q111) and R6/1 mice, two HD models that display motor deficits but not neuronal death. Importantly, RTP801 protein levels were elevated in both neural telencephalic progenitors differentiated from HD patient-derived induced pluripotent stem cells and in the putamen and cerebellum of human HD postmortem brains. Taken together, our results suggest that RTP801 is a novel downstream effector of mhtt-induced toxicity and that it may be relevant to the human disease.
Collapse
Affiliation(s)
- Núria Martín-Flores
- Department of Pathological Anatomy, Pharmacology and Microbiology, Faculty of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Catalonia, Spain
| | - Joan Romaní-Aumedes
- Department of Pathological Anatomy, Pharmacology and Microbiology, Faculty of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Catalonia, Spain
| | - Laura Rué
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mercè Canal
- Department of Pathological Anatomy, Pharmacology and Microbiology, Faculty of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Catalonia, Spain
| | - Phil Sanders
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marco Straccia
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Nicholas D Allen
- Divisions of Pathophysiology & Repair and Neuroscience, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Jordi Alberch
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Josep M Canals
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Esther Pérez-Navarro
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Catalonia, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Cristina Malagelada
- Department of Pathological Anatomy, Pharmacology and Microbiology, Faculty of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
135
|
Syka M, Keller J, Klempíř J, Rulseh AM, Roth J, Jech R, Vorisek I, Vymazal J. Correlation between relaxometry and diffusion tensor imaging in the globus pallidus of Huntington's disease patients. PLoS One 2015; 10:e0118907. [PMID: 25781024 PMCID: PMC4362949 DOI: 10.1371/journal.pone.0118907] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/18/2015] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder with progressive impairment of motor, behavioral and cognitive functions. The clinical features of HD are closely related to the degeneration of the basal ganglia, predominantly the striatum. The main striatal output structure, the globus pallidus, strongly accumulates metalloprotein-bound iron, which was recently shown to influence the diffusion tensor scalar values. To test the hypothesis that this effect dominates in the iron-rich basal ganglia of HD patients, we examined the globus pallidus using DTI and T2 relaxometry sequences. Quantitative magnetic resonance (MR), clinical and genetic data (number of CAG repeats) were obtained from 14 HD patients. MR parameters such as the T2 relaxation rate (RR), fractional anisotropy (FA) and mean diffusivity (MD) were analysed. A positive correlation was found between RR and FA (R2=0.84), between CAG and RR (R2=0.59) and between CAG and FA (R2=0.44). A negative correlation was observed between RR and MD (R2=0.66). A trend towards correlation between CAG and MD was noted. No correlation between MR and clinical parameters was found. Our results indicate that especially magnetic resonance FA measurements in the globus pallidus of HD patients may be strongly affected by metalloprotein-bound iron accumulation.
Collapse
Affiliation(s)
- Michael Syka
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne´s University Hospital, Brno, Czech Republic
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- * E-mail:
| | - Jiří Keller
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
- Department of Neurology, 3rd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jiří Klempíř
- Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
- Institute of Anatomy, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Aaron M. Rulseh
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
- Department of Radiology, 1st Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| | - Ivan Vorisek
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
136
|
Wang SE, Lin CL, Hsu CH, Sheu SJ, Chien CT, Wu CH. Treatment with a herbal formula B401 enhances neuroprotection and angiogenesis in the R6/2 mouse model of Huntington's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:887-900. [PMID: 25733809 PMCID: PMC4338258 DOI: 10.2147/dddt.s78015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Huntington’s disease (HD) is a neurodegenerative disease characterized by motor dysfunction and early death. Despite years of research, the mechanisms responsible for chronic neurodegeneration of HD remain elusive. Chinese traditional medicines might provide new insights or new therapy for HD. The Chinese herbal formula B401 is a well-known Taiwan–US patent formula and a health supplement for promoting blood circulation and enhancing brain function. This study aimed to elucidate the neuroprotective effects of the Chinese herbal formula B401 on the syndrome of HD. Then, we compared the life span and body weight of R6/2 HD mice with and without oral B401 treatment. The ameliorative effects of B401 on the symptom of HD mice were investigated through behavior tests. Expressions of proteins for neuroprotection, angiogenesis, and inflammation in the brain tissue of R6/2 HD mice were compared by using immunostaining and Western blotting techniques. Our study in vitro showed that viabilities of glutamate-treated SH-SY5Y cells were significantly increased under B401 treatment. Our results in vivo showed that duration of survival was increased, body weight loss was reduced, and motor ability was improved in R6/2 HD mice under oral B401 treatment. Subcutaneous microcirculation was enhanced in 3-month R6/2 HD mice under intraperitoneal B401 injections as observed by using moorFLPI laser Doppler imager. Atrophy of cerebrum, midbrain, and cerebellum in 3-month R6/2 HD mice under oral B401 treatment was alleviated as observed by utilizing magnetic resonance imaging. Evidence from immunostaining and Western blotting analysis showed that expressions of mutant huntingtin and tumor necrosis factor-alpha were reduced, while expressions of brain-derived neurotrophic factor and vascular endothelial growth factor were enhanced in the brain tissue of 2-month R6/2 HD mice under oral B401 treatment. We suggest that the herbal formula B401 can be developed as a medical supplement for ameliorating neurodegenerative diseases of HD via reducing mutant huntingtin aggregation and excitotoxicity, enhancing neuroprotection and angiogenesis, and alleviating inflammation in the brain.
Collapse
Affiliation(s)
- Sheue-Er Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Lung Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Hsiang Hsu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Chiang-Ting Chien
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Hsin Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
137
|
Novak MJU, Seunarine KK, Gibbard CR, McColgan P, Draganski B, Friston K, Clark CA, Tabrizi SJ. Basal ganglia-cortical structural connectivity in Huntington's disease. Hum Brain Mapp 2015; 36:1728-40. [PMID: 25640796 DOI: 10.1002/hbm.22733] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 11/04/2014] [Accepted: 12/22/2014] [Indexed: 11/07/2022] Open
Abstract
Huntington's disease is an incurable neurodegenerative disease caused by inheritance of an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat within the Huntingtin gene. Extensive volume loss and altered diffusion metrics in the basal ganglia, cortex and white matter are seen when patients with Huntington's disease (HD) undergo structural imaging, suggesting that changes in basal ganglia-cortical structural connectivity occur. The aims of this study were to characterise altered patterns of basal ganglia-cortical structural connectivity with high anatomical precision in premanifest and early manifest HD, and to identify associations between structural connectivity and genetic or clinical markers of HD. 3-Tesla diffusion tensor magnetic resonance images were acquired from 14 early manifest HD subjects, 17 premanifest HD subjects and 18 controls. Voxel-based analyses of probabilistic tractography were used to quantify basal ganglia-cortical structural connections. Canonical variate analysis was used to demonstrate disease-associated patterns of altered connectivity and to test for associations between connectivity and genetic and clinical markers of HD; this is the first study in which such analyses have been used. Widespread changes were seen in basal ganglia-cortical structural connectivity in early manifest HD subjects; this has relevance for development of therapies targeting the striatum. Premanifest HD subjects had a pattern of connectivity more similar to that of controls, suggesting progressive change in connections over time. Associations between structural connectivity patterns and motor and cognitive markers of disease severity were present in early manifest subjects. Our data suggest the clinical phenotype in manifest HD may be at least partly a result of altered connectivity.
Collapse
Affiliation(s)
- Marianne J U Novak
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, United Kingdom; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Abnormal cerebellar volume and corticocerebellar dysfunction in early manifest Huntington’s disease. J Neurol 2015; 262:859-69. [DOI: 10.1007/s00415-015-7642-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/27/2022]
|
139
|
Biagioli M, Ferrari F, Mendenhall EM, Zhang Y, Erdin S, Vijayvargia R, Vallabh SM, Solomos N, Manavalan P, Ragavendran A, Ozsolak F, Lee JM, Talkowski ME, Gusella JF, Macdonald ME, Park PJ, Seong IS. Htt CAG repeat expansion confers pleiotropic gains of mutant huntingtin function in chromatin regulation. Hum Mol Genet 2015; 24:2442-57. [PMID: 25574027 DOI: 10.1093/hmg/ddv006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/06/2015] [Indexed: 12/15/2022] Open
Abstract
The CAG repeat expansion in the Huntington's disease gene HTT extends a polyglutamine tract in mutant huntingtin that enhances its ability to facilitate polycomb repressive complex 2 (PRC2). To gain insight into this dominant gain of function, we mapped histone modifications genome-wide across an isogenic panel of mouse embryonic stem cell (ESC) and neuronal progenitor cell (NPC) lines, comparing the effects of Htt null and different size Htt CAG mutations. We found that Htt is required in ESC for the proper deposition of histone H3K27me3 at a subset of 'bivalent' loci but in NPC it is needed at 'bivalent' loci for both the proper maintenance and the appropriate removal of this mark. In contrast, Htt CAG size, though changing histone H3K27me3, is prominently associated with altered histone H3K4me3 at 'active' loci. The sets of ESC and NPC genes with altered histone marks delineated by the lack of huntingtin or the presence of mutant huntingtin, though distinct, are enriched in similar pathways with apoptosis specifically highlighted for the CAG mutation. Thus, the manner by which huntingtin function facilitates PRC2 may afford mutant huntingtin with multiple opportunities to impinge upon the broader machinery that orchestrates developmentally appropriate chromatin status.
Collapse
Affiliation(s)
- Marta Biagioli
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | - Yijing Zhang
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Serkan Erdin
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ravi Vijayvargia
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Sonia M Vallabh
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicole Solomos
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Poornima Manavalan
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ashok Ragavendran
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fatih Ozsolak
- RaNA Therapeutics, 790 Memorial Drive, Cambridge, MA 02139, USA
| | - Jong Min Lee
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael E Talkowski
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - James F Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA and
| | - Marcy E Macdonald
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Department of Neurology, Harvard Medical School, Boston, MA 02114, USA, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA and
| | - Peter J Park
- Center for Biomedical Informatics, Boston, MA 02114, USA Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ihn Sik Seong
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Department of Neurology, Harvard Medical School, Boston, MA 02114, USA,
| |
Collapse
|
140
|
Waldvogel HJ, Kim EH, Tippett LJ, Vonsattel JPG, Faull RLM. The Neuropathology of Huntington's Disease. Curr Top Behav Neurosci 2015; 22:33-80. [PMID: 25300927 DOI: 10.1007/7854_2014_354] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The basal ganglia are a highly interconnected set of subcortical nuclei and major atrophy in one or more regions may have major effects on other regions of the brain. Therefore, the striatum which is preferentially degenerated and receives projections from the entire cortex also affects the regions to which it targets, especially the globus pallidus and substantia nigra pars reticulata. Additionally, the cerebral cortex is itself severely affected as are many other regions of the brain, especially in more advanced cases. The cell loss in the basal ganglia and the cerebral cortex is extensive. The most important new findings in Huntington's disease pathology is the highly variable nature of the degeneration in the brain. Most interestingly, this variable pattern of pathology appears to reflect the highly variable symptomatology of cases with Huntington's disease even among cases possessing the same number of CAG repeats.
Collapse
Affiliation(s)
- Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand,
| | | | | | | | | |
Collapse
|
141
|
|
142
|
Sánchez‐Castañeda C, Squitieri F, Di Paola M, Dayan M, Petrollini M, Sabatini U. The role of iron in gray matter degeneration in Huntington's disease: a magnetic resonance imaging study. Hum Brain Mapp 2015; 36:50-66. [PMID: 25145324 PMCID: PMC6868940 DOI: 10.1002/hbm.22612] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 07/03/2014] [Accepted: 08/11/2014] [Indexed: 11/06/2022] Open
Abstract
In Huntington's disease, iron accumulation in basal ganglia accompanies neuronal loss. However, if iron content changes with disease progression and how it relates to gray matter atrophy is not clear yet. We explored iron content in basal ganglia and cortex and its relationship with gray matter volume in 77 mutation carriers [19 presymptomatic, 8 with soft symptoms (SS), and 50 early-stage patients) and 73 matched-controls by T2*relaxometry and T1-weighted imaging on a 3T scanner. The ANCOVA model showed that iron accumulates in the caudate in presymptomatic subjects (P = 0.004) and remains relatively stable along disease stages in this nucleus; while increases in putamen and globus pallidus (P < 0.05). Volume instead decreases in basal ganglia, starting from the caudate (P < 0.0001) and extending to the putamen and globus pallidus (P ≤ 0.001). The longer the disease duration and the higher the CAG repeats, the higher the iron accumulation and the smaller the volume. In the cortex, iron decreases in parieto-occipital areas in SS (P < 0.027); extending to premotor and parieto-temporo-occipital areas in patients (P < 0.003); while volume declines in frontoparietal and temporal areas in presymptomatic (P < 0.023) and SS (P < 0.045), and extends throughout the cortex, with the exception of anterior frontal regions, in patients (P < 0.023). There is an inverse correlation between volume and iron levels in putamen, globus pallidus and the anterior cingulate; and a direct correlation in cortical structures (SMA-sensoriomotor and temporo-occipital). Iron homeostasis is affected in the disease; however, there appear to be differences in the role played by iron in basal ganglia and in cortex.
Collapse
Affiliation(s)
- Cristina Sánchez‐Castañeda
- Department of RadiologyIRCCS Santa Lucia FoundationRomeItaly
- Department of Psychiatry and Clinical PsychobiologyUniversity of Barcelona, IDIBAPSBarcelonaSpain
| | | | - Margherita Di Paola
- Department of RadiologyIRCCS Santa Lucia FoundationRomeItaly
- Department of Internal Medicine and Public HealthUniversity of L'Aquila, L'AquilaCoppitoItaly
| | - Michael Dayan
- Department of RadiologyIRCCS Santa Lucia FoundationRomeItaly
| | | | | |
Collapse
|
143
|
Rees EM, Farmer R, Cole JH, Haider S, Durr A, Landwehrmeyer B, Scahill RI, Tabrizi SJ, Hobbs NZ. Cerebellar abnormalities in Huntington's disease: a role in motor and psychiatric impairment? Mov Disord 2014; 29:1648-54. [PMID: 25123926 DOI: 10.1002/mds.25984] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/20/2014] [Accepted: 07/13/2014] [Indexed: 03/07/2024] Open
Abstract
The cerebellum has received limited attention in Huntington's disease (HD), despite signs of possible cerebellar dysfunction, including motor incoordination and impaired gait, which are currently attributed to basal ganglia atrophy and disrupted fronto-striatal circuits. This study is the first to investigate a potential contribution of macro- and microstructural cerebellar damage to clinical manifestations of HD. T1- and diffusion-weighted 3T magnetic resonance imaging (MRI) scans were obtained from 12 controls and 22 early-stage HD participants. Manual delineation and voxel-based morphometry were used to assess between-group differences in cerebellar volume, and diffusion metrics were compared between groups within the cerebellar gray and white matter. Associations between these imaging measures and clinical scores were examined within the HD group. Reduced paravermal volume was detected in HD compared with controls using voxel-based morphometry (P < 0.05), but no significant volumetric differences were found using manual delineation. Diffusion abnormalities were detected in both cerebellar gray matter and white matter. Smaller cerebellar volumes, although not significantly reduced, were significantly associated with impaired gait and psychiatric morbidity and of borderline significance with pronate/supinate-hand task performance. Abnormal cerebellar diffusion was associated with increased total motor score, impaired saccade initiation, tandem walking, and timed finger tapping. In conclusion, atrophy of the paravermis, possibly encompassing the cerebellar nuclei, and microstructural abnormalities within the cerebellum may contribute to HD neuropathology. Aberrant cerebellar diffusion and reduced cerebellar volume together associate with impaired motor function and increased psychiatric symptoms in stage I HD, potentially implicating the cerebellum more centrally in HD presentation than previously recognized.
Collapse
Affiliation(s)
- Elin M Rees
- University College London, Institute of Neurology, Queen Square, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Deng YP, Wong T, Wan JY, Reiner A. Differential loss of thalamostriatal and corticostriatal input to striatal projection neuron types prior to overt motor symptoms in the Q140 knock-in mouse model of Huntington's disease. Front Syst Neurosci 2014; 8:198. [PMID: 25360089 PMCID: PMC4197654 DOI: 10.3389/fnsys.2014.00198] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/23/2014] [Indexed: 11/13/2022] Open
Abstract
Motor slowing and forebrain white matter loss have been reported in premanifest Huntington's disease (HD) prior to substantial striatal neuron loss. These findings raise the possibility that early motor defects in HD may be related to loss of excitatory input to striatum. In a prior study, we showed that in the heterozygous Q140 knock-in mouse model of HD that loss of thalamostriatal axospinous terminals is evident by 4 months, and loss of corticostriatal axospinous terminals is evident at 12 months, before striatal projection neuron pathology. In the present study, we specifically characterized the loss of thalamostriatal and corticostriatal terminals on direct (dSPN) and indirect (iSPN) pathway striatal projection neurons, using immunolabeling to identify thalamostriatal (VGLUT2+) and corticostriatal (VGLUT1+) axospinous terminals, and D1 receptor immunolabeling to distinguish dSPN (D1+) and iSPN (D1-) synaptic targets. We found that the loss of corticostriatal terminals at 12 months of age was preferential for D1+ spines, and especially involved smaller terminals, presumptively of the intratelencephalically projecting (IT) type. By contrast, indirect pathway D1- spines showed little loss of axospinous terminals at the same age. Thalamostriatal terminal loss was comparable for D1+ and D1- spines at both 4 and 12 months. Regression analysis showed that the loss of VGLUT1+ terminals on D1+ spines was correlated with a slight decline in open field motor parameters at 12 months. Our overall results raise the possibility that differential thalamic and cortical input loss to SPNs is an early event in human HD, with cortical loss to dSPNs in particular contributing to premanifest motor slowing.
Collapse
Affiliation(s)
- Yun-Ping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Ting Wong
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Jim Y Wan
- Department of Preventive Medicine, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
145
|
Ashbrook DG, Williams RW, Lu L, Stein JL, Hibar DP, Nichols TE, Medland SE, Thompson PM, Hager R. Joint genetic analysis of hippocampal size in mouse and human identifies a novel gene linked to neurodegenerative disease. BMC Genomics 2014; 15:850. [PMID: 25280473 PMCID: PMC4192369 DOI: 10.1186/1471-2164-15-850] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders. RESULTS We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis. CONCLUSIONS We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer's.
Collapse
Affiliation(s)
- David G Ashbrook
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Ghilan M, Bostrom CA, Hryciw BN, Simpson JM, Christie BR, Gil-Mohapel J. YAC128 Huntington׳s disease transgenic mice show enhanced short-term hippocampal synaptic plasticity early in the course of the disease. Brain Res 2014; 1581:117-28. [DOI: 10.1016/j.brainres.2014.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/02/2014] [Accepted: 06/07/2014] [Indexed: 01/31/2023]
|
147
|
Ferris CF, Kulkarni P, Toddes S, Yee J, Kenkel W, Nedelman M. Studies on the Q175 Knock-in Model of Huntington's Disease Using Functional Imaging in Awake Mice: Evidence of Olfactory Dysfunction. Front Neurol 2014; 5:94. [PMID: 25071696 PMCID: PMC4074991 DOI: 10.3389/fneur.2014.00094] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/25/2014] [Indexed: 12/04/2022] Open
Abstract
Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, HETzQ175, and HOMzQ175 genotypes in response to the odor of almond. The study was designed to see how alterations in the huntingtin gene in a mouse model of Huntington’s disease would affect the perception and processing of almond odor, an evolutionarily conserved stimulus with high emotional and motivational valence. Moreover, the mice in this study were “odor naïve,” i.e., never having smelled almond or any nuts. Using a segmented, annotated MRI atlas of the mouse and computational analysis, 17 out of 116 brain regions were identified as responding differently to almond odor across genotypes. These regions included the glomerulus of the olfactory bulb, forebrain cortex, anterior cingulate, subiculum, and dentate gyrus of the hippocampus, and several areas of the hypothalamus. In many cases, these regions showed a gene-dose effect with HETzQ175 mice showing a reduction in brain activity from wild-type that is further reduced in HOMzQ175 mice. Conspicuously absent were any differences in brain activity in the caudate/putamen, thalamus, CA3, and CA1 of the hippocampus and much of the cortex. The glomerulus of the olfactory bulb in HOMzQ175 mice showed a reduced change in BOLD signal intensity in response to almond odor as compared to the other phenotypes suggesting a deficit in olfactory sensitivity.
Collapse
Affiliation(s)
- Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University , Boston, MA , USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University , Boston, MA , USA
| | | | - Jason Yee
- Center for Translational NeuroImaging, Northeastern University , Boston, MA , USA
| | - William Kenkel
- Center for Translational NeuroImaging, Northeastern University , Boston, MA , USA
| | | |
Collapse
|
148
|
Abstract
Huntington’s disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded trinucleotide CAG sequence in huntingtin gene (HTT) on chromosome 4. HD manifests with chorea, cognitive and psychiatric symptoms. Although advances in genetics allow identification of individuals carrying the HD gene, much is still unknown about the mechanisms underlying the development of overt clinical symptoms and the transitional period between premanifestation and manifestation of the disease. HD has no cure and patients rely only in symptomatic treatment. There is an urgent need to identify biomarkers that are able to monitor disease progression and assess the development and efficacy of novel disease modifying drugs. Over the past years, neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have provided important advances in our understanding of HD. MRI provides information about structural and functional organization of the brain, while PET can detect molecular changes in the brain. MRI and PET are able to detect changes in the brains of HD gene carriers years ahead of the manifestation of the disease and have also proved to be powerful in assessing disease progression. However, no single technique has been validated as an optimal biomarker. An integrative multimodal imaging approach, which combines different MRI and PET techniques, could be recommended for monitoring potential neuroprotective and preventive therapies in HD. In this article we review the current neuroimaging literature in HD.
Collapse
|
149
|
Muller M, Leavitt BR. Iron dysregulation in Huntington's disease. J Neurochem 2014; 130:328-50. [PMID: 24717009 DOI: 10.1111/jnc.12739] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is one of many neurodegenerative diseases with reported alterations in brain iron homeostasis that may contribute to neuropathogenesis. Iron accumulation in the specific brain areas of neurodegeneration in HD has been proposed based on observations in post-mortem tissue and magnetic resonance imaging studies. Altered magnetic resonance imaging signal within specific brain regions undergoing neurodegeneration has been consistently reported and interpreted as altered levels of brain iron. Biochemical studies using various techniques to measure iron species in human samples, mouse tissue, or in vitro has generated equivocal data to support such an association. Whether elevated brain iron occurs in HD, plays a significant contributing role in HD pathogenesis, or is a secondary effect remains currently unclear.
Collapse
Affiliation(s)
- Michelle Muller
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
150
|
Brouillet E. The 3-NP Model of Striatal Neurodegeneration. CURRENT PROTOCOLS IN NEUROSCIENCE 2014; 67:9.48.1-9.48.14. [PMID: 24723322 DOI: 10.1002/0471142301.ns0948s67] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mitochondrial toxin 3-nitropropionic acid (3-NP) is an irreversible inhibitor of respiratory chain complex II. Chronic systemic administration of 3-NP to mice, rats, and non-human primates leads to preferential degeneration of the striatum, and produces motor and cognitive symptoms that are highly reminiscent of Huntington's disease (HD). HD is caused by a dominant inherited expansion of CAG repeats in the Huntington gene. Thus, many aspects of HD cannot be mimicked by 3-NP. However, recent research shows that mitochondrial defects and oxidative stress may play a key role in HD pathogenesis, further supporting the potential utility of the 3-NP model of striatal degeneration. First, a basic protocol to produce acute striatal lesions in rats using repeated intraperitoneal injection of 3-NP is described. Second, a more complex protocol that takes advantage of the use of osmotic minipumps to steadily release 3-NP leading to consistent lesions and motor symptoms in Lewis rats is presented.
Collapse
Affiliation(s)
- Emmanuel Brouillet
- Neurodegenerative Diseases Laboratory, URA2210, CEA, and CNRS, Molecular Imaging Research Center (MIRCen), I2BM, Life Science Division, Fontenay-aux-Roses, France
| |
Collapse
|