101
|
Nelson ME, Andel R, Hort J. Cognitive reserve, neuropathology, and progression towards Alzheimer's disease. Aging (Albany NY) 2023; 15:5963-5965. [PMID: 37450412 PMCID: PMC10373956 DOI: 10.18632/aging.204909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/17/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Monica E. Nelson
- School of Aging Studies, University of South Florida, Tampa, FL 33612, USA
| | - Ross Andel
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
102
|
Rajabli F, Seixas AA, Akgun B, Adams LD, Inciute J, Starks T, Laux R, Byrd GS, Haines JL, Beecham GW, Vance JM, Cuccaro ML, Pericak-Vance MA. African ancestry APOE e4 non-carriers with higher educational attainment are resilient to Alzheimer disease pathology-specific blood biomarker pTau181. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.06.23292263. [PMID: 37461667 PMCID: PMC10350130 DOI: 10.1101/2023.07.06.23292263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Cognitive and functional abilities in individuals with Alzheimer disease (AD) pathology (ADP) show greater than expected variability. While most individuals show substantial impairments in these abilities, a considerable number show little or no impairments. Factors contributing to this variability are not well understood. For instance, multiple studies have shown that higher levels of education are associated with reduced cognitive impairments among those with ADP. However, it remains unclear whether higher levels of education are associated with functional impairments among those with ADP. We studied 410 AA individuals with advanced levels of pTau181 (a biomarker for ADP; individuals as those having log 10 (pTau181) level greater than one standard deviation above the mean) to determine whether EA (categorized as low EA for individuals with ≤ 8 years of education and high EA for those with >8 years) promotes functional resilience and whether this effect varies between APOE ε4 carriers and non-carriers. We used the four non-memory components of the Clinical Dementia Rating (CDR) to create a composite score (CDR-FUNC) to evaluate functional difficulties (scored from 0=no impairment to 12=severe). We employed the non-parametric Mann-Whitney U test to assess the relationship between EA and CDR-FUNC in advanced levels of pTau181 individuals. The results showed that EA promotes resilience to functional problems in AA individuals with advanced levels of pTau181, such that individuals with high EA are more likely to have better functional ability compared to those with lower EA (W=730.5, p=0.0007). Additionally, we found that the effect of high EA on functional resilience was stronger in ε4 non-carriers compared to ε4 carriers (W=555.5, p=0.022). This study extends the role of cognitive reserve and EA to functional performance showing that cognitive reserve influences the association between ADP burden and functional difficulties. Interestingly, this protective effect seems less pronounced in carriers of the strong genetic risk allele ε4. The results highlight the intricate interplay of genetic and non-genetic factors in AD progression, suggesting a need for more personalized strategies to manage functional decline in AD.
Collapse
|
103
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
104
|
Zheng L, Eramudugolla R, Cherbuin N, Drouin SM, Dixon RA, Anstey KJ. Gender specific factors contributing to cognitive resilience in APOE ɛ4 positive older adults in a population-based sample. Sci Rep 2023; 13:8037. [PMID: 37198167 DOI: 10.1038/s41598-023-34485-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Although APOE ɛ4 has been identified as the strongest genetic risk factor for Alzheimer's Disease, there are some APOE ɛ4 carriers who do not go on to develop Alzheimer's disease or cognitive impairment. This study aims to investigate factors contributing to this "resilience" separately by gender. Data were drawn from APOE ɛ4 positive participants who were aged 60 + at baseline in the Personality and Total Health Through Life (PATH) Study (N = 341, Women = 46.3%). Participants were categorised into "resilient" and "non-resilient" groups using Latent Class Analysis based on their cognitive impairment status and cognitive trajectory across 12 years. Logistic regression was used to identify the risk and protective factors that contributed to resilience stratified by gender. For APOE ɛ4 carriers who have not had a stroke, predictors of resilience were increased frequency of mild physical activity and being employed at baseline for men, and increased number of mental activities engaged in at baseline for women. The results provide insights into a novel way of classifying resilience among APOE ɛ4 carriers and risk and protective factors contributing to resilience separately for men and women.
Collapse
Affiliation(s)
- Lidan Zheng
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia.
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia.
- UNSW Ageing Futures Institute, Kensington, NSW, Australia.
| | - Ranmalee Eramudugolla
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia
- UNSW Ageing Futures Institute, Kensington, NSW, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - Shannon M Drouin
- Department of Psychology, University of Alberta, Edmonton, Canada
| | - Roger A Dixon
- Department of Psychology, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Kaarin J Anstey
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia
- UNSW Ageing Futures Institute, Kensington, NSW, Australia
| |
Collapse
|
105
|
Willroth E, Pfund G, McGhee C, Rule P. Well-Being as a Protective Factor Against Cognitive Decline and Dementia: A Review of the Literature and Directions for Future Research. J Gerontol B Psychol Sci Soc Sci 2023; 78:765-776. [PMID: 36734357 PMCID: PMC10174196 DOI: 10.1093/geronb/gbad020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Treatments that target the biological causes of dementia remain limited, making prevention critically important. Well-being-defined broadly as living in accordance with one's potential and experiencing one's life as enjoyable and satisfying-is a promising avenue for prevention. It can be targeted by large-scale, noninvasive interventions and has been linked with better cognitive health and lower dementia risk. In the current review, we begin by summarizing empirical evidence linking well-being to cognitive functioning, cognitive decline, dementia diagnosis, and dementia-related neuropathology. Then, we highlight 3 key areas for future research. METHODS We searched the literature on wellbeing, cognitive decline, and dementia, focusing on prospective and longitidinal evidence. RESULTS The research reviewed here provides consistent evidence for associations of well-being with cognitive decline, dementia risk, and cognitive resilience to neuropathology. However, several open questions remain regarding (1) causality and mechanism(s), (2) specificity versus generalizability of associations, and (3) timing. DISCUSSION To inform potential intervention efforts, the field must address complex open questions about whether, how, when, and for whom well-being influences dementia risk. The majority of existing research on well-being and cognitive health is correlational, and few studies have tested potential mechanisms that may explain those associations. Further, relatively little is known about the generalizability of associations across different aspects of well-being and for different sociocultural groups. Finally, we do not yet understand when in the life span and on what timescale well-being might influence cognitive health. We discuss challenges and opportunities for addressing each of these open questions, including concrete recommendations for research designs and use of open science practices.
Collapse
Affiliation(s)
- Emily C Willroth
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gabrielle N Pfund
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chloe McGhee
- Psychiatry & Behavioral Sciences, Stanford School of Medicine, Stanford, California, USA
| | - Payton Rule
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
106
|
Inflammasome activation in traumatic brain injury and Alzheimer's disease. Transl Res 2023; 254:1-12. [PMID: 36070840 DOI: 10.1016/j.trsl.2022.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) represent 2 of the largest sources of death and disability in the United States. Recent studies have identified TBI as a potential risk factor for AD development, and numerous reports have shown that TBI is linked with AD associated protein expression during the acute phase of injury, suggesting an interplay between the 2 pathologies. The inflammasome is a multi-protein complex that plays a role in both TBI and AD pathologies, and is characterized by inflammatory cytokine release and pyroptotic cell death. Products of inflammasome signaling pathways activate microglia and astrocytes, which attempt to resolve pathological inflammation caused by inflammatory cytokine release and phagocytosis of cellular debris. Although the initial phase of the inflammatory response in the nervous system is beneficial, recent evidence has emerged that the heightened inflammatory response after trauma is self-perpetuating and results in additional damage in the central nervous system. Inflammasome-induced cytokines and inflammasome signaling proteins released from activated microglia interact with AD associated proteins and exacerbate AD pathological progression and cellular damage. Additionally, multiple genetic mutations associated with AD development alter microglia inflammatory activity, increasing and perpetuating inflammatory cell damage. In this review, we discuss the pathologies of TBI and AD and how they are impacted by and potentially interact through inflammasome activity and signaling proteins. We discuss current clinical trials that target the inflammasome to reduce heightened inflammation associated with these disorders.
Collapse
|
107
|
Ayoub CA, Wagner CS, Kuret J. Identification of gene networks mediating regional resistance to tauopathy in late-onset Alzheimer’s disease. PLoS Genet 2023; 19:e1010681. [PMID: 36972319 PMCID: PMC10079065 DOI: 10.1371/journal.pgen.1010681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 04/06/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Neurofibrillary lesions composed of tau protein aggregates are defining hallmarks of Alzheimer’s Disease. Despite tau filaments appearing to spread between networked brain regions in a prion-like manner, certain areas including cerebellum resist trans-synaptic spread of tauopathy and degeneration of their constituent neuronal cell bodies. To identify molecular correlates of resistance, we derived and implemented a ratio of ratios approach for disaggregating gene expression data on the basis of regional vulnerability to tauopathic neurodegeneration. When applied to vulnerable pre-frontal cortex as an internal reference for resistant cerebellum, the approach segregated adaptive changes in expression into two components. The first was enriched for neuron-derived transcripts associated with proteostasis including specific members of the molecular chaperone family and was unique to resistant cerebellum. When produced as purified proteins, each of the identified chaperones depressed aggregation of 2N4R tau in vitro at sub-stoichiometric concentrations, consistent with the expression polarity deduced from ratio of ratios testing. In contrast, the second component enriched for glia- and microglia-derived transcripts associated with neuroinflammation, segregating these pathways from susceptibility to tauopathy. These data support the utility of ratio of ratios testing for establishing the polarity of gene expression changes with respect to selective vulnerability. The approach has the potential to identify new targets for drug discovery predicated on their ability to promote resistance to disease in vulnerable neuron populations.
Collapse
Affiliation(s)
- Christopher A. Ayoub
- Biomedical Sciences Graduate Program, Ohio State University, Columbus, Ohio, United States of America
- Medical Scientist Training Program, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (CAA); (JK)
| | - Connor S. Wagner
- Department of Biological Chemistry & Pharmacology, Ohio State University, Columbus, Ohio, United States of America
| | - Jeff Kuret
- Department of Biological Chemistry & Pharmacology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (CAA); (JK)
| |
Collapse
|
108
|
Schreiber S, Bernal J, Arndt P, Schreiber F, Müller P, Morton L, Braun-Dullaeus RC, Valdés-Hernández MDC, Duarte R, Wardlaw JM, Meuth SG, Mietzner G, Vielhaber S, Dunay IR, Dityatev A, Jandke S, Mattern H. Brain Vascular Health in ALS Is Mediated through Motor Cortex Microvascular Integrity. Cells 2023; 12:957. [PMID: 36980297 PMCID: PMC10047140 DOI: 10.3390/cells12060957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Brain vascular health appears to be critical for preventing the development of amyotrophic lateral sclerosis (ALS) and slowing its progression. ALS patients often demonstrate cardiovascular risk factors and commonly suffer from cerebrovascular disease, with evidence of pathological alterations in their small cerebral blood vessels. Impaired vascular brain health has detrimental effects on motor neurons: vascular endothelial growth factor levels are lowered in ALS, which can compromise endothelial cell formation and the integrity of the blood-brain barrier. Increased turnover of neurovascular unit cells precedes their senescence, which, together with pericyte alterations, further fosters the failure of toxic metabolite removal. We here provide a comprehensive overview of the pathogenesis of impaired brain vascular health in ALS and how novel magnetic resonance imaging techniques can aid its detection. In particular, we discuss vascular patterns of blood supply to the motor cortex with the number of branches from the anterior and middle cerebral arteries acting as a novel marker of resistance and resilience against downstream effects of vascular risk and events in ALS. We outline how certain interventions adapted to patient needs and capabilities have the potential to mechanistically target the brain microvasculature towards favorable motor cortex blood supply patterns. Through this strategy, we aim to guide novel approaches to ALS management and a better understanding of ALS pathophysiology.
Collapse
Affiliation(s)
- Stefanie Schreiber
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Jose Bernal
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Philipp Arndt
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Frank Schreiber
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Patrick Müller
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Department of Internal Medicine/Cardiology and Angiology, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | | | | | - Roberto Duarte
- Centre for Clinical Brain Sciences, The University of Edinburgh, UK Dementia Research Institute Centre, Edinburgh EH16 4UX, UK
| | - Joanna Marguerite Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, UK Dementia Research Institute Centre, Edinburgh EH16 4UX, UK
| | - Sven Günther Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Grazia Mietzner
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Solveig Jandke
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
109
|
Abellaneda-Pérez K, Cattaneo G, Cabello-Toscano M, Solana-Sánchez J, Mulet-Pons L, Vaqué-Alcázar L, Perellón-Alfonso R, Solé-Padullés C, Bargalló N, Tormos JM, Pascual-Leone A, Bartrés-Faz D. Purpose in life promotes resilience to age-related brain burden in middle-aged adults. Alzheimers Res Ther 2023; 15:49. [PMID: 36915148 PMCID: PMC10009845 DOI: 10.1186/s13195-023-01198-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Disease-modifying agents to counteract cognitive impairment in older age remain elusive. Hence, identifying modifiable factors promoting resilience, as the capacity of the brain to maintain cognition and function with aging and disease, is paramount. In Alzheimer's disease (AD), education and occupation are typical cognitive reserve proxies. However, the importance of psychological factors is being increasingly recognized, as their operating biological mechanisms are elucidated. Purpose in life (PiL), one of the pillars of psychological well-being, has previously been found to reduce the deleterious effects of AD-related pathological changes on cognition. However, whether PiL operates as a resilience factor in middle-aged individuals and what are the underlying neural mechanisms remain unknown. METHODS Data was obtained from 624 middle-aged adults (mean age 53.71 ± 6.9; 303 women) from the Barcelona Brain Health Initiative cohort. Individuals with lower (LP; N = 146) and higher (HP; N = 100) PiL rates, according to the division of this variable into quintiles, were compared in terms of cognitive status, a measure reflecting brain burden (white matter lesions; WMLs), and resting-state functional connectivity, examining system segregation (SyS) parameters using 14 common brain circuits. RESULTS Neuropsychological status and WMLs burden did not differ between the PiL groups. However, in the LP group, greater WMLs entailed a negative impact on executive functions. Subjects in the HP group showed lower SyS of the dorsal default-mode network (dDMN), indicating lesser segregation of this network from other brain circuits. Specifically, HP individuals had greater inter-network connectivity between specific dDMN nodes, including the frontal cortex, the hippocampal formation, the midcingulate region, and the rest of the brain. Greater functional connectivity in some of these nodes positively correlated with cognitive performance. CONCLUSION Expanding previous findings on AD pathology and advanced age, the present results suggest that higher rates of PiL may promote resilience against brain changes already observable in middle age. Furthermore, having a purposeful life implies larger functional integration of the dDMN, which may potentially reflect greater brain reserve associated to better cognitive function.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain. .,Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain. .,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain.
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - María Cabello-Toscano
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| | - Javier Solana-Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Lídia Mulet-Pons
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Bargalló
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Neuroradiology Section, Radiology Department, Diagnostic Image Center, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep M Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain.,Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.,Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.
| |
Collapse
|
110
|
Cui SS, Jiang QW, Chen SD. Sex difference in biological change and mechanism of Alzheimer’s disease: from macro- to micro-landscape. Ageing Res Rev 2023; 87:101918. [PMID: 36967089 DOI: 10.1016/j.arr.2023.101918] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and numerous studies reported a higher prevalence and incidence of AD among women. Although women have longer lifetime, longevity does not wholly explain the higher frequency and lifetime risk in women. It is important to understand sex differences in AD pathophysiology and pathogenesis, which could provide foundation for future clinical AD research. Here, we reviewed the most recent and relevant literature on sex differences in biological change of AD from macroscopical neuroimaging to microscopical pathologic change (neuronal degeneration, synaptic dysfunction, amyloid-beta and tau accumulation). We also discussed sex differences in cellular mechanisms related to AD (neuroinflammation, mitochondria dysfunction, oxygen stress, apoptosis, autophagy, blood-brain-barrier dysfunction, gut microbiome alteration, bulk and single cell/nucleus omics) and possible causes underlying these differences including sex-chromosome, sex hormone and hypothalamic-pituitary- adrenal (HPA) axis effects.
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian-Wen Jiang
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
111
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
112
|
Hoenig MC, Drzezga A. Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J Neurochem 2023; 164:325-345. [PMID: 35226362 DOI: 10.1111/jnc.15598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
With the advances in modern medicine and the adaptation towards healthier lifestyles, the average life expectancy has doubled since the 1930s, with individuals born in the millennium years now carrying an estimated life expectancy of around 100 years. And even though many individuals around the globe manage to age successfully, the prevalence of aging-associated neurodegenerative diseases such as sporadic Alzheimer's disease has never been as high as nowadays. The prevalence of Alzheimer's disease is anticipated to triple by 2050, increasing the societal and economic burden tremendously. Despite all efforts, there is still no available treatment defeating the accelerated aging process as seen in this disease. Yet, given the advances in neuroimaging techniques that are discussed in the current Review article, such as in positron emission tomography (PET) or magnetic resonance imaging (MRI), pivotal insights into the heterogenous effects of aging-associated processes and the contribution of distinct lifestyle and risk factors already have and are still being gathered. In particular, the concepts of resilience (i.e. coping with brain pathology) and resistance (i.e. avoiding brain pathology) have more recently been discussed as they relate to mechanisms that are associated with the prolongation and/or even stop of the progressive brain aging process. Better understanding of the underlying mechanisms of resilience and resistance may one day, hopefully, support the identification of defeating mechanism against accelerating aging.
Collapse
Affiliation(s)
- Merle C Hoenig
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Drzezga
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| |
Collapse
|
113
|
Dobyns L, Zhuang K, Baker SL, Mungas D, Jagust WJ, Harrison TM. An empirical measure of resilience explains individual differences in the effect of tau pathology on memory change in aging. NATURE AGING 2023; 3:229-237. [PMID: 37118122 PMCID: PMC10148952 DOI: 10.1038/s43587-022-00353-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/19/2022] [Indexed: 04/30/2023]
Abstract
Accurately measuring resilience to preclinical Alzheimer's disease (AD) pathology is essential to understanding an important source of variability in cognitive aging. In a cohort of cognitively normal older adults (n = 123, age 76.75 ± 6.15 yr), we built a multifactorial measure of resilience which moderated the effect of AD pathology on longitudinal cognitive change. Linear residuals-based measures of resilience, along with other proxy measures (education and vocabulary), were entered into a hierarchical partial least-squares path model defining a putative consolidated resilience latent factor (model goodness of fit = 0.77). In a set of validation analyses using linear mixed models predicting longitudinal cognitive change, there was a significant three-way interaction among consolidated resilience, tau and time on episodic memory change (P = 0.001) such that higher resilience blunted the effect of tau pathology on episodic memory decline. Interactions between consolidated resilience and amyloid pathology on non-memory cognition decline suggested that resilience moderates pathology-specific effects on different cognitive domains.
Collapse
Affiliation(s)
- Lindsey Dobyns
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Kailin Zhuang
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | | | - Dan Mungas
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
114
|
Nasreddine Z, Garibotto V, Kyaga S, Padovani A. The Early Diagnosis of Alzheimer's Disease: A Patient-Centred Conversation with the Care Team. Neurol Ther 2023; 12:11-23. [PMID: 36528836 PMCID: PMC9837364 DOI: 10.1007/s40120-022-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which accounts for 60-80% of dementia cases, affecting approximately 10 million people in Europe. Neuroimaging techniques and cerebrospinal fluid biomarkers used in combination with cognitive assessment tools open the door to early diagnosis of AD. However, these tools present some challenges that need to be overcome, such as low sensitivity or specificity, high cost, limited availability or invasiveness. Thus, low-cost and non-invasive alternatives, such as plasma biomarkers, have the potential to drive changes in AD screening and diagnosis. In addition to the technical aspects, organisational challenges as well as ethical concerns need to be addressed. In many countries, there is an insufficient number of specialists to recognise, evaluate and diagnose dementia and the waiting times to see a specialist are long. Given that there is currently no cure for AD, it is important to consider the potential psychological impact of an early diagnosis. In addition, counselling before biomarker sampling and during diagnosis disclosure is vital to guarantee that the patients have all the information necessary and their queries are addressed in a sensitive manner. Here, we illustrate (using a clinical vignette) current challenges of diagnosis and discuss some of the benefits and challenges of early diagnosis in AD including the value of biomarkers in combination with clinical evaluation. Lastly, some guidelines for disclosing early diagnosis of AD are provided based on our experiences.
Collapse
Affiliation(s)
| | - Valentina Garibotto
- University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Simon Kyaga
- Biogen International GmbH, Neuhofstrasse 30, 6340, Baar, Switzerland.
| | | |
Collapse
|
115
|
Contador I, Alzola P, Stern Y, de la Torre-Luque A, Bermejo-Pareja F, Fernández-Calvo B. Is cognitive reserve associated with the prevention of cognitive decline after stroke? A Systematic review and meta-analysis. Ageing Res Rev 2023; 84:101814. [PMID: 36473672 DOI: 10.1016/j.arr.2022.101814] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To conduct a systematic review and meta-analyses of the effect of socio-behavioral cognitive reserve (CR) proxies on cognitive decline after stroke. METHOD Three journal search and indexing databases (PubMed, Scopus and Web of Sciences) were crossed to examine the scientific evidence systematically. In addition, meta-analytic techniques, using mixed-effect methods, were carried out to estimate the impact (pooled effect size) of CR proxies on either dementia incidence or cognitive decline after stroke. RESULTS Twenty-two studies were included in the systematic revision, whereas nineteen of them were eligible for the meta-analysis. The findings showed that high education is associated with a decreased rate of post-stroke dementia. Moreover, other CR proxies (e.g., occupation, bilingualism or social interaction) demonstrate a protective effect against non-dementia cognitive decline after stroke, although some inconsistencies were found in the literature. Regarding the meta-analysis, occupational attainment and education) showed a protective effect against post-stroke cognitive impairment diagnosis in comparison with a mixed category of different CR proxies. Second, a main cognitive change effect was found, pointing to greater cognitive change after stroke in those with low vs. high CR. CONCLUSIONS Our findings emphasize that CR may prevent cognitive decline after stroke, but this effect can be modulated by different factors such the CR proxy and individual characteristics such as age or type of lesion. The methodological divergences of the studies (i.e., follow-up intervals, cognitive outcomes) need unification to diminish external sources of variability for predicting rates of cognitive decline after stroke.
Collapse
Affiliation(s)
- Israel Contador
- Department of Basic Psychology, Psychobiology and Methodology of Behavioral Sciences, University of Salamanca, Spain; 'Hospital del Mar' Medical Research Institute, Barcelona, Spain.
| | - Patricia Alzola
- Department of Basic Psychology, Psychobiology and Methodology of Behavioral Sciences, University of Salamanca, Spain.
| | - Yaakov Stern
- Cognitive Neuroscience Division, The Taub Institute, and Department of Neurology, Columbia University College of Physicians and Surgeons, New York, United States.
| | - Alejandro de la Torre-Luque
- Department of Legal Medicine, Psychiatry and Pathology, Centre for Biomedical Research in Mental Health (CIBERSAM), Complutense University, Madrid, Spain.
| | - Félix Bermejo-Pareja
- Research Institute (Imas12), University Hospital "12 de Octubre", Madrid, Spain; The Biomedical Research Centre Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Bernardino Fernández-Calvo
- Department of Psychology, University of Córdoba, Spain.; Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University Hospital Reina Sofía, Córdoba, Spain.
| |
Collapse
|
116
|
Qian J, Zhang Y, Betensky RA, Hyman BT, Serrano-Pozo A. Neuropathology-Independent Association Between APOE Genotype and Cognitive Decline Rate in the Normal Aging-Early Alzheimer Continuum. Neurol Genet 2023; 9:e200055. [PMID: 36698453 PMCID: PMC9869750 DOI: 10.1212/nxg.0000000000200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 01/22/2023]
Abstract
Background and Objectives We previously found that the APOE genotype affects the rate of cognitive decline in mild-to-moderate Alzheimer disease (AD) dementia independently of its effects on AD neuropathologic changes (ADNC) and copathologies. In this study, we tested the hypothesis that the APOE alleles differentially affect the rate of cognitive decline at the normal aging-early AD continuum and that this association is independent of their effects on classical ADNC and copathologies. Methods We analyzed APOE associations with the cognitive trajectories (Clinical Dementia Rating scale Sum of Boxes [CDR-SOB] and Mini-Mental State Examination [MMSE]) of more than 1,000 individuals from a national clinicopathologic sample who had either no, mild (sparse neuritic plaques and the Braak neurofibrillary tangle [NFT] stage I/II), or intermediate (moderate neuritic plaques and the Braak NFT stage III/IV) ADNC levels at autopsy via 2 latent classes reverse-time longitudinal modeling. Results Carrying the APOEε4 allele was associated with a faster rate of cognitive decline by both CDR-SOB and MMSE relative to APOEε3 homozygotes. This association remained statistically significant after adjusting for ADNC severity, comorbid pathologies, and the effects of ADNC on the slope of cognitive decline. Our modeling strategy identified 2 latent classes in which APOEε4 carriers declined faster than APOEε3 homozygotes, with latent class 1 members representing slow decliners (CDR-SOB: 76.7% of individuals, 0.195 vs 0.146 points/y in APOEε4 vs APOEε3/ε3; MMSE: 88.6% of individuals, -0.303 vs -0.153 points/y in APOEε4 vs APOEε3/ε3), whereas latent class 2 members were fast decliners (CDR-SOB: 23.3% of participants, 1.536 vs 1.487 points/y in APOEε4 vs APOEε3/ε3; MMSE: 11.4% of participants, -2.538 vs -2.387 points/y in APOEε4 vs APOEε3/ε3). Compared with slow decliners, fast decliners were more likely to carry the APOEε4 allele, younger at initial visit and death, more impaired at initial and last visits, and more likely to have intermediate (vs none or mild) ADNC levels, as well as concurrent Lewy bodies and hippocampal sclerosis at autopsy. Discussion In a large national sample selected to represent the normal aging-early AD continuum, the APOEε4 allele is associated with a modest but statistically significant acceleration of the cognitive decline rate even after controlling for its effects on ADNC and comorbid pathologies.
Collapse
Affiliation(s)
- Jing Qian
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Yiding Zhang
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Rebecca A Betensky
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Bradley T Hyman
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Alberto Serrano-Pozo
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| |
Collapse
|
117
|
Walker JM, Richardson TE. Cognitive resistance to and resilience against multiple comorbid neurodegenerative pathologies and the impact of APOE status. J Neuropathol Exp Neurol 2023; 82:110-119. [PMID: 36458951 PMCID: PMC9852945 DOI: 10.1093/jnen/nlac115] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Alzheimer disease (AD) is currently the leading cause of cognitive decline and dementia worldwide. Recently, studies have suggested that other neurodegenerative comorbidities such as limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), Lewy body disease (LBD), and cerebrovascular disease frequently co-occur with Alzheimer disease neuropathologic change (ADNC) and may have significant cognitive effects both in isolation and synergistically with ADNC. Herein, we study the relative clinical impact of these multiple neurodegenerative pathologies in 704 subjects. Each of these pathologies is relatively common in the cognitively impaired population, while cerebrovascular pathology and ADNC are the most common in cognitively normal individuals. Moreover, while the number of concurrent neuropathologic entities rises with age and has a progressively deleterious effect on cognition, 44.3% of cognitively intact individuals are resistant to having any neurodegenerative proteinopathy (compared to 15.2% of cognitively impaired individuals) and 83.5% are resistant to having multiple concurrent proteinopathies (compared to 64.6% of cognitively impaired individuals). The presence of at least 1 APOE ε4 allele was associated with impaired cognition and the presence of multiple proteinopathies, while APOE ε2 was protective against cumulative proteinopathies. These results indicate that maintenance of normal cognition may depend on resistance to the development of multiple concurrent proteinopathies.
Collapse
Affiliation(s)
- Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
118
|
Ahangari N, Fischer CE, Schweizer TA, Munoz DG. Cognitive resilience and severe Alzheimer's disease neuropathology. AGING BRAIN 2023; 3:100065. [PMID: 36911256 PMCID: PMC9997171 DOI: 10.1016/j.nbas.2023.100065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Cognitive resilience in Alzheimer's disease (AD) can be defined as retention of high cognition despite presence of considerable cerebral AD lesions. We sought to identify factors associated with this phenomenon. Data were obtained from National Alzheimer's Coordinating Centre (NACC) dataset. Subjects with severe AD neuropathology, based on National Institute on Aging-Reagan (NIA-Reagan) criteria, no other primary neuropathology, and a ≤ 2-year interval between last follow-up and death were included. Mini-mental status examination score ≥ 24 was used as a proxy for normal cognition. In total, 654 cases were included; 59 (9%) were cognitively resilient. Multivariable logistic regression model showed that resilient participants were more educated, had a lower body mass index (BMI), were more likely to be lifetime/recent smoker or use an anticoagulant/antiplatelet agent, compared with cognitively impaired subjects. In addition to expected protective factors such as higher education and lower BMI, our results showed that smoking (especially recent smoking) and anticoagulant/antiplatelet consumption are associated with resilience to clinical cognitive expression of severe AD pathology. Pharmacological approaches using this information might be explored for clinical AD amelioration.
Collapse
Affiliation(s)
- Narges Ahangari
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Corinne E. Fischer
- Keenan Research Centre for Biomedical Science, The Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Tom A. Schweizer
- Keenan Research Centre for Biomedical Science, The Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Faculty of Medicine, University of Toronto, ON, Canada
| | - David G. Munoz
- Division of Pathology, Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, The Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| |
Collapse
|
119
|
Cabaco AS, Wobbeking Sánchez M, Mejía-Ramírez M, Urchaga-Litago JD, Castillo-Riedel E, Bonete-López B. Mediation effects of cognitive, physical, and motivational reserves on cognitive performance in older people. Front Psychol 2023; 13:1112308. [PMID: 36733857 PMCID: PMC9888412 DOI: 10.3389/fpsyg.2022.1112308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction We study from a multidimensional perspective the different factors that help prevent the development of cognitive impairment in old aging. Methods This study analyzed in 300 elderly subjects the relationship between cognitive reserve (CR), physical reserve (PR) and motivational reserve (MR) with cognitive impairment. This study also takes into consideration different variables (sex, age, educational level, and institutionalization) that might affect the results in the different types of reserves (CR, physical and MR) and cognitive impairment. Results The results show that people with a higher cognitive reserve, physical reserve and motivational reserve have less cognitive impairment. Discussion Therefore, it is important to consider measuring the CR as a variable to diagnose neurodegenerative illnesses but it is also essential to consider the physical state and physical activity, as well as the motivational dimension. With the cognitive reserve and sex variables no significant differences were observed. Age had a negative effect on strategic flexibility, but those with higher CR had better cognitive flexibility and the educational.
Collapse
Affiliation(s)
| | | | | | | | | | - Beatriz Bonete-López
- Department of Health Psychology, University of Miguel Hernández de Elche, Elche, Spain
| |
Collapse
|
120
|
Hampel H, Caruso G, Nisticò R, Piccioni G, Mercuri NB, Giorgi FS, Ferrarelli F, Lemercier P, Caraci F, Lista S, Vergallo A. Biological Mechanism-based Neurology and Psychiatry: A BACE1/2 and Downstream Pathway Model. Curr Neuropharmacol 2023; 21:31-53. [PMID: 34852743 PMCID: PMC10193755 DOI: 10.2174/1570159x19666211201095701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 02/04/2023] Open
Abstract
In oncology, comprehensive omics and functional enrichment studies have led to an extensive profiling of (epi)genetic and neurobiological alterations that can be mapped onto a single tumor's clinical phenotype and divergent clinical phenotypes expressing common pathophysiological pathways. Consequently, molecular pathway-based therapeutic interventions for different cancer typologies, namely tumor type- and site-agnostic treatments, have been developed, encouraging the real-world implementation of a paradigm shift in medicine. Given the breakthrough nature of the new-generation translational research and drug development in oncology, there is an increasing rationale to transfertilize this blueprint to other medical fields, including psychiatry and neurology. In order to illustrate the emerging paradigm shift in neuroscience, we provide a state-of-the-art review of translational studies on the β-site amyloid precursor protein cleaving enzyme (BACE) and its most studied downstream effector, neuregulin, which are molecular orchestrators of distinct biological pathways involved in several neurological and psychiatric diseases. This body of data aligns with the evidence of a shared genetic/biological architecture among Alzheimer's disease, schizoaffective disorder, and autism spectrum disorders. To facilitate a forward-looking discussion about a potential first step towards the adoption of biological pathway-based, clinical symptom-agnostic, categorization models in clinical neurology and psychiatry for precision medicine solutions, we engage in a speculative intellectual exercise gravitating around BACE-related science, which is used as a paradigmatic case here. We draw a perspective whereby pathway-based therapeutic strategies could be catalyzed by highthroughput techniques embedded in systems-scaled biology, neuroscience, and pharmacology approaches that will help overcome the constraints of traditional descriptive clinical symptom and syndrome-focused constructs in neurology and psychiatry.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | | | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- School of Pharmacy, University of Rome “Tor Vergata”, Rome, Italy
| | - Gaia Piccioni
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Simone Lista
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| |
Collapse
|
121
|
Fortel I, Zhan L, Ajilore O, Wu Y, Mackin S, Leow A. Disrupted Excitation-Inhibition Balance in Cognitively Normal Individuals at Risk of Alzheimer's Disease. J Alzheimers Dis 2023; 95:1449-1467. [PMID: 37718795 PMCID: PMC11260287 DOI: 10.3233/jad-230035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. OBJECTIVE Examine how AD risk factors (age, APOEɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. METHODS Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). RESULTS In absence of AD risk factors (APOEɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β= -0.007). Regression modeling including APOEɛ4 allele carriers (Aβ-) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β= 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β= 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the Trail Making Test (p < 0.05). CONCLUSIONS Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOEɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOEɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yichao Wu
- Department of Math, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott Mackin
- Department of Psychiatry, University of California – San Francisco, San Francisco, CA, USA
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
122
|
Liu F, Yang J, Feng M, Cui Z, He X, Zhou L, Feng J, Shen D. Does perfect filtering really guarantee perfect phase correction for diffusion MRI data? Comput Med Imaging Graph 2023; 103:102160. [PMID: 36528017 DOI: 10.1016/j.compmedimag.2022.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Owing to its merit of avoiding noise-floor, phase correction is recently used to reconstruct real-valued diffusion MRI data by employing an image filter to estimate the noise-free background phase. However, several studies report an unexpected signal-loss issue for their reconstruction results, with its causing reason still remaining unclear. Although phase correction has achieved promising results in mitigating the signal-loss issue via improving the employed image filter, we have observed counterintuitive results that an advanced filter generates severe artifacts in our previous work. Considering the potential issues with phase correction procedures, in this paper, we argue that even a perfect image filter is insufficient to produce perfect phase correction. To point out the reason why phase correction introduces signal-loss and address this issue, we first propose a complex polar coordinate system (CPCS) to analyze its procedures in detail; second, based on CPCS, we find that phase correction has not sufficiently utilized the background phase, and thus propose a quantitative criterion to fully exploit the background phase; eventually, we propose a phase calibration procedure to remedy current phase correction. Extensive experimental results, including those on synthetic and real diffusion MRI data, demonstrate that our proposed method significantly reduces signal-loss and also eliminates artifacts in FA maps, particularly with improved accuracy on FA.
Collapse
Affiliation(s)
- Feihong Liu
- School of Information Science and Technology, Northwest University, Xi'an, China; School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Junwei Yang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Mingyue Feng
- Department of Informatics, Technische Universität München, Garching, Germany
| | - Zhiming Cui
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Xiaowei He
- School of Information Science and Technology, Northwest University, Xi'an, China; State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, School of Information Science and Technology, Northwest University, Xi'an, China
| | - Luping Zhou
- School of Electrical and Information Engineering, University of Sydney, Sydney, Australia.
| | - Jun Feng
- School of Information Science and Technology, Northwest University, Xi'an, China; State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, School of Information Science and Technology, Northwest University, Xi'an, China.
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
123
|
Zhang J, Liu Q, Zhang H, Dai M, Song Q, Yang D, Wu G, Chen M. Uncovering the System Vulnerability and Criticality of Human Brain Under Dynamical Neuropathological Events in Alzheimer's Disease. J Alzheimers Dis 2023; 95:1201-1219. [PMID: 37661878 PMCID: PMC11177206 DOI: 10.3233/jad-230027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Despite the striking efforts in investigating neurobiological factors behind the acquisition of amyloid-β (A), protein tau (T), and neurodegeneration ([N]) biomarkers, the mechanistic pathways of how AT[N] biomarkers spreading throughout the brain remain elusive. OBJECTIVE To disentangle the massive heterogeneities in Alzheimer's disease (AD) progressions and identify vulnerable/critical brain regions to AD pathology. METHODS In this work, we characterized the interaction of AT[N] biomarkers and their propagation across brain networks using a novel bistable reaction-diffusion model, which allows us to establish a new systems biology underpinning of AD progression. We applied our model to large-scale longitudinal neuroimages from the ADNI database and studied the systematic vulnerability and criticality of brains. RESULTS Our model yields long term prediction that is statistically significant linear correlated with temporal imaging data, produces clinically consistent risk prediction, and captures the Braak-like spreading pattern of AT[N] biomarkers in AD development. CONCLUSIONS Our major findings include (i) tau is a stronger indicator of regional risk compared to amyloid, (ii) temporal lobe exhibits higher vulnerability to AD-related pathologies, (iii) proposed critical brain regions outperform hub nodes in transmitting disease factors across the brain, and (iv) comparing the spread of neuropathological burdens caused by amyloid-β and tau diffusions, disruption of metabolic balance is the most determinant factor contributing to the initiation and progression of AD.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Computer Science, Wake Forest University, Winston-Salem, NC, USA
| | - Qing Liu
- Department of Mathematics, University of North Georgia, Oakwood, GA, USA
| | - Haorui Zhang
- Department of Mathematics, University of North Georgia, Oakwood, GA, USA
| | - Michelle Dai
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Defu Yang
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guorong Wu
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
124
|
Walker JM, Dehkordi SK, Schaffert J, Goette W, White CL, Richardson TE, Zare H. The Spectrum of Alzheimer-Type Pathology in Cognitively Normal Individuals. J Alzheimers Dis 2023; 91:683-695. [PMID: 36502330 PMCID: PMC11184733 DOI: 10.3233/jad-220898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The strongest risk factor for the development of Alzheimer's disease (AD) is age. The progression of Braak stage and Thal phase with age has been demonstrated. However, prior studies did not include cognitive status. OBJECTIVE We set out to define normative values for Alzheimer-type pathologic changes in individuals without cognitive decline, and then define levels that would qualify them to be resistant to or resilient against these changes. METHODS Utilizing neuropathology data obtained from the National Alzheimer's Coordinating Center (NACC), we demonstrate the age-related progression of Alzheimer-type pathologic changes in cognitively normal individuals (CDR = 0, n = 542). With plots generated from these data, we establish standard lines that may be utilized to measure the extent to which an individual's Alzheimer-type pathology varies from the estimated normal range of pathology. RESULTS Although Braak stage and Thal phase progressively increase with age in cognitively normal individuals, the Consortium to Establish a Registry for Alzheimer's Disease neuritic plaque score and Alzheimer's disease neuropathologic change remain at low levels. CONCLUSION These findings suggest that an increasing burden of neuritic plaques is a strong predictor of cognitive decline, whereas, neurofibrillary degeneration and amyloid-β (diffuse) plaque deposition, both to some degree, are normal pathologic changes of aging that occur in almost all individuals regardless of cognitive status. Furthermore, we have defined the amount of neuropathologic change in cognitively normal individuals that would qualify them to be "resilient" against the pathology (significantly above the normative values for age, but still cognitively normal) or "resistant" to the development of pathology (significantly below the normative values for age).
Collapse
Affiliation(s)
- Jamie M. Walker
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jeff Schaffert
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William Goette
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles L. White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Timothy E. Richardson
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
125
|
Bogolepova AN. [Features of pharmacotherapy of vascular cognitive impairment in the elderly]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:15-20. [PMID: 37796062 DOI: 10.17116/jnevro202312309115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The problem of pharmacotherapy of elderly and senile people is currently extremely relevant due to the aging of the population and the increase in the prevalence of cardiovascular diseases. One of the most serious problems of the elderly is the development of cognitive decline due to cerebrovascular pathology. However, elderly patients often have a large number of comorbid diseases, which leads to difficulties in diagnosing and managing these patients, and often to the development of polypharmacy, which can lead to deterioration in functional status, cognitive impairment, adverse reactions and drug interactions. In addition, in elderly patients, there may be changes in pharmacokinetics and pharmacodynamics due to anatomical and physiological involutive processes. At the same time, the number of drugs whose clinical efficacy and tolerability were evaluated specifically in elderly and senile patients is relatively small. In a randomized clinical trial of sequential parenteral and oral therapy with Mexidol in patients with mild vascular cognitive impairment syndrome, a positive effect of this therapy on various domains (cognitive, emotional, autonomic, motor) of chronic cerebrovascular disease was confirmed compared with placebo, which allows us to recommend it for use in elderly and senile patients.
Collapse
Affiliation(s)
- A N Bogolepova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain and Neurotechnologies, Moscow, Russia
| |
Collapse
|
126
|
Hoenig MC, Dzialas V, Drzezga A, van Eimeren T. The Concept of Motor Reserve in Parkinson's Disease: New Wine in Old Bottles? Mov Disord 2023; 38:16-20. [PMID: 36345092 DOI: 10.1002/mds.29266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Merle C Hoenig
- Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Research Center Juelich, Julich, Germany.,Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Verena Dzialas
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Research Center Juelich, Julich, Germany.,Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn/Cologne, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
127
|
Rydström A, Darin-Mattsson A, Kåreholt I, Ngandu T, Lehtisalo J, Solomon A, Antikainen R, Bäckman L, Hänninen T, Laatikainen T, Levälahti E, Lindström J, Paajanen T, Havulinna S, Peltonen M, Sindi S, Soininen H, Neely AS, Strandberg T, Tuomilehto J, Kivipelto M, Mangialasche F. Occupational complexity and cognition in the FINGER multidomain intervention trial. Alzheimers Dement 2022; 18:2438-2447. [PMID: 35142055 DOI: 10.1002/alz.12561] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Lifetime exposure to occupational complexity is linked to late-life cognition, and may affect benefits of preventive interventions. METHODS In the 2-year multidomain Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER), we investigated, through post hoc analyses (N = 1026), the association of occupational complexity with cognition. Occupational complexity with data, people, and substantive complexity were classified through the Dictionary of Occupational Titles. RESULTS Higher levels of occupational complexity were associated with better baseline cognition. Measures of occupational complexity had no association with intervention effects on cognition, except for occupational complexity with data, which was associated with the degree of intervention-related gains for executive function. DISCUSSION In older adults at increased risk for dementia, higher occupational complexity is associated with better cognition. The cognitive benefit of the FINGER intervention did not vary significantly among participants with different levels of occupational complexity. These exploratory findings require further testing in larger studies.
Collapse
Affiliation(s)
- Anders Rydström
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Aging Research Center, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Alexander Darin-Mattsson
- Aging Research Center, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Ingemar Kåreholt
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Aging Research Center, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Institute of Gerontology, School of Health and Welfare, Aging Research Network - Jönköping (ARN-J), Jönköping University, Jönköping, Sweden
| | - Tiia Ngandu
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Public Health Solutions, Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jenni Lehtisalo
- Department of Public Health Solutions, Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.,Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Alina Solomon
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Riitta Antikainen
- Center for Life Course Health Research/Geriatrics, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and Oulu City Hospital, Oulu, Finland
| | - Lars Bäckman
- Aging Research Center, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Tuomo Hänninen
- Neurocenter/Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Tiina Laatikainen
- Department of Public Health Solutions, Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Hospital District of North Karelia, Joensuu, Finland
| | - Esko Levälahti
- Department of Public Health Solutions, Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jaana Lindström
- Department of Public Health Solutions, Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Teemu Paajanen
- Work Ability and Working Careers, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Satu Havulinna
- Department of Welfare; Ageing, Disability and Functioning Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Markku Peltonen
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Public Health Solutions, Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Shireen Sindi
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Neurocenter/Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | - Timo Strandberg
- Center for Life Course Health Research/Geriatrics, University of Oulu, Oulu, Finland.,University of Helsinki, Clinicum, and Helsinki University Hospital, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health Solutions, Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.,South Ostrobothnia Central Hospital, Seinäjoki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland.,Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Francesca Mangialasche
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Aging Research Center, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
128
|
Brinkley TE, Justice JN, Basu S, Bauer SR, Loh KP, Mukli P, Ng TKS, Turney IC, Ferrucci L, Cummings SR, Kritchevsky SB. Research priorities for measuring biologic age: summary and future directions from the Research Centers Collaborative Network Workshop. GeroScience 2022; 44:2573-2583. [PMID: 36242692 PMCID: PMC9768050 DOI: 10.1007/s11357-022-00661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023] Open
Abstract
Biologic aging reflects the genetic, molecular, and cellular changes underlying the development of morbidity and mortality with advancing chronological age. As several potential mechanisms have been identified, there is a growing interest in developing robust measures of biologic age that can better reflect the underlying biology of aging and predict age-related outcomes. To support this endeavor, the Research Centers Collaborative Network (RCCN) conducted a workshop in January 2022 to discuss emerging concepts in the field and identify opportunities to move the science forward. This paper presents workshop proceedings and summarizes the identified research needs, priorities, and recommendations for measuring biologic age. The highest priorities identified were the need for more robust measures, longitudinal studies, multidisciplinary collaborations, and translational approaches.
Collapse
Affiliation(s)
- Tina E Brinkley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Jamie N Justice
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shubhashrita Basu
- Center for Demography of Health and Aging, University of Wisconsin, Madison, WI, USA
| | - Scott R Bauer
- Departments of Medicine and Urology, University of California and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Kah Poh Loh
- Division of Hematology/Oncology, Department of Medicine, University of Rochester Medical Center, James P. Wilmot Cancer Institute, Rochester, NY, USA
| | - Peter Mukli
- Department of Biochemistry/Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ted Kheng Siang Ng
- Edson College of Nursing and Health Innovation, Arizona State University, Tempe, AZ, USA
| | - Indira C Turney
- Department of Neurology, Columbia University Medical Center, New York City, NY, USA
| | - Luigi Ferrucci
- Intramural Research Program of the National Institute On Aging, NIH, Baltimore, MD, USA
| | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute and the Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
129
|
Nelson ME, Veal BM, Andel R, Martinkova J, Veverova K, Horakova H, Nedelska Z, Laczó J, Vyhnalek M, Hort J. Moderating effect of cognitive reserve on brain integrity and cognitive performance. Front Aging Neurosci 2022; 14:1018071. [PMID: 36408097 PMCID: PMC9669428 DOI: 10.3389/fnagi.2022.1018071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/14/2022] [Indexed: 09/05/2023] Open
Abstract
Background Dementia syndrome is one of the most devastating conditions in older adults. As treatments to stop neurodegeneration become available, accurate and timely diagnosis will increase in importance. One issue is that cognitive performance sometimes does not match the corresponding level of neuropathology, affecting diagnostic accuracy. Cognitive reserve (CR), which can preserve cognitive function despite underlying neuropathology, explains at least some variability in cognitive performance. We examined the influence of CR proxies (education and occupational position) on the relationship between hippocampal or total gray matter volume and cognition. Methods We used data from the Czech Brain Aging Study. Participants were clinically confirmed to be without dementia (n = 457, including subjective cognitive decline and amnestic mild cognitive impairment) or with dementia syndrome (n = 113). Results For participants without dementia, higher education magnified the associations between (a) hippocampal volume and executive control (b = 0.09, p = 0.033), (b) total gray matter volume and language (b = 0.12, p < 0.001), and (c) total gray matter volume and memory (b = 0.08, p = 0.018). Similarly, higher occupational position magnified the association between total gray matter volume and (a) attention/working memory (b = 0.09, p = 0.009), (b) language (b = 0.13, p = 0.002), and (c) memory (b = 0.10, p = 0.013). For participants with dementia, the associations between hippocampal (b = -0.26, p = 0.024) and total gray matter (b = -0.28, p = 0.024) volume and visuospatial skills decreased in magnitude with higher education. Conclusion We found that the association between brain volume and cognitive performance varies based on CR, with greater CR related to a stronger link between brain volume and cognition before, and a weaker link after, dementia diagnosis.
Collapse
Affiliation(s)
- Monica E. Nelson
- School of Aging Studies, University of South Florida, Tampa, FL, United States
| | - Britney M. Veal
- School of Aging Studies, University of South Florida, Tampa, FL, United States
| | - Ross Andel
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, United States
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Julie Martinkova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Katerina Veverova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Hana Horakova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Zuzana Nedelska
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jan Laczó
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Martin Vyhnalek
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jakub Hort
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| |
Collapse
|
130
|
Wagner M, Wilson RS, Leurgans SE, Boyle PA, Bennett DA, Grodstein F, Capuano AW. Quantifying longitudinal cognitive resilience to Alzheimer's disease and other neuropathologies. Alzheimers Dement 2022; 18:2252-2261. [PMID: 35102704 PMCID: PMC10119432 DOI: 10.1002/alz.12576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Cognitive resilience (CR) has been defined as the continuum of better (or worse) than expected cognition, given the degree of neuropathology. To quantify this concept, existing approaches focus on either cognitive level at a single time point or slopes of cognitive decline. METHODS In a prospective study of 1215 participants, we created a continuous measure of CR defined as the mean of differences between estimated person-specific and marginal cognitive levels over time, after accounting for neuropathologies. RESULTS Neuroticism and depressive symptoms were associated with all CR measures (P-values < .012); as expected, cognitive activity and education were only associated with the cognitive-level approaches (P-values < .0002). However, compared with the existing CR measures focusing on a single measure or slopes of cognition, our new measure yielded stronger relations with risk factors. DISCUSSION Defining CR based on the longitudinal differences between person-specific and marginal cognitive levels is a novel and complementary way to quantify CR.
Collapse
Affiliation(s)
- Maude Wagner
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Sue E. Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Francine Grodstein
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Ana W. Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
131
|
Connor JP, Quinn SD, Schaefer C. Sticker-and-spacer model for amyloid beta condensation and fibrillation. Front Mol Neurosci 2022; 15:962526. [PMID: 36311031 PMCID: PMC9611774 DOI: 10.3389/fnmol.2022.962526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A major pathogenic hallmark of Alzheimer's disease is the presence of neurotoxic plaques composed of amyloid beta (Aβ) peptides in patients' brains. The pathway of plaque formation remains elusive, though some clues appear to lie in the dominant presence of Aβ1 − 42 in these plaques despite Aβ1−40 making up approximately 90% of the Aβ pool. We hypothesize that this asymmetry is driven by the hydrophobicity of the two extra amino acids that are incorporated in Aβ1−42. To investigate this hypothesis at the level of single molecules, we have developed a molecular “sticker-and-spacer lattice model” of unfolded Aβ. The model protein has a single sticker that may reversibly dimerise and elongate into semi-flexible linear chains. The growth is hampered by excluded-volume interactions that are encoded by the hydrophilic spacers but are rendered cooperative by the attractive interactions of hydrophobic spacers. For sufficiently strong hydrophobicity, the chains undergo liquid-liquid phase-separation (LLPS) into condensates that facilitate the nucleation of fibers. We find that a small fraction of Aβ1−40 in a mixture of Aβ1−40 and Aβ1−42 shifts the critical concentration for LLPS to lower values. This study provides theoretical support for the hypothesis that LLPS condensates act as a precursor for aggregation and provides an explanation for the Aβ1−42-enrichment of aggregates in terms of hydrophobic interactions.
Collapse
Affiliation(s)
- Jack P. Connor
- Department of Biology, University of York, York, United Kingdom
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- *Correspondence: Jack P. Connor
| | - Steven D. Quinn
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Charley Schaefer
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Charley Schaefer
| |
Collapse
|
132
|
Demnitz-King H, Gonneaud J, Klimecki OM, Chocat A, Collette F, Dautricourt S, Jessen F, Krolak-Salmon P, Lutz A, Morse RM, Molinuevo JL, Poisnel G, Touron E, Wirth M, Walker Z, Chételat G, Marchant NL. Association of Self-reflection With Cognition and Brain Health in Cognitively Unimpaired Older Adults. Neurology 2022; 99:e1422-e1431. [PMID: 35853750 DOI: 10.1212/wnl.0000000000200951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Self-reflection (the active evaluation of ones thoughts, feelings, and behaviors) can confer protection against adverse health outcomes. Its effect on markers sensitive to Alzheimer disease (AD), however, is unknown. The primary objective of this cross-sectional study was to examine the association between self-reflection and AD-sensitive markers. METHODS This study used baseline data from cognitively unimpaired older adults enrolled in the Age-Well clinical trial and older adults with subjective cognitive decline from the SCD-Well clinical trial. In both cohorts, self-reflection was measured via the reflective pondering subscale of the Rumination Response Scale, global cognition assessed via the Preclinical Alzheimer's Cognitive Composite 5, and a modified late-life Lifestyle-for-Brain-Health (LIBRA) index computed to assess health and lifestyle factors. In Age-Well, glucose metabolism and amyloid deposition were quantified in AD-sensitive gray matter regions via fluorodeoxyglucose- and AV45-PET scans, respectively. Associations between self-reflection and AD-sensitive markers (global cognition, glucose metabolism, and amyloid deposition) were assessed via unadjusted and adjusted regressions. Furthermore, we explored whether associations were independent of health and lifestyle factors. To control for multiple comparisons in Age-Well, false discovery rate-corrected p values (p FDR) are reported. RESULTS A total of 134 (mean age 69.3 ± 3.8 years, 61.9% women) Age-Well and 125 (mean age 72.6 ± 6.9 years, 65.6% women) SCD-Well participants were included. Across unadjusted and adjusted analyses, self-reflection was associated with better global cognition in both cohorts (Age-Well: adjusted-β = 0.22, 95% CI 0.05-0.40, p FDR = 0.041; SCD-Well: adjusted-β = 0.18, 95% CI 0.03-0.33, p = 0.023) and with higher glucose metabolism in Age-Well after adjustment for all covariates (adjusted-β = 0.29, 95% CI 0.03-0.55, p FDR = 0.041). Associations remained following additional adjustment for LIBRA but did not survive false discovery rate (FDR) correction. Self-reflection was not associated with amyloid deposition (adjusted-β = 0.13, 95% CI -0.07 to 0.34, p FDR = 0.189). DISCUSSION Self-reflection was associated with better global cognition in 2 independent cohorts and with higher glucose metabolism after adjustment for covariates. There was weak evidence that relationships were independent from health and lifestyle behaviors. Longitudinal and experimental studies are warranted to elucidate whether self-reflection helps preserve cognition and glucose metabolism or whether reduced capacity to self-reflect is a harbinger of cognitive decline and glucose hypometabolism. TRIAL REGISTRATION INFORMATION Age-Well: NCT02977819; SCD-Well: NCT03005652.
Collapse
Affiliation(s)
- Harriet Demnitz-King
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Julie Gonneaud
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Olga M Klimecki
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Anne Chocat
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Fabienne Collette
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Sophie Dautricourt
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Frank Jessen
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Pierre Krolak-Salmon
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Antoine Lutz
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Rachel M Morse
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - José Luis Molinuevo
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Géraldine Poisnel
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Edelweiss Touron
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Miranka Wirth
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Zuzana Walker
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Gaël Chételat
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden
| | - Natalie L Marchant
- From the Division of Psychiatry (H.D.-K., R.M.M., Z.W., N.L.M.-A.R.G.), Faculty of Brain Sciences, University College London, United Kingdom; Normandie Univ (J.G., A.C., S.D., G.P., E.T., G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France; Clinical Psychology and Behavioural Neuroscience (O.M.K.), Technische Universität Dresden, Germany; GIGA-CRC In Vivo Imaging (F.C.), Université de Liège, Belgium; Department of Psychiatry (F.J.), Medical Faculty, University of Cologne, Germany; Hospices Civils de Lyon (P.K.-S.), Institut du Vielllissement, CRC Vielllissement-Cerveau-Fragilité, France; Lyon Neuroscience Research Center Inserm U1028 (A.L.), CNRS UMR5292, Lyon 1 University, France; Alzheimer's Disease and Other Cognitive Disorders Unit (J.L.M.), Hospital Clinic, IDIBAPS, Barcelona, Spain; and German Center for Neurodegenerative Diseases (DZNE) (M.W.), Dresden.
| | | |
Collapse
|
133
|
Multiple Cognitive and Behavioral Factors Link Association Between Brain Structure and Functional Impairment of Daily Instrumental Activities in Older Adults. J Int Neuropsychol Soc 2022; 28:673-686. [PMID: 34308821 DOI: 10.1017/s1355617721000916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Functional impairment in daily activity is a cornerstone in distinguishing the clinical progression of dementia. Multiple indicators based on neuroimaging and neuropsychological instruments are used to assess the levels of impairment and disease severity; however, it remains unclear how multivariate patterns of predictors uniquely predict the functional ability and how the relative importance of various predictors differs. METHOD In this study, 881 older adults with subjective cognitive complaints, mild cognitive impairment (MCI), and dementia with Alzheimer's type completed brain structural magnetic resonance imaging (MRI), neuropsychological assessment, and a survey of instrumental activities of daily living (IADL). We utilized the partial least square (PLS) method to identify latent components that are predictive of IADL. RESULTS The result showed distinct brain components (gray matter density of cerebellar, medial temporal, subcortical, limbic, and default network regions) and cognitive-behavioral components (general cognitive abilities, processing speed, and executive function, episodic memory, and neuropsychiatric symptoms) were predictive of IADL. Subsequent path analysis showed that the effect of brain structural components on IADL was largely mediated by cognitive and behavioral components. When comparing hierarchical regression models, the brain structural measures minimally added the explanatory power of cognitive and behavioral measures on IADL. CONCLUSION Our finding suggests that cerebellar structure and orbitofrontal cortex, alongside with medial temporal lobe, play an important role in the maintenance of functional status in older adults with or without dementia. Moreover, the significance of brain structural volume affects real-life functional activities via disruptions in multiple cognitive and behavioral functions.
Collapse
|
134
|
Elman JA, Vogel JW, Bocancea DI, Ossenkoppele R, van Loenhoud AC, Tu XM, Kremen WS. Issues and recommendations for the residual approach to quantifying cognitive resilience and reserve. Alzheimers Res Ther 2022; 14:102. [PMID: 35879736 PMCID: PMC9310423 DOI: 10.1186/s13195-022-01049-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Cognitive reserve and resilience are terms used to explain interindividual variability in maintenance of cognitive health in response to adverse factors, such as brain pathology in the context of aging or neurodegenerative disorders. There is substantial interest in identifying tractable substrates of resilience to potentially leverage this phenomenon into intervention strategies. One way of operationalizing cognitive resilience that has gained popularity is the residual method: regressing cognition on an adverse factor and using the residual as a measure of resilience. This method is attractive because it provides a statistical approach that is an intuitive match to the reserve/resilience conceptual framework. However, due to statistical properties of the regression equation, the residual approach has qualities that complicate its interpretation as an index of resilience and make it statistically inappropriate in certain circumstances. METHODS AND RESULTS We describe statistical properties of the regression equation to illustrate why the residual is highly correlated with the cognitive score from which it was derived. Using both simulations and real data, we model common applications of the approach by creating a residual score (global cognition residualized for hippocampal volume) in individuals along the AD spectrum. We demonstrate that in most real-life scenarios, the residual measure of cognitive resilience is highly correlated with cognition, and the degree of this correlation depends on the initial relationship between the adverse factor and cognition. Subsequently, any association between this resilience metric and an external variable may actually be driven by cognition, rather than by an operationalized measure of resilience. We then assess several strategies proposed as potential solutions to this problem, such as including both the residual and original cognitive measure in a model. However, we conclude these solutions may be insufficient, and we instead recommend against "pre-regression" strategies altogether in favor of using statistical moderation (e.g., interactions) to quantify resilience. CONCLUSIONS Caution should be taken in the use and interpretation of the residual-based method of cognitive resilience. Rather than identifying resilient individuals, we encourage building more complete models of cognition to better identify the specific adverse and protective factors that influence cognitive decline.
Collapse
Affiliation(s)
- Jeremy A Elman
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. (MC0738), La Jolla, CA, 92093, USA.
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA.
| | - Jacob W Vogel
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Diana I Bocancea
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- VU University Medical Center, Amsterdam, the Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Anna C van Loenhoud
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- VU University Medical Center, Amsterdam, the Netherlands
| | - Xin M Tu
- Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. (MC0738), La Jolla, CA, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
135
|
Bilgel M, Wong DF, Moghekar AR, Ferrucci L, Resnick SM. Causal links among amyloid, tau, and neurodegeneration. Brain Commun 2022; 4:fcac193. [PMID: 35938073 PMCID: PMC9345312 DOI: 10.1093/braincomms/fcac193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 07/27/2023] Open
Abstract
Amyloid-β pathology is associated with greater tau pathology and facilitates tau propagation from the medial temporal lobe to the neocortex, where tau is closely associated with local neurodegeneration. The degree of the involvement of amyloid-β versus existing tau pathology in tau propagation and neurodegeneration has not been fully elucidated in human studies. Careful quantification of these effects can inform the development and timing of therapeutic interventions. We conducted causal mediation analyses to investigate the relative contributions of amyloid-β and existing tau to tau propagation and neurodegeneration in two longitudinal studies of individuals without dementia: the Baltimore Longitudinal Study of Aging (N = 103, age range 57-96) and the Alzheimer's Disease Neuroimaging Initiative (N = 122, age range 56-92). As proxies of neurodegeneration, we investigated cerebral blood flow, glucose metabolism, and regional volume. We first confirmed that amyloid-β moderates the association between tau in the entorhinal cortex and in the inferior temporal gyrus, a neocortical region exhibiting early tau pathology (amyloid group × entorhinal tau interaction term β = 0.488, standard error [SE] = 0.126, P < 0.001 in the Baltimore Longitudinal Study of Aging; β = 0.619, SE = 0.145, P < 0.001 in the Alzheimer's Disease Neuroimaging Initiative). In causal mediation analyses accounting for this facilitating effect of amyloid, amyloid positivity had a statistically significant direct effect on inferior temporal tau as well as an indirect effect via entorhinal tau (average direct effect =0.47, P < 0.001 and average causal mediation effect =0.44, P = 0.0028 in Baltimore Longitudinal Study of Aging; average direct effect =0.43, P = 0.004 and average causal mediation effect =0.267, P = 0.0088 in Alzheimer's Disease Neuroimaging Initiative). Entorhinal tau mediated up to 48% of the total effect of amyloid on inferior temporal tau. Higher inferior temporal tau was associated with lower colocalized cerebral blood flow, glucose metabolism, and regional volume, whereas amyloid had only an indirect effect on these measures via tau, implying tau as the primary driver of neurodegeneration (amyloid-cerebral blood flow average causal mediation effect =-0.28, P = 0.021 in Baltimore Longitudinal Study of Aging; amyloid-volume average causal mediation effect =-0.24, P < 0.001 in Alzheimer's Disease Neuroimaging Initiative). Our findings suggest targeting amyloid or medial temporal lobe tau might slow down neocortical spread of tau and subsequent neurodegeneration, but a combination therapy may yield better outcomes.
Collapse
Affiliation(s)
- Murat Bilgel
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | | |
Collapse
|
136
|
Vesperman CJ, Wang R, Schultz SA, Law LL, Dougherty RJ, Ma Y, Oh JM, Edwards DF, Gallagher CL, Chin NA, Asthana S, Hermann BP, Sager MA, Johnson SC, Cook DB, Okonkwo OC. Cardiorespiratory fitness and cognition in persons at risk for Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12330. [PMID: 35845261 PMCID: PMC9270660 DOI: 10.1002/dad2.12330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023]
Abstract
Introduction This study examined the relationship between cardiorespiratory fitness (CRF) and longitudinal cognitive functioning in a cohort enriched with risk factors for Alzheimer's disease (AD). Methods A total of 155 enrollees in the Wisconsin Registry for Alzheimer's Prevention completed repeat comprehensive neuropsychological evaluations that assessed six cognitive domains. Peak oxygen consumption (VO2peak) was the primary measure of CRF. Random effects regression was used to investigate the effect of CRF on cognitive trajectories. Results Higher CRF was associated with slower decline in the cognitive domains of verbal learning and memory (P < .01) and visual learning and memory (P < .042). Secondary analyses indicated that these effects were stronger among men than women, and for noncarriers of the apolipoprotein E ε4 allele. Discussion Higher CRF was associated with a slower rate of the decline in episodic memory that occurs as a natural consequence of aging in a cohort enriched with risk factors for AD.
Collapse
Affiliation(s)
- Clayton J. Vesperman
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Rui Wang
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- The Swedish School of Sport and Health SciencesGIHStockholmSweden
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Stephanie A. Schultz
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of RadiologyWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Lena L. Law
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Ryan J. Dougherty
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of KinesiologyUniversity of Wisconsin School of EducationMadisonWisconsinUSA
| | - Yue Ma
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Jennifer M. Oh
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Dorothy F. Edwards
- Department of KinesiologyUniversity of Wisconsin School of EducationMadisonWisconsinUSA
| | - Catherine L. Gallagher
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Nathaniel A. Chin
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Bruce P. Hermann
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Mark A. Sager
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Dane B. Cook
- Department of KinesiologyUniversity of Wisconsin School of EducationMadisonWisconsinUSA
- Research ServiceWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
137
|
Vassilaki M, Petersen RC, Vemuri P. Area Deprivation Index as a Surrogate of Resilience in Aging and Dementia. Front Psychol 2022; 13:930415. [PMID: 35846636 PMCID: PMC9277306 DOI: 10.3389/fpsyg.2022.930415] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
Area deprivation index (ADI), a tool used to capture the multidimensional neighborhood socioeconomic disadvantage across populations, is highly relevant to the field of aging and Alzheimer’s disease and Alzheimer’s disease related dementias (AD/ADRD). ADI is specifically relevant in the context of resilience, a broad term used to explain why some older adults have better cognitive outcomes than others. The goal of this mini-review is three-fold: (1) to summarize the current literature on ADI and its link to cognitive impairment outcomes; (2) suggest possible mechanisms through which ADI may have an impact on AD/ADRD outcomes, and (3) discuss important considerations when studying relations between ADI and cognitive as well as brain health. Though difficult to separate both the upstream factors that emerge from high (worse) ADI and all the mechanisms at play, ADI is an attractive proxy of resilience that captures multifactorial contributors to the risk of dementia. In addition, a life-course approach to studying ADI may allow us to capture resilience, which is a process developed over the lifespan. It might be easier to build, preserve or improve resilience in an environment that facilitates instead of hindering physical, social, and cognitively beneficial activities. Neighborhood disadvantage can adversely impact cognitive impairment risk but be at the same time a modifiable risk factor, amenable to policy changes that can affect communities.
Collapse
Affiliation(s)
- Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Maria Vassilaki,
| | - Ronald C. Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
138
|
Mueller KD, Du L, Bruno D, Betthauser T, Christian B, Johnson S, Hermann B, Koscik RL. Item-Level Story Recall Predictors of Amyloid-Beta in Late Middle-Aged Adults at Increased Risk for Alzheimer's Disease. Front Psychol 2022; 13:908651. [PMID: 35832924 PMCID: PMC9271832 DOI: 10.3389/fpsyg.2022.908651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Story recall (SR) tests have shown variable sensitivity to rate of cognitive decline in individuals with Alzheimer's disease (AD) biomarkers. Although SR tasks are typically scored by obtaining a sum of items recalled, item-level analyses may provide additional sensitivity to change and AD processes. Here, we examined the difficulty and discrimination indices of each item from the Logical Memory (LM) SR task, and determined if these metrics differed by recall conditions, story version (A vs. B), lexical categories, serial position, and amyloid status. Methods n = 1,141 participants from the Wisconsin Registry for Alzheimer's Prevention longitudinal study who had item-level data were included in these analyses, as well as a subset of n = 338 who also had amyloid positron emission tomography (PET) imaging. LM data were categorized into four lexical categories (proper names, verbs, numbers, and "other"), and by serial position (primacy, middle, and recency). We calculated difficulty and discriminability/memorability by item, category, and serial position and ran separate repeated measures ANOVAs for each recall condition, lexical category, and serial position. For the subset with amyloid imaging, we used a two-sample t-test to examine whether amyloid positive (Aβ+) and amyloid negative (Aβ-) groups differed in difficulty or discrimination for the same summary metrics. Results In the larger sample, items were more difficult (less memorable) in the delayed recall condition across both story A and story B. Item discrimination was higher at delayed than immediate recall, and proper names had better discrimination than any of the other lexical categories or serial position groups. In the subsample with amyloid PET imaging, proper names were more difficult for Aβ+ than Aβ-; items in the verb and "other" lexical categories and all serial positions from delayed recall were more discriminate for the Aβ+ group compared to the Aβ- group. Conclusion This study provides empirical evidence that both LM stories are effective at discriminating ability levels and amyloid status, and that individual items vary in difficulty and discrimination by amyloid status, while total scores do not. These results can be informative for the future development of sensitive tasks or composite scores for early detection of cognitive decline.
Collapse
Affiliation(s)
- Kimberly D. Mueller
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Lianlian Du
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Davide Bruno
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Tobey Betthauser
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Bradley Christian
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sterling Johnson
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, United States
| | - Bruce Hermann
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rebecca Langhough Koscik
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
139
|
Kelley CM, Ginsberg SD, Liang WS, Counts SE, Mufson EJ. Posterior cingulate cortex reveals an expression profile of resilience in cognitively intact elders. Brain Commun 2022; 4:fcac162. [PMID: 35813880 PMCID: PMC9263888 DOI: 10.1093/braincomms/fcac162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/12/2022] [Accepted: 06/17/2022] [Indexed: 12/20/2022] Open
Abstract
The posterior cingulate cortex, a key hub of the default mode network, underlies autobiographical memory retrieval and displays hypometabolic changes early in Alzheimer disease. To obtain an unbiased understanding of the molecular pathobiology of the aged posterior cingulate cortex, we performed RNA sequencing (RNA-seq) on tissue obtained from 26 participants of the Rush Religious Orders Study (11 males/15 females; aged 76-96 years) with a pre-mortem clinical diagnosis of no cognitive impairment and post-mortem neurofibrillary tangle Braak Stages I/II, III, and IV. Transcriptomic data were gathered using next-generation sequencing of RNA extracted from posterior cingulate cortex generating an average of 60 million paired reads per subject. Normalized expression of RNA-seq data was calculated using a global gene annotation and a microRNA profile. Differential expression (DESeq2, edgeR) using Braak staging as the comparison structure isolated genes for dimensional scaling, associative network building and functional clustering. Curated genes were correlated with the Mini-Mental State Examination and semantic, working and episodic memory, visuospatial ability, and a composite Global Cognitive Score. Regulatory mechanisms were determined by co-expression networks with microRNAs and an overlap of transcription factor binding sites. Analysis revealed 750 genes and 12 microRNAs significantly differentially expressed between Braak Stages I/II and III/IV and an associated six groups of transcription factor binding sites. Inputting significantly different gene/network data into a functional annotation clustering model revealed elevated presynaptic, postsynaptic and ATP-related expression in Braak Stages III and IV compared with Stages I/II, suggesting these pathways are integral for cognitive resilience seen in unimpaired elderly subjects. Principal component analysis and Kruskal-Wallis testing did not associate Braak stage with cognitive function. However, Spearman correlations between genes and cognitive test scores followed by network analysis revealed upregulation of classes of synaptic genes positively associated with performance on the visuospatial perceptual orientation domain. Upregulation of key synaptic genes suggests a role for these transcripts and associated synaptic pathways in cognitive resilience seen in elders despite Alzheimer disease pathology and dementia.
Collapse
Affiliation(s)
- Christy M Kelley
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Winnie S Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
- Department of Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| |
Collapse
|
140
|
Sirkis DW, Bonham LW, Johnson TP, La Joie R, Yokoyama JS. Dissecting the clinical heterogeneity of early-onset Alzheimer's disease. Mol Psychiatry 2022; 27:2674-2688. [PMID: 35393555 PMCID: PMC9156414 DOI: 10.1038/s41380-022-01531-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is a rare but particularly devastating form of AD. Though notable for its high degree of clinical heterogeneity, EOAD is defined by the same neuropathological hallmarks underlying the more common, late-onset form of AD. In this review, we describe the various clinical syndromes associated with EOAD, including the typical amnestic phenotype as well as atypical variants affecting visuospatial, language, executive, behavioral, and motor functions. We go on to highlight advances in fluid biomarker research and describe how molecular, structural, and functional neuroimaging can be used not only to improve EOAD diagnostic acumen but also enhance our understanding of fundamental pathobiological changes occurring years (and even decades) before the onset of symptoms. In addition, we discuss genetic variation underlying EOAD, including pathogenic variants responsible for the well-known mendelian forms of EOAD as well as variants that may increase risk for the much more common forms of EOAD that are either considered to be sporadic or lack a clear autosomal-dominant inheritance pattern. Intriguingly, specific pathogenic variants in PRNP and MAPT-genes which are more commonly associated with other neurodegenerative diseases-may provide unexpectedly important insights into the formation of AD tau pathology. Genetic analysis of the atypical clinical syndromes associated with EOAD will continue to be challenging given their rarity, but integration of fluid biomarker data, multimodal imaging, and various 'omics techniques and their application to the study of large, multicenter cohorts will enable future discoveries of fundamental mechanisms underlying the development of EOAD and its varied clinical presentations.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Taylor P Johnson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
141
|
Ma H, Zhou T, Li X, Maraganore D, Heianza Y, Qi L. Early-life educational attainment, APOE ε4 alleles, and incident dementia risk in late life. GeroScience 2022; 44:1479-1488. [PMID: 35306636 PMCID: PMC9213617 DOI: 10.1007/s11357-022-00545-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/11/2022] [Indexed: 11/04/2022] Open
Abstract
We examined the interactions between educational attainment and genetic susceptibility on dementia risk among adults over 60 years old. A total of 174,161 participants were free of dementia at baseline. The APOE ε4-related genetic risk was evaluated by the number of APOE ε4 alleles. The overall genetic susceptibility of dementia was evaluated by polygenetic risk score (PRS). Cox proportional hazards models were used to estimate the association between educational attainment and incident dementia. During a median of 8.9 years of follow-up, a total of 1482 incident cases of dementia were documented. After adjustment for covariates, we found that low education attainment was significantly associated with higher dementia risk in the APOE ε4 carriers, and such relation appeared to be stronger with the increasing number of ε4 alleles. In contrast, educational attainment was not associated with dementia risk in non-APOE ε4 carriers (P for multiplicative interaction = 0.006). In addition, we observed that the dementia risk associated with a combination of low educational attainment and high APOE ε4-related genetic risk was more than the addition of the risk associated with each of these factors (P for additive interaction < 0.001). We found similar significant interactions between educational attainment and PRS on both the multiplicative and additive scales on the dementia risk, mainly driven by the APOE genotype. These data indicate that higher educational attainment in early life may attenuate the risk for dementia, particularly among people with high genetic predisposition.
Collapse
Affiliation(s)
- Hao Ma
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Demetrius Maraganore
- Department of Neurology, Center for Clinical Neurosciences, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
142
|
Kremen WS, Elman JA, Panizzon MS, Eglit GML, Sanderson-Cimino M, Williams ME, Lyons MJ, Franz CE. Cognitive Reserve and Related Constructs: A Unified Framework Across Cognitive and Brain Dimensions of Aging. Front Aging Neurosci 2022; 14:834765. [PMID: 35711905 PMCID: PMC9196190 DOI: 10.3389/fnagi.2022.834765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
Cognitive reserve and related constructs are valuable for aging-related research, but consistency and clarification of terms is needed as there is still no universally agreed upon nomenclature. We propose a new set of definitions for the concepts of reserve, maintenance, and resilience, and we invoke parallel concepts for each that are applicable to cognition and to brain. Our definitions of reserve and resilience correspond reasonably well to dictionary definitions of these terms. We demonstrate logical/methodological problems that arise from incongruence between commonly used conceptual and operational definitions. In our view, cognitive reserve should be defined conceptually as one's total cognitive resources at a given point in time. IQ and education are examples of common operational definitions (often referred to as proxies) of cognitive reserve. Many researchers define cognitive reserve conceptually as a property that allows for performing better than expected cognitively in the face of aging or pathology. Performing better than expected is demonstrated statistically by interactions in which the moderator is typically IQ or education. The result is an irreconcilable situation in which cognitive reserve is both the moderator and the moderation effect itself. Our proposed nomenclature resolves this logical inconsistency by defining performing better than expected as cognitive resilience. Thus, in our usage, we would test the hypothesis that high cognitive reserve confers greater cognitive resilience. Operational definitions (so-called proxies) should not conflate factors that may influence reserve-such as occupational complexity or engagement in cognitive activities-with cognitive reserve itself. Because resources may be depleted with aging or pathology, one's level of cognitive reserve may change over time and will be dependent on when assessment takes place. Therefore, in addition to cognitive reserve and cognitive resilience, we introduce maintenance of cognitive reserve as a parallel to brain maintenance. If, however, education is the measure of reserve in older adults, it precludes assessing change or maintenance of reserve. Finally, we discuss consideration of resistance as a subcategory of resilience, reverse causation, use of residual scores to assess performing better than expected given some adverse factor, and what constitutes high vs. low cognitive reserve across different studies.
Collapse
Affiliation(s)
- William S. Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
| | - Jeremy A. Elman
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States
| | - Matthew S. Panizzon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States
| | - Graham M. L. Eglit
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States
| | - Mark Sanderson-Cimino
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - McKenna E. Williams
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Michael J. Lyons
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, United States
| | - Carol E. Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
143
|
Jauny G, Eustache F, Hinault TT. M/EEG Dynamics Underlying Reserve, Resilience, and Maintenance in Aging: A Review. Front Psychol 2022; 13:861973. [PMID: 35693495 PMCID: PMC9174693 DOI: 10.3389/fpsyg.2022.861973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022] Open
Abstract
Cognitive reserve and resilience refer to the set of processes allowing the preservation of cognitive performance in the presence of structural and functional brain changes. Investigations of these concepts have provided unique insights into the heterogeneity of cognitive and brain changes associated with aging. Previous work mainly relied on methods benefiting from a high spatial precision but a low temporal resolution, and thus the temporal brain dynamics underlying these concepts remains poorly known. Moreover, while spontaneous fluctuations of neural activity have long been considered as noise, recent work highlights its critical contribution to brain functions. In this study, we synthesized the current state of knowledge from magnetoencephalography (MEG) and electroencephalography (EEG) studies that investigated the contribution of maintenance of neural synchrony, and variability of brain dynamics, to cognitive changes associated with healthy aging and the progression of neurodegenerative disease (such as Alzheimer's disease). The reviewed findings highlight that compensations could be associated with increased synchrony of higher (>10 Hz) frequency bands. Maintenance of young-like synchrony patterns was also observed in healthy older individuals. Both maintenance and compensation appear to be highly related to preserved structural integrity (brain reserve). However, increased synchrony was also found to be deleterious in some cases and reflects neurodegenerative processes. These results provide major elements on the stability or variability of functional networks as well as maintenance of neural synchrony over time, and their association with individual cognitive changes with aging. These findings could provide new and interesting considerations about cognitive reserve, maintenance, and resilience of brain functions and cognition.
Collapse
Affiliation(s)
| | | | - Thomas Thierry Hinault
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Centre Cyceron, Caen, France
| |
Collapse
|
144
|
Neuner SM, Telpoukhovskaia M, Menon V, O'Connell KMS, Hohman TJ, Kaczorowski CC. Translational approaches to understanding resilience to Alzheimer's disease. Trends Neurosci 2022; 45:369-383. [PMID: 35307206 PMCID: PMC9035083 DOI: 10.1016/j.tins.2022.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
Individuals who maintain cognitive function despite high levels of Alzheimer's disease (AD)-associated pathology are said to be 'resilient' to AD. Identifying mechanisms underlying resilience represents an exciting therapeutic opportunity. Human studies have identified a number of molecular and genetic factors associated with resilience, but the complexity of these cohorts prohibits a complete understanding of which factors are causal or simply correlated with resilience. Genetically and phenotypically diverse mouse models of AD provide new and translationally relevant opportunities to identify and prioritize new resilience mechanisms for further cross-species investigation. This review will discuss insights into resilience gained from both human and animal studies and highlight future approaches that may help translate these insights into therapeutics designed to prevent or delay AD-related dementia.
Collapse
Affiliation(s)
- Sarah M Neuner
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kristen M S O'Connell
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Tufts University, School of Medicine, Graduate School of Biomedical Sciences, Boston, MA 02111, USA; The University of Maine, Graduate School of Biomedical Science and Engineering, Orono, ME 04469, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Catherine C Kaczorowski
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Tufts University, School of Medicine, Graduate School of Biomedical Sciences, Boston, MA 02111, USA; The University of Maine, Graduate School of Biomedical Science and Engineering, Orono, ME 04469, USA.
| |
Collapse
|
145
|
Galea E, Weinstock LD, Larramona-Arcas R, Pybus AF, Giménez-Llort L, Escartin C, Wood LB. Multi-transcriptomic analysis points to early organelle dysfunction in human astrocytes in Alzheimer's disease. Neurobiol Dis 2022; 166:105655. [PMID: 35143967 PMCID: PMC9504227 DOI: 10.1016/j.nbd.2022.105655] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 12/11/2022] Open
Abstract
The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD.
Collapse
Affiliation(s)
- Elena Galea
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain; Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; ICREA, 08010 Barcelona, Spain.
| | - Laura D Weinstock
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Raquel Larramona-Arcas
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain; Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Alyssa F Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain; Departament de Psiquiatria i Medicina Forense, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, USA; George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, USA.
| |
Collapse
|
146
|
Cattaneo G, Solana-Sánchez J, Abellaneda-Pérez K, Portellano-Ortiz C, Delgado-Gallén S, Alviarez Schulze V, Pachón-García C, Zetterberg H, Tormos JM, Pascual-Leone A, Bartrés-Faz D. Sense of Coherence Mediates the Relationship Between Cognitive Reserve and Cognition in Middle-Aged Adults. Front Psychol 2022; 13:835415. [PMID: 35418913 PMCID: PMC8996461 DOI: 10.3389/fpsyg.2022.835415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, supported by new scientific evidence, the conceptualization of cognitive reserve (CR) has been progressively enriched and now encompasses not only cognitive stimulating activities or educational level, but also lifestyle activities, such as leisure physical activity and socialization. In this context, there is increasing interest in understanding the role of psychological factors in brain health and cognitive functioning. In a previous study, we have found that these factors mediated the relationship between CR and self-reported cognitive functioning. In this study, we have confirmed an association between two important constructs included in the psychological wellbeing and salutogenic models, "purpose in life" and "sense of coherence," CR, as assessed using a questionnaire, and cognitive functioning, as evaluated using a comprehensive neuropsychological battery. Results from 888 middle-aged healthy participants from the Barcelona Brain Health Initiative indicate that both sense of coherence (SoC) and CR were positively associated with verbal memory, reasoning and attention, working memory, and global cognition. Moreover, the relation between CR and cognitive functioning in the different domains is partially mediated by SoC. When we controlled for brain integrity, introducing into the model neurofilament light chain measures, the mediator role of SoC was confirmed for reasoning and attention and global cognition. However, purpose in life was not associated with cognitive functioning. These results reveal the central role of the SoC construct, which mediates the association between classic CR estimates and cognitive functions, potentially representing a modifiable target for interventions that aim to promote brain health.
Collapse
Affiliation(s)
- Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Javier Solana-Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Cristina Portellano-Ortiz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Vanessa Alviarez Schulze
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain.,Departamento de Ciencias del Comportamiento, Escuela de Psicologéa, Universidad Metropolitana, Caracas, Venezuela
| | - Catherine Pachón-García
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom.,Hong Kong Center for Neurodegenerative Diseases, Shatin, Hong Kong SAR, China
| | - Jose Maria Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain.,Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina i Ciències de la Salut i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
147
|
Veitch DP, Weiner MW, Aisen PS, Beckett LA, DeCarli C, Green RC, Harvey D, Jack CR, Jagust W, Landau SM, Morris JC, Okonkwo O, Perrin RJ, Petersen RC, Rivera‐Mindt M, Saykin AJ, Shaw LM, Toga AW, Tosun D, Trojanowski JQ. Using the Alzheimer's Disease Neuroimaging Initiative to improve early detection, diagnosis, and treatment of Alzheimer's disease. Alzheimers Dement 2022; 18:824-857. [PMID: 34581485 PMCID: PMC9158456 DOI: 10.1002/alz.12422] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The Alzheimer's Disease Neuroimaging Initiative (ADNI) has accumulated 15 years of clinical, neuroimaging, cognitive, biofluid biomarker and genetic data, and biofluid samples available to researchers, resulting in more than 3500 publications. This review covers studies from 2018 to 2020. METHODS We identified 1442 publications using ADNI data by conventional search methods and selected impactful studies for inclusion. RESULTS Disease progression studies supported pivotal roles for regional amyloid beta (Aβ) and tau deposition, and identified underlying genetic contributions to Alzheimer's disease (AD). Vascular disease, immune response, inflammation, resilience, and sex modulated disease course. Biologically coherent subgroups were identified at all clinical stages. Practical algorithms and methodological changes improved determination of Aβ status. Plasma Aβ, phosphorylated tau181, and neurofilament light were promising noninvasive biomarkers. Prognostic and diagnostic models were externally validated in ADNI but studies are limited by lack of ethnocultural cohort diversity. DISCUSSION ADNI has had a profound impact in improving clinical trials for AD.
Collapse
Affiliation(s)
- Dallas P. Veitch
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of PsychiatryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Laurel A. Beckett
- Division of Biostatistics, Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Charles DeCarli
- Department of Neurology and Center for NeuroscienceUniversity of California DavisDavisCaliforniaUSA
| | - Robert C. Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Broad Institute, Ariadne Labsand Harvard Medical SchoolBostonMassachusettsUSA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | | | - William Jagust
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John C. Morris
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard J. Perrin
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | | | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arthur W. Toga
- Laboratory of Neuroimaging, USC Stevens Institute of Neuroimaging and Informatics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Duygu Tosun
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
148
|
Ciampa CJ, Parent JH, Harrison TM, Fain RM, Betts MJ, Maass A, Winer JR, Baker SL, Janabi M, Furman DJ, D'Esposito M, Jagust WJ, Berry AS. Associations among locus coeruleus catecholamines, tau pathology, and memory in aging. Neuropsychopharmacology 2022; 47:1106-1113. [PMID: 35034099 PMCID: PMC8938463 DOI: 10.1038/s41386-022-01269-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
The locus coeruleus (LC) is the brain's major source of the neuromodulator norepinephrine, and is also profoundly vulnerable to the development of Alzheimer's disease (AD)-related tau pathology. Norepinephrine plays a role in neuroprotective functions that may reduce AD progression, and also underlies optimal memory performance. Successful maintenance of LC neurochemical function represents a candidate mechanism of protection against the propagation of AD-related pathology and may facilitate the preservation of memory performance despite pathology. Using [18F]Fluoro-m-tyrosine ([18F]FMT) PET imaging to measure catecholamine synthesis capacity in LC regions of interest, we examined relationships among LC neurochemical function, AD-related pathology, and memory performance in cognitively normal older adults (n = 49). Participants underwent [11C]Pittsburgh compound B and [18F]Flortaucipir PET to quantify β-amyloid (n = 49) and tau burden (n = 42) respectively. In individuals with substantial β-amyloid, higher LC [18F]FMT net tracer influx (Kivis) was associated with lower temporal tau. Longitudinal tau-PET analyses in a subset of our sample (n = 30) support these findings to reveal reduced temporal tau accumulation in the context of higher LC [18F]FMT Kivis. Higher LC catecholamine synthesis capacity was positively correlated with self-reported cognitive engagement and physical activity across the lifespan, established predictors of successful aging measured with the Lifetime Experiences Questionnaire. LC catecholamine synthesis capacity moderated tau's negative effect on memory, such that higher LC catecholamine synthesis capacity was associated with better-than-expected memory performance given an individual's tau burden. These PET findings provide insight into the neurochemical mechanisms of AD vulnerability and cognitive resilience in the living human brain.
Collapse
Affiliation(s)
- Claire J Ciampa
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Jourdan H Parent
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rebekah M Fain
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, 39106, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, 39120, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Anne Maass
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, 39120, Germany
| | - Joseph R Winer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Suzanne L Baker
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mustafa Janabi
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Daniella J Furman
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
149
|
Gonneaud J, Moreau I, Felisatti F, Arenaza‐Urquijo E, Ourry V, Touron E, de la Sayette V, Vivien D, Chételat G. Men and women show partly distinct effects of physical activity on brain integrity. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12302. [PMID: 35382233 PMCID: PMC8959639 DOI: 10.1002/dad2.12302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 12/14/2022]
Abstract
Introduction Physical inactivity and female sex are independently associated with increased Alzheimer's disease (AD) lifetime risk. This study investigates the possible interactions between sex and physical activity on neuroimaging biomarkers. Methods In 134 cognitively unimpaired older adults (≥65 years, 82 women) from the Age-Well randomized controlled trial (baseline data), we investigated the association between physical activity and multimodal neuroimaging (gray matter volume, glucose metabolism, perfusion, and amyloid burden), and how sex modulates these associations. Results The anterior cingulate cortex volume was independently associated with sex and physical activity. Sex and physical activity interacted on perfusion and amyloid deposition in medial parietal regions, such that physical activity was related to perfusion only in women, and to amyloid burden only in men. Discussion Physical activity has both sex-dependent and sex-independent associations with brain integrity. Our findings highlight partly distinct reserve mechanisms in men and women, which might in turn influence their risk of AD. Highlights Sex and physical activity have been linked to Alzheimer's disease (AD) progression.The association of sex and physical activity with brain health is partly independent.Different reserve mechanisms exist in men and women.
Collapse
Affiliation(s)
- Julie Gonneaud
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
| | - Ilana Moreau
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
| | - Francesca Felisatti
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
| | - Eider Arenaza‐Urquijo
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
- Barcelonabeta Brain Research CenterFundación Pasqual MaragallBarcelonaSpain
| | - Valentin Ourry
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
- Normandie UnivUNICAEN, PSL UniversitéEPHE, INSERM, U1077CHU de CaenGIP CyceronNIMHCaenFrance
| | - Edelweiss Touron
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
| | - Vincent de la Sayette
- Normandie UnivUNICAEN, PSL UniversitéEPHE, INSERM, U1077CHU de CaenGIP CyceronNIMHCaenFrance
- Service de NeurologieCentre Hospitalier Universitaire de CaenCaenFrance
| | - Denis Vivien
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
| | - Gaël Chételat
- Normandie UniversitéUniversité de CaenInstitut National de la Santé et de la Recherche MédicaleUnité 1237 "Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain@ Caen‐NormandieGIP CyceronCaenFrance
| |
Collapse
|
150
|
Klotz S, Ricken G, Preusser M, Dieckmann K, Widhalm G, Rössler K, Fischer P, Kalev O, Wöhrer A, Kovacs GG, Gelpi E. Enhanced expression of autophagy-related p62 without increased deposits of neurodegeneration-associated proteins in glioblastoma and surrounding tissue - An autopsy-based study. Brain Pathol 2022; 32:e13058. [PMID: 35229396 PMCID: PMC9425004 DOI: 10.1111/bpa.13058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
Neurodegenerative diseases are a major health burden. The underlying causes are not yet fully understood, but different mechanisms such as cell stress and chronic inflammation have been described as contributing factors. Neurodegenerative changes have been observed in the vicinity of brain tumors, typically around slowly growing benign lesions. Moreover, in‐vitro data suggest a potential induction of pathological tau deposits also in glioblastoma, a highly malignant and proliferative brain cancer. The aim of this study was to evaluate neurodegeneration‐associated protein deposition and autophagy as well as microglial activation within and surrounding glioblastoma. Post‐mortem brain tissue of 22 patients with glioblastoma was evaluated immunohistochemically for phosphorylated tau, beta‐amyloid, alpha‐synuclein and phosphorylated TDP‐43. Additionally, the autophagy marker p62 and the microglial marker HLA‐DR were investigated. The data was compared to 22 control cases and ten cases with other space occupying brain lesions. An increase of p62‐immunoreactivity was observed within and adjacent to the glioblastoma tumor tissue. Moreover, dense microglial infiltration in the tumor tissue and the immediate surrounding brain tissue was a constant feature. Deposition of neurodegeneration‐associated proteins was found in the majority of cases (86.4%) but in distant sites. These findings suggested a preexisting neurodegenerative pathology, which followed a typical distributional pattern: ten cases with Alzheimer disease neuropathological changes, including two severe cases, eight cases with primary age‐related tauopathy, six cases with aging‐related tau astrogliopathy and one case with progressive supranuclear palsy. Collectively, our data suggests enhanced autophagy in glioblastoma tumor cells and the surrounding brain. The variety and distribution of distant neurodegeneration‐associated protein aggregates observed in the majority of cases, suggest a preexisting rather than a tumor‐induced neurodegenerative condition.
Collapse
Affiliation(s)
- Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Peter Fischer
- Medical Research Society Vienna D.C., Head of Department of Psychiatry, Danube Hospital, Vienna, Austria
| | - Ognian Kalev
- Department of Neuropathology, Kepler University Hospital, Linz, Austria
| | - Adelheid Wöhrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|