101
|
Dequier E, Souid S, Pál M, Maróy P, Lepesant JA, Yanicostas C. Top-DER- and Dpp-dependent requirements for the Drosophila fos/kayak gene in follicular epithelium morphogenesis. Mech Dev 2001; 106:47-60. [PMID: 11472834 DOI: 10.1016/s0925-4773(01)00418-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Drosophila fos (Dfos)/kayak gene has been previously identified as a key regulator of epithelial cell morphogenesis during dorsal closure of the embryo and fusion of the adult thorax. We show here that it is also required for two morphogenetic movements of the follicular epithelium during oogenesis. Firstly, it is necessary for the proper posteriorward migration of main body follicle cells during stage 9. Secondly, it controls, from stage 11 onwards, the morphogenetic reorganization of the follicle cells that are committed to secrete the respiratory appendages. We demonstrate that DER pathway activation and a critical level of Dpp/TGFbeta signalling are required to pattern a high level of transcription of Dfos at the anterior and dorsal edges of the two groups of cells that will give rise to the respiratory appendages. In addition, we provide evidence that, within the dorsal-anterior territory, the level of paracrine Dpp/TGFbeta signalling controls the commitment of follicle cells towards either an operculum or an appendage secretion fate. Finally, we show that Dfos is required in follicle cells for the dumping of the nurse cell cytoplasm into the oocyte and the subsequent apoptosis of nurse cells. This suggests that in somatic follicle cells, Dfos controls the expression of one or several factors that are necessary for these processes in underlying germinal nurse cells.
Collapse
Affiliation(s)
- E Dequier
- Department of Developmental Biology, Institut Jacques Monod, UMR 7592, CNRS, Université Paris 7 Denis-Diderot and Université Paris 6 Pierre et Marie Curie, 2, Place Jussieu, F-75251 Cedex 05, Paris, France
| | | | | | | | | | | |
Collapse
|
102
|
Zhou B, Riddiford LM. Hormonal regulation and patterning of the broad-complex in the epidermis and wing discs of the tobacco hornworm, Manduca sexta. Dev Biol 2001; 231:125-37. [PMID: 11180957 DOI: 10.1006/dbio.2000.0143] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of Manduca Broad-Complex (BR-C) mRNA in the larval epidermis is under the dual control of ecdysone and juvenile hormone (JH). Immunocytochemistry with antibodies that recognize the core, Z2, and Z4 domains of Manduca BR-C proteins showed that BR-C appearance not only temporally correlates with pupal commitment of the epidermis on day 3 of the fifth (final) larval instar, but also occurs in a strict spatial pattern within the abdominal segment similar to that seen for the loss of sensitivity to JH. Levels of Z2 and Z4 BR-C proteins shift with Z2 predominating at pupal commitment and Z4 dominant during early pupal cuticle synthesis. Both induction of BR-C mRNA in the epidermis by 20-hydroxyecdysone (20E) and its suppression by JH were shown to be independent of new protein synthesis. For suppression JH must be present during the initial exposure to 20E. When JH was given 6 h after 20E, suppression was only seen in those regions that had not yet expressed BR-C. In the wing discs BR-C was first detected earlier 1.5 days after ecdysis, coincident with the pupal commitment of the wing. Our findings suggest that BR-C expression is one of the first molecular events underlying pupal commitment of both epidermis and wing discs.
Collapse
Affiliation(s)
- B Zhou
- Department of Zoology, University of Washington, Seattle, Washington 98195-1800, USA
| | | |
Collapse
|
103
|
Riddiford LM, Cherbas P, Truman JW. Ecdysone receptors and their biological actions. VITAMINS AND HORMONES 2001; 60:1-73. [PMID: 11037621 DOI: 10.1016/s0083-6729(00)60016-x] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- L M Riddiford
- Department of Zoology, University of Washington, Seattle 98195-1800, USA
| | | | | |
Collapse
|
104
|
Langelan RE, Fisher JE, Hiruma K, Palli SR, Riddiford LM. Patterns of MHR3 expression in the epidermis during a larval molt of the tobacco hornworm Manduca sexta. Dev Biol 2000; 227:481-94. [PMID: 11071768 DOI: 10.1006/dbio.2000.9895] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MHR3, an ecdysone-induced transcription factor, was shown to appear in the abdominal epidermis of the tobacco hornworm Manduca sexta in a pattern-specific manner as the 20-hydroxyecdysone (20E) titer rises for the larval molt. The crochet epidermis that forms the hooked setae on the proleg is first to show MHR3 mRNA and protein followed sequentially by the spiracle, the dorsal intrasegmental annuli, the interannular regions, and finally the trichogen and tormogen cells. The protein appears in the nuclei about 8 h before the onset of cuticle formation, is present during the outgrowth of the setae, and disappears after epicuticle formation. In vitro studies showed that MHR3 mRNA induction in the crochet epidermis by 20E was more sensitive (EC(50) = 10(-6) M; 50% induction by 2 h exposure to 4 x 10(-6) M 20E) and did not require protein synthesis for maximal accumulation compared to the dorsal epidermis. The ecdysone receptor complex is present in both tissues at the outset of the molt and therefore is not a determining factor in these responses. Thus, in addition to the ecdysone receptor complex, region-specific factors govern both sensitivity and timing of responsiveness of MHR3 to 20E to ensure that this transcription factor will be present when needed for its differentiative role.
Collapse
Affiliation(s)
- R E Langelan
- Department of Zoology, University of Washington, Seattle, Washington, 98195-1800, USA
| | | | | | | | | |
Collapse
|
105
|
Pai LM, Barcelo G, Schüpbach T. D-cbl, a negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell 2000; 103:51-61. [PMID: 11051547 DOI: 10.1016/s0092-8674(00)00104-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During Drosophila oogenesis, asymmetrically localized Gurken activates the EGF receptor (Egfr) and determines dorsal follicle cell fates. Using a mosaic follicle cell system we have identified a mutation in the D-cbl gene which causes hyperactivation of the Egfr pathway. Cbl proteins are known to downregulate activated receptors. We find that the abnormal Egfr activation is ligand dependent. Our results show that the precise regulation of Egfr activity necessary to establish different follicle cell fates requires two levels of control. The localized ligand Gurken activates Egfr to different levels in different follicle cells. In addition, Egfr activity has to be repressed through the activity of D-cbl to ensure the absence of signaling in the ventral most follicle cells.
Collapse
Affiliation(s)
- L M Pai
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | | | |
Collapse
|
106
|
Araujo H, Bier E. sog and dpp exert opposing maternal functions to modify toll signaling and pattern the dorsoventral axis of the Drosophila embryo. Development 2000; 127:3631-44. [PMID: 10903186 DOI: 10.1242/dev.127.16.3631] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The short gastrulation (sog) and decapentaplegic (dpp) genes function antagonistically in the early Drosophila zygote to pattern the dorsoventral (DV) axis of the embryo. This interplay between sog and dpp determines the extent of the neuroectoderm and subdivides the dorsal ectoderm into two territories. Here, we present evidence that sog and dpp also play opposing roles during oogenesis in patterning the DV axis of the embryo. We show that maternally produced Dpp increases levels of the I(kappa)B-related protein Cactus and reduces the magnitude of the nuclear concentration gradient of the NF(kappa)B-related Dorsal protein, and that Sog limits this effect. We present evidence suggesting that Dpp signaling increases Cactus levels by reducing a signal-independent component of Cactus degradation. Epistasis experiments reveal that sog and dpp act downstream of, or in parallel to, the Toll receptor to reduce translocation of Dorsal protein into the nucleus. These results broaden the role previously defined for sog and dpp in establishing the embryonic DV axis and reveal a novel form of crossregulation between the NF(kappa)B and TGF(beta) signaling pathways in pattern formation.
Collapse
Affiliation(s)
- H Araujo
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | | |
Collapse
|
107
|
Abstract
The Drosophila eggshell is a specialized extracellular matrix that forms between the oocyte and overlaying somatic follicle cells during the latter stages of oogenesis. Largely proteinaceous, the eggshell is a highly organized multilayered structure with regional specializations designed to perform a variety of functions. Production of a functional eggshell features: (1) the differentiation of subsets of follicle cells in response to ovarian signals, (2) directed migrations of the follicle cells within the developing egg chamber, (3) expression of eggshell structural genes by the follicle cells in a defined temporal and spatial order, (4) postdepositional modifications of the eggshell proteins including several temporally regulated proteolytic cleavage events, and (5) regulated trafficking of several eggshell proteins in the assembling structure. By exploiting the genetic advantages of Drosophila and using evolution as a guide, the eggshell provides an excellent experimental system to study, in vivo, molecular mechanisms used to regulate protein-protein interactions throughout the assembly of a complex extracellular architecture in a developing organism.
Collapse
Affiliation(s)
- G L Waring
- Department of Biology, Marquette University, Milwaukee, WI 53201-1881, USA
| |
Collapse
|
108
|
Abstract
Drosophila oogenesis involves the coordinated development of germ cells and an overlying follicular epithelium. The follicle cells provide a genetically tractable system to investigate the cell biology of patterning and morphogenesis. Follicle cells initially form a cuboidal epithelium surrounding a syncytium of nurse cells and oocyte. Epithelial structure is maintained as these cells reorganize to create the three dimensional architecture of the eggshell. Both long-range and short-range cell-cell communications pattern the domains of follicle cells that will create specific eggshell structures. After terminal differentiation to deposit the eggshell proteins, the follicle cells die. This review summarizes recent progress in understanding the cell-cell communication that orchestrates follicle cell patterning and migrations. DE-cadherin-mediated adhesion is important at several steps in egg chamber formation and follicle cell migration. Notch signaling is critical during each successive round of patterning and migration. Integration of bone morphogenetic protein (BMP) and epidermal growth factor (EGF) signals patterns the elaborate structures of the dorsal-anterior eggshell.
Collapse
Affiliation(s)
- L L Dobens
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129, USA
| | | |
Collapse
|
109
|
Dobens LL, Peterson JS, Treisman J, Raftery LA. Drosophila bunched integrates opposing DPP and EGF signals to set the operculum boundary. Development 2000; 127:745-54. [PMID: 10648233 DOI: 10.1242/dev.127.4.745] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila BMP homolog DPP can function as a morphogen, inducing multiple cell fates across a developmental field. However, it is unknown how graded levels of extracellular DPP are interpreted to organize a sharp boundary between different fates. Here we show that opposing DPP and EGF signals set the boundary for an ovarian follicle cell fate. First, DPP regulates gene expression in the follicle cells that will create the operculum of the eggshell. DPP induces expression of the enhancer trap reporter A359 and represses expression of bunched, which encodes a protein similar to the mammalian transcription factor TSC-22. Second, DPP signaling indirectly regulates A359 expression in these cells by downregulating expression of bunched. Reduced bunched function restores A359 expression in cells that lack the Smad protein MAD; ectopic expression of BUNCHED suppresses A359 expression in this region. Importantly, reduction of bunched function leads to an expansion of the operculum and loss of the collar at its boundary. Third, EGF signaling upregulates expression of bunched. We previously demonstrated that the bunched expression pattern requires the EGF receptor ligand GURKEN. Here we show that activated EGF receptor is sufficient to induce ectopic bunched expression. Thus, the balance of DPP and EGF signals sets the boundary of bunched expression. We propose that the juxtaposition of cells with high and low BUNCHED activity organizes a sharp boundary for the operculum fate.
Collapse
Affiliation(s)
- L L Dobens
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
110
|
Peri F, Roth S. Combined activities of Gurken and decapentaplegic specify dorsal chorion structures of the Drosophila egg. Development 2000; 127:841-50. [PMID: 10648242 DOI: 10.1242/dev.127.4.841] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During Drosophila oogenesis Gurken, associated with the oocyte nucleus, activates the Drosophila EGF receptor in the follicular epithelium. Gurken first specifies posterior follicle cells, which in turn signal back to the oocyte to induce the migration of the oocyte nucleus from a posterior to an anterior-dorsal position. Here, Gurken signals again to specify dorsal follicle cells, which give rise to dorsal chorion structures including the dorsal appendages. If Gurken signaling is delayed and starts after stage 6 of oogenesis the nucleus remains at the posterior pole of the oocyte. Eggs develop with a posterior ring of dorsal appendage material that is produced by main-body follicle cells expressing the gene Broad-Complex. They encircle terminal follicle cells expressing variable amounts of the TGFbeta homologue, decapentaplegic. By ectopically expressing decapentaplegic and clonal analysis with Mothers against dpp we show that Decapentaplegic signaling is required for Broad-Complex expression. Thus, the specification and positioning of dorsal appendages along the anterior-posterior axis depends on the intersection of both Gurken and Decapentaplegic signaling. This intersection also induces rhomboid expression and thereby initiates the positive feedback loop of EGF receptor activation, which positions the dorsal appendages along the dorsal-ventral egg axis.
Collapse
Affiliation(s)
- F Peri
- Institut für Entwicklungsbiologie, Universität zu Köln, D-50923 Köln, Germany
| | | |
Collapse
|
111
|
Zhao D, Bownes M. Misexpression of argos, an inhibitor of EGFR signaling in oogenesis, leads to the production of bicephalic, ventralized, and lateralized Drosophila melanogaster eggs. DEVELOPMENTAL GENETICS 1999; 25:375-86. [PMID: 10570469 DOI: 10.1002/(sici)1520-6408(1999)25:4<375::aid-dvg11>3.0.co;2-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Epidermal growth factor receptor (EGFR) signaling pathways are frequently involved in generating cell fate diversity in a number of organisms. During anterior-posterior and dorso-ventral polarity in the Drosophila egg chamber and eggshell, EGFR signaling leads to a number of determinative events in the follicle cell layer. A high level of Gurken signal leads to the expression of argos in dorsal midline cells. Lateral follicle cells, receiving a lower level of Gurken signal, can continue to express the Broad-Complex (BR-C) and differentiate into cells which produce chorionic appendages. Misexpression of argos in mid-oogenesis causes the midline cells to retain expression of BR-C, resulting in a single fused large appendage. Evidence that argos can directly repress Gurken-induced EGFR signaling is seen when premature expression of argos is induced earlier in oogenesis. It represses the Gurken signal at stage 5-6 of oogenesis which determines posterior follicle cells and occasionally leads to eggs with anteriors at both ends. We propose that the Gurken signal at stage 9 of oogenesis induces follicle cells to take on two fates, dorsal midline and lateral, each producing different parts of the eggshell and that argos is one of the key downstream genes required to select between these two fates.
Collapse
Affiliation(s)
- D Zhao
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
112
|
Sandstrom DJ, Restifo LL. Epidermal tendon cells require Broad Complex function for correct attachment of the indirect flight muscles in Drosophila melanogaster. J Cell Sci 1999; 112 ( Pt 22):4051-65. [PMID: 10547365 DOI: 10.1242/jcs.112.22.4051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drosophila Broad Complex, a primary response gene in the ecdysone cascade, encodes a family of zinc-finger transcription factors essential for metamorphosis. Broad Complex mutations of the rbp complementation group disrupt attachment of the dorsoventral indirect flight muscles during pupal development. We previously demonstrated that isoform BRC-Z1 mediates the muscle attachment function of rbp(+) and is expressed in both developing muscle fibers and their epidermal attachment sites. We now report two complementary studies to determine the cellular site and mode of action of rbp(+) during maturation of the myotendinous junctions of dorsoventral indirect flight muscles. First, genetic mosaics, produced using the paternal loss method, revealed that the muscle attachment phenotype is determined primarily by the genotype of the dorsal epidermis, with the muscle fiber and the ventral epidermis exerting little or no influence. When the dorsal epidermis was mutant, the vast majority of muscles detached or chose ectopic attachment sites, regardless of the muscle genotype. Conversely, wild-type dorsal epidermis could support attachment of mutant muscles. Second, ultrastructural analysis corroborated and extended these results, revealing defective and delayed differentiation of rbp mutant epidermal tendon cells in the dorsal attachment sites. Tendon cell processes, the stress-bearing links between the epidermis and muscle, were reduced in number and showed delayed appearance of microtubule bundles. In contrast, mutant muscle and ventral epidermis resembled the wild type. In conclusion, BRC-Z1 acts in the dorsal epidermis to ensure differentiation of the myotendinous junction. By analogy with the cell-cell interaction essential for embryonic muscle attachment, we propose that BRC-Z1 regulates one or more components of the epidermal response to a signal from the developing muscle.
Collapse
Affiliation(s)
- D J Sandstrom
- ARL Division of Neurobiology and Interdisciplinary Program in Genetics, University of Arizona, Tucson, AZ 85721-0077, USA
| | | |
Collapse
|
113
|
Deng W, Leaper K, Bownes M. A targeted gene silencing technique shows that Drosophila myosin VI is required for egg chamber and imaginal disc morphogenesis. J Cell Sci 1999; 112 ( Pt 21):3677-90. [PMID: 10523504 DOI: 10.1242/jcs.112.21.3677] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that Drosophila unconventional myosin VI, encoded by Myosin heavy chain at 95F (Mhc95F), is required for both imaginal disc and egg chamber morphogenesis. During oogenesis, Mhc95F is expressed in migrating follicle cells, including the border cells, which migrate between the nurse cells to lie at the anterior of the oocyte; the columnar cells that migrate over the oocyte; the centripetal cells that migrate between the oocyte and nurse cells; and the dorsal-anterior follicle cells, which migrate to secrete the chorionic appendages. Its function during development has been studied using a targeted gene silencing technique, combining the Gal4-UAS targeted expression system and the antisense RNA technique. Antibody staining shows that the expression of myosin 95F is greatly decreased in follicle cells when antisense Mhc95F RNA is expressed. Interfering with expression of Drosophila myosin VI at various developmental stages frequently results in lethality. During metamorphosis it results in adult flies with malformed legs and wings, indicating that myosin VI is essential for imaginal disc morphogenesis. During oogenesis, abnormal follicle cell shapes and aberrant follicle cell migrations are observed when antisense Mhc95F is expressed in follicle cells during stages 9 to 10, suggesting that the Drosophila myosin VI is required for follicle cell epithelial morphogenesis.
Collapse
Affiliation(s)
- W Deng
- Institute of Cell and Molecular Biology, University of Edinburgh, Darwin Building, King's Buildings, Edinburgh EH9 3JR, UK.
| | | | | |
Collapse
|
114
|
Tzolovsky G, Deng WM, Schlitt T, Bownes M. The function of the broad-complex during Drosophila melanogaster oogenesis. Genetics 1999; 153:1371-83. [PMID: 10545465 PMCID: PMC1460822 DOI: 10.1093/genetics/153.3.1371] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Broad-Complex (BR-C) is an early ecdysone response gene that functions during metamorphosis and encodes a family of zinc-finger transcription factors. It is expressed in a dynamic pattern during oogenesis. Its late expression in the lateral-dorsal-anterior follicle cells is related to the morphogenesis of the chorionic appendages. All four zinc-finger isoforms are expressed in oogenesis, which is consistent with the abnormal appendage phenotypes resulting from their ectopic expression. We investigated the mechanism by which the BR-C affects chorion deposition by using BrdU to follow the effects of BR-C misexpression on DNA replication and in situ hybridization to ovarian mRNA to evaluate chorion gene expression. Ectopic BR-C expression leads to prolonged endoreplication and to additional amplification of genes, besides the chorion genes, at other sites in the genome. The pattern of chorion gene expression is not affected along the anterior-posterior axis, but the follicle cells at the anterior of the oocyte fail to migrate correctly in an anterior direction when BR-C is misexpressed. We conclude that the target genes of the BR-C in oogenesis include a protein essential for endoreplication and chorion gene amplification. This may provide a link between steroid hormones and the control of DNA replication during oogenesis.
Collapse
Affiliation(s)
- G Tzolovsky
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | |
Collapse
|
115
|
Buszczak M, Freeman MR, Carlson JR, Bender M, Cooley L, Segraves WA. Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development 1999; 126:4581-9. [PMID: 10498692 DOI: 10.1242/dev.126.20.4581] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The steroid hormone ecdysone regulates larval development and metamorphosis in Drosophila melanogaster through a complex genetic hierarchy that begins with a small set of early response genes. Here, we present data indicating that the ecdysone response hierarchy also mediates egg chamber maturation during mid-oogenesis. E75, E74 and BR-C are expressed in a stage-specific manner while EcR expression is ubiquitous throughout oogenesis. Decreasing or increasing the ovarian ecdysone titer using a temperature-sensitive mutation or exogenous ecdysone results in corresponding changes in early gene expression. The stage 10 follicle cell expression of E75 in wild-type, K10 and EGF receptor (Egfr) mutant egg chambers reveals regulation of E75 by both the Egfr and ecdysone signaling pathways. Genetic analysis indicates a germline requirement for ecdysone-responsive gene expression. Germline clones of E75 mutations arrest and degenerate during mid-oogenesis and EcR germline clones exhibit a similar phenotype, demonstrating a functional requirement for ecdysone responsiveness during the vitellogenic phase of oogenesis. Finally, the expression of Drosophila Adrenodoxin Reductase increases during mid-oogenesis and clonal analysis confirms that this steroidogenic enzyme is required in the germline for egg chamber development. Together these data suggest that the temporal expression profile of E75, E74 and BR-C may be a functional reflection of ecdysone levels and that ecdysone provides temporal signals regulating the progression of oogenesis and proper specification of dorsal follicle cell fates.
Collapse
Affiliation(s)
- M Buszczak
- Department of MCDB, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | | | | | |
Collapse
|
116
|
Calvi BR, Spradling AC. Chorion gene amplification in Drosophila: A model for metazoan origins of DNA replication and S-phase control. Methods 1999; 18:407-17. [PMID: 10455001 DOI: 10.1006/meth.1999.0799] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mechanisms controlling duplication of the metazoan genome are only beginning to be understood. It is still unclear what organization of DNA sequences constitutes a chromosomal origin of DNA replication, and the regulation of origin activity during the cell cycle has not been fully revealed. We review recent results that indicate that chorion gene amplification in follicle cells of the Drosophila ovary is a model for investigating metazoan replication. Evaluation of cis sequence organization and function suggests that chorion loci share attributes with other replicons and provides insights into metazoan origin structure. Moreover, recent results indicate that chorion origins respond to S-phase control, but escape mechanisms that inhibit other origins from firing more than once in a cell cycle. Several identified genes that mediate amplification are critical for the cell cycle control of replication initiation. It is likely that further genetic screens for mutations that disrupt amplification will identify the cadre of proteins associated with origins and the regulatory pathways that control their activity. Furthermore, the recent development of methods to detect amplification in situ has uncovered new aspects of its developmental control. Examining this control will reveal links between developmental pathways and the cell cycle machinery. Visualization of amplifying chorion genes with high resolution also represents an opportunity to evaluate the influence of nuclear and chromosome structure on origin activity. The study of chorion amplification in Drosophila, therefore, provides great potential for the genetic and molecular dissection of metazoan replication.
Collapse
Affiliation(s)
- B R Calvi
- Howard Hughes Medical Institute Research Laboratories, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| | | |
Collapse
|
117
|
Bryant Z, Subrahmanyan L, Tworoger M, LaTray L, Liu CR, Li MJ, van den Engh G, Ruohola-Baker H. Characterization of differentially expressed genes in purified Drosophila follicle cells: toward a general strategy for cell type-specific developmental analysis. Proc Natl Acad Sci U S A 1999; 96:5559-64. [PMID: 10318923 PMCID: PMC21899 DOI: 10.1073/pnas.96.10.5559] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Axis formation in Drosophila depends on correct patterning of the follicular epithelium and on signaling between the germ line and soma during oogenesis. We describe a method for identifying genes expressed in the follicle cells with potential roles in axis formation. Follicle cells are purified from whole ovaries by enzymatic digestion, filtration, and fluorescence-activated cell sorting (FACS). Two strategies are used to obtain complementary cell groups. In the first strategy, spatially restricted subpopulations are marked for FACS selection using a green fluorescent protein (GFP) reporter. In the second, cells are purified from animals mutant for the epidermal growth factor receptor ligand gurken (grk) and from their wild-type siblings. cDNA from these samples of spatially restricted or genetically mutant follicle cells is used in differential expression screens employing PCR-based differential display or hybridization to a cDNA microarray. Positives are confirmed by in situ hybridization to whole mounts. These methods are found to be capable of identifying both spatially restricted and grk-dependent transcripts. Results from our pilot screens include (i) the identification of a homologue of the immunophilin FKBP-12 with dorsal anterior expression in egg chambers, (ii) the discovery that the ecdysone-inducible nuclear hormone receptor gene E78 is regulated by grk during oogenesis and is required for proper dorsal appendage formation, and (iii) the identification of a Drosophila homologue of the human SET-binding factor gene SBF1 with elevated transcription in grk mutant egg chambers.
Collapse
Affiliation(s)
- Z Bryant
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
In many sexually mature insects egg production and oviposition are tightly coupled to copulation. Sex-Peptide is a 36-amino-acid peptide synthesized in the accessory glands of Drosophila melanogaster males and transferred to the female during copulation. Sex-Peptide stimulates vitellogenic oocyte progression through a putative control point at about stage 9 of oogenesis. Here we show that application of the juvenile hormone analogue methoprene mimics the Sex-Peptide-mediated stimulation of vitellogenic oocyte progression in sexually mature virgin females. Apoptosis is induced by 20-hydroxyecdysone in nurse cells of stage 9 egg chambers at physiological concentrations (10(-7) M). 20-Hydroxyecdysone thus acts as an antagonist of early vitellogenic oocyte development. Simultaneous application of juvenile hormone analogue, however, protects early vitellogenic oocytes from 20-hydroxyecdysone-induced resorption. These results suggest that the balance of these hormones in the hemolymph regulates whether oocytes will progress through the control point at stage 9 or undergo apoptosis. These data are further supported by a molecular analysis of the regulation of yolk protein synthesis and uptake into the ovary by the two hormones. We conclude that juvenile hormone is a downstream component in the Sex-Peptide response cascade and acts by stimulating vitellogenic oocyte progression and inhibiting apoptosis. Since juvenile hormone analogue does not elicit increased oviposition and reduced receptivity, Sex-Peptide must have an additional, separate effect on these two postmating responses.
Collapse
Affiliation(s)
- M Soller
- Zoologisches Institut, Universität Zürich-Irchel, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | | | | |
Collapse
|
119
|
Roth S, Jordan P, Karess R. Binuclear Drosophila oocytes: consequences and implications for dorsal-ventral patterning in oogenesis and embryogenesis. Development 1999; 126:927-34. [PMID: 9927594 DOI: 10.1242/dev.126.5.927] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The position of the nucleus along the anterior rim of stage 8 Drosophila oocytes presages the dorsal side of the egg and the developing embryo. In this paper, we address the question of whether the oocyte has a previously determined dorsal side to which the nucleus is drawn, or whether nuclear position randomly determines the dorsal side. To do so, we have taken advantage of a genetic system in which Drosophila oocytes occasionally become binuclear. We find that (i) the two nuclei migrate independently to their respective positions on the anterior rim, sometimes selecting the same site, sometimes not, (ii) the two nuclei are equivalent in their ability to induce a dorsal-ventral pattern in the overlying follicular epithelium, and (iii) at any position around the anterior circumference of the egg chamber the follicle cell sheet is equally responsive to the Gurken signal associated with the oocyte nuclei. These results argue that the dorsal-ventral axis is determined arbitrarily by the randomly selected position of the nucleus on the anterior rim of the oocyte. Some of the binuclear eggs support embryonic development. However, despite the duplication of dorsal chorion structures, the majority of such embryos show normal dorsal-ventral patterning. Thus, processes exist in the ventral follicular epithelium or in the perivitelline space that compensate for the expansion of dorsal follicle cell fates and consequently allow the formation of a normal embryonic axis.
Collapse
Affiliation(s)
- S Roth
- Centre de Génétique Moleculaire, Avenue de la Terrasse, France
| | | | | |
Collapse
|
120
|
Abstract
During Drosophila melanogaster oogenesis Gurken, a TGF-alpha like protein localized close to the oocyte nucleus, activates the MAPK cascade via the Drosophila EGF receptor (DER). Activation of this pathway induces different cell fates in the overlying follicular epithelium, specifying the two dorsolaterally positioned respiratory appendages and the dorsalmost cells separating them. Signal-associated internalization of Gurken protein into follicle cells demonstrates that the Gurken signal is spatially restricted and of constant intensity during mid-oogenesis. At the same time MAPK activation evolves in a spatially and temporally dynamic way and resolves into a complex pattern that presages the position of the appendages. Therefore, different dorsal follicle cell fates are not determined by a Gurken morphogen gradient. Instead they are specified by secondary signal amplification and refinement processes that integrate the Gurken signal with positive and negative feedback mechanisms generated by target genes of the DER pathway.
Collapse
Affiliation(s)
- F Peri
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstr. 35/II, 72076, Tübingen, Germany
| | | | | |
Collapse
|
121
|
Abstract
The spatial regulation of Egfr activity in the follicular epithelium of the ovary is achieved by the localization of its ligand, Gurken, within the germline. The final distribution of Gurken within the oocyte appears to be specified both by the localization of the gurken RNA and by regulation of Gurken protein accumulation, possibly at the level of translation. Localized activation of the Egfr distinguishes certain subpopulations of follicle cells, thereby generating asymmetry within the follicular epithelium. In early oogenesis, Egfr activation in posterior follicle cells defines the AP polarity of the egg chamber, and in midoogenesis restriction of Egfr activity to dorsal follicle cells determines DV polarity. A number of factors required downstream of the Egfr have been identified, but the mechanism by which the observed patterning of the follicular epithelium is achieved remains unclear. The dynamic expression patterns of some of these targets suggest that the initial Gurken-Egfr signal at the dorsal side of the follicular epithelium mediates an initial distinction between dorsal and ventral follicle cells and also initiates subsequent refinement processes that determine the final pattern of cell fates. In the dorsal follicle cells, this refinement appears to involve interactions between Egfr targets and may also involve feedback regulation of Egfr activity such that the profile of Egfr activity is modulated over time. In addition, the initial Gurken-Egfr signal negatively regulates the functional domain of another patterning process that governs the establishment of the DV axis of the developing embryo.
Collapse
Affiliation(s)
- L A Nilson
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
122
|
Van Buskirk C, Schüpbach T. Versatility in signalling: multiple responses to EGF receptor activation during Drosophila oogenesis. Trends Cell Biol 1999; 9:1-4. [PMID: 10087609 DOI: 10.1016/s0962-8924(98)01413-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The Drosophila epidermal growth factor receptor (EGFR) is active in different tissues and is involved in diverse processes such as patterning of the embryonic ectoderm, growth and differentiation of imaginal discs and cell survival. During oogenesis, the EGFR is expressed in the somatic follicle cells that surround individual oocyte-nurse cell complexes. In response to germline signals, the follicle cells differentiate in a complex pattern, which in turn leads to the establishment of the egg axes. Two recent reports have shown that the strategies used to pattern posterior follicle cells are different from those used to pattern dorsal follicle cells. In posterior follicle cells, EGFR activity is translated into an on-off response, whereas, in dorsal follicle cells, patterning mechanisms are initiated and refined by feedback that modulates receptor activity over time.
Collapse
Affiliation(s)
- C Van Buskirk
- Howard Hughes Medical Institute, Dept of Molecular Biology, Princeton University, NJ 08544, USA
| | | |
Collapse
|
123
|
Abstract
Intercellular signaling through the EGF receptor (EGFR) patterns the Drosophila egg. The TGF alpha-like ligand Gurken signals from the oocyte to the receptor in the overlying somatic follicle cells. We show that in the dorsal follicle cells this initial paracrine signaling event triggers an autocrine amplification by two other EGFR ligands, Spitz and Vein. Spitz only becomes an effective ligand in the presence of the multitransmembrane domain protein Rhomboid. Consequent high-level EGFR activation leads to localized expression of the diffusible inhibitor Argos, which alters the profile of signaling. This sequential activation, amplification, and local inhibition of the EGFR forms an autoregulatory cascade that leads to the splitting of an initial single peak of signaling into two, thereby patterning the egg.
Collapse
Affiliation(s)
- J D Wasserman
- MRC Laboratory of Molecular Biology, Cambridge, England
| | | |
Collapse
|
124
|
Abstract
The multiple roles of the Drosophila epidermal growth factor receptor (EGFR) require that its activation is regulated precisely. Recent work has highlighted two important control mechanisms: the existence of multiple ligands with distinct properties and the interaction between EGFR pathway and other signalling pathways. The integration of signalling pathways into networks is beginning to be understood.
Collapse
Affiliation(s)
- M Freeman
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
125
|
Brennan CA, Ashburner M, Moses K. Ecdysone pathway is required for furrow progression in the developing Drosophila eye. Development 1998; 125:2653-64. [PMID: 9636080 DOI: 10.1242/dev.125.14.2653] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila, secretion of the steroid hormone ecdysone from the prothoracic ring gland coordinates and triggers events such as molting and metamorphosis. In the developing Drosophila compound eye, pattern formation and cell-type specification initiate at a moving boundary known as the morphogenetic furrow. We have investigated the role of ecdysone in eye development and report here that the ecdysone signaling pathway is required for progression of the morphogenetic furrow in the eye imaginal disc of Drosophila. Genetic disruption both of the ecdysone signal in vivo with the ecdysoneless1 (ecd1) mutant and of ecdysone response with a Broad-Complex mutant result in disruption of morphogenetic furrow progression. In addition, we show that ecdysone-dependent gene expression, both of a reporter of transcriptional activity of the Ecdysone Receptor and of the Z1 isoform of the Broad Complex, are localized in and close to the furrow. These results suggest that, in the morphogenetic furrow, temporal hormonal signals are integrated into genetic pathways specifying spatial pattern.
Collapse
Affiliation(s)
- C A Brennan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322-3030, USA
| | | | | |
Collapse
|