101
|
Abstract
A distinctive and essential feature of the vertebrate body is a pronounced left-right asymmetry of internal organs and the central nervous system. Remarkably, the direction of left-right asymmetry is consistent among all normal individuals in a species and, for many organs, is also conserved across species, despite the normal health of individuals with mirror-image anatomy. The mechanisms that determine stereotypic left-right asymmetry have fascinated biologists for over a century. Only recently, however, has our understanding of the left-right patterning been pushed forward by links to specific genes and proteins. Here we examine the molecular biology of the three principal steps in left-right determination: breaking bilateral symmetry, propagation and reinforcement of pattern, and the translation of pattern into asymmetric organ morphogenesis.
Collapse
Affiliation(s)
- M Mercola
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
102
|
Onuma Y, Takahashi S, Yokota C, Asashima M. Multiple nodal-related genes act coordinately in Xenopus embryogenesis. Dev Biol 2002; 241:94-105. [PMID: 11784097 DOI: 10.1006/dbio.2001.0493] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four nodal-related genes (Xnr1-4) have been isolated in Xenopus to date, and we recently further identified two more, Xnr5 and Xnr6. In the present functional study, we constructed cleavage mutants of Xnr5 (cmXnr5) and Xnr6 (cmXnr6) which were expected to act in a dominant-negative manner. Both cmXnr5 and cmXnr6 inhibited the activities of Xnr5 and Xnr6 in co-overexpression experiments. cmXnr5 also inhibited the activity of Xnr2, Xnr4, Xnr6, derrière, and BVg1, but did not inhibit the activity of Xnr1 or activin. Misexpression of cmXnr5 led to a severe delay in initiation of gastrulation and phenotypic changes, including defects in anterior structures, which were very similar to those seen in maternal VegT-depleted embryos. Further, although the expression of Xnr1, Xnr2, and Xnr4 was not delayed in these embryos, it was markedly reduced. Injection of cmXnr5 had no notable effect on expression of Xnr3, Xnr6, derrière, or siamois. Several mesodermal and endodermal markers also showed delayed and decreased expression during gastrulation in cmXnr5-injected embryos. These results suggest that, in early Xenopus embryogenesis, nodal-related genes may heterodimerize with other TGF-beta ligands, and further that one nodal-related gene alone is insufficient for mesendoderm formation, which may require the cooperative interaction of multiple nodal-related genes.
Collapse
Affiliation(s)
- Yasuko Onuma
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Tokyo, 153-8902, Japan
| | | | | | | |
Collapse
|
103
|
Abstract
The nodal family of TGFbeta-related ligands have emerged as critical regulators of early vertebrate embryogenesis. Recent studies in mice, fish, and frogs of nodals and their intracellular transducers allow a comparison of how this signaling pathway is used in the patterning of early embryos of these different vertebrates.
Collapse
Affiliation(s)
- M Whitman
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
104
|
Sakaguchi T, Kuroiwa A, Takeda H. A novel sox gene, 226D7, acts downstream of Nodal signaling to specify endoderm precursors in zebrafish. Mech Dev 2001; 107:25-38. [PMID: 11520661 DOI: 10.1016/s0925-4773(01)00453-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Vertebrate endoderm development has recently become the focus of intense investigation. We have identified a novel sox gene, 226D7, which is important in zebrafish endoderm development. 226D7 was isolated by an in situ hybridization screening for genes expressed in the yolk syncytial layer (YSL) at the blastula stage. 226D7 is expressed mainly in the YSL at this stage and, during gastrulation, its expression is also detected in the forerunner cells and endodermal precursor cells. The expression of 226D7 is positively regulated by Nodal signaling. The knockdown of 226D7 using morpholino antisense oligonucleotides results in a lack of sox17-expressing endodermal precursor cells during gastrulation, and, consequently, lacks endodermal derivatives such as gut tissue. The effect is strictly restricted to the endodermal lineage, while the mesoderm is normally formed, a phenotype that is nearly identical to that of the casanova mutant (Dev. Biol. 215 (1999) 343). We further demonstrate that overexpression of 226D7 increases the number of sox17-expressing endodermal progenitor cells without upregulating the expression of the Nodal genes, cyclops and squint. Region-specific knockdown and overexpression of 226D7 by injection into the YSL suggest that 226D7 in the YSL is not involved in endoderm formation and 226D7 in the endoderm progenitor cells is important for endoderm development. Taken together, our data demonstrate that 226D7 is a downstream target of Nodal signal and a critical transcriptional regulator of early endoderm formation.
Collapse
Affiliation(s)
- T Sakaguchi
- Division of Early Embryogenesis, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan
| | | | | |
Collapse
|
105
|
Engleka MJ, Craig EJ, Kessler DS. VegT activation of Sox17 at the midblastula transition alters the response to nodal signals in the vegetal endoderm domain. Dev Biol 2001; 237:159-72. [PMID: 11518513 DOI: 10.1006/dbio.2001.0366] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Xenopus, the prospective endoderm and mesoderm are localized to discrete, adjacent domains at the beginning of gastrulation, and this is made evident by the expression of Sox17 in vegetal blastomeres and Brachyury (Xbra) in marginal blastomeres. Here, we examine the regulation of Sox17alpha expression and the role of Sox17alpha in establishing the vegetal endodermal gene expression domain. Injection of specific inhibitors of VegT or Nodal resulted in a loss of Sox17alpha expression in the gastrula. However, the onset of Sox17alpha expression at the midblastula transition was dependent on VegT, but not on Nodal function, indicating that Sox17alpha expression is initiated by VegT and then maintained by Nodal signals. Consistent with these results, VegT, but not Xenopus Nodal-related-1 (Xnr1), can activate Sox17alpha expression at the midblastula stage in animal explants. In addition, VegT activates Sox17alpha in the presence of cycloheximide or a Nodal antagonist, suggesting that Sox17alpha is an immediate-early target of VegT in vegetal blastomeres. Given that Nodal signals are necessary and sufficient for both mesodermal and endodermal gene expression, we propose that VegT activation of Sox17alpha at the midblastula transition prevents mesodermal gene expression in response to Nodal signals, thus establishing the vegetal endodermal gene expression domain. Supporting this idea, Sox17alpha misexpression in the marginal zone inhibits the expression of multiple mesodermal genes. Furthermore, in animal explants, Sox17alpha prevents the induction of Xbra and MyoD, but not Sox17beta or Mixer, in response to Xnr1. Therefore, VegT activation of Sox17alpha plays an important role in establishing a region of endoderm-specific gene expression in vegetal blastomeres.
Collapse
Affiliation(s)
- M J Engleka
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
106
|
Reissmann E, Jörnvall H, Blokzijl A, Andersson O, Chang C, Minchiotti G, Persico MG, Ibáñez CF, Brivanlou AH. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev 2001; 15:2010-22. [PMID: 11485994 PMCID: PMC312747 DOI: 10.1101/gad.201801] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2001] [Accepted: 06/06/2001] [Indexed: 11/24/2022]
Abstract
Nodal proteins have crucial roles in mesendoderm formation and left-right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling.
Collapse
Affiliation(s)
- E Reissmann
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Kikuchi Y, Agathon A, Alexander J, Thisse C, Waldron S, Yelon D, Thisse B, Stainier DY. casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev 2001; 15:1493-505. [PMID: 11410530 PMCID: PMC312713 DOI: 10.1101/gad.892301] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Early endoderm formation in zebrafish requires at least three loci that function downstream of Nodal signaling but upstream of the early endodermal marker sox17: bonnie and clyde (bon), faust (fau), and casanova (cas). cas mutants show the most severe phenotype as they do not form any gut tissue and lack all sox17 expression. Activation of the Nodal signaling pathway or overexpression of Bon or Fau/Gata5 fails to restore any sox17 expression in cas mutants, demonstrating that cas plays a central role in endoderm formation. Here we show that cas encodes a novel member of the Sox family of transcription factors. Initial cas expression appears in the dorsal yolk syncytial layer (YSL) in the early blastula, and is independent of Nodal signaling. In contrast, endodermal expression of cas, which begins in the late blastula, is regulated by Nodal signaling. Cas is a potent inducer of sox17 expression in wild-type embryos as well as in bon and fau/gata5 mutants. Cas is also a potent inducer of sox17 expression in MZoep mutants, which cannot respond to Nodal signaling. In addition, ectopic expression of cas in presumptive mesodermal cells leads to their transfating into endoderm. Altogether, these data indicate that Cas is the principal transcriptional effector of Nodal signaling during zebrafish endoderm formation.
Collapse
Affiliation(s)
- Y Kikuchi
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Rodriguez TA, Casey ES, Harland RM, Smith JC, Beddington RS. Distinct enhancer elements control Hex expression during gastrulation and early organogenesis. Dev Biol 2001; 234:304-16. [PMID: 11397001 DOI: 10.1006/dbio.2001.0265] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the mouse, embryological and genetic studies have indicated that two spatially distinct signalling centres, the anterior visceral endoderm and the node and its derivatives, are required for the correct patterning of the anterior neural ectoderm. The divergent homeobox gene Hex is expressed in the anterior visceral endoderm, in the node (transiently), and in the anterior definitive endoderm. Other sites of Hex expression include the liver and thyroid primordia and the endothelial cell precursors. We have used transgenic analysis to map the cis-acting regulatory elements controlling Hex expression during early mouse development. A 4.2-kb upstream region is important for Hex expression in the endothelial cell precursors, liver, and thyroid, and a 633-bp intronic fragment is both necessary and sufficient for Hex expression in the anterior visceral endoderm and the anterior definitive endoderm. These same regions drive expression in homologous structures in Xenopus laevis, indicating conservation of these regulatory regions in vertebrates. Analysis of the anterior visceral endoderm/anterior definitive endoderm enhancer identifies a repressor region that is required to downregulate Hex expression in the node once the anterior definitive endoderm has formed. This analysis also reveals that the initiation of Hex expression in the anterior visceral endoderm and axial mesendoderm requires common elements, but maintenance of expression is regulated independently in these tissues.
Collapse
Affiliation(s)
- T A Rodriguez
- Division of Mammalian Development, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | | | |
Collapse
|
109
|
Abstract
Xenopus has been widely used to study early embryogenesis because the embryos allow for efficient functional assays of gene products by the overexpression of RNA. The first asymmetry of the embryo is initiated during oogenesis and is manifested by the darkly pigmented animal hemisphere and lightly pigmented vegetal hemisphere. Upon fertilization a second asymmetry, the dorsal-ventral asymmetry, is established, with the sperm entry site defining the prospective ventral region. During the cleavage stage, a vegetal cortical cytoplasm (VCC)/beta-catenin signaling pathway is differentially activated on the prospective dorsal side of the embryo. The overlapping of the VCC/beta-catenin and transforming growth factor beta (TGF-beta) pathways in the dorsal vegetal quadrant specifies dorsal-vental axis formation by regulating formation of the Spemann organizer, including the anterior endomesoderm. The organizer initiates gastrulation to form a triploblastic embryo in which the mesoderm layer is located between the ectoderm layer and the endoderm layer. The interplay between maternal and zygotic TGF-beta s and the T-box transcription factors in the vegetal hemisphere initiates the specification of germ-layer lineages. TGF-beta signaling originating from the vegetal region induces mesoderm in the equatorial region, and initiates endoderm differentiation directly in the vegetal region. The ectoderm develops from the animal region, which does not come into contact with the vegetal TGF-beta signals. A large number of the downstream components and transcriptional targets of early developmental pathways have been identified and characterized. This review gives an overview of recent advances in the understanding of the functional roles and interactions of the molecular players important for axis determination and germ-layer specification during early Xenopus embryogenesis.
Collapse
Affiliation(s)
- A P Chan
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
110
|
Lowe LA, Yamada S, Kuehn MR. Genetic dissection of nodal function in patterning the mouse embryo. Development 2001; 128:1831-43. [PMID: 11311163 DOI: 10.1242/dev.128.10.1831] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Loss-of-function analysis has shown that the transforming growth factor-like signaling molecule nodal is essential for mouse mesoderm development. However, definitive proof of nodal function in other developmental processes in the mouse embryo has been lacking because the null mutation blocks gastrulation. We describe the generation and analysis of a hypomorphic nodal allele. Mouse embryos heterozygous for the hypomorphic allele and a null allele undergo gastrulation but then display abnormalities that fall into three distinct mutant phenotypic classes, which may result from expression levels falling below critical thresholds in one or more domains of nodal expression. Our analysis of each of these classes provides conclusive evidence for nodal-mediated regulation of several developmental processes in the mouse embryo, beyond its role in mesoderm formation. We find that nodal signaling is required for correct positioning of the anteroposterior axis, normal anterior and midline patterning, and the left-right asymmetric development of the heart, vasculature, lungs and stomach.
Collapse
Affiliation(s)
- L A Lowe
- Experimental Immunology Branch, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
111
|
Abstract
Nodal ligands are essential for the patterning of chordate embryos. Genetic evidence indicates that EGF-CFC factors are required for Nodal signaling, but the molecular basis for this requirement is unknown. We have investigated the role of Cripto, an EGF-CFC factor, in Nodal signaling. We find that Cripto interacts with the type I receptor ALK4 via the conserved CFC motif in Cripto. Cripto interaction with ALK4 is necessary both for Nodal binding to the ALK4/ActR-IIB receptor complex and for Smad2 activation by Nodal. We also find that Nodal can inhibit BMP signaling by a Cripto-independent mechanism. Inhibition appears to be mediated by heterodimerization between Nodal and BMPs, indicating that antagonism between Nodal and BMPs can occur at the level of dimeric ligand production.
Collapse
Affiliation(s)
- C Yeo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
112
|
Niederländer C, Walsh JJ, Episkopou V, Jones CM. Arkadia enhances nodal-related signalling to induce mesendoderm. Nature 2001; 410:830-4. [PMID: 11298453 DOI: 10.1038/35071103] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nodal-related members of the transforming growth factor (TGF)-beta family regulate the induction of mesoderm, endoderm, and mesendoderm, a tissue specific to the Spemann organizer. How these different tissues form in response to the same signalling molecules is not completely understood. It has been suggested that concentration-dependent effects, mediated by extracellular cofactors and antagonists, are responsible for the differences. Here we show that the nuclear protein Arkadia specifically potentiates the mesendoderm-inducing activity of a subset of TGF-beta family members. The combined activities of Arkadia and Xenopus nodal-related-1 are sufficient to induce mesendoderm and suppress mesoderm. Arkadia dorsalizes ventral tissues, resulting in the induction of organizer-specific gene expression. Blocking nodal signalling extracellularly inhibits these effects. Arkadia influences nodal activity when co-expressed and can function in cells adjacent to those producing the nodal signal. Our findings, together with the observation that Arkadia mutant mice lack a node and node-derived mesendoderm, identify Arkadia as an essential modulator of the nodal signalling cascade that leads to induction of Spemann's organizer.
Collapse
Affiliation(s)
- C Niederländer
- Section of Gene Function and Regulation, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | |
Collapse
|
113
|
Clements D, Rex M, Woodland HR. Initiation and early patterning of the endoderm. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:383-446. [PMID: 11131522 DOI: 10.1016/s0074-7696(01)03012-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We review the early stages of endoderm formation in the major animal models. In Amphibia maternal molecules are important in initiating endoderm formation. This is followed by successive signaling events that establish and then pattern the endoderm. In other organisms there are differences in endodermal development, particularly in the initial, prephylotypic stages. Later many of the same key families of transcription factors and signaling cassettes are used in all animals, but more work will be needed to establish exact evolutionary homologies.
Collapse
Affiliation(s)
- D Clements
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | |
Collapse
|
114
|
Maduro MF, Meneghini MD, Bowerman B, Broitman-Maduro G, Rothman JH. Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and -2 in C. elegans. Mol Cell 2001; 7:475-85. [PMID: 11463373 DOI: 10.1016/s1097-2765(01)00195-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The endoderm and much of the mesoderm arise from the EMS cell in the four-cell C. elegans embryo. We report that the MED-1 and -2 GATA factors specify the entire fate of EMS, which otherwise produces two C-like mesectodermal progenitors. The meds are direct targets of the maternal SKN-1 transcription factor; however, their forced expression can direct SKN-1-independent reprogramming of non-EMS cells into mesendodermal progenitors. We find that SGG-1/GSK-3beta kinase acts both as a Wnt-dependent activator of endoderm in EMS and an apparently Wnt-independent repressor of the meds in the C lineage, indicating a dual role for this kinase in mesendoderm development. Our results suggest that a broad tissue territory, mesendoderm, in vertebrates has been confined to a single cell in nematodes through a common gene regulatory network.
Collapse
Affiliation(s)
- M F Maduro
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara 93106, USA
| | | | | | | | | |
Collapse
|
115
|
Abstract
Prechordal mesendoderm is formed in response to Nodal and maternal beta-Catenin signaling and is regulated by signals from anterior endoderm and chordamesoderm. Prechordal mesendodermal cells are involved in neural induction and in anteroposterior and dorsoventral neural patterning. Inhibitors of Wnt and BMP growth factors secreted by prechordal mesendoderm mediate neural induction and anteroposterior and dorsoventral patterning, whereas SHH and TGF betas mediate dorsoventral patterning.
Collapse
Affiliation(s)
- C Kiecker
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
116
|
Faucourt M, Houliston E, Besnardeau L, Kimelman D, Lepage T. The pitx2 homeobox protein is required early for endoderm formation and nodal signaling. . Dev Biol 2001; 229:287-306. [PMID: 11203696 DOI: 10.1006/dbio.2000.9950] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nodal and Nodal-related factors play fundamental roles in a number of developmental processes, including mesoderm and endoderm formation, patterning of the anterior neural plate, and determination of bilateral asymmetry in vertebrates. pitx2, a paired-like homeobox gene, has been proposed to act downstream of Nodal in the gene cascade providing left-right cues to the developing organs. Here, we report that pitx2 is required early in the Nodal signaling pathway for specification of the endodermal and mesodermal germ layers. We found that pitx2 is expressed very early during Xenopus and zebrafish development and in many regions where Nodal signaling is required, including the presumptive mesoderm and endoderm at the blastula and gastrula stages and the prechordal mesoderm at later stages. In Xenopus embryos, overexpression of pitx2 caused ectopic expression of goosecoid and sox-17 and interfered with mesoderm formation. Overexpression of pitx2 in Xenopus animal cap explants partially mimics the effects of Nodal overexpression, suggesting that pitx2 is a mediator of Nodal signaling during specification of the endoderm and prechordal plate, but not during mesoderm induction. We further demonstrate that pitx2 is induced by Nodal signaling in Xenopus animal caps and that the early expression of zebrafish pitx2 is absent when the Nodal signaling pathway is inactive. Inhibition of pitx2 function using a chimeric EnR-pitx2 blocked specification of the mesoderm and endoderm and caused severe embryonic defects resembling those seen when Nodal signaling is inhibited. Following inhibition of pitx2 function, the fate of ventral vegetal blastomeres was shifted from an endodermal to a more mesodermal fate, an effect that was reversed by wild-type pitx2. Finally, we show that inhibition of pitx2 function interferes with the response of cells to Nodal signaling. Our results provide direct evidence that pitx2 function is required for normal specification of the endodermal and mesodermal germ layers.
Collapse
Affiliation(s)
- M Faucourt
- Observatoire Oceanologique, UMR 7009 CNRS, Université de Paris VI, 06230, Villefranche-sur-Mer, France
| | | | | | | | | |
Collapse
|
117
|
Xanthos JB, Kofron M, Wylie C, Heasman J. Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 2001; 128:167-80. [PMID: 11124113 DOI: 10.1242/dev.128.2.167] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During cleavage stages, maternal VegT mRNA and protein are localized to the Xenopus embryo's vegetal region from which the endoderm will arise and where several zygotic gene transcripts will be localized. Previous loss-of-function experiments on this T-box transcription factor suggested a role for VegT in Xenopus endoderm formation. Here, we test whether VegT is required to initiate endoderm formation using a loss of function approach. We find that the endodermal genes, Bix1, Bix3, Bix4, Milk (Bix2), Mix.1, Mix.2, Mixer, Xsox17 alpha, Gata4, Gata5, Gata6 and endodermin, as well as the anterior endodermal genes Xhex and cerberus, and the organizer specific gene, Xlim1, are downstream of maternal VegT. We also find that the TGF beta s, Xnr1, Xnr2, Xnr4 and derriere rescue expression of these genes, supporting the idea that cell interactions are critical for proper endoderm formation. Additionally, inhibitory forms of Xnr2 and Derriere blocked the ability of VegT mRNA injection to rescue VegT-depleted embryos. Furthermore, a subset of endodermal genes was rescued in VegT-depleted vegetal masses by induction from an uninjected vegetal mass. Finally, we begin to establish a gene hierarchy downstream of VegT by testing the ability of Mixer and Gata5 to rescue the expression of other endodermal genes. These results identify VegT as the maternal regulator of endoderm initiation and illustrate the complexity of zygotic pathways activated by VegT in the embryo's vegetal region.
Collapse
Affiliation(s)
- J B Xanthos
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
118
|
Abstract
Forward-genetic analyses in Drosophila and Caenorhabditis elegans have given us unprecedented insights into many developmental mechanisms. To study the formation of organs that contain cell types and structures not present in invertebrates, a vertebrate model system amenable to forward genetics would be very useful. Recent work shows that a newly initiated genetic approach in zebrafish is already making significant contributions to understanding the development of the vertebrate heart, an organ that contains several vertebrate-specific features. These and other studies point to the utility of the zebrafish system for studying a wide range of vertebrate-specific processes.
Collapse
Affiliation(s)
- D Y Stainier
- Department of Biochemistry and Biophysics, University of California, San Francisco, 513 Parnassus Avenue, Box 0448, San Francisco, California 94143-0448, USA.
| |
Collapse
|
119
|
Abstract
Previous studies have indicated that gata5, a zinc-finger transcription factor gene, is required for the development of the zebrafish gut tube. Here, we show that gata5 mutants also display defects in the development of other endodermal organs such as the liver, pancreas, thyroid and thymus. gata5 is expressed in the endodermal progenitors from late blastula stages, suggesting that it functions early during endoderm development. We indeed find that during gastrulation stages, gata5 mutants form fewer endodermal cells than their wild-type siblings. In addition, the endodermal cells that form in gata5 mutants appear to express lower than wild-type levels of endodermal genes such as sox17 and axial/foxA2. Conversely, overexpression of gata5 leads to expanded endodermal gene expression. These data indicate that Gata5 is involved both in the generation of endodermal cells at late blastula stages and in the maintenance of endodermal sox17 expression during gastrulation. We have also analyzed the relationship of Gata5 to other factors involved in endoderm formation. Using complementary mutant and overexpression analyses, we show that Gata5 regulates endoderm formation in cooperation with the Mix-type transcription factor Bon, that Gata5 and Bon function downstream of Nodal signaling, and that cas function is usually required for the activity of Gata5 in endoderm formation. Finally, we show that fau/gata5, bon and cas exhibit dominant genetic interactions providing additional support that they function in the same pathway. Together, these data demonstrate that Gata5 plays multiple roles in endoderm development in zebrafish, and position Gata5 relative to other regulators of endoderm formation.
Collapse
Affiliation(s)
- J F Reiter
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, San Francisco, CA 94143-0448, USA
| | | | | |
Collapse
|
120
|
Abstract
The members of the Smad protein family are intracellular mediators of transforming growth factor beta (TGF-beta) signaling. Smad1 transduces bone morphogenetic protein signals, inducing formation of ventral mesoderm in Xenopus embryos, whereas Smad2 transduces activin/TGF-beta signals, generating dorsal mesoderm. Calmodulin directly binds to many Smads and was shown to down-regulate Smad2 activity in a cell culture system (Zimmerman, C. M., Kariapper, M. S. T., and Mathews, L. S. (1997) J. Biol. Chem. 273, 677-680). Here, we extend those data and demonstrate that calmodulin alters Smad signaling in living embryos, increasing Smad1 activity while inhibiting Smad2 function. To characterize this regulation, we undertook a structure-function analysis and found that calmodulin binds to two distinct and conserved regions in both Smad1 and Smad2. Receptor tyrosine kinase signaling also modifies Smad activity (Kretzschmar, M., Doody, J., and Massagué, J. (1997) Nature 389, 618-622; Kretzschmar, M., Doody, J., Timokhina, I., and Massagué, J. (1999) Genes Dev. 13, 804-816; de Caestecker, M. P., Parks, W. T., Frank, C. J., Castagnino, P., Bottaro, D. P., Roberts, A. B., and Lechleider, R. J. (1998) Genes Dev. 12, 1587-1592). We show that calmodulin binding to Smads inhibits subsequent Erk2-dependent phosphorylation of Smads and vice versa. These observations suggest the presence of a cross-talk between three major signaling cascades as follows: Ca(2+)/calmodulin, receptor tyrosine kinase, and TGF-beta pathways.
Collapse
Affiliation(s)
- A Scherer
- Center for Developmental Biology, Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA
| | | |
Collapse
|
121
|
Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, Goto J, Asashima M. Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 2000; 127:5319-29. [PMID: 11076754 DOI: 10.1242/dev.127.24.5319] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, Nodal-related protein plays crucial roles in mesoderm and endoderm induction. Here we describe two novel Xenopus nodal-related genes, Xnr5 and Xnr6, which are first zygotically expressed at the mid-blastula transition, in the dorsal-vegetal region including the Nieuwkoop center. Xnr5 and Xnr6 were isolated by expression screening of a library enriched with immediate-early-type transcripts, and are strong inducers of both mesoderm and endoderm. They also induce the other nodal-related genes in the animal cap. In embryos, cerberus-short (nodal-specific inhibitor) can inhibit Xnr1 and Xnr2 express to the same extent goosecoid, but not Xnr5 and Xnr6 transcription. Xnr5 and Xnr6 are regulated completely cell autonomously, differently from other Xnrs in the cell-dissociated embryos. The expression of Xnr5 and Xnr6 is regulated by maternal VegT and (beta)-catenin, but does not require TGF-(beta) signaling. Therefore, expression of Xnr5 and Xnr6 is controlled by different mechanisms from other Xnr family genes.
Collapse
Affiliation(s)
- S Takahashi
- Department of Life Sciences (Biology), The University of Tokyo, Tokyo 153-8902, Japan
| | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Many of the key molecular events underlying the induction and patterning of the vertebrate mesoderm and endoderm have recently been elucidated. T-box transcription factors and TGF-beta and Wnt signaling pathways play crucial roles in the initial induction of the mesendoderm and the subdivision of the posterior mesoderm into rostral and caudal domains.
Collapse
Affiliation(s)
- D Kimelman
- Department of Biochemistry, Center for Developmental Biology, University of Washington, Seattle 98195-7350, USA.
| | | |
Collapse
|
123
|
Smith JC, Conlon FL, Saka Y, Tada M. Xwnt11 and the regulation of gastrulation in Xenopus. Philos Trans R Soc Lond B Biol Sci 2000; 355:923-30. [PMID: 11128985 PMCID: PMC1692801 DOI: 10.1098/rstb.2000.0627] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular basis of gastrulation is poorly understood. In this paper we address this problem by taking advantage of the observation that the transcription activator Brachyury is essential for gastrulation movements in Xenopus and mouse embryos. We infer from this observation that amongst the target genes of Brachyury are some that are involved in the regulation of gastrulation. In the course of a screen for Brachyury targets we identified Xwnt11. Use of a dominant-negative Xwntll construct confirms that signalling by this class of Wnts is essential for normal gastrulation movements, and further investigation suggests that Xwntll signals not through the canonical Wnt signalling pathway involving GSK-3 and beta-catenin but through another route, which may require small GTPases such as Rho and Rac. Future work will concentrate on elucidating the Xwnt11 signal transduction pathway and on investigating its influence on cell shape and polarity during Xenopus gastrulation.
Collapse
Affiliation(s)
- J C Smith
- Division of Developmental Biology, National Institute for Medical Research, London, UK.
| | | | | | | |
Collapse
|
124
|
Tremblay KD, Hoodless PA, Bikoff EK, Robertson EJ. Formation of the definitive endoderm in mouse is a Smad2-dependent process. Development 2000; 127:3079-90. [PMID: 10862745 DOI: 10.1242/dev.127.14.3079] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
TGFbeta growth factors specify cell fate and establish the body plan during early vertebrate development. Diverse cellular responses are elicited via interactions with specific cell surface receptor kinases that in turn activate Smad effector proteins. Smad2-dependent signals arising in the extraembryonic tissues of early mouse embryos serve to restrict the site of primitive streak formation and establish anteroposterior identity in the epiblast. Here we have generated chimeric embryos using lacZ-marked Smad2-deficient ES cells. Smad2 mutant cells extensively colonize ectodermal and mesodermal populations without disturbing normal development, but are not recruited into the definitive endoderm lineage during gastrulation. These experiments provide the first evidence that TGFbeta signaling pathways are required for specification of the definitive endoderm lineage in mammals and identify Smad2 as a key mediator that directs epiblast derivatives towards an endodermal as opposed to a mesodermal fate. In largely Smad2-deficient chimeras, asymmetric nodal gene expression is maintained and expression of pitx2, a nodal target, is also unaffected. These results strongly suggest that other Smad(s) act downstream of Nodal signals in mesodermal populations. We found Smad2 and Smad3 transcripts both broadly expressed in derivatives of the epiblast. However, Smad2 and not Smad3 mRNA is expressed in the visceral endoderm, potentially explaining why the primary defect in Smad2 mutant embryos originates in this cell population.
Collapse
Affiliation(s)
- K D Tremblay
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
125
|
Kondaiah P, Taira M, Vempati UD, Dawid IB. Transforming growth factor-beta5 expression during early development of Xenopus laevis. Mech Dev 2000; 95:207-9. [PMID: 10906463 DOI: 10.1016/s0925-4773(00)00326-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily play various roles during development in both vertebrates and invertebrates. Two isoforms, TGF-beta2 and -beta5, have been isolated from Xenopus laevis. We describe here the localization of TGF-beta5 mRNA in early embryos of X. laevis, assessed by whole-mount in situ hybridization. The first detectable expression of TGF-beta5 was seen in the stage 14 embryo at the posterior tip of notochord, which continued to later stages, accompanied by the expression in bilateral regions of posterior wall in the tail region next to the notochord. At later stages, transient expression was seen in the cement gland (around stage 21) and in the somites (stages 24-27). In addition, expression was present in the branchial arches (stage 29-36) and olfactory placodes (stage 36).
Collapse
Affiliation(s)
- P Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, -560 012, Bangalore, India.
| | | | | | | |
Collapse
|
126
|
Faure S, Lee MA, Keller T, ten Dijke P, Whitman M. Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 2000; 127:2917-31. [PMID: 10851136 DOI: 10.1242/dev.127.13.2917] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor beta (TGFbeta) superfamily signaling has been implicated in patterning of the early Xenopus embryo. Upon ligand stimulation, TGFbeta receptors phosphorylate Smad proteins at carboxy-terminal SS(V/M)S consensus motifs. Smads 1/5/8, activated by bone morphogenetic protein (BMP) signaling, induce ventral mesoderm whereas Smad2, activated by activin-like ligands, induces dorsal mesoderm. Although ectopic expression studies are consistent with roles for TGFbeta signals in early Xenopus embryogenesis, when and where BMP and activin-like signaling pathways are active endogenously has not been directly examined. In this study, we investigate the temporal and spatial activation of TGFbeta superfamily signaling in early Xenopus development by using antibodies specific for the type I receptor-phosphorylated forms of Smad1/5/8 and Smad2. We find that Smad1/5/8 and two distinct isoforms of Smad2, full-length Smad2 and Smad2(delta)exon3, are phosphorylated in early embryos. Both Smad1/5/8 and Smad2/Smad2(delta)exon3 are activated after, but not before, the mid-blastula transition (MBT). Endogenous activation of Smad2/Smad2(delta)exon3 requires zygotic transcription, while Smad1/5/8 activation at MBT appears to involve transcription-independent regulation. We also find that the competence of embryonic cells to respond to TGF(delta) superfamily ligands is temporally regulated and may be a determinant of early patterning. Levels of phospho-Smad1/5/8 and of phospho-Smad2/Smad2(delta)exon3 are asymmetrically distributed across both the animal-vegetal and dorsoventral axes. The timing of the development of these asymmetries differs for phospho-Smad1/5/8 and for phospho-Smad2/Smad2(delta)exon3, and the spatial distribution of phosphorylation of each Smad changes dramatically as gastrulation begins. We discuss the implications of our results for endogenous functions of BMP and activin-like signals as candidate morphogens regulating primary germ layer formation and dorsoventral patterning of the early Xenopus embryo.
Collapse
Affiliation(s)
- S Faure
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
127
|
Kiecker C, Müller F, Wu W, Glinka A, Strähle U, Niehrs C. Phenotypic effects in Xenopus and zebrafish suggest that one-eyed pinhead functions as antagonist of BMP signalling. Mech Dev 2000; 94:37-46. [PMID: 10842057 DOI: 10.1016/s0925-4773(00)00329-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Zebrafish one-eyed pinhead (oep) is essential for embryonic axis and dorsal midline formation by promoting Nodal signalling and is thought to act as a permissive factor. Here we describe that oep elicits profound phenotypic effects when overexpressed in Xenopus and zebrafish. In Xenopus, wild-type oep inhibits mesoderm induction, disrupts axis formation and neuralizes animal caps. A secreted Oep dorsoanteriorizes and neuralizes Xenopus embryos indicative of BMP inhibition. In zebrafish, misexpression of smad1 in oep mutant embryos also reveals an interaction of oep with BMP signalling. Furthermore, the phenotypic effect of nodal overexpression can be rescued by coexpression of oep both in Xenopus and zebrafish. Taken together, our results support an interaction between oep and nodal but they suggest also (1) that the role of oep in Nodal signalling may include negative as well as positive regulation, (2) that oep is able to function in an active fashion and (3) that oep exerts a regulatory effect on the BMP signalling pathway.
Collapse
Affiliation(s)
- C Kiecker
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
128
|
Osada SI, Saijoh Y, Frisch A, Yeo CY, Adachi H, Watanabe M, Whitman M, Hamada H, Wright CV. Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. Development 2000; 127:2503-14. [PMID: 10804190 DOI: 10.1242/dev.127.11.2503] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate Nodal-related factors play central roles in mesendoderm induction and left-right axis specification, but the mechanisms regulating their expression are largely unknown. We identify an element in Xnr1 intron 1 that is activated by activin and Vg1, autoactivated by Xnrs, and suppressed by ventral inducers like BMP4. Intron 1 contains three FAST binding sites on which FAST/Smad transcriptional complexes can assemble; these sites are differentially involved in intron 1-mediated reporter gene expression. Interference with FAST function abolishes intron 1 activity, and transcriptional activation of Xnrs by activin in embryonic tissue explant assays, identifying FAST as an essential mediator of Xnr autoregulation and/or ‘signal relay’ from activin-like molecules. Furthermore, the mapping of endogenous activators of the Xnr1 intronic enhancer within Xenopus embryos agrees well with the pattern of Xnr1 transcription during embryogenesis. In transgenic mice, Xnr1 intron 1 mimics a similarly located enhancer in the mouse nodal gene, and directs FAST site-dependent expression in the primitive streak during gastrulation, and unilateral expression during early somitogenesis. The FAST cassette is similar in an ascidian nodal-related gene, suggesting an ancient origin for this regulatory module. Thus, an evolutionarily conserved intronic enhancer in Xnr1 is involved in both mesendoderm induction and asymmetric expression during left-right axis formation.
Collapse
Affiliation(s)
- S I Osada
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Kikuchi Y, Trinh LA, Reiter JF, Alexander J, Yelon D, Stainier DY. The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev 2000. [DOI: 10.1101/gad.14.10.1279] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vertebrate endoderm development has recently become the focus of intense investigation. In this report, we first show that the zebrafishbonnie and clyde (bon) gene plays a critical early role in endoderm formation. bon mutants exhibit a profound reduction in the number of sox17-expressing endodermal precursors formed during gastrulation, and, consequently, a profound reduction in gut tissue at later stages. The endodermal precursors that do form inbon mutants, however, appear to differentiate normally indicating that bon is not required at later steps of endoderm development. We further demonstrate that bon encodes a paired-class homeodomain protein of the Mix family that is expressed transiently before and during early gastrulation in both mesodermal and endodermal progenitors. Overexpression of bon can rescue endodermal gene expression and the formation of a gut tube inbon mutants. Analysis of a newly identified mutant allele reveals that a single amino acid substitution in the DNA recognition helix of the homeodomain creates a dominant interfering form of Bon when overexpressed. We also show through loss- and gain-of-function analyses that Bon functions exclusively downstream of cyclopsand squint signaling. Together, our data demonstrate that Bon is a critical transcriptional regulator of early endoderm formation.
Collapse
|
130
|
Wessely O, De Robertis EM. The Xenopus homologue of Bicaudal-C is a localized maternal mRNA that can induce endoderm formation. Development 2000; 127:2053-62. [PMID: 10769230 PMCID: PMC2292106 DOI: 10.1242/dev.127.10.2053] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In Xenopus, zygotic transcription starts 6 hours after fertilization at the midblastula transition and therefore the first steps in embryonic development are regulated by maternally inherited proteins and mRNAs. While animal-vegetal polarity is already present in the oocyte, the dorsoventral axis is only established upon fertilization by the entry of the sperm and the subsequent rotation of the egg cortex. In a screen for maternal mRNAs whose stability is regulated by this cortical rotation, we isolated the Xenopus homologue of the Drosophila gene Bicaudal-C (xBic-C). It encodes a putative RNA-binding molecule expressed maternally and localized predominantly to the vegetal half of the egg. Upon fertilization and cortical rotation, xBic-C mRNA is displaced together with the heavy yolk towards the future dorsal side of the embryo. In UV-ventralized embryos, xBic-C is polyadenylated less than in untreated embryos that undergo cortical rotation. Overexpression of xBic-C by injection of synthetic mRNA in whole embryos or in ectodermal explants leads to ectopic endoderm formation. This endoderm-inducing activity is dependent on the presence of the RNA-binding domain of the protein. In contrast to the two other known maternally encoded endoderm inducers, Vg1 and VegT, xBic-C ectopic expression leads specifically to endoderm formation in the absence of mesoderm induction.
Collapse
Affiliation(s)
- O Wessely
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | | |
Collapse
|
131
|
Ezal CH, Marion CD, Smith WC. Primary structure requirements for Xenopus nodal-related 3 and a comparison with regions required by Xenopus nodal-related 2. J Biol Chem 2000; 275:14124-31. [PMID: 10799488 DOI: 10.1074/jbc.275.19.14124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta superfamily members play important roles in the early development of animals. Activin and the Xenopus nodal related proteins 1, 2, and 4 induce muscle actin from Xenopus ectodermal explants, whereas the bone morphogenetic proteins 4 and 7 induce ectoderm to differentiate as epidermis. Bone morphogenetic proteins are antagonized by soluble binding proteins such as noggin and chordin, which leads to expression of neural cell adhesion molecule in animal caps. The transforming growth factor-beta superfamily member Xenopus nodal-related 3 also induces the neural cell adhesion molecule through inhibition of bone morphogenetic proteins. Therefore, whereas Xenopus nodal-related 2 and 3 share a high amount of sequence homology, they lead to very different cell fates. This study investigates the functional domains that distinguish the activities of these two factors. It was found that mutually exclusive regions of nodal-related 2 and 3 were required for activity. The central region of the mature domain is required for nodal-related 2 to induce muscle actin, whereas the N- and C-terminal ends of the mature domain are required for nodal-related 3 to induce neural cell adhesion molecule. These results help to define the minimal domains required for the unique activities of these factors.
Collapse
Affiliation(s)
- C H Ezal
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
132
|
Vignali R, Poggi L, Madeddu F, Barsacchi G. HNF1(beta) is required for mesoderm induction in the Xenopus embryo. Development 2000; 127:1455-65. [PMID: 10704391 DOI: 10.1242/dev.127.7.1455] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
XHNF1(β) is a homeobox-containing gene initially expressed at the blastula stage in the vegetal part of the Xenopus embryo. We investigated its early role by functional ablation, through mRNA injection of an XHNF1(beta)/engrailed repressor fusion construct (XHNF1(beta)/EngR). Dorsal injections of XHNF1(beta)/EngR mRNA abolish dorsal mesoderm formation, leading to axial deficiencies; ventral injections disrupt ventral mesoderm formation without affecting axial development. XHNF1(beta)/EngR phenotypic effects specifically depend on the DNA-binding activity of its homeodomain and are fully rescued by coinjection of XHNF1(beta) mRNA. Vegetal injection of XHNF1(beta)/EngR mRNA blocks the mesoderm-inducing ability of vegetal explants. Both B-Vg1 and VegT maternal determinants trigger XHNF1(beta) expression in animal caps. XHNF1(beta)/EngR mRNA blocks B-Vg1-mediated, but not by eFGF-mediated, mesoderm induction in animals caps. However, wild-type XHNF1(beta) mRNA does not trigger Xbra expression in animal caps. We conclude that XHNF1(beta) function is essential, though not sufficient, for mesoderm induction in the Xenopus embryo.
Collapse
Affiliation(s)
- R Vignali
- Dipartimento di Fisiologia e Biochimica, Laboratori di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G. Carducci 13, Italy.
| | | | | | | |
Collapse
|
133
|
Agius E, Oelgeschläger M, Wessely O, Kemp C, De Robertis EM. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 2000; 127:1173-83. [PMID: 10683171 PMCID: PMC2292107 DOI: 10.1242/dev.127.6.1173] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Xenopus, mesoderm induction by endoderm at the blastula stage is well documented, but the molecular nature of the endogenous inductive signals remains unknown. The carboxy-terminal fragment of Cerberus, designated Cer-S, provides a specific secreted antagonist of mesoderm-inducing Xenopus Nodal-Related (Xnr) factors. Cer-S does not inhibit signalling by other mesoderm inducers such as Activin, Derriere, Vg1 and BMP4, nor by the neural inducer Xnr3. In the present study we show that Cer-S blocks the induction of both dorsal and ventral mesoderm in animal-vegetal Nieuwkoop-type recombinants. During blastula stages Xnr1, Xnr2 and Xnr4 are expressed in a dorsal to ventral gradient in endodermal cells. Dose-response experiments using cer-S mRNA injections support the existence of an endogenous activity gradient of Xnrs. Xnr expression at blastula can be activated by the vegetal determinants VegT and Vg1 acting in synergy with dorsal (beta)-catenin. The data support a modified model for mesoderm induction in Xenopus, in which mesoderm induction is mediated by a gradient of multiple Nodal-related signals released by endoderm at the blastula stage.
Collapse
Affiliation(s)
- E Agius
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | | | | | | | | |
Collapse
|
134
|
Abstract
The Xenopus nodal related-1 (Xnr1) gene has a complex expression pattern in embryos, with two temporal phases. In the first phase, transcripts are first detected in perinuclear sites in the vegetal region of the blastula. During gastrulation, this expression disappears and transcripts become localised to the dorsal marginal zone. Expression stops and then restarts in a second phase at neurula and tailbud stages, firstly in two symmetric patches near the posterior end of the notochord, and then asymmetrically in a large domain in the left lateral plate mesoderm. In this study, we have investigated the regulation of the early phase of expression of Xnr1. We show that the T-box transcription factor VegT can induce Xnr1. It had previously been shown that Xnr1 can induce VegT in ectoderm cells and we show that the early expression of Xnr1 is regulated by an autoregulatory loop. By inspection of the Xnr1 promoter sequence, we have identified two non-palindromic T-box-binding sites, which are 10 bp apart. Using mutational analysis, we have shown that these elements are required for the VegT induction of Xnr1. The Xnr1 promoter shows striking homologies with the Xnr3 promoter. In particular, two elements that are required for Wnt signaling are conserved between these two promoters, but the two T-box sites are not conserved, and Xnr3 is not induced by VegT. A region of the promoter containing the T-box sites and the Wnt sites is sufficient to drive expression of a reporter gene in a dorsal domain in transgenic Xenopus at the gastrula stage. We show that this pattern of expression of the transgene in gastrulae is not dependent on the T-box sites.
Collapse
Affiliation(s)
- C E Hyde
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
135
|
Abstract
Spemann's organizer plays an essential role in patterning the vertebrate embryo. During gastrulation, organizer cells involute and form the prechordal plate anteriorly and the notochord more posteriorly. The fate mapping and gene expression analyses in zebrafish presented in this study reveal that this anteroposterior polarity is already initiated in the organizer before gastrulation. Prechordal plate progenitors reside close to the blastoderm margin and express the homeobox gene goosecoid, whereas notochord precursors are located further from the margin and express the homeobox gene floating head. The nodal-related genes cyclops and squint are expressed at the blastoderm margin and are required for prechordal plate and notochord formation. We show that differential activation of the Nodal signaling pathway is essential in establishing anteroposterior pattern in the organizer. First, overexpression of cyclops and squint at different doses leads to the induction of floating head at low doses and the induction of both goosecoid and floating head at higher doses. Second, decreasing Nodal signaling using different concentrations of the antagonist Antivin inhibits goosecoid expression at low doses and blocks expression of both goosecoid and floating head at higher doses. Third, attenuation of Nodal signaling in zygotic mutants for the EGF-CFC gene one-eyed pinhead, an essential cofactor for Nodal signaling, leads to the loss of goosecoid expression and expansion of floating head expression in the organizer. Concomitantly, cells normally fated to become prechordal plate are transformed into notochord progenitors. Finally, activation of Nodal signaling at different times suggests that prechordal plate specification requires sustained Nodal signaling, whereas transient signaling is sufficient for notochord development. Together, these results indicate that differential Nodal signaling patterns the organizer before gastrulation, with the highest level of activity required for anterior fates and lower activity essential for posterior fates.
Collapse
Affiliation(s)
- K Gritsman
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
136
|
Cheng AM, Thisse B, Thisse C, Wright CV. The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in xenopus. Development 2000; 127:1049-61. [PMID: 10662644 DOI: 10.1242/dev.127.5.1049] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In mouse, lefty genes play critical roles in the left-right (L-R) axis determination pathway. Here, we characterize the Xenopus lefty-related factor antivin (Xatv). Xatv expression is first observed in the marginal zone early during gastrulation, later becoming restricted to axial tissues. During tailbud stages, axial expression resolves to the neural tube floorplate, hypochord, and (transiently) the notochord anlage, and is joined by dynamic expression in the left lateral plate mesoderm (LPM) and left dorsal endoderm. An emerging paradigm in embryonic patterning is that secreted antagonists regulate the activity of intercellular signaling factors, thereby modulating cell fate specification. Xatv expression is rapidly induced by dorsoanterior-type mesoderm inducers such as activin or Xnr2. Xatv is not an inducer itself, but antagonizes both Xnr2 and activin. Together with its expression pattern, this suggests that Xatv functions during gastrulation in a negative feedback loop with Xnrs to affect the amount and/or character of mesoderm induced. Our data also provide insights into the way that lefty/nodal signals interact in the initiation of differential L-R morphogenesis. Right-sided misexpression of Xnr1 (endogenously expressed in the left LPM) induces bilateral Xatv expression. Left-sided Xatv overexpression suppresses Xnr1/XPitx2 expression in the left LPM, and leads to severely disturbed visceral asymmetry, suggesting that active ‘left’ signals are critical for L-R axis determination in frog embryos. We propose that the induction of lefty/Xatv in the left LPM by nodal/Xnr1 provides an efficient self-regulating mechanism to downregulate nodal/Xnr1 expression and ensure a transient ‘left’ signal within the embryo.
Collapse
Affiliation(s)
- A M Cheng
- Dept. Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-2175, USA
| | | | | | | |
Collapse
|
137
|
Shimizu T, Yamanaka Y, Ryu SL, Hashimoto H, Yabe T, Hirata T, Bae YK, Hibi M, Hirano T. Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish. Mech Dev 2000; 91:293-303. [PMID: 10704853 DOI: 10.1016/s0925-4773(99)00319-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In vertebrates, specification of the dorso-ventral axis requires Wnt signaling, which leads to formation of the Nieuwkoop center and the Spemann organizer (dorsal organizer), through the nuclear accumulation of beta-catenin. Zebrafish bozozok/dharma (boz) and squint (sqt), which encode a homeodomain protein and a Nodal-related protein, respectively, are required for the formation of the dorsal organizer. The zygotic expression of boz and sqt in the dorsal blastoderm and dorsal yolk syncytial layer (YSL) was dependent on the maternally derived Wnt signal, and their expression at the late blastula and early gastrula stages was dependent on the zygotic expression of their own genes. The dorsal organizer genes, goosecoid (gsc) and chordin (din), were ectopically expressed in wild-type embryos injected with boz or sqt RNA. The expression of gsc strictly depended on both boz and sqt while the expression of din strongly depended on boz but only partially depended on sqt and cyclops (cyc, another nodal-related gene). Overexpression of boz in embryos defective in Nodal signaling elicited the ectopic expression of din but not gsc and resulted in dorsalization, implying that boz could induce part of the organizer, independent of the Nodal proteins. Furthermore, boz; sqt and boz;cyc double mutants displayed a severely ventralized phenotype with anterior truncation, compared with the single mutants, and boz;sqt;cyc triple mutant embryos exhibited an even more severe phenotype, lacking the anterior neuroectoderm and notochord, suggesting that Boz/Dharma and the Nodal-related proteins cooperatively regulate the formation of the dorsal organizer.
Collapse
Affiliation(s)
- T Shimizu
- Division of Molecular Oncology (C7), Biomedical Research Center, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
The amphibian Spemann organizer is subdivided in trunk and head organizer and it is unclear how this division is regulated. The Xenopus trunk organizer expresses anti-dorsalizing morphogenetic protein (ADMP), a potent organizer antagonist. We show that ADMP represses head formation during gastrulation and that its expression is activated by BMP antagonists. A specifically acting dominant-negative ADMP anteriorizes embryos and its coexpression with BMP antagonists induces secondary embryonic axes with heads as well as expression of head inducers. Unlike other BMPs, ADMP is not inhibited by a dominant-negative BMP type I receptor, Noggin, Cerberus and Chordin but by Follistatin, suggesting that it utilizes a distinct TGF-beta receptor pathway and displays differential sensitivity to BMP antagonists. The results indicate that ADMP functions in the trunk organizer to antagonize head formation, thereby regulating organizer patterning.
Collapse
Affiliation(s)
- R Dosch
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | | |
Collapse
|
139
|
Chang C, Hemmati-Brivanlou A. A post-mid-blastula transition requirement for TGFbeta signaling in early endodermal specification. Mech Dev 2000; 90:227-35. [PMID: 10640706 DOI: 10.1016/s0925-4773(99)00257-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In Xenopus, endodermal cell fate is determined gradually from late blastula to early gastrula stages; cell-cell interaction plays an important role in this process. Here we use a cell dissociation assay to show that extracellular signaling is required continuously before endoderm determination. Activin and Vg1, but not BMP2 or basic FGF, rescue the expression of endodermal markers in dissociated cells when provided at the mid-blastula transition (MBT, the time in which zygotic transcription begins). Removal of exogenously added activin or Vg1 before MBT results in reduction of endodermal gene expression in dissociated vegetal cells. In vivo, endogenous endodermal markers are reduced in vegetal explants when activin-like signaling is blocked with dominant negative receptors. VegT, a maternal transcription factor shown to be critical for endoderm specification, relies on an active TGFbeta pathway to induce endoderm in animal caps. These results indicate that TGFbeta signaling may be activated by the maternally expressed VegT to participate in endoderm determination. In addition, VegT function seems to be required in parallel with the TGFbeta pathway, as overexpression of activin does not relieve endoderm repression by a dominant negative VegT mutant in vegetal cells. Our data suggest that maternal VegT first activates a zygotic TGFbeta signal, then cooperates with this signal to determine the endodermal cell fate.
Collapse
Affiliation(s)
- C Chang
- Department of Vertebrate Molecular Embryology, Box 32, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
140
|
Abstract
Communication between cells during early embryogenesis establishes the basic organization of the vertebrate body plan. Recent work suggests that a signalling pathway centering on Nodal, a transforming growth factor beta-related signal, is responsible for many of the events that configure the vertebrate embryo. The activity of Nodal signals is regulated extracellularly by EGF-CFC cofactors and antagonists of the Lefty and Cerberus families of proteins, allowing precise control of mesoderm and endoderm formation, the positioning of the anterior-posterior axis, neural patterning and left-right axis specification.
Collapse
Affiliation(s)
- A F Schier
- Department of Cell Biology, New York University School of Medicine, New York 10016, USA.
| | | |
Collapse
|
141
|
Constam DB, Robertson EJ. Tissue-specific requirements for the proprotein convertase furin/SPC1 during embryonic turning and heart looping. Development 2000; 127:245-54. [PMID: 10603343 DOI: 10.1242/dev.127.2.245] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Furin, the mammalian prototype of a family of serine proteases, is required for ventral closure and axial rotation, and formation of the yolk sac vasculature. Here we show additionally that left-sided expression of pitx2 and lefty-2 are also perturbed in Furin-deficient embryos. These tissue abnormalities are preceded by a marked delay in the expansion of the definitive endoderm during gastrulation. Using a chimera approach, we show that Furin activity is required in epiblast derivatives, including the primitive heart, gut and extraembryonic mesoderm, whereas it is nonessential in the visceral endoderm. Thus, chimeric embryos, derived by injecting wild-type embryonic stem (ES) cells into fur(-/-) blastocysts, develop normally until at least 9.5 d.p.c. In contrast, Furin-deficient chimeras developing in the context of wild-type visceral endoderm fail to undergo ventral closure, axial rotation and yolk sac vascularization. Fur(-/-) cells are recruited into all tissues examined, including the yolk sac vasculature and the midgut, even though these structures fail to form in fur mutants. The presence of wild-type cells in the gut strikingly correlates with the ability of chimeric embryos to undergo turning. Overall, we conclude that Furin activity is essential in both extraembryonic and precardiac mesoderm, and in definitive endoderm derivatives.
Collapse
Affiliation(s)
- D B Constam
- Harvard University, Department of Molecular Biology, Cambridge, MA 02138, USA
| | | |
Collapse
|
142
|
Kofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, Osada S, Wright C, Wylie C, Heasman J. Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 1999; 126:5759-70. [PMID: 10572051 DOI: 10.1242/dev.126.24.5759] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The maternal transcription factor VegT is important for establishing the primary germ layers in Xenopus. In previous work, we showed that the vegetal masses of embryos lacking maternal VegT do not produce mesoderm-inducing signals and that mesoderm formation in these embryos occurred ectopically, from the vegetal area rather than the equatorial zone of the blastula. Here we have increased the efficiency of the depletion of maternal VegT mRNA and have studied the effects on mesoderm formation. We find that maternal VegT is required for the formation of 90% of mesodermal tissue, as measured by the expression of mesodermal markers MyoD, cardiac actin, Xbra, Xwnt8 and alphaT4 globin. Furthermore, the transcription of FGFs and TGFbetas, Xnr1, Xnr2, Xnr4 and derriere does not occur in VegT-depleted embryos. We test whether these growth factors may be endogenous factors in mesoderm induction, by studying their ability to rescue the phenotype of VegT-depleted embryos, when their expression is restricted to the vegetal mass. We find that Xnr1, Xnr2, Xnr4 and derriere mRNA all rescue mesoderm formation, as well as the formation of blastopores and the wild-type body axis. Derriere rescues trunk and tail while nr1, nr2 and nr4 rescue head, trunk and tail. We conclude that mesoderm induction in Xenopus depends on a maternal transcription factor regulating these zygotic growth factors.
Collapse
Affiliation(s)
- M Kofron
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Eimon PM, Harland RM. In Xenopus embryos, BMP heterodimers are not required for mesoderm induction, but BMP activity is necessary for dorsal/ventral patterning. Dev Biol 1999; 216:29-40. [PMID: 10588861 DOI: 10.1006/dbio.1999.9496] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of bone morphogenetic protein (BMP) heterodimers has been shown to be more potent than that of homodimers in a number of contexts, including mesoderm induction. Although BMP-2/7 and -4/7 heterodimers are potent inducers of ventral mesoderm in ectodermal explants, we show that they are not a necessary component of the primary mesoderm-inducing signal in intact Xenopus embryos. The secreted BMP antagonists noggin and gremlin both efficiently block mesoderm induction by BMP homo- and heterodimers in animal caps. When these antagonists are ectopically expressed in the ventral marginal zone of early embryos the initial formation of mesoderm as indicated by panmesodermal markers remains unaffected. Only the subsequent dorsal/ventral patterning of this mesoderm appears to be altered, with expression of a number of organizer-specific transcripts observed in the marginal zone where BMP signaling has been abolished. Thus, we conclude that BMPs do not contribute an essential signal to mesodermal induction or patterning until gastrulation. The activities of noggin and gremlin are strikingly different from that of the multifunctional antagonist cerberus, which completely abolishes mesoderm induction when misexpressed during early development.
Collapse
Affiliation(s)
- P M Eimon
- Department of Molecular Biology, University of California, Berkeley, California, 94720-3202, USA
| | | |
Collapse
|
144
|
Abstract
Recent results support a two-step model for endoderm formation in amphibian embryos, in which endoderm is initially specified by localised maternal factors, including the transcription factor VegT, but is then maintained by extracellular signalling molecules of the transforming growth factor-beta family.
Collapse
Affiliation(s)
- L Dale
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
145
|
Abstract
BACKGROUND Several potentially important regulators of vertebrate endoderm development have been identified, including Activin-related growth factors and their receptors; transcriptional regulators encoded by the genes Mixer, Xsox17, and HNF3beta; zebrafish One-eyed pinhead (Oep), a member of the Cripto/FRL-1/Cryptic family of epidermal growth factor related proteins (EGF-CFC); and the product of the zebrafish locus casanova, which plays an essential cell-autonomous role in endoderm formation. RESULTS Using overexpression studies and the analysis of different zebrafish mutants, we have assembled a molecular pathway that leads to endoderm formation. We report that a zebrafish Sox17 homologue is expressed during gastrulation exclusively in the endoderm and that casanova mutants lack all sox17 expression. Overexpression of mixer induces ectopic sox17-expressing cells in wild-type embryos and promotes endoderm formation in oep mutants, but does not rescue sox17 expression or endoderm formation in casanova mutants. Overexpression of a constitutively active form of the type I transforming growth factor beta (TGF-beta) receptor TARAM-A also promotes sox17 expression in wild-type and oep mutant embryos, but not in casanova mutants. We also show that the Nodal-related molecules Cyclops and Squint and the transmembrane protein Oep are essential for normal mixer expression. CONCLUSIONS The data indicate that the following pathway leads to zebrafish endoderm formation: Cyclops and Squint activate receptors such as TARAM-A; Oep also appears to act upstream of such receptors; signals transduced by these receptors lead to the expression of mixer, Mixer then acts through casanova to promote the expression of sox17 and differentiation of the endoderm.
Collapse
Affiliation(s)
- J Alexander
- Department of Biochemistry and Biophysics, Programs in Developmental Biology and Human Genetics, University of California at San Francisco, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
146
|
Zhu L, Marvin MJ, Gardiner A, Lassar AB, Mercola M, Stern CD, Levin M. Cerberus regulates left-right asymmetry of the embryonic head and heart. Curr Biol 1999; 9:931-8. [PMID: 10508582 DOI: 10.1016/s0960-9822(99)80419-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Most of the molecules known to regulate left-right asymmetry in vertebrate embryos are expressed on the left side of the future trunk region of the embryo. Members of the protein family comprising Cerberus and the putative tumour suppressor Dan have not before been implicated in left-right asymmetry. In Xenopus, these proteins have been shown to antagonise members of the transforming growth factor beta (TGF-beta) and Wnt families of signalling proteins. RESULTS Chick Cerberus (cCer) was found to be expressed in the left head mesenchyme and in the left flank of the embryo. Expression on the left side of the head was controlled by Sonic hedgehog (Shh) acting through the TGF-beta family member Nodal; in the flank, cCer was also regulated by Shh, but independently of Nodal. Surprisingly, although no known targets of Cerberus are expressed asymmetrically on the right side of the embryo at these stages, misexpression of cCer on this side of the embryo led to upregulation of the transcription factor Pitx2 and reversal of the direction of heart and head turning, apparently as independent events. Consistent with the possibility that cCer may be acting on bilaterally expressed TGF-beta family members such as the bone morphogenetic proteins (BMPs), this result was mimicked by right-sided misexpression of the BMP antagonist, Noggin. CONCLUSIONS Our findings suggest that cCer maintains a delicate balance of different TGF-beta family members involved in laterality decisions, and reveal the existence of partially overlapping molecular pathways regulating left-right asymmetry in the head and trunk of the embryo.
Collapse
Affiliation(s)
- L Zhu
- Department of Genetics and Development, Columbia University, 701 West 168th Street #1602, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Yasuo H, Lemaire P. A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos. Curr Biol 1999; 9:869-79. [PMID: 10469589 DOI: 10.1016/s0960-9822(99)80391-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In Xenopus, the endoderm germ layer is derived from the vegetal blastomeres of cleavage-stage embryos. Cell transplantation experiments have revealed that the endodermal fate becomes gradually fixed during the late blastula stages. Sox17alpha, Mix.1, Mixer and GATA-4 encode vegetal zygotic transcription factors with endoderm-inducing activity. The accumulation of their transcripts during the late blastula stages may cause determination of the endodermal fate. VegT, a T-box transcription factor, the maternal transcripts of which are vegetally localised, is also required for endoderm formation. RESULTS We analysed the events leading to the progressive accumulation of the transcripts for Sox17alpha, Mix.1, Mixer and GATA-4. Two phases could be distinguished in the endodermal programme. In phase 1, Sox17alpha, Mix.1, and the genes encoding transforming growth factor beta-related signalling molecules Xnr1, Xnr2 and Derrière were activated cell-autonomously at around the mid-blastula transition (MBT) by maternal determinants. In phase 2, TGFbeta signalling, possibly involving Xnr1, Xnr2 and Derrière, led to the activation of Mixer and GATA-4 in late blastula stages and to the reinforcement of the expression of Sox17alpha and Mix.1. Overexpression of VegT in animal caps triggered a developmental programme qualitatively similar to that observed in vegetal blastomeres, except that Xnr1 and GATA-4 were not activated by the early gastrula stage. CONCLUSIONS Our results support a two-step model for endoderm determination between fertilisation and the onset of gastrulation. The initial cell-autonomous activation of early endodermal genes by maternal determinants including, but not limited to, VegT is relayed by the action of zygotic TGFbetas such as Xnr1, Xnr2 and Derrière.
Collapse
Affiliation(s)
- H Yasuo
- Laboratoire de Génétique et Physiologie du Développement, Institut de Biologie du Développement de Marseille, CNRS-INSERM-Université de la Méditerannée-AP de Marseille, Campus de Luminy, Case 907, F-13288, Marseille, Cedex 9, France
| | | |
Collapse
|