101
|
Guidi N, Marka G, Sakk V, Zheng Y, Florian MC, Geiger H. An aged bone marrow niche restrains rejuvenated hematopoietic stem cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1101-1106. [PMID: 33847429 DOI: 10.1002/stem.3372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Aging-associated leukemia and aging-associated immune remodeling are in part caused by aging of hematopoietic stem cells (HSCs). An increase in the activity of the small RhoGTPase cell division control protein 42 (Cdc42) within HSCs causes aging of HSCs. Old HSCs, treated ex vivo with a specific inhibitor of Cdc42 activity termed CASIN, stay rejuvenated upon transplantation into young recipients. We determined in this study the influence of an aged niche on the function of ex vivo rejuvenated old HSCs, as the relative contribution of HSCs intrinsic mechanisms vs extrinsic mechanisms (niche) for aging of HSCs still remain unknown. Our results show that an aged niche restrains the function of ex vivo rejuvenated HSCs, which is at least in part linked to a low level of the cytokine osteopontin found in aged niches. The data imply that sustainable rejuvenation of the function of aged HSCs in vivo will need to address the influence of an aged niche on rejuvenated HSCs.
Collapse
Affiliation(s)
- Novella Guidi
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Gina Marka
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Yi Zheng
- Experimental Hematology and Cancer Biology, CCHMC, Cincinnati, Ohio, USA
| | | | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
102
|
Rejuvenated Stem/Progenitor Cells for Cartilage Repair Using the Pluripotent Stem Cell Technology. Bioengineering (Basel) 2021; 8:bioengineering8040046. [PMID: 33920285 PMCID: PMC8070387 DOI: 10.3390/bioengineering8040046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023] Open
Abstract
It is widely accepted that chondral defects in articular cartilage of adult joints are never repaired spontaneously, which is considered to be one of the major causes of age-related degenerative joint disorders, such as osteoarthritis. Since mobilization of subchondral bone (marrow) cells and addition of chondrocytes or mesenchymal stromal cells into full-thickness defects show some degrees of repair, the lack of self-repair activity in adult articular cartilage can be attributed to lack of reparative cells in adult joints. In contrast, during a fetal or embryonic stage, joint articular cartilage has a scar-less repair activity, suggesting that embryonic joints may contain cells responsible for such activity, which can be chondrocytes, chondroprogenitors, or other cell types such as skeletal stem cells. In this respect, the tendency of pluripotent stem cells (PSCs) to give rise to cells of embryonic characteristics will provide opportunity, especially for humans, to obtain cells carrying similar cartilage self-repair activity. Making use of PSC-derived cells for cartilage repair is still in a basic or preclinical research phase. This review will provide brief overviews on how human PSCs have been used for cartilage repair studies.
Collapse
|
103
|
Zhu Y, Ge J, Huang C, Liu H, Jiang H. Application of mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. Theranostics 2021; 11:5675-5685. [PMID: 33897874 PMCID: PMC8058725 DOI: 10.7150/thno.46436] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Aging frailty is a complex geriatric syndrome that becomes more prevalent with advancing age. It constitutes a major health problem due to frequent adverse outcomes. Frailty is characterized by disruption of physiological homeostasis and progressive decline of health status. Multiple factors contribute to development of frailty with advancing age, including genome instability, DNA damage, epigenetic alternations, stem cell exhaustion, among others. These interrelated factors comprehensively result in loss of tissue homeostasis and diminished reserve capacity in frailty. Therefore, the aged organism gradually represents symptoms of frailty with decline in physiological functions of organs. Notably, the brain, cardiovascular system, skeletal muscle, and endocrine system are intrinsically interrelated to frailty. The patients with frailty may display the diminished reserves capacity of organ systems. Due to the complex pathophysiology, no specific treatments have been approved for prevention of this syndrome. At such, effective strategies for intervening in pathogenic process to improve health status of frail patients are highly needed. Recent progress in cell-based therapy has greatly contributed to the amelioration of degenerative diseases related to age. Mesenchymal stem cells (MSCs) can exert regenerative effects and possess anti-inflammatory properties. Transplantation of MSCs represents as a promising therapeutic strategy to address the pathophysiologic problems of frail syndrome. Currently, MSC therapy have undergone the phase I and II trials in human subjects that have endorsed the safety and efficacy of MSCs for aging frailty. However, despite these positive results, caution is still needed with regard to potential to form tumors, and further large-scale studies are warranted to confirm the therapeutic efficacy of MSC therapy.
Collapse
|
104
|
Cai J, Qi H, Yao K, Yao Y, Jing D, Liao W, Zhao Z. Non-Coding RNAs Steering the Senescence-Related Progress, Properties, and Application of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:650431. [PMID: 33816501 PMCID: PMC8017203 DOI: 10.3389/fcell.2021.650431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
The thirst to postpone and even reverse aging progress has never been quenched after all these decades. Unequivocally, mesenchymal stem cells (MSCs), with extraordinary abilities such as self-renewal and multi-directional differentiation, deserve the limelight in this topic. Though having several affable clinical traits, MSCs going through senescence would, on one hand, contribute to age-related diseases and, on the other hand, lead to compromised or even counterproductive therapeutical outcomes. Notably, increasing evidence suggests that non-coding RNAs (ncRNAs) could invigorate various regulatory processes. With even a slight dip or an uptick of expression, ncRNAs would make a dent in or even overturn cellular fate. Thereby, a systematic illustration of ncRNAs identified so far to steer MSCs during senescence is axiomatically an urgent need. In this review, we introduce the general properties and mechanisms of senescence and its relationship with MSCs and illustrate the ncRNAs playing a role in the cellular senescence of MSCs. It is then followed by the elucidation of ncRNAs embodied in extracellular vesicles connecting senescent MSCs with other cells and diversified processes in and beyond the skeletal system. Last, we provide a glimpse into the clinical methodologies of ncRNA-based therapies in MSC-related fields. Hopefully, the intricate relationship between senescence and MSCs will be revealed one day and our work could be a crucial stepping-stone toward that future.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hexu Qi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, Osaka Dental University, Hirakata, Japan
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
105
|
Kim SN, Choi B, Lee CJ, Moon JH, Kim MK, Chung E, Song SU. Culturing at Low Cell Density Delays Cellular Senescence of Human Bone Marrow-Derived Mesenchymal Stem Cells in Long-Term Cultures. Int J Stem Cells 2021; 14:103-111. [PMID: 33377453 PMCID: PMC7904528 DOI: 10.15283/ijsc20078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Mesenchymal stem cells (MSCs) have immense therapeutic potential for treating intractable and immune diseases. They also have applications in regenerative medicine in which distinct treatments do not exist. Thus, MSCs are gaining attention as important raw materials in the field of cell therapy. Importantly, the number of MSCs in the bone marrow is limited and they are present only in small quantities. Therefore, mass production of MSCs through long-term culture is necessary to use them in cell therapy. However, MSCs undergo cellular senescence through repeated passages during mass production. In this study, we explored methods to prolong the limited lifetime of MSCs by culturing them with different seeding densities. Methods and Results We observed that in long-term cultures, low-density (LD, 50 cells/cm2) MSCs showed higher population doubling level, leading to greater fold increase, than high-density (HD, 4,000 cells/cm2) MSCs. LD-MSCs suppressed the expression of aging-related genes. We also showed that reactive oxygen species (ROS) were decreased in LD-MSCs compared to that in HD-MSCs. Further, proliferation potential increased when ROS were inhibited in HD-MSCs. Conclusions The results in this study suggest that MSC senescence can be delayed and that life span can be extended by controlling cell density in vitro. These results can be used as important data for the mass production of stem cell therapeutic products.
Collapse
Affiliation(s)
- Si-Na Kim
- SCM Lifesciences Co. Ltd., Incheon, Korea.,Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Byeol Choi
- SCM Lifesciences Co. Ltd., Incheon, Korea
| | | | | | | | | | - Sun Uk Song
- SCM Lifesciences Co. Ltd., Incheon, Korea.,Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
106
|
Tiwari RL, Mishra P, Martin N, George NO, Sakk V, Soller K, Nalapareddy K, Nattamai K, Scharffetter-Kochanek K, Florian MC, Geiger H. A Wnt5a-Cdc42 axis controls aging and rejuvenation of hair-follicle stem cells. Aging (Albany NY) 2021; 13:4778-4793. [PMID: 33629967 PMCID: PMC7950224 DOI: 10.18632/aging.202694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
Normal hair growth occurs in cycles, comprising growth (anagen), cessation (catagen) and rest (telogen). Upon aging, the initiation of anagen is significantly delayed, which results in impaired hair regeneration. Hair regeneration is driven by hair follicle stem cells (HFSCs). We show here that aged HFSCs present with a decrease in canonical Wnt signaling and a shift towards non-canonical Wnt5a driven signaling which antagonizes canonical Wnt signaling. Elevated expression of Wnt5a in HFSCs upon aging results in elevated activity of the small RhoGTPase Cdc42 as well as a change in the spatial distribution of Cdc42 within HFSCs. Treatment of aged HFSC with a specific pharmacological inhibitor of Cdc42 activity termed CASIN to suppress the aging-associated elevated activity of Cdc42 restored canonical Wnt signaling in aged HFSCs. Treatment of aged mice in vivo with CASIN induced anagen onset and increased the percentage of anagen skin areas. Aging-associated functional deficits of HFSCs are at least in part intrinsic to HFSCs and can be restored by rational pharmacological approaches.
Collapse
Affiliation(s)
- Rajiv L Tiwari
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | - Pratibha Mishra
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | - Nicola Martin
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | | | - Vadim Sakk
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | - Karin Soller
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | - Kodandaramireddy Nalapareddy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kalpana Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | | - Hartmut Geiger
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| |
Collapse
|
107
|
Abstract
Quiescence is a cellular state in which a cell remains out of the cell cycle but retains the capacity to divide. The unique ability of adult stem cells to maintain quiescence is crucial for life-long tissue homeostasis and regenerative capacity. Quiescence has long been viewed as an inactive state but recent studies have shown that it is in fact an actively regulated process and that adult stem cells are highly reactive to extrinsic stimuli. This has fuelled hopes of boosting the reactivation potential of adult stem cells to improve tissue function during ageing. In this Review, we provide a perspective of the quiescent state and discuss how quiescent adult stem cells transition into the cell cycle. We also discuss current challenges in the field, highlighting recent technical advances that could help overcome some of these challenges.
Collapse
Affiliation(s)
- Noelia Urbán
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| |
Collapse
|
108
|
Laporte E, Vennekens A, Vankelecom H. Pituitary Remodeling Throughout Life: Are Resident Stem Cells Involved? Front Endocrinol (Lausanne) 2021; 11:604519. [PMID: 33584539 PMCID: PMC7879485 DOI: 10.3389/fendo.2020.604519] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The pituitary gland has the primordial ability to dynamically adapt its cell composition to changing hormonal needs of the organism throughout life. During the first weeks after birth, an impressive growth and maturation phase is occurring in the gland during which the distinct hormonal cell populations expand. During pubertal growth and development, growth hormone (GH) levels need to peak which requires an adaptive enterprise in the GH-producing somatotrope population. At aging, pituitary function wanes which is associated with organismal decay including the somatopause in which GH levels drop. In addition to these key time points of life, the pituitary's endocrine cell landscape plastically adapts during specific (patho-)physiological conditions such as lactation (need for PRL) and stress (engagement of ACTH). Particular resilience is witnessed after physical injury in the (murine) gland, culminating in regeneration of destroyed cell populations. In many other tissues, adaptive and regenerative processes involve the local stem cells. Over the last 15 years, evidence has accumulated that the pituitary gland houses a resident stem cell compartment. Recent studies propose their involvement in at least some of the cell remodeling processes that occur in the postnatal pituitary but support is still fragmentary and not unequivocal. Many questions remain unsolved such as whether the stem cells are key players in the vivid neonatal growth phase and whether the decline in pituitary function at old age is associated with decreased stem cell fitness. Furthermore, the underlying molecular mechanisms of pituitary plasticity, in particular the stem cell-linked ones, are still largely unknown. Pituitary research heavily relies on transgenic in vivo mouse models. While having proven their value, answers to pituitary stem cell-focused questions may more diligently come from a novel powerful in vitro research model, termed organoids, which grow from pituitary stem cells and recapitulate stem cell phenotype and activation status. In this review, we describe pituitary plasticity conditions and summarize what is known on the involvement and phenotype of pituitary stem cells during these pituitary remodeling events.
Collapse
Affiliation(s)
| | | | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
109
|
Auzmendi-Iriarte J, Matheu A. Impact of Chaperone-Mediated Autophagy in Brain Aging: Neurodegenerative Diseases and Glioblastoma. Front Aging Neurosci 2021; 12:630743. [PMID: 33633561 PMCID: PMC7901968 DOI: 10.3389/fnagi.2020.630743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Brain aging is characterized by a time-dependent decline of tissue integrity and function, and it is a major risk for neurodegenerative diseases and brain cancer. Chaperone-mediated autophagy (CMA) is a selective form of autophagy specialized in protein degradation, which is based on the individual translocation of a cargo protein through the lysosomal membrane. Regulation of processes such as proteostasis, cellular energetics, or immune system activity has been associated with CMA, indicating its pivotal role in tissue homeostasis. Since first studies associating Parkinson’s disease (PD) to CMA dysfunction, increasing evidence points out that CMA is altered in both physiological and pathological brain aging. In this review article, we summarize the current knowledge regarding the impact of CMA during aging in brain physiopathology, highlighting the role of CMA in neurodegenerative diseases and glioblastoma, the most common and aggressive brain tumor in adults.
Collapse
Affiliation(s)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation, Bilbao, Spain
| |
Collapse
|
110
|
Paghera S, Sottini A, Previcini V, Capra R, Imberti L. Age-Related Lymphocyte Output During Disease-Modifying Therapies for Multiple Sclerosis. Drugs Aging 2021; 37:739-746. [PMID: 32761321 DOI: 10.1007/s40266-020-00789-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Patients with multiple sclerosis exhibit the same qualitative and quantitative changes in immune system cells observed in aging. In the last 20 years, multiple sclerosis patients have shown an increase in life expectancy and average age, but clinical trial inclusion criteria typically exclude patients over the age of 55 years. Therefore, disease-modifying therapies are likely administered to patients older than those enrolled in clinical trials. OBJECTIVE In order to investigate whether disease-modifying therapies for multiple sclerosis induce modifications to the immune system that may have (super)additive effects resulting in an acceleration of immunosenescence, we quantified the number of T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs). These molecules are contained in new T and B lymphocytes released by the thymus and bone marrow and are considered molecular age-related markers. METHODS The markers of aging were measured by a multiplex quantitative real-time PCR assay in 122 patients who had started therapy with interferon-beta (IFN-β), fingolimod, alemtuzumab, or natalizumab. Samples were obtained before the therapy and at 6 and 12 months of treatment. Comparisons between the variables were performed by a non-parametric statistical analysis. RESULTS In therapy-naive patients, a significant and direct correlation was found between a lower number of newly produced T and B cells and older age. Although disease-modifying therapies induced different changes (both increases and decreases) in the production of new T and B lymphocytes, 12 months of therapy with IFN-β or natalizumab did not affect the correlations found at baseline between the release of lymphocytes containing TRECs or KRECs and age. On the contrary, in patients treated with alemtuzumab, both correlations were lost, while in fingolimod-treated patients, only the correlation between TRECs and age disappeared. CONCLUSIONS This observational study indicated that different age-related changes of the new T and B lymphocyte production could be one of the reasons for the emergence, in the real-world setting, of adverse events not otherwise observed in clinical trials; thus, caution is advised when choosing disease-modifying therapies for multiple sclerosis patients.
Collapse
Affiliation(s)
- Simone Paghera
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Vanessa Previcini
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Ruggero Capra
- Multiple Sclerosis Center, ASST Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
111
|
|
112
|
Proshkina EN, Solovev IA, Shaposhnikov MV, Moskalev AA. Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Mol Biol 2021. [DOI: 10.1134/s0026893320060096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
113
|
Olivos-Cisneros L, Ramírez-Santos J, Gutiérrez-Ospina G. Proliferation rate and differentiation potential are independent during the transition from neurogenesis to gliogenesis in the mouse embryonic spinal cord. IBRO Neurosci Rep 2021; 10:75-82. [PMID: 33842913 PMCID: PMC8019975 DOI: 10.1016/j.ibneur.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Neural stem cells (NSC) restrict their differentiation potential as the central nervous system develops. Experimental evidence suggests that the mechanisms governing the transition from the neurogenic to the gliogenic phase irreversibly affect the ability of NSC to generate neurons. Cell cycle regulation has been associated with cell fate in different models. In this work, we assessed the temporal correlation between the loss of the neurogenic potential and cell cycle lengthening of NSC obtained from embryonic mouse spinal cords, during the transition of the neurogenic to the gliogenic phase, using neurospheres. We also used the cell cycle inhibitor Olomoucine to increase cell cycle length by decreasing the proliferation rate. Our results show that neurospheres obtained from a neurogenic stage give rise mostly to neurons, whereas those obtained from later stages produce preferentially glial cells. During the transition from neurogenesis to gliogenesis, the proliferation rate dropped, and the cell cycle length increased 1.5 folds, as monitored by DNA BrdU incorporation. Interestingly, Olomoucine-treated neurogenic-neurospheres display a reduced proliferation rate and preserve their neurogenic potential. Our results suggest that the mechanisms that restrict the differentiation potential of NSC are independent of the proliferation control. Neurosphere cultured, spinal cord NSC preserve their differentiation potential. Neurogenic NSC divide faster than those giving rise to glial cells. Cell cycle inhibitors increase in NSC transitioning from the neurogenic to the gliogenic phase. Artificial cell cycle lengthening does not affect the differentiation potential of neurogenic NSC.
Collapse
Affiliation(s)
- Leonora Olivos-Cisneros
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
- Corresponding author at: Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico.
| | - Jesús Ramírez-Santos
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
- Corresponding author.
| |
Collapse
|
114
|
Grajeda Y, Arias N, Barrios A, Pervin S, Singh R. Aging-induced stem cell dysfunction: Molecular mechanisms and potential therapeutic avenues. STEM CELLS AND AGING 2021:203-222. [DOI: 10.1016/b978-0-12-820071-1.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
115
|
Liu YR, Cheng YQ, Wang SB, Su YR, Liu Y, Li CY, Jin L, Wan Q, Sang X, Wang ZC. Therapeutic effects and perspective of stem cell extracellular vesicles in aging and cancer. J Cell Physiol 2020; 236:4783-4796. [PMID: 33368322 DOI: 10.1002/jcp.30212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/02/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
Senescent cells can secrete a plethora of cytokines which induce senescent phenotype of neighboring cells and was called senescence-associated secretory phenotype. Previously, it was believed that cancer was caused by the infinite division and uncontrolled proliferation of cells. Based on this, anticancer treatments were all aimed at killing cancer cells. Cancer is now considered an age-related disease. Cancer cells are not exogenous, but one of the worst results of injuries which initially induce cell senescence. Therefore, reversing cell senescence can fundamentally prevent and treat cancer. Though current anticancer treatments induce the cancer cells apoptosis, they induce senescence of normal cells at the same time, thus promoting the occurrence and development of cancer and forming a vicious circle. Extracellular vesicles (EVs) are nano-sized vesicles which partially mirror their parent cells. In the tumor microenvironment, EVs of senescent cells can change the expression profile of cancer cells, contributing to their resistance to chemotherapy. There is growing evidence indicates that stem cell EVs exert effective antiaging and anticancer actions by transferring functional microRNAs and proteins. This review will summarize the therapeutic role of stem cell EVs in reversing aging and cancer, which suggests the broad clinical application perspective.
Collapse
Affiliation(s)
- Yu-Run Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ya-Qi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shou-Bi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ya-Ru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chao-Yang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Chong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
116
|
Zhang LK, Chen WY, Wang HM, Liu C, He J, Tang Y, Jiao Y, Guan YQ. Growth factors regional patterned and photoimmobilized scaffold applied to bone tissue regeneration. J Mater Chem B 2020; 8:10990-11000. [PMID: 33300520 DOI: 10.1039/d0tb02317e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bone diseases such as osteomalacia, osteoporosis, and osteomyelitis are major illnesses that threaten the health of human. This study aimed to provide an idea at the molecular level of material properties determined with UV specific surface approaches. The tert-butyl hydroperoxide (t-BHP) exposure aging model bone mesenchymal stem cells (BMSCs) were reverted by using a poly-hybrid scaffold (PS), which is a carbon nanotube (CNT) coated polycaprolactone (PCL) and polylactic acid (PLA) scaffold, combined with insulin-like growth factor-1 (IGF). Then, the region-specific PS photo-immobilized with different growth factors (GFs) was obtained by interference and diffraction of ultraviolet (UV) light. Additionally, the reverted BMSCs were regionally pattern differentiated into three kinds of cells on the GF immobilized PS (GFs/PS). In vivo, the GFs/PS accelerate bone healing in injured Sprague-Dawley (SD) rats. The data showed that GFs/PS effectively promoted the differentiation of reverted BMSCs in the designated area on 21st day. These results suggest region-specific interface immobilization of GFs concurrently differentiating reverted BMSCs into three different cells in the same scaffold. This method might be considered as a short-time, low cost, and simple operational approach to scaffold modification for tissue regeneration in the future.
Collapse
Affiliation(s)
- Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China. and South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 510631, China
| | - Wu-Ya Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Hui-Min Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Chao Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Jiecheng He
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yunzhi Tang
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yuxuan Jiao
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China. and South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 510631, China
| |
Collapse
|
117
|
Shin W, Rosin NL, Sparks H, Sinha S, Rahmani W, Sharma N, Workentine M, Abbasi S, Labit E, Stratton JA, Biernaskie J. Dysfunction of Hair Follicle Mesenchymal Progenitors Contributes to Age-Associated Hair Loss. Dev Cell 2020; 53:185-198.e7. [PMID: 32315612 DOI: 10.1016/j.devcel.2020.03.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/06/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
Skin aging is accompanied by hair loss due to impairments in hair follicle (HF) epithelial progenitor cells and their mesenchymal niche. This inductive mesenchyme, called dermal papilla (DP), undergoes progressive cell loss and eventual miniaturization that contributes to HF pathogenesis. Using laser ablation and fate mapping, we show that HF dermal stem cells (hfDSCs) reconstitute the damaged DP and maintain hair growth, suggesting that hfDSC dysfunction may trigger degeneration of the inductive niche. Fate mapping over 24 months revealed progressive hfDSC depletion, and in vivo clonal analysis of aged hfDSCs showed impaired self-renewal and biased differentiation. Single-cell RNA-seq confirmed hfDSCs as a central precursor, giving rise to divergent mesenchymal trajectories. In aged skin, hfDSCs exhibited senescent-like characteristics, and senescence-associated secretory phenotypes were identified in the aging HF mesenchyme. These results clarify fibroblast dynamics within the HF and suggest that progressive dysfunction within the mesenchymal progenitor pool contributes to age-related hair loss.
Collapse
Affiliation(s)
- Wisoo Shin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nicole L Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Holly Sparks
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Waleed Rahmani
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nilesh Sharma
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Matt Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sepideh Abbasi
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jo Anne Stratton
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
118
|
Engler M, Fidan M, Nandi S, Cirstea IC. Senescence in RASopathies, a possible novel contributor to a complex pathophenoype. Mech Ageing Dev 2020; 194:111411. [PMID: 33309600 DOI: 10.1016/j.mad.2020.111411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
Senescence is a biological process that induces a permanent cell cycle arrest and a specific gene expression program in response to various stressors. Following studies over the last few decades, the concept of senescence has evolved from an antiproliferative mechanism in cancer (oncogene-induced senescence) to a critical component of physiological processes associated with embryonic development, tissue regeneration, ageing and its associated diseases. In somatic cells, oncogenic mutations in RAS-MAPK pathway genes are associated with oncogene-induced senescence and cancer, while germline mutations in the same pathway are linked to a group of monogenic developmental disorders generally termed RASopathies. Here, we consider that in these disorders, senescence induction may result in opposing outcomes, a tumour protective effect and a possible contributor to a premature ageing phenotype identified in Costello syndrome, which belongs to the RASopathy group. In this review, we will highlight the role of senescence in organismal homeostasis and we will describe the current knowledge about senescence in RASopathies. Additionally, we provide a perspective on examples of experimentally characterised RASopathy mutations that, alone or in combination with various stressors, may also trigger an age-dependent chronic senescence, possibly contributing to the age-dependent worsening of RASopathy pathophenotype and the reduction of lifespan.
Collapse
Affiliation(s)
- Melanie Engler
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Sayantan Nandi
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| |
Collapse
|
119
|
Aging-Associated Alterations in Mammary Epithelia and Stroma Revealed by Single-Cell RNA Sequencing. Cell Rep 2020; 33:108566. [PMID: 33378681 PMCID: PMC7898263 DOI: 10.1016/j.celrep.2020.108566] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is closely associated with increased susceptibility to breast cancer, yet there have been limited systematic studies of aging-induced alterations in the mammary gland. Here, we leverage high-throughput single-cell RNA sequencing to generate a detailed transcriptomic atlas of young and aged murine mammary tissues. By analyzing epithelial, stromal, and immune cells, we identify age-dependent alterations in cell proportions and gene expression, providing evidence that suggests alveolar maturation and physiological decline. The analysis also uncovers potential pro-tumorigenic mechanisms coupled to the age-associated loss of tumor suppressor function and change in microenvironment. In addition, we identify a rare, age-dependent luminal population co-expressing hormone-sensing and secretory-alveolar lineage markers, as well as two macrophage populations expressing distinct gene signatures, underscoring the complex heterogeneity of the mammary epithelia and stroma. Collectively, this rich single-cell atlas reveals the effects of aging on mammary physiology and can serve as a useful resource for understanding aging-associated cancer risk. Using single-cell RNA-sequencing, Li et al. compare mammary epithelia and stroma in young and aged mice. Age-dependent changes at cell and gene levels provide evidence suggesting alveolar maturation, functional deterioration, and potential pro-tumorigenic and inflammatory alterations. Additionally, identification of heterogeneous luminal and macrophage subpopulations underscores the complexity of mammary lineages.
Collapse
|
120
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2020. [PMCID: PMC7695635 DOI: 10.1002/sctm.20-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
121
|
Signaling Network Centered on mTORC1 Dominates Mammalian Intestinal Stem Cell Ageing. Stem Cell Rev Rep 2020; 17:842-849. [PMID: 33201440 DOI: 10.1007/s12015-020-10073-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
The intestine integrates the function of digestion, absorption, and barrier, which is easily damaged by the external factors upon ageing. The intestinal stem cells (ISCs) exist at the intestinal crypt base and play an indispensable role in intestinal homeostasis and regeneration. The intestine ageing contributes to malabsorption and other associated illnesses, which were considered to be related to ISCs. Here, we summarize the current research progress of mammalian ISCs ageing and pay more attention to the central regulatory role of the mTORC1 signaling pathway in regulating mammalian ISCs ageing, and its related AMPK, FOXO, Wnt signaling pathways. Furthermore, we also discuss the interventions aimed at mTORC1 and its associated signaling pathways, which may provide potential strategies for rejuvenating aged ISCs and the therapy of age-related intestinal diseases. Graphical abstract Many signaling pathways are altered in the ageing ISCs, thereby inducing the decrease of ISC self-renewal, differentiation, and regeneration, an increasing of oxidative stress may contribute to damage to the ISCs. Interventions such as calorie restriction, fasting and so on can effectively alleviate these adverse effects.
Collapse
|
122
|
Khanh VC, Yamashita T, Ohneda K, Tokunaga C, Kato H, Osaka M, Hiramatsu Y, Ohneda O. Rejuvenation of mesenchymal stem cells by extracellular vesicles inhibits the elevation of reactive oxygen species. Sci Rep 2020; 10:17315. [PMID: 33057147 PMCID: PMC7560871 DOI: 10.1038/s41598-020-74444-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Aging induces numerous cellular disorders, such as the elevation of reactive oxygen species (ROS), in a number type of cells, including mesenchymal stem cells (MSCs). However, the correlation of ROS and impaired healing abilities as well as whether or not the inhibition of elevating ROS results in the rejuvenation of elderly MSCs is unclear. The rejuvenation of aged MSCs has thus recently received attention in the field of regenerative medicine. Specifically, extracellular vesicles (EVs) act as a novel tool for stem cell rejuvenation due to their gene transfer ability with systemic effects and safety. In the present study, we examined the roles of aging-associated ROS in the function and rejuvenation of elderly MSCs by infant EVs. The data clearly showed that elderly MSCs exhibited the downregulation of superoxide dismutase (SOD)1 and SOD3, which resulted in the elevation of ROS and downregulation of the MEK/ERK pathways, which are involved in the impairment of the MSCs’ ability to decrease necrotic area in the skin flap model. Furthermore, treatment with the antioxidant Edaravone or co-overexpression of SOD1 and SOD3 rescued elderly MSCs from the elevation of ROS and cellular senescence, thereby improving their functions. Of note, infant MSC-derived EVs rejuvenated elderly MSCs by inhibiting ROS production and the acceleration of cellular senescence and promoting the proliferation and in vivo functions in both type 1 and type 2 diabetic mice.
Collapse
Affiliation(s)
- Vuong Cat Khanh
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Toshiharu Yamashita
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Kinuko Ohneda
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Chiho Tokunaga
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Hideyuki Kato
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Motoo Osaka
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, 305-8575, Japan.
| |
Collapse
|
123
|
Abstract
Adult stem cells undergo both replicative and chronological aging in their niches, with catastrophic declines in regenerative potential with age. Due to repeated environmental insults during aging, the chromatin landscape of stem cells erodes, with changes in both DNA and histone modifications, accumulation of damage, and altered transcriptional response. A body of work has shown that altered chromatin is a driver of cell fate changes and a regulator of self-renewal in stem cells and therefore a prime target for juvenescence therapeutics. This review focuses on chromatin changes in stem cell aging and provides a composite view of both common and unique epigenetic themes apparent from the studies of multiple stem cell types.
Collapse
Affiliation(s)
- Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
124
|
Campbell JM, Mahbub S, Habibalahi A, Paton S, Gronthos S, Goldys E. Ageing human bone marrow mesenchymal stem cells have depleted NAD(P)H and distinct multispectral autofluorescence. GeroScience 2020; 43:859-868. [PMID: 32789662 PMCID: PMC8110641 DOI: 10.1007/s11357-020-00250-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022] Open
Abstract
Stem cell exhaustion plays a major role in the ageing of different tissues. Similarly, in vitro cell ageing during expansion prior to their use in regenerative medicine can severely compromise stem cell quality through progressive declines in differentiation and growth capacity. We utilized non-destructive multispectral assessment of native cell autofluorescence to investigate the metabolic mechanisms of in vitro mesenchymal stem cell (MSC) ageing in human bone marrow MSCs over serial passages (P2-P10). The spectral signals for NAD(P)H, flavins and protein-bound NAD(P)H were successfully isolated using Robust Dependent Component Analysis (RoDECA). NAD(P)H decreased over the course of hMSC ageing in absolute terms as well as relative to flavins (optical redox ratio). Relative changes in other fluorophore levels (flavins, protein-bound NAD(P)H) suggested that this reduction was due to nicotinamide adenine dinucleotide depletion rather than a metabolic shift from glycolysis to oxidative phosphorylation. Using multispectral features, which are determined without cell fixation or fluorescent labelling, we developed and externally validated a reliable, linear model which could accurately categorize the age of culture-expanded hMSCs. The largest shift in spectral characteristics occurs early in hMSC ageing. These findings demonstrate the feasibility of applying multispectral technology for the non-invasive monitoring of MSC health in vitro.
Collapse
Affiliation(s)
- Jared M Campbell
- ARC Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia. .,The University of New South Wales, Sydney, New South Wales, 2052, Australia.
| | - Saabah Mahbub
- ARC Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Ewa Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
125
|
Bone progeria diminished the therapeutic effects of bone marrow mesenchymal stem cells on retinal degeneration. Biochem Biophys Res Commun 2020; 531:180-186. [PMID: 32788069 DOI: 10.1016/j.bbrc.2020.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023]
Abstract
Senescence is closely related to the occurrence of retinal degeneration. Recent studies have shown that bone marrow mesenchymal stem cells (BMMSCs) have significant therapeutic effects on retinal degeneration, While BMMSCs suffer from functional decline in bone aging. Whether senescence affects BMMSCs therapy on retinal degeneration remains unknown. Here, we applied the previously established bone progeria animal model, the senescence-accelerated mice-prone 6 (SAMP6) strain, and surprisingly discovered that SAMP6 mice demonstrated retinal degeneration at 6 months old. Furthermore, BMMSCs derived from SAMP6 mice failed to prevent MNU-induced retinal degeneration in vivo. As expected, BMMSCs from SAMP6 mice exhibited impairment in the differentiation capacities, compared to those from the age-matched senescence-accelerated mice-resistant 1 (SAMR1) strain. Moreover, BMMSCs from SAMR1 mice counteracted MNU-induced retinal degeneration, with increased expression of the retina survival hallmark, N-myc downstream regulated gene 2 (NDRG2). Taken together, these findings reveal that bone progeria diminished the therapeutic effects of BMMSC on retinal degeneration.
Collapse
|
126
|
Buchanan JL, Taylor EB. Mitochondrial Pyruvate Carrier Function in Health and Disease across the Lifespan. Biomolecules 2020; 10:biom10081162. [PMID: 32784379 PMCID: PMC7464753 DOI: 10.3390/biom10081162] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
As a nodal mediator of pyruvate metabolism, the mitochondrial pyruvate carrier (MPC) plays a pivotal role in many physiological and pathological processes across the human lifespan, from embryonic development to aging-associated neurodegeneration. Emerging research highlights the importance of the MPC in diverse conditions, such as immune cell activation, cancer cell stemness, and dopamine production in Parkinson’s disease models. Whether MPC function ameliorates or contributes to disease is highly specific to tissue and cell type. Cell- and tissue-specific differences in MPC content and activity suggest that MPC function is tightly regulated as a mechanism of metabolic, cellular, and organismal control. Accordingly, recent studies on cancer and diabetes have identified protein–protein interactions, post-translational processes, and transcriptional factors that modulate MPC function. This growing body of literature demonstrates that the MPC and other mitochondrial carriers comprise a versatile and dynamic network undergirding the metabolism of health and disease.
Collapse
Affiliation(s)
- Jane L. Buchanan
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Correspondence:
| |
Collapse
|
127
|
Amartuvshin O, Lin C, Hsu S, Kao S, Chen A, Tang W, Chou H, Chang D, Hsu Y, Hsiao B, Rastegari E, Lin K, Wang Y, Yao C, Chen G, Chen B, Hsu H. Aging shifts mitochondrial dynamics toward fission to promote germline stem cell loss. Aging Cell 2020; 19:e13191. [PMID: 32666649 PMCID: PMC7431834 DOI: 10.1111/acel.13191] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging-related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin-related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging-induced tissue degeneration.
Collapse
Affiliation(s)
- Oyundari Amartuvshin
- Molecular and Cell BiologyTaiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Chi‐Hung Lin
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Shao‐Chun Hsu
- Imaging Core Facility at the Institute of Cellular and Organismic BiologyAcademia SinicaTaipeiTaiwan
| | - Shih‐Han Kao
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- Present address:
Institute of ChemistryAcademia SinicaTaipeiTaiwan
| | - Alvin Chen
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Wei‐Chun Tang
- Research Center for Applied ScienceAcademia SinicaTaipeiTaiwan
| | - Han‐Lin Chou
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Dong‐Lin Chang
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- The Affiliated Senior High School of National Taiwan Normal UniversityTaipeiTaiwan
| | - Yen‐Yang Hsu
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- The Affiliated Senior High School of National Taiwan Normal UniversityTaipeiTaiwan
| | - Bai‐Shiou Hsiao
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- The Affiliated Senior High School of National Taiwan Normal UniversityTaipeiTaiwan
| | | | - Kun‐Yang Lin
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Yu‐Ting Wang
- Molecular and Cell BiologyTaiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Chi‐Kuang Yao
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Guang‐Chao Chen
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Bi‐Chang Chen
- Research Center for Applied ScienceAcademia SinicaTaipeiTaiwan
| | - Hwei‐Jan Hsu
- Molecular and Cell BiologyTaiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| |
Collapse
|
128
|
Cakouros D, Gronthos S. The changing epigenetic landscape of Mesenchymal Stem/Stromal Cells during aging. Bone 2020; 137:115440. [PMID: 32445894 DOI: 10.1016/j.bone.2020.115440] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
There is mounting evidence in the literature that mesenchymal stromal/stem cell (MSC) like populations derived from different tissues, undergo epigenetic changes during aging, leading to compromised connective tissue integrity and function. This body of work has linked the biological aging of MSC to changes in their epigenetic signatures affecting growth, lifespan, self-renewal and multi-potential, due to deregulation of processes such as cellular senescence, oxidative stress, DNA damage, telomere shortening and DNA damage. This review addresses recent findings examining DNA methylation, histone modifications and miRNA changes in aging MSC populations. Moreover, we explore how epigenetic factors alter cellular pathways and associated biological networks, contributing to the MSC aging phenotype. Finally we discuss the crucial areas requiring a greater understanding of these processes, in order to piece together a global picture of the changing epigenetic landscape in MSC during aging.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
129
|
Khorasani N, Sadeghi M, Nowzari-Dalini A. A computational model of stem cell molecular mechanism to maintain tissue homeostasis. PLoS One 2020; 15:e0236519. [PMID: 32730297 PMCID: PMC7392222 DOI: 10.1371/journal.pone.0236519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022] Open
Abstract
Stem cells, with their capacity to self-renew and to differentiate to more specialized cell types, play a key role to maintain homeostasis in adult tissues. To investigate how, in the dynamic stochastic environment of a tissue, non-genetic diversity and the precise balance between proliferation and differentiation are achieved, it is necessary to understand the molecular mechanisms of the stem cells in decision making process. By focusing on the impact of stochasticity, we proposed a computational model describing the regulatory circuitry as a tri-stable dynamical system to reveal the mechanism which orchestrate this balance. Our model explains how the distribution of noise in genes, linked to the cell regulatory networks, affects cell decision-making to maintain homeostatic state. The noise effect on tissue homeostasis is achieved by regulating the probability of differentiation and self-renewal through symmetric and/or asymmetric cell divisions. Our model reveals, when mutations due to the replication of DNA in stem cell division, are inevitable, how mutations contribute to either aging gradually or the development of cancer in a short period of time. Furthermore, our model sheds some light on the impact of more complex regulatory networks on the system robustness against perturbations.
Collapse
Affiliation(s)
- Najme Khorasani
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| | - Mehdi Sadeghi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Abbas Nowzari-Dalini
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
130
|
Park JH, Kang YH, Hwang SC, Oh SH, Byun JH. Parthenolide Has Negative Effects on In Vitro Enhanced Osteogenic Phenotypes by Inflammatory Cytokine TNF-α via Inhibiting JNK Signaling. Int J Mol Sci 2020; 21:ijms21155433. [PMID: 32751648 DOI: 10.3390/ijms21155433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa B (NF-κB) regulates inflammatory gene expression and represents a likely target for novel disease treatment approaches, including skeletal disorders. Several plant-derived sesquiterpene lactones can inhibit the activation of NF-κB. Parthenolide (PTL) is an abundant sesquiterpene lactone, found in Mexican Indian Asteraceae family plants, with reported anti-inflammatory activity, through the inhibition of a common step in the NF-κB activation pathway. This study examined the effects of PTL on the enhanced, in vitro, osteogenic phenotypes of human periosteum-derived cells (hPDCs), mediated by the inflammatory cytokine tumor necrosis factor (TNF)-α. PTL had no significant effects on hPDC viability or osteoblastic activities, whereas TNF-α had positive effects on the in vitro osteoblastic differentiation of hPDCs. c-Jun N-terminal kinase (JNK) signaling played an important role in the enhanced osteoblastic differentiation of TNF-α-treated hPDCs. Treatment with 1 µM PTL did not affect TNF-α-treated hPDCs; however, 5 and 10 µM PTL treatment decreased the histochemical detection and activity of alkaline phosphatase (ALP), alizarin red-positive mineralization, and the expression of ALP and osteocalcin mRNA. JNK phosphorylation decreased significantly in TNF-α-treated hPDCs pretreated with PTL. These results suggested that PTL exerts negative effects on the increased osteoblastic differentiation of TNF-α-treated hPDCs by inhibiting JNK signaling.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Changwon Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Se Heang Oh
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
131
|
Du G, Qiao Y, Zhuo Z, Zhou J, Li X, Liu Z, Li Y, Chen H. Lipoic acid rejuvenates aged intestinal stem cells by preventing age-associated endosome reduction. EMBO Rep 2020; 21:e49583. [PMID: 32648369 PMCID: PMC7403706 DOI: 10.15252/embr.201949583] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/15/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
The age‐associated decline of adult stem cell function is closely related to the decline in tissue function and age‐related diseases. However, the underlying mechanisms that ultimately lead to the observed functional decline of stem cells still remain largely unexplored. This study investigated Drosophila midguts and found a continuous downregulation of lipoic acid synthase, which encodes the key enzyme for the endogenous synthesis of alpha‐lipoic acid (ALA), upon aging. Importantly, orally administration of ALA significantly reversed the age‐associated hyperproliferation of intestinal stem cells (ISCs) and the observed decline of intestinal function, thus extending the lifespan of Drosophila. This study reports that ALA reverses age‐associated ISC dysfunction by promoting the activation of the endocytosis–autophagy network, which decreases in aged ISCs. Moreover, this study suggests that ALA may be used as a safe and effective anti‐aging compound for the treatment of ISC‐dysfunction‐related diseases and for the promotion of healthy aging in humans.
Collapse
Affiliation(s)
- Gang Du
- Laboratory for Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yicheng Qiao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiming Liu
- Laboratory for Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haiyang Chen
- Laboratory for Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
132
|
Kulkarni AS, Gubbi S, Barzilai N. Benefits of Metformin in Attenuating the Hallmarks of Aging. Cell Metab 2020; 32:15-30. [PMID: 32333835 PMCID: PMC7347426 DOI: 10.1016/j.cmet.2020.04.001] [Citation(s) in RCA: 446] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/04/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial-TAME (targeting aging by metformin). This review focuses on metformin's mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials.
Collapse
Affiliation(s)
- Ameya S Kulkarni
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| | - Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| |
Collapse
|
133
|
Russell-Goldman E, Murphy GF. The Pathobiology of Skin Aging: New Insights into an Old Dilemma. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1356-1369. [PMID: 32246919 PMCID: PMC7481755 DOI: 10.1016/j.ajpath.2020.03.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Long considered both physiologic and inevitable, skin aging is a degenerative phenomenon whereby both intrinsic and environmental factors conspire to produce an authentic disease. The consequences of this disorder are many and varied, ranging from atrophy and fragility to defective repair to deficient immunity and vulnerability to certain infections. The pathobiologic basis for skin aging remains poorly understood. At a cellular level, stem cell dysfunction and attrition appear to be key events, and both genetic and epigenetic factors are involved in a complex interplay that over time results in deterioration of our main protective interface with the external environment. Past and current understanding of the cellular and molecular intricacies of skin aging provide a foundation for future approaches designed to thwart the aging phenotype. Herein, the authors provide a review of current insights into skin aging, including the mechanisms of skin aging, the role of stem cells in skin aging and the implications of skin aging for the microbiome and for the development of cancer. Conquest of the oft overlooked disease of skin aging should have broad implications that transcend the integument and inform novel approaches to retarding aging and age-related dysfunction in those internal organs that youthful skin was designed to envelop and safeguard.
Collapse
Affiliation(s)
- Eleanor Russell-Goldman
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
134
|
Cianflone E, Torella M, Biamonte F, De Angelis A, Urbanek K, Costanzo FS, Rota M, Ellison-Hughes GM, Torella D. Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells 2020; 9:E1558. [PMID: 32604861 PMCID: PMC7349658 DOI: 10.3390/cells9061558] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Adult stem/progenitor are a small population of cells that reside in tissue-specific niches and possess the potential to differentiate in all cell types of the organ in which they operate. Adult stem cells are implicated with the homeostasis, regeneration, and aging of all tissues. Tissue-specific adult stem cell senescence has emerged as an attractive theory for the decline in mammalian tissue and organ function during aging. Cardiac aging, in particular, manifests as functional tissue degeneration that leads to heart failure. Adult cardiac stem/progenitor cell (CSC) senescence has been accordingly associated with physiological and pathological processes encompassing both non-age and age-related decline in cardiac tissue repair and organ dysfunction and disease. Senescence is a highly active and dynamic cell process with a first classical hallmark represented by its replicative limit, which is the establishment of a stable growth arrest over time that is mainly secondary to DNA damage and reactive oxygen species (ROS) accumulation elicited by different intrinsic stimuli (like metabolism), as well as external stimuli and age. Replicative senescence is mainly executed by telomere shortening, the activation of the p53/p16INK4/Rb molecular pathways, and chromatin remodeling. In addition, senescent cells produce and secrete a complex mixture of molecules, commonly known as the senescence-associated secretory phenotype (SASP), that regulate most of their non-cell-autonomous effects. In this review, we discuss the molecular and cellular mechanisms regulating different characteristics of the senescence phenotype and their consequences for adult CSCs in particular. Because senescent cells contribute to the outcome of a variety of cardiac diseases, including age-related and unrelated cardiac diseases like diabetic cardiomyopathy and anthracycline cardiotoxicity, therapies that target senescent cell clearance are actively being explored. Moreover, the further understanding of the reversibility of the senescence phenotype will help to develop novel rational therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Francesco S. Costanzo
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA;
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guys Campus-Great Maze Pond rd, London SE1 1UL, UK;
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
135
|
Martel J, Ojcius DM, Wu CY, Peng HH, Voisin L, Perfettini JL, Ko YF, Young JD. Emerging use of senolytics and senomorphics against aging and chronic diseases. Med Res Rev 2020; 40:2114-2131. [PMID: 32578904 DOI: 10.1002/med.21702] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Senescence is a state of cell cycle arrest that plays an important role in embryogenesis, wound healing and protection against cancer. Senescent cells also accumulate during aging and contribute to the development of age-related disorders and chronic diseases, such as atherosclerosis, type 2 diabetes, osteoarthritis, idiopathic pulmonary fibrosis, and liver disease. Molecules that induce apoptosis of senescent cells, such as dasatinib, quercetin, and fisetin, produce health benefits and extend lifespan in animal models. We describe here the mechanism of action of senolytics and senomorphics, many of which are derived from plants and fungi. We also discuss the possibility of using such compounds to delay aging and treat chronic diseases in humans.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China.,Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China.,Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China.,Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China
| | - Laurent Voisin
- Institut Gustave Roussy, INSERM U1030, Université Paris-Sud, Villejuif, France
| | - Jean-Luc Perfettini
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, California.,Institut Gustave Roussy, INSERM U1030, Université Paris-Sud, Villejuif, France
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China.,Chang Gung Biotechnology Corporation, Taipei, Taiwan, Republic of China.,Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan, Republic of China
| | - John D Young
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China.,Chang Gung Biotechnology Corporation, Taipei, Taiwan, Republic of China.,Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan, Republic of China
| |
Collapse
|
136
|
Lin KY, Wang WD, Lin CH, Rastegari E, Su YH, Chang YT, Liao YF, Chang YC, Pi H, Yu BY, Chen SH, Lin CY, Lu MY, Su TY, Tzou FY, Chan CC, Hsu HJ. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling. Nat Commun 2020; 11:3147. [PMID: 32561720 PMCID: PMC7305233 DOI: 10.1038/s41467-020-16858-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade β-catenin. Disruption of β-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and β-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Der Wang
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, 60004, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Han Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Tzu Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chieh Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Haiwei Pi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Bo-Yi Yu
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsu-Yi Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
137
|
Sharifi S, da Costa HFR, Bierhoff H. The circuitry between ribosome biogenesis and translation in stem cell function and ageing. Mech Ageing Dev 2020; 189:111282. [PMID: 32531294 DOI: 10.1016/j.mad.2020.111282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Ribosome biogenesis takes place mainly in the nucleolus, a nuclear, non-membrane bound organelle forming around the gene arrays encoding ribosomal RNA (rRNA). Nucleolar activity comprises synthesis, processing and maturation of rRNAs, followed by their assembly with ribosomal proteins into pre-ribosomal particles. The final formation of translation-competent ribosomes in the cytoplasm is the prerequisite for protein synthesis, which is the most energy-consuming cellular process. In adult stem cells, ribosome biogenesis and protein synthesis determine the switch between the quiescent and the activated state, but also decide whether activated stem cells self-renew or differentiate. Given this major impact on cellular function, it seems likely that perturbations of the circuitry between nucleolar activity and translation lead to ageing-related stem cell deterioration. This review provides an overview of how ribosome biogenesis and translation govern stem cell function and discusses the resultant implication in stem cell ageing.
Collapse
Affiliation(s)
- Samim Sharifi
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Leibniz-Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Hugo Filipe Rangel da Costa
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Leibniz-Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany.
| |
Collapse
|
138
|
Choi YJ. Shedding Light on the Effects of Calorie Restriction and its Mimetics on Skin Biology. Nutrients 2020; 12:nu12051529. [PMID: 32456324 PMCID: PMC7284700 DOI: 10.3390/nu12051529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
During the aging process of an organism, the skin gradually loses its structural and functional characteristics. The skin becomes more fragile and vulnerable to damage, which may contribute to age-related diseases and even death. Skin aging is aggravated by the fact that the skin is in direct contact with extrinsic factors, such as ultraviolet irradiation. While calorie restriction (CR) is the most effective intervention to extend the lifespan of organisms and prevent age-related disorders, its effects on cutaneous aging and disorders are poorly understood. This review discusses the effects of CR and its alternative dietary intake on skin biology, with a focus on skin aging. CR structurally and functionally affects most of the skin and has been reported to rescue both age-related and photo-induced changes. The anti-inflammatory, anti-oxidative, stem cell maintenance, and metabolic activities of CR contribute to its beneficial effects on the skin. To the best of the author’s knowledge, the effects of fasting or a specific nutrient-restricted diet on skin aging have not been evaluated; these strategies offer benefits in wound healing and inflammatory skin diseases. In addition, well-known CR mimetics, including resveratrol, metformin, rapamycin, and peroxisome proliferator-activated receptor agonists, show CR-like prevention against skin aging. An overview of the role of CR in skin biology will provide valuable insights that would eventually lead to improvements in skin health.
Collapse
Affiliation(s)
- Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea
| |
Collapse
|
139
|
Sun L, Dang W. SIRT7 slows down stem cell aging by preserving heterochromatin: a perspective on the new discovery. Protein Cell 2020; 11:469-471. [PMID: 32435977 PMCID: PMC7305289 DOI: 10.1007/s13238-020-00735-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Luyang Sun
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
140
|
Isaev NK, Stelmashook EV, Genrikhs EE. Neurogenesis and brain aging. Rev Neurosci 2020; 30:573-580. [PMID: 30763272 DOI: 10.1515/revneuro-2018-0084] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Abstract
Human aging affects the entire organism, but aging of the brain must undoubtedly be different from that of all other organs, as neurons are highly differentiated postmitotic cells, for the majority of which the lifespan in the postnatal period is equal to the lifespan of the entire organism. In this work, we examine the distinctive features of brain aging and neurogenesis during normal aging, pathological aging (Alzheimer's disease), and accelerated aging (Hutchinson-Gilford progeria syndrome and Werner syndrome).
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, N.A. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Moscow 119991, Russia.,Research Center of Neurology, Moscow 125367, Russia
| | | | | |
Collapse
|
141
|
Moreno-Cugnon L, Arrizabalaga O, Llarena I, Matheu A. Elevated p38MAPK activity promotes neural stem cell aging. Aging (Albany NY) 2020; 12:6030-6036. [PMID: 32243258 PMCID: PMC7185101 DOI: 10.18632/aging.102994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
Age-progressive neural stem cell (NSC) dysfunction leads to impaired neurogenesis, cognitive decline and the onset of age-related neurodegenerative pathologies. p38MAPK signalling pathway limits stem cell activity during aging in several tissues. Its role in NSCs remains controversial. In this work, we show that p38MAPK activity increases in NSCs with age in the subventricular zone (SVZ) and its pharmacological inhibition is sufficient to rejuvenate their activity in vitro. These data reveal a cell-autonomous role for p38MAPK increase in decreasing NSC homeostasis with age. This information shed light in the role of p38MAPK in NSC aging.
Collapse
Affiliation(s)
- Leire Moreno-Cugnon
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
| | - Olatz Arrizabalaga
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
| | - Irantzu Llarena
- Optical Spectroscopy Platform, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Ander Matheu
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain.,CIBERfes, Madrid, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
142
|
Häfner SJ. Bargain with the tooth fairy - The savings accounts for dental stem cells. Biomed J 2020; 43:99-106. [PMID: 32333995 PMCID: PMC7195095 DOI: 10.1016/j.bj.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the hard times COVID-19 has imposed on us, the Biomedical Journal strives to provide fresh and compelling reading material - to be enjoyed safely from home. In this issue, we glance behind the scenes of dental stem cell preservation for potential therapeutic use, and discover that cancer cells hijack podoplanin expression to induce thrombosis. Moreover, we learn how the helicase DDX17 promotes tumour stemness, how genetic defects in meiosis and DNA repair cause premature ovarian insufficiency, and that the brain-derived neurotrophic factor is associated with several psychiatric diseases. Further accounts relate the role of miR-95-3p in colorectal cancer, the protective power of eggplants against mercury poisoning, and the predictive value of inhibin A for premature delivery. Finally, the very rare case of adenoid cystic carcinoma in the external auditory canal receives some attention, and we get to read up on how 3D imaging and modelling combines functional and aesthetic repair of cleft lip and palate cases.
Collapse
Affiliation(s)
- Sophia Julia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Anders Lund Group, Copenhagen, Denmark.
| |
Collapse
|
143
|
Cruciani S, Garroni G, Ginesu GC, Fadda A, Ventura C, Maioli M. Unravelling Cellular Mechanisms of Stem Cell Senescence: An Aid from Natural Bioactive Molecules. BIOLOGY 2020; 9:57. [PMID: 32244882 PMCID: PMC7150900 DOI: 10.3390/biology9030057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Cellular senescence plays a role in the onset of age-related pathologies and in the loss of tissue homeostasis. Natural compounds of food or plants exert an important antioxidant activity, counteracting the formation of harmful free radicals. In the presence of an intense stressing event, cells activate specific responses to counteract senescence or cell death. In the present paper, we aimed at evaluating the levels of expression of specific markers of senescence, in order to demonstrate that extracts from Myrtus Communis L. can prevent premature senescence in ADSCs exposed to oxidative stress. Cells were cultured in the presence of Myrtus extracts for 12-24 and 48 h and then incubated with H2O2 to induce senescence. We then evaluated the expression of senescence-related markers p16, p19, p21, p53, TERT, c-Myc, and the senescence-associated β-Galactoidase activity. Our results showed that pre-treatment with Myrtus extracts protects cells from premature senescence, by regulating the cell cycle, and inducing the expression of TERT and c-Myc. These findings suggest a potential application of these natural compounds in the prevention and treatment of various diseases, counteracting premature senescence and preserving tissue functions.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (G.G.)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (G.G.)
| | - Giorgio Carlo Ginesu
- General Surgery Unit 2 “Clinica Chirurgica”, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy;
| | - Angela Fadda
- Instituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Traversa la Crucca 3, 07100 Sassari, Italy;
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems–Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (G.G.)
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems–Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy;
- Department of Biomedical Sciences, Center for Developmental Biology and Reprogramming (CEDEBIOR), University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
144
|
Kang MJ. Recent Advances in Molecular Basis of Lung Aging and Its Associated Diseases. Tuberc Respir Dis (Seoul) 2020; 83:107-115. [PMID: 32185913 PMCID: PMC7105435 DOI: 10.4046/trd.2020.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
Aging is often viewed as a progressive decline in fitness due to cumulative deleterious alterations of biological functions in the living system. Recently, our understanding of the molecular mechanisms underlying aging biology has significantly advanced. Interestingly, many of the pivotal molecular features of aging biology are also found to contribute to the pathogenesis of chronic lung disorders such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis, for which advanced age is the most crucial risk factor. Thus, an enhanced understanding of how molecular features of aging biology are intertwined with the pathobiology of these aging-related lung disorders has paramount significance and may provide an opportunity for the development of novel therapeutics for these major unmet medical needs. To serve the purpose of integrating molecular understanding of aging biology with pulmonary medicine, in this review, recent findings obtained from the studies of aging-associated lung disorders are summarized and interpreted through the perspective of molecular biology of aging.
Collapse
Affiliation(s)
- Min Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
145
|
Kudryashova KS, Burka K, Kulaga AY, Vorobyeva NS, Kennedy BK. Aging Biomarkers: From Functional Tests to Multi‐Omics Approaches. Proteomics 2020; 20:e1900408. [DOI: 10.1002/pmic.201900408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
| | - Ksenia Burka
- Centaura AG Bleicherweg 10 Zurich 8002 Switzerland
| | - Anton Y. Kulaga
- Centaura AG Bleicherweg 10 Zurich 8002 Switzerland
- Systems Biology of Aging GroupInstitute of Biochemistry of the Romanian Academy Splaiul Independentei 296 Bucharest 060031 Romania
| | | | - Brian K. Kennedy
- Departments of Biochemistry and Physiology Yong Loo Lin School of MedicineNational University of Singapore 8 Medical Drive, MD7, 117596 Singapore
- Singapore Institute for Clinical Sciences (SICS)Agency for Science and Technology (A*STAR)Brenner Centre for Molecular Medicine 30 Medical Drive Singapore 117609 Singapore
- Buck Institute for Research on Aging 8001 Redwood Blvd. Novato CA 94945‐1400 USA
| |
Collapse
|
146
|
Wang Y, Lo WC, Chou CS. Modelling stem cell ageing: a multi-compartment continuum approach. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191848. [PMID: 32269805 PMCID: PMC7137970 DOI: 10.1098/rsos.191848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Stem cells are important to generate all specialized tissues at an early life stage, and in some systems, they also have repair functions to replenish the adult tissues. Repeated cell divisions lead to the accumulation of molecular damage in stem cells, which are commonly recognized as drivers of ageing. In this paper, a novel model is proposed to integrate stem cell proliferation and differentiation with damage accumulation in the stem cell ageing process. A system of two structured PDEs is used to model the population densities of stem cells (including all multiple progenitors) and terminally differentiated (TD) cells. In this system, cell cycle progression and damage accumulation are modelled by continuous dynamics, and damage segregation between daughter cells is considered at each division. Analysis and numerical simulations are conducted to study the steady-state populations and stem cell damage distributions under different damage segregation strategies. Our simulations suggest that equal distribution of the damaging substance between stem cells in a symmetric renewal and less damage retention in stem cells in the asymmetric division are favourable strategies, which reduce the death rate of the stem cells and increase the TD cell populations. Moreover, asymmetric damage segregation in stem cells leads to less concentrated damage distribution in the stem cell population, which may be more robust to the stochastic changes in the damage. The feedback regulation from stem cells can reduce oscillations and population overshoot in the process, and improve the fitness of stem cells by increasing the percentage of cells with less damage in the stem cell population.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Wing-Cheong Lo
- Department of Mathematics, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ching-Shin Chou
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
147
|
Lehmann M, Hu Q, Hu Y, Hafner K, Costa R, van den Berg A, Königshoff M. Chronic WNT/β-catenin signaling induces cellular senescence in lung epithelial cells. Cell Signal 2020; 70:109588. [PMID: 32109549 DOI: 10.1016/j.cellsig.2020.109588] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/22/2022]
Abstract
The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic lung diseases, such as Idiopathic Pulmonary Fibrosis (IPF). Cellular senescence is a major hallmark of aging and has a higher occurrence in IPF. The lung epithelium represents a major site of tissue injury, cellular senescence and aberrant activity of developmental pathways such as the WNT/β-catenin pathway in IPF. The potential impact of WNT/β-catenin signaling on alveolar epithelial senescence in general as well as in IPF, however, remains elusive. Here, we characterized alveolar epithelial cells of aged mice and assessed the contribution of chronic WNT/β-catenin signaling on alveolar epithelial type (AT) II cell senescence. Whole lungs from old (16-24 months) versus young (3 months) mice had relatively less epithelial (EpCAM+) but more inflammatory (CD45+) cells, as assessed by flow cytometry. Compared to young ATII cells, old ATII cells showed decreased expression of the ATII cell marker Surfactant Protein C along with increased expression of the ATI cell marker Hopx, accompanied by increased WNT/β-catenin activity. Notably, when placed in an organoid assay, old ATII cells exhibited decreased progenitor cell potential. Chronic canonical WNT/β-catenin activation for up to 7 days in primary ATII cells as well as alveolar epithelial cell lines induced a robust cellular senescence, whereas the non-canonical ligand WNT5A was not able to induce cellular senescence. Moreover, chronic WNT3A treatment of precision-cut lung slices (PCLS) further confirmed ATII cell senescence. Simultaneously, chronic but not acute WNT/β-catenin activation induced a profibrotic state with increased expression of the impaired ATII cell marker Keratin 8. These results suggest that chronic WNT/β-catenin activity in the IPF lung contributes to increased ATII cell senescence and reprogramming. In the fibrotic environment, WNT/β-catenin signaling thus might lead to further progenitor cell dysfunction and impaired lung repair.
Collapse
Affiliation(s)
- Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich 81377, Germany; Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA.
| | - Qianjiang Hu
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich 81377, Germany
| | - Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Kathrin Hafner
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich 81377, Germany
| | - Rita Costa
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich 81377, Germany
| | - Anastasia van den Berg
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich 81377, Germany
| | - Melanie Königshoff
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich 81377, Germany; Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
148
|
Huang J, Chen C, Liang C, Luo P, Xia G, Zhang L, Wang X, Wen Z, Cao X, Wu S. Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. Stem Cells Dev 2020; 29:401-413. [PMID: 31964233 DOI: 10.1089/scd.2019.0260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cell dysfunction and failure have been found in joints afflicted by osteoarthritis (OA). However, the exact factors in the OA microenvironment that impair stem cell functions and the role of stem cell dysfunction in OA development have not been fully clarified. In this study, we evaluated the functional status of synovial mesenchymal stem cells (SMSCs) from OA patients and explored the influence of OA-SMSCs on cartilage degradation in a rat model. We then screened 138 Wnt signaling-related genes in the synovium of OA patients, focusing on the effects of five WNT ligands on SMSC functions. The OA synovium showed mild hyperplasia, and we found a large number of CD90+/CD105+ stem cells in synovial hyperplasia. The OA-SMSCs revealed a cellular senescence phenotype, with decreased proliferation and chondrogenic capacity, accompanied by enhanced migration, proinflammatory and matrix degradation activities. The intra-articular transplantation of these OA-SMSCs significantly aggravated the degradation and destruction of the articular cartilage. Of 138 Wnt signaling genes, the expression of 86 genes was consistently altered in the OA synovium, among which the increased expression of DVL2, WNT10A, and DKK3 was the most marked. In general, we found that canonical Wnt/β-catenin pathways were inhibited in the OA synovium, whereas noncanonical PCP and Wnt/Ca2+ pathways were activated. In vitro, WNT10A had an obvious antisenescence effect on SMSCs. WNT5B significantly inhibited the chondrogenic differentiation of SMSCs, and WNT10A and WNT5A increased the expression of inflammatory cytokines in SMSCs. In a rat model, WNT5A significantly aggravated joint degeneration, whereas WNT10A had a mild protective effect on cartilage integrity. In conclusion, stem cells in the OA synovium were functionally abnormal and promoted the development of OA, whereas dysregulation of the Wnt signaling pathway revealed a comprehensive influence on SMSC functions and cartilage degradation.
Collapse
Affiliation(s)
- Junjie Huang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Chuanshun Chen
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Chi Liang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Pan Luo
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Guang Xia
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Lina Zhang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xinxing Wang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Zi Wen
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xu Cao
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
149
|
Ishibashi JR, Taslim TH, Ruohola-Baker H. Germline stem cell aging in the Drosophila ovary. CURRENT OPINION IN INSECT SCIENCE 2020; 37:57-62. [PMID: 32120010 DOI: 10.1016/j.cois.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The age-related decline of adult stem cells leads to loss of tissue homeostasis and contributes to organismal aging. Though the phenotypic hallmarks of aging are well-characterized at the organ or tissue level, the molecular processes that govern stem cell aging remain unclear. This review seeks to highlight recent research in stem cell aging in the Drosophila ovary and connect the discoveries in the fly to ongoing questions in stem cell aging.
Collapse
Affiliation(s)
- Julien Roy Ishibashi
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican St, Seattle, WA 98109, United States
| | - Tommy Henry Taslim
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican St, Seattle, WA 98109, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican St, Seattle, WA 98109, United States.
| |
Collapse
|
150
|
Synergistic effects of repair, resilience and retention of damage determine the conditions for replicative ageing. Sci Rep 2020; 10:1556. [PMID: 32005954 PMCID: PMC6994596 DOI: 10.1038/s41598-020-58444-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
Accumulation of damaged proteins is a hallmark of ageing, occurring in organisms ranging from bacteria and yeast to mammalian cells. During cell division in Saccharomyces cerevisiae, damaged proteins are retained within the mother cell, resulting in an ageing mother while a new daughter cell exhibits full replicative potential. The cell-specific features determining the ageing remain elusive. It has been suggested that the replicative ageing is dependent on the ability of the cell to repair and retain pre-existing damage. To deepen the understanding of how these factors influence the life of individual cells, we developed and experimentally validated a dynamic model of damage accumulation accounting for replicative ageing on the single cell level. The model includes five essential properties: cell growth, damage formation, damage repair, cell division and cell death, represented in a theoretical framework describing the conditions allowing for replicative ageing, starvation, immortality or clonal senescence. We introduce the resilience to damage, which can be interpreted as the difference in volume between an old and a young cell. We show that the capacity to retain damage deteriorates with high age, that asymmetric division allows for retention of damage, and that there is a trade-off between retention and the resilience property. Finally, we derive the maximal degree of asymmetry as a function of resilience, proposing that asymmetric cell division is beneficial with respect to replicative ageing as it increases the lifespan of a given organism. The proposed model contributes to a deeper understanding of the ageing process in eukaryotic organisms.
Collapse
|