101
|
Nagy JI, Lynn BD. Structural and Intermolecular Associations Between Connexin36 and Protein Components of the Adherens Junction-Neuronal Gap Junction Complex. Neuroscience 2018; 384:241-261. [PMID: 29879437 DOI: 10.1016/j.neuroscience.2018.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
Intimate structural and functional relationships between gap junctions and adherens junctions have been demonstrated in peripheral tissues, but have not been thoroughly examined in the central nervous system, where adherens junctions are often found in close proximity to neuronal gap junctions. Here, we used immunofluorescence approaches to document the localization of various protein components of adherens junctions in relation to those that we have previously reported to occur at electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36). The adherens junction constituents N-cadherin and nectin-1 were frequently found to localize near or overlap with Cx36-containing gap junctions in several brain regions examined. This was also true of the adherens junction-associated proteins α-catenin and β-catenin, as well as the proteins zonula occludens-1 and AF6 (aka, afadin) that were reported constituents of both adherens junctions and gap junctions. The deployment of the protein constituents of these junctions was especially striking at somatic contacts between primary afferent neurons in the mesencephalic trigeminal nucleus (MesV), where the structural components of adherens junctions appeared to be maintained in connexin36 null mice. These results support emerging views concerning the multi-molecular composition of electrical synapses and raise possibilities for various structural and functional protein-protein interactions at what now can be considered the adherens junction-neuronal gap junction complex. Further, the results point to intracellular signaling pathways that could potentially contribute to the assembly, maintenance and turnover of this complex, as well as to the dynamic nature of neuronal communication at electrical synapses.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - B D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
102
|
The regulation of junctional actin dynamics by cell adhesion receptors. Histochem Cell Biol 2018; 150:341-350. [DOI: 10.1007/s00418-018-1691-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 11/26/2022]
|
103
|
Ahmad F, Nasir A, Thiele H, Umair M, Borck G, Ahmad W. A novel homozygous missense variant in NECTIN4 (PVRL4) causing ectodermal dysplasia cutaneous syndactyly syndrome. Ann Hum Genet 2018; 82:232-238. [PMID: 29430627 DOI: 10.1111/ahg.12244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/14/2017] [Accepted: 12/26/2017] [Indexed: 11/28/2022]
Abstract
Ectodermal dysplasia syndactyly syndrome 1 (EDSS1) is a rare form of ectodermal dysplasia including anomalies of hair, nails, and teeth along with bilateral cutaneous syndactyly of hands and feet. In the present report, we performed a clinical and genetic characterization of a consanguineous Pakistani family with four individuals affected by EDSS1. We performed exome sequencing using DNA of one affected individual. Exome data analysis identified a novel homozygous missense variant (c.242T>C; p.(Leu81Pro)) in NECTIN4 (PVRL4). Sanger sequencing validated this variant and confirmed its cosegregation with the disease phenotype in the family members. Thus, our report adds a novel variant to the NECTIN4 mutation spectrum and contributes to the NECTIN4-related clinical characterization.
Collapse
Affiliation(s)
- Farooq Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Abdul Nasir
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Muhammad Umair
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
104
|
Hejmej A, Bilinska B. The effects of flutamide on cell-cell junctions in the testis, epididymis, and prostate. Reprod Toxicol 2018; 81:1-16. [PMID: 29958919 DOI: 10.1016/j.reprotox.2018.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
In this review, we summarize recent findings on the effect of the anti-androgen flutamide on cell-cell junctions in the male reproductive system. We outline developmental aspects of flutamide action on the testis, epididymis, and prostate, and describe changes in junction protein expression and organization of junctional complexes in the adult boar following prenatal and postnatal exposure. We also discuss findings on the mechanisms by which flutamide induces alterations in cell-cell junctions in reproductive tissues of adult males, with special emphasis on cytoplasmic effects. Based on the results from in vivo and in vitro studies in the rat, we propose that flutamide affects the expression of junction proteins and junction complex structure not only by inhibiting androgen receptor activity, but equally important by modulating protein kinase-dependent signaling in testicular cells. Additionally, results from studies on prostate cancer cell lines point to a role for the cellular molecular outfit in response to flutamide.
Collapse
Affiliation(s)
- Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
105
|
Abstract
PURPOSE The cell-cell adhesion molecules, cadherins and nectins, are involved in the formation of adherens junctions. However, involvement of nectins in the corneal endothelium has not yet been established. This study investigated the involvement of nectins in adherens junctions of the corneal endothelium. METHODS Nectin and cadherin expression in the corneal endothelium was evaluated by real-time polymerase chain reaction. Colocalization and direct binding of nectin-1 and N-cadherin to anchoring proteins (afadin and β-catenin, respectively) were determined by immunostaining and immunoprecipitation. The effect of afadin and N-cadherin knockdown on apical junctions was evaluated by immunostaining. RESULTS Real-time polymerase chain reaction confirmed nectin-1, nectin-2, nectin-3, nectin-4, and afadin expression in the corneal endothelium. Immunofluorescence staining showed colocalization of nectin and afadin at the basal side of the tight junction (where adherens junctions typically locate) and immunoprecipitation confirmed direct binding of nectin to afadin. N-cadherin, P-cadherin, VE-cadherin, and OB-cadherin messenger RNAs were expressed in the corneal endothelium. N-cadherin and β-catenin colocalized at the cell-cell border, where they directly bound and formed a cell-cell adhesion complex. N-cadherin knockdown disrupted the normal expression pattern of zonula occludens protein-1 and afadin, but afadin knockdown had no effect on the expression pattern of zonula occludens protein-1 and N-cadherin. CONCLUSIONS We believe this to be the first report of conservation of the nectin-afadin system in the corneal endothelium and its involvement in the formation of adherens junctions. N-cadherin, as a member of the cadherin family, is also essential for the formation and maintenance of cell-cell adhesion mediated by nectins and tight junctions in the corneal endothelium.
Collapse
|
106
|
Oshima T, Miyashita H, Ishimura Y, Ito Y, Tanaka Y, Hori A, Kokubo T, Kurokawa T. Fc engineering of anti-Nectin-2 antibody improved thrombocytopenic adverse event in monkey. PLoS One 2018; 13:e0196422. [PMID: 29723247 PMCID: PMC5933732 DOI: 10.1371/journal.pone.0196422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/12/2018] [Indexed: 11/18/2022] Open
Abstract
Nectin-2 is a transmembrane glycoprotein which is involved in the process of Ca2+-independent cell-cell adhesion. In our previous study, we have demonstrated that Nectin-2 is over-expressed in breast and ovarian cancer tissues by using gene expression analysis and immunohistochemistry. Furthermore, we discovered multiple anti-Nectin-2 fully human monoclonal antibodies which inhibited tumor growth in in vivo subcutaneous xenograft models with antibody-dependent cellular cytotoxicity (ADCC) as the principal mechanism of action. In this report, we assessed the toxicity of Y-443, a fully human IgG1/kappa anti-Nectin-2 monoclonal antibody exhibiting strong in vitro ADCC and in vivo anti-tumor activity in cynomolgus monkeys (Macaca fascicularis (Cynos)). Unexpectedly, upon administration, Y-443 induced strong thrombocytopenia through Nectin-2 expressed on Cyno platelets, presumably followed by phagocytosis in the mononuclear phagocytic system. To mitigate the adverse safety profile, we mutated the Fc region of Y-443 to reduce the Fc binding activity to Fcγ receptor I, which is the primary receptor for phagocytosis on macrophages. Moreover, we further engineered the Fc through defucosylation to maintain ADCC activity. The resultant Fc engineered antibody, termed Y-634, demonstrated diminished thrombocytopenia in Cyno toxicological studies and maintained anti-tumor activity in a mouse xenograft model. These findings suggest that Y-634 may have a therapeutic potential for the treatment of Nectin-2 positive cancers, and moreover, Fc engineering is a potential mitigation strategy to ameliorate safety liabilities in antibody induced thrombocytopenia while maintaining antibody potency.
Collapse
Affiliation(s)
- Tsutomu Oshima
- Immunobiologics, Takeda California Inc., San Diego, California, United States of America
- * E-mail:
| | - Hideaki Miyashita
- Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Hikari, Yamaguchi, Japan
| | - Yoshimasa Ishimura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yuki Ito
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yoko Tanaka
- Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Hikari, Yamaguchi, Japan
| | - Akira Hori
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Toshio Kokubo
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tomofumi Kurokawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
107
|
Garcia MA, Nelson WJ, Chavez N. Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb Perspect Biol 2018; 10:a029181. [PMID: 28600395 PMCID: PMC5773398 DOI: 10.1101/cshperspect.a029181] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-cell junctions link cells to each other in tissues, and regulate tissue homeostasis in critical cell processes that include tissue barrier function, cell proliferation, and migration. Defects in cell-cell junctions give rise to a wide range of tissue abnormalities that disrupt homeostasis and are common in genetic abnormalities and cancers. Here, we discuss the organization and function of cell-cell junctions primarily involved in adhesion (tight junction, adherens junction, and desmosomes) in two different epithelial tissues: a simple epithelium (intestine) and a stratified epithelium (epidermis). Studies in these tissues reveal similarities and differences in the organization and functions of different cell-cell junctions that meet the requirements for the specialized functions of each tissue. We discuss cell-cell junction responses to genetic and environmental perturbations that provide further insights into their roles in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Miguel A Garcia
- Department of Biology, Stanford University, Stanford, California 94305
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, California 94305
- Departments of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Natalie Chavez
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
108
|
Ueda Y, Kedashiro S, Maruoka M, Mizutani K, Takai Y. Roles of the third Ig-like domain of Necl-5/PVR and the fifth Ig-like domain of the PDGF receptor in its signaling. Genes Cells 2018; 23:214-224. [DOI: 10.1111/gtc.12564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/11/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Yuki Ueda
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Shin Kedashiro
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Masahiro Maruoka
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
109
|
Dewitz C, Pimpinella S, Hackel P, Akalin A, Jessell TM, Zampieri N. Nuclear Organization in the Spinal Cord Depends on Motor Neuron Lamination Orchestrated by Catenin and Afadin Function. Cell Rep 2018; 22:1681-1694. [DOI: 10.1016/j.celrep.2018.01.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/19/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
|
110
|
Cohen DJ, Nelson WJ. Secret handshakes: cell-cell interactions and cellular mimics. Curr Opin Cell Biol 2018; 50:14-19. [PMID: 29438902 PMCID: PMC5911421 DOI: 10.1016/j.ceb.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Abstract
Cell-cell junctions, acting as 'secret handshakes', mediate cell-cell interactions and make multicellularity possible. Work over the previous century illuminated key players comprising these junctions including the cadherin superfamily, nectins, CAMs, connexins, notch/delta, lectins, and eph/Ephrins. Recent work has focused on elucidating how interactions between these complex and often contradictory cues can ultimately give rise to large-scale organization in tissues. This effort, in turn, has enabled bioengineering advances such as cell-mimetic interfaces that allow us to better probe junction biology and to develop new biomaterials. This review details exciting, recent developments in these areas as well as providing both historical context and a discussion of some topical challenges and opportunities for the future.
Collapse
Affiliation(s)
- Daniel J Cohen
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
111
|
Li SYT, Yan M, Chen H, Jesus T, Lee WM, Xiao X, Cheng CY. mTORC1/rpS6 regulates blood-testis barrier dynamics and spermatogenetic function in the testis in vivo. Am J Physiol Endocrinol Metab 2018; 314:E174-E190. [PMID: 29089336 PMCID: PMC5866417 DOI: 10.1152/ajpendo.00263.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/02/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022]
Abstract
The blood-testis barrier (BTB), conferred by Sertoli cells in the mammalian testis, is an important ultrastructure that supports spermatogenesis. Studies using animal models have shown that a disruption of the BTB leads to meiotic arrest, causing defects in spermatogenesis and male infertility. To better understand the regulation of BTB dynamics, we report findings herein to understand the role of ribosomal protein S6 (rpS6), a downstream signaling protein of mammalian target of rapamycin complex 1 (mTORC1), in promoting BTB disruption in the testis in vivo, making the barrier "leaky." Overexpression of wild-type rpS6 (rpS6-WT, the full-length cDNA cloned into the mammalian expression vector pCI-neo) and a constitutively active quadruple phosphomimetic mutant cloned into pCI-neo (p-rpS6-MT) vs. control (empty pCI-neo vector) was achieved by transfecting adult rat testes with the corresponding plasmid DNA using a Polyplus in vivo-jetPEI transfection reagent. On the basis of an in vivo functional BTB integrity assay, p-rpS6-MT was found to induce BTB disruption better than rpS6-WT did (and no effects in empty vector control), leading to defects in spermatogenesis, including loss of spermatid polarity and failure in the transport of cells (e.g., spermatids) and organelles (e.g., phagosomes), to be followed by germ exfoliation. More important, rpS6-WT and p-rpS6-MT exert their disruptive effects through changes in the organization of actin- and microtubule (MT)-based cytoskeletons, which are mediated by changes in the spatiotemporal expression of actin- and MT-based binding and regulatory proteins. In short, mTORC1/rpS6 signaling complex is a regulator of spermatogenesis and BTB by modulating the organization of the actin- and MT-based cytoskeletons.
Collapse
Affiliation(s)
- Stephen Y T Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Ming Yan
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing , China
| | - Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Tito Jesus
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences , Hangzhou , China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| |
Collapse
|
112
|
Ono E, Uede T. Implication of Soluble Forms of Cell Adhesion Molecules in Infectious Disease and Tumor: Insights from Transgenic Animal Models. Int J Mol Sci 2018; 19:ijms19010239. [PMID: 29342882 PMCID: PMC5796187 DOI: 10.3390/ijms19010239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
Cell adhesion molecules (CAMs) are surface ligands, usually glycoproteins, which mediate cell-to-cell adhesion. They play a critical role in maintaining tissue integrity and mediating migration of cells, and some of them also act as viral receptors. It has been known that soluble forms of the viral receptors bind to the surface glycoproteins of the viruses and neutralize them, resulting in inhibition of the viral entry into cells. Nectin-1 is one of important CAMs belonging to immunoglobulin superfamily and herpesvirus entry mediator (HVEM) is a member of the tumor necrosis factor (TNF) receptor family. Both CAMs also act as alphaherpesvirus receptor. Transgenic mice expressing the soluble form of nectin-1 or HVEM showed almost complete resistance against the alphaherpesviruses. As another CAM, sialic acid-binding immunoglobulin-like lectins (Siglecs) that recognize sialic acids are also known as an immunoglobulin superfamily member. Siglecs play an important role in the regulation of immune cell functions in infectious diseases, inflammation, neurodegeneration, autoimmune diseases and cancer. Siglec-9 is one of Siglecs and capsular polysaccharide (CPS) of group B Streptococcus (GBS) binds to Siglec-9 on neutrophils, leading to suppress host immune response and provide a survival advantage to the pathogen. In addition, Siglec-9 also binds to tumor-produced mucins such as MUC1 to lead negative immunomodulation. Transgenic mice expressing the soluble form of Siglec-9 showed significant resistance against GBS infection and remarkable suppression of MUC1 expressing tumor proliferation. This review describes recent developments in the understanding of the potency of soluble forms of CAMs in the transgenic mice and discusses potential therapeutic interventions that may alter the outcomes of certain diseases.
Collapse
Affiliation(s)
- Etsuro Ono
- Department of Biomedicine, Center of Biomedical Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Toshimitsu Uede
- Division of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| |
Collapse
|
113
|
Yamada M, Hirabayashi K, Kawanishi A, Hadano A, Takanashi Y, Izumi H, Kawaguchi Y, Mine T, Nakamura N, Nakagohri T. Nectin-1 expression in cancer-associated fibroblasts is a predictor of poor prognosis for pancreatic ductal adenocarcinoma. Surg Today 2017; 48:510-516. [PMID: 29256146 DOI: 10.1007/s00595-017-1618-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Nectin-1 is a cell adhesion molecule that regulates the formation of adherens junctions and tight junctions. We measured the expression of nectin-1 in cancer-associated fibroblasts (CAFs) in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Nectin-1 expression was measured via immunohistochemistry using tissue microarray blocks constructed from resected PDAC tissue from 258 patients. We screened for associations between nectin-1 expression and clinicopathological parameters. According to the percentage of CAFs stained, expression was classified as negative at ≤ 30% and positive at > 30%. RESULTS Nectin-1 expression was confirmed in CAFs from 64 patients (24.8%), and was associated with lymph node metastasis (p = 0.016), advanced Union for International Cancer Control stage (p = 0.016), perineural invasion (p = 0.022), pancreatic head tumors (p = 0.023), and shorter overall survival (p = 0.003). Multivariate analysis revealed that nectin-1 expression in CAFs was an independent prognostic factor (p = 0.038). CONCLUSIONS Diffuse nectin-1 expression in the CAFs of PDAC patients is associated with invasion, metastasis, and shorter survival.
Collapse
Affiliation(s)
- Misuzu Yamada
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Kanagawa, Japan
| | - Kenichi Hirabayashi
- Department of Pathology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Aya Kawanishi
- Department of Gastroenterology and Hepatology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Kanagawa, Japan
| | - Atsuko Hadano
- Department of Gastroenterology and Hepatology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Kanagawa, Japan
| | - Yumi Takanashi
- Department of Pathology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hideki Izumi
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Kanagawa, Japan
| | - Yoshiaki Kawaguchi
- Department of Gastroenterology and Hepatology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Kanagawa, Japan
| | - Tetsuya Mine
- Department of Gastroenterology and Hepatology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Kanagawa, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Toshio Nakagohri
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Kanagawa, Japan
| |
Collapse
|
114
|
Zankov DP, Sato A, Shimizu A, Ogita H. Differential Effects of Myocardial Afadin on Pressure Overload-Induced Compensated Cardiac Hypertrophy. Circ J 2017; 81:1862-1870. [PMID: 28659552 DOI: 10.1253/circj.cj-17-0394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
BACKGROUND Pressure overload induces cardiac hypertrophy, which often ends in heart failure. Afadin is an adaptor protein that is ubiquitously expressed and, in the heart, it localizes at intercalated disks. The current study aimed to examine the afadin-mediated cardiac phenotype in mice exposed to different types of pressure overload: transverse aortic constriction (TAC) burden and angiotensin II (Ang II) stimulation. METHODS AND RESULTS Conditional knockout mice with selective deletion of afadin (afadin cKO) in cardiomyocytes were generated. TAC-operated and Ang II-infused mice at 4 weeks had a similar degree of pressure overload and cardiac hypertrophy in the heart. In afadin cKO mice, TAC operation caused progressive left ventricular dysfunction and heart failure, while Ang II infusion did not deteriorate cardiac function. Furthermore, TAC operation produced more fibrosis and apoptosis in the heart than Ang II infusion, and the expression of growth differentiation factor 15, which can promote apoptosis, in the afadin cKO heart was higher in TAC-operated mice than Ang II-infused ones. CONCLUSIONS In the 2 pressure overload models, myocardial afadin is involved in mechanical stress-induced, but not pharmacological Ang II-related, compensated cardiac hypertrophy.
Collapse
Affiliation(s)
- Dimitar P Zankov
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| |
Collapse
|
115
|
Zhai X, Li Y, Liang P, Li L, Zhou Y, Zhang W, Wang D, Wei G. PI3K/AKT/Afadin signaling pathway contributes to pathological vascularization in glioblastomas. Oncol Lett 2017; 15:1893-1899. [PMID: 29434887 DOI: 10.3892/ol.2017.7461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 10/06/2017] [Indexed: 12/31/2022] Open
Abstract
Glioblastomas are brain tumors with extensive vascularization that are associated with tumor malignancy. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is activated in endothelial cell tumors, although its exact function in glioblastoma neovascularization is poorly characterized. The present study identified that endothelial cells derived from human glioblastomas exhibit increased permeability and motility compared with normal brain vascular endothelial cells. Furthermore, the phosphorylation of AKT was significantly induced in glioblastoma-derived endothelial cells and glioblastoma vessels. To the best of our knowledge, the present study demonstrated for the first time that the cell-cell adhesion junction protein Afadin is phosphorylated and re-localized in glioblastoma-derived endothelial cells, and the phosphorylation and re-localization of Afadin is PI3K/AKT pathway-dependent. AKT-mediated phosphorylation and re-localization of Afadin may be critically involved in the modulation of brain endothelial permeability and migration. Therapies targeting the PI3K/AKT/Afadin pathway may therefore be beneficial for reducing the angiogenic potential of glioblastoma.
Collapse
Affiliation(s)
- Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yingliang Li
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Lusheng Li
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yudong Zhou
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Weidan Zhang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Difei Wang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Guanghui Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Urinary Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
116
|
Xu Y, Li L, Ren HT, Yin B, Yuan JG, Peng XZ, Qiang BQ, Cui LY. Mutation of the cellular adhesion molecule NECL2 is associated with neuromyelitis optica spectrum disorder. J Neurol Sci 2017; 388:133-138. [PMID: 29627007 DOI: 10.1016/j.jns.2017.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/01/2017] [Accepted: 10/15/2017] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the association of the Nectin/Necl family genes with the risk of developing NMOSD. METHODS Whole-exome sequencing was performed on two familial NMOSD cases and two unaffected family members. Additionally, 106 patients with sporadic NMOSD and 212 healthy controls (HCs) underwent screening for mutant Necl2. Finally, the molecular weight and cellular localization of mutant NECL2 was examined in transfected HeLa cells. RESULTS We identified a novel deletion mutation in Necl2 (c.1052_1060delCCACCACCA; p. Thr351_Thr353del), which was associated with disease manifestation in the NMOSD familial cases. The frequency at which the mutation occurred in patients with sporadic NMOSD was significantly higher than for HCs (5.7% and 0, respectively; p<0.01). The mutation was located in the extracellular domain close to the transmembrane region, at a point in the protein sequence characterized by threonine enrichment. The mutant NECL2 had a lower molecular weight and exhibited defective trafficking to the cell surface. CONCLUSIONS Our results suggest that the Necl2 mutation identified herein may be associated with the risk of developing NMOSD. Furthermore, mutated NECL2 may play a role in the pathogenesis of the disease, potentially through its roles in axonal regeneration and/or via neuron-glia interactions that are relevant to myelination.
Collapse
Affiliation(s)
- Yan Xu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liang Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Hai-Tao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Jian-Gang Yuan
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Xiao-Zhong Peng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China.
| | - Bo-Qin Qiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, CAMS, Beijing, China.
| |
Collapse
|
117
|
Drebrin's Role in the Maintenance of Endothelial Integrity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:347-360. [PMID: 28865031 DOI: 10.1007/978-4-431-56550-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The human endothelium forms a permeable barrier between the blood stream and surrounding tissues, strictly governing the passage of immune cells, fluids and metabolites. The regulation of cell-cell contact dynamics between endothelial cells is essential for this function and thus for the maintenance of vascular integrity. Intercellular adhesion within the endothelium is mainly dependent on adherens junctions, composed of cell-cell adhesion proteins such as VE-cadherin and nectin, and their associated proteins. Recent research points to a critical role of the actin cytoskeleton in endothelial integrity, by providing anchorage of adhesion complexes to the cell cortex. We could show that the F-actin-binding protein drebrin is a critical regulator of endothelial integrity, by linking nectin to the cortical actin cytoskeleton. In particular, the knockdown of drebrin leads to functional impairment of endothelial cells, characterized by rupturing of endothelial monolayers cultured under conditions mimicking vascular flow. This weakening of cell-cell contacts upon drebrin depletion is based on the destabilization of nectin at adherens junctions, followed by internalization and degradation in lysosomes. Conducting interaction studies, we showed that drebrin binds to nectin's interaction partner afadin, thus linking the nectin/afadin system to the cortical F-actin network. Drebrin, containing binding sites for both afadin and F-actin, is thus uniquely equipped to stabilize nectin at adherens junctions, thereby preserving endothelial integrity. Collectively, these results contribute to the current understanding of cell-cell junction regulation, introducing a new function of drebrin as a stabilizer of endothelial integrity.
Collapse
|
118
|
Hamada-Kawaguchi N, Yamamoto D. Ovarian polarity and cell shape determination by Btk29A in Drosophila. Genesis 2017. [PMID: 28639397 DOI: 10.1002/dvg.23042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Drosophila Btk29A is a Tec family nonreceptor tyrosine kinase, the ortholog of which causes X-linked agammaglobulinemia in humans when mutant. In Btk29AficP mutant ovaries, multiple defects are observed: extrapolar cells form ectopically; osk mRNA fails to accumulate posteriorly in mature oocytes; the shape and alignment of follicle cells are grossly distorted. All these phenotypes are rescued by selectively overexpressing the type 2 isoform of wild-type Btk29A in follicle cells. Expression of certain proteins enriched in adherens junctions is markedly affected in Btk29AficP mutants; the anterior-posterior gradient normally observed in the expression of DE-Cadherin and Armadillo are lost and Canoe is sequestered from adherens junctions. Intriguingly, tyrosine phosphorylation of Canoe is reduced in Btk29AficP mutants. It is proposed that Btk29A is required for the establishment of egg chamber polarity presumably through the regulation of subcellular localization of its downstream proteins, including Cno.
Collapse
Affiliation(s)
- Noriko Hamada-Kawaguchi
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Daisuke Yamamoto
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
119
|
Kawanishi A, Hirabayashi K, Yamada M, Takanashi Y, Hadano A, Kawaguchi Y, Nakagohri T, Nakamura N, Mine T. Clinicopathological significance of Necl-4 expression in pancreatic ductal adenocarcinoma. J Clin Pathol 2017; 70:619-624. [PMID: 27980052 DOI: 10.1136/jclinpath-2016-204028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/10/2016] [Accepted: 11/27/2016] [Indexed: 12/31/2022]
Abstract
AIMS The loss, or decreased expression, of nectin-like molecule 4 (Necl-4; an immunoglobulin-like cell adhesion molecule) is reported to be associated with the development and progression of certain types of cancer. We investigated the clinicopathological significance of Necl-4 expression in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Immunohistochemical analyses of Necl-4 (n=258) and E-cadherin (n=256) expression were performed using tissue microarray blocks of PDAC samples. Necl-4 expression of 38 pancreatic intraepithelial neoplasia (PanIN) lesions included in tissue microarray cores was also evaluated. Necl-4 and E-cadherin expression was considered positive if >30% of cells were stained, and negative if ≤30% of cells were stained. RESULTS Necl-4 expression was positive in 45.7% (n=118) and negative in 54.3% (n=140) of PDAC cases. Necl-4 staining was positive in 96.7% (n=29) and negative in 3.3% (n=1) of low-grade PanIN cases, and positive in 62.5% (n=5) and negative in 37.5% (n=3) of high-grade PanIN cases. The number of cases with positive Necl-4 expression decreased in the order low-grade PanIN>high-grade PanIN>PDAC (p<0.001). Negative Necl-4 expression was significantly associated with a larger tumour size of >30 mm, perineural invasion, lymphatic involvement, lymph node metastasis (pN1), an advanced TNM (tumour, node, metastases) stage (stage IIB-IV), an advanced histological grade (G2/3), and shorter overall survival. E-cadherin staining was positive in 46.1% (n=118) and negative in 53.9% (n=138) of PDAC cases. Necl-4 expression correlated positively with E-cadherin expression (r=0.405, p<0.001). CONCLUSIONS The results suggest that Necl-4 is associated with carcinogenesis and aggressiveness of PDAC.
Collapse
Affiliation(s)
- Aya Kawanishi
- Department of Gastroenterology and Hepatology, Tokai University School of Medicine, Kanagawa, Japan
| | - Kenichi Hirabayashi
- Department of Pathology, Tokai University School of Medicine, Kanagawa, Japan
| | - Misuzu Yamada
- Department of Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Yumi Takanashi
- Department of Pathology, Tokai University School of Medicine, Kanagawa, Japan
| | - Atsuko Hadano
- Department of Gastroenterology and Hepatology, Tokai University School of Medicine, Kanagawa, Japan
| | - Yoshiaki Kawaguchi
- Department of Gastroenterology and Hepatology, Tokai University School of Medicine, Kanagawa, Japan
| | - Toshio Nakagohri
- Department of Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Kanagawa, Japan
| | - Tetsuya Mine
- Department of Gastroenterology and Hepatology, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
120
|
Nectin spot: a novel type of nectin-mediated cell adhesion apparatus. Biochem J 2017; 473:2691-715. [PMID: 27621480 DOI: 10.1042/bcj20160235] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/23/2016] [Indexed: 01/10/2023]
Abstract
Nectins are Ca(2+)-independent immunoglobulin (Ig) superfamily cell adhesion molecules constituting a family with four members, all of which have three Ig-like loops at their extracellular regions. Nectins play roles in the formation of a variety of cell-cell adhesion apparatuses. There are at least three types of nectin-mediated cell adhesions: afadin- and cadherin-dependent, afadin-dependent and cadherin-independent, and afadin- and cadherin-independent. In addition, nectins trans-interact with nectin-like molecules (Necls) with three Ig-like loops and other Ig-like molecules with one to three Ig-like loops. Furthermore, nectins and Necls cis-interact with membrane receptors and integrins, some of which are associated with the nectin-mediated cell adhesions, and play roles in the regulation of many cellular functions, such as cell polarization, movement, proliferation, differentiation, and survival, co-operatively with these cell surface proteins. The nectin-mediated cell adhesions are implicated in a variety of diseases, including genetic disorders, neural disorders, and cancers. Of the three types of nectin-mediated cell adhesions, the afadin- and cadherin-dependent apparatus has been most extensively investigated, but the examples of the third type of apparatus independent of afadin and cadherin are recently increasing and its morphological and functional properties have been well characterized. We review here recent advances in research on this type of nectin-mediated cell adhesion apparatus, which is named nectin spot.
Collapse
|
121
|
Grisard E, Nicoloso MS. Following MicroRNAs Through the Cancer Metastatic Cascade. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:173-228. [PMID: 28729025 DOI: 10.1016/bs.ircmb.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Approximately a decade ago the first MicroRNAs (MiRNAs) participating in cancer metastasis were identified and metastmiRs were initially only a handful. Since those first reports, MiRNA research has explosively thrived, mainly due to their revolutionary mechanism of action and the hope of having at hand a novel tool to control cancer aggressiveness. This has ultimately led to delineate an almost impenetrable regulatory network: hundreds of MiRNAs transversally dominating every aspect of normal and cancer biology, each MiRNA having hundreds of targets and context-dependent activity. Providing a comprehensive description of MiRNA roles in cancer metastasis is a daunting task; nevertheless, we still believe that grasping the big picture of MiRNAs in cancer metastasis can give a different perspective on the potential insights and approaches that MiRNAs can offer to understand cancer complexity (e.g., as predictive and prognostic markers) and to tackle cancer metastasis (e.g., as therapeutic targets or tools). This chapter presents a schematic overview of the role of MiRNAs in governing cancer metastasis, describing step by step the cellular and molecular processes whereby cancer cells conquer distant organs and can grow as secondary tumors at different distant sites, and for each step, we will introduce how MiRNAs impinge on each one of them. We deeply apologize with our colleagues for any of their research work that, for clarity, for our effort to streamline and due to space limitations, we did not cite.
Collapse
|
122
|
Jingushi K, Kashiwagi Y, Ueda Y, Kitae K, Hase H, Nakata W, Fujita K, Uemura M, Nonomura N, Tsujikawa K. High miR-122 expression promotes malignant phenotypes in ccRCC by targeting occludin. Int J Oncol 2017; 51:289-297. [PMID: 28534944 DOI: 10.3892/ijo.2017.4016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/29/2017] [Indexed: 11/06/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney, and clear cell RCC (ccRCC) represents its most common histological subtype. Although several studies have reported high expression of miR-122 in ccRCC, its physiological role remains unclear. To clarify the role of miR-122 in ccRCC, we compared miR-122 expression levels in non-cancerous tissue and ccRCC. Significant upregulation of miR-122 was observed in ccRCC specimens. Moreover, ccRCC patients with high miR-122 expression showed poor progression-free survival compared to those with low miR-122 expression. Overexpression of miR-122 using an miRNA mimic promoted proliferation, migration, and invasion activities of ccRCC cells. miR-122 directly targets occludin, a known component of tight junctions. Occludin knockdown promoted the cell migration activity but not proliferation or invasion activities of ccRCC cells. In human clinical specimens, miR-122 expression inversely correlated with occludin protein expression. These findings show that miR-122 is an oncomiR in ccRCC.
Collapse
Affiliation(s)
- Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuri Kashiwagi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuko Ueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Wataru Nakata
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazutoshi Fujita
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Motohide Uemura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
123
|
Kohno T, Kikuchi S, Ninomiya T, Kojima T. The bicellular tensile force sorts the localization of LSRs in bicellular and tricellular junctions. Ann N Y Acad Sci 2017; 1397:185-194. [PMID: 28493278 DOI: 10.1111/nyas.13362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 11/27/2022]
Abstract
Lipolysis-stimulated lipoprotein receptors (LSRs) localize to tricellular tight junctions. Recent studies have shown that changes in the localization and expression profiles of LSRs are associated with malignancy of endometrial carcinomas, although the precise mechanisms by which malignant progression induces changes in the localization of LSRs are still unknown. In this study, we found that changes in cell tension correlated with alterations in the junctional localization of LSRs in endometrial cancer Sawano cells. At high cell densities, myosin phosphatase target subunit 1 (MYPT1) localized to bicellular junctions, whereas activated myosin regulatory light chain 2 (MRLC2) was dislocated from these regions, suggesting that circumferential tensile forces decreased at high cell densities. Under these conditions, LSRs localized to tricellular junctions. In contrast, a phosphorylated form of MRLC2 localized to bicellular regions, while MYPT1 was excluded from these regions, suggesting that tensile forces formed along the circumferential edge at low cell densities. It is noteworthy that, when cells were cultured under these conditions, LSRs localized to bicellular regions. Upon treatment with a myosin inhibitor, LSR localization in bicellular junctions decreased at low cell densities. Overall, our results indicate that the modulation of cellular tension was involved in the translocation of LSRs from bicellular to tricellular tight junctions.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University, Sapporo, Japan
| | | | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
124
|
Maruoka M, Kedashiro S, Ueda Y, Mizutani K, Takai Y. Nectin-4 co-stimulates the prolactin receptor by interacting with SOCS1 and inhibiting its activity on the JAK2-STAT5a signaling pathway. J Biol Chem 2017; 292:6895-6909. [PMID: 28258213 PMCID: PMC5409460 DOI: 10.1074/jbc.m116.769091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/02/2017] [Indexed: 01/02/2023] Open
Abstract
Cell-surface cytokine receptors are regulated by their cis-interacting stimulatory and inhibitory co-receptors. We previously showed that the Ig-like cell-adhesion molecule nectin-4 cis-interacts with the prolactin receptor through the extracellular region and stimulates prolactin-induced prolactin receptor activation and signaling, resulting in alveolar development in the mouse mammary gland. However, it remains unknown how this interaction stimulates these effects. We show here that the cis-interaction of the extracellular region of nectin-4 with the prolactin receptor was not sufficient for eliciting these effects and that the cytoplasmic region of nectin-4 was also required for this interaction. The cytoplasmic region of nectin-4 directly interacted with suppressor of cytokine signaling 1 (SOCS1), but not SOCS3, JAK2, or STAT5a, and inhibited the interaction of SOCS1 with JAK2, eventually resulting in the increased phosphorylation of STAT5a. The juxtamembrane region of nectin-4 interacted with the Src homology 2 domain of SOCS1. Both the interaction of nectin-4 with the extracellular region of the prolactin receptor and the interaction of SOCS1 with the cytoplasmic region of nectin-4 were required for the stimulatory effect of nectin-4 on the prolactin-induced prolactin receptor activation. The third Ig-like domain of nectin-4 and the second fibronectin type III domain of the prolactin receptor were involved in this cis-interaction, and both the extracellular and transmembrane regions of nectin-4 and the prolactin receptor were required for this direct interaction. These results indicate that nectin-4 serves as a stimulatory co-receptor for the prolactin receptor by regulating the feedback inhibition of SOCS1 in the JAK2-STAT5a signaling pathway.
Collapse
Affiliation(s)
- Masahiro Maruoka
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047
- the Health Metrics Development Team, RIKEN Compass to Healthy Life Research Complex Program, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, and
| | - Shin Kedashiro
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047
| | - Yuki Ueda
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047
| | - Kiyohito Mizutani
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047,
| | - Yoshimi Takai
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047,
- the Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
125
|
Campbell HK, Maiers JL, DeMali KA. Interplay between tight junctions & adherens junctions. Exp Cell Res 2017; 358:39-44. [PMID: 28372972 DOI: 10.1016/j.yexcr.2017.03.061] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/17/2022]
Abstract
Cell-cell adhesions are critical for the development and maintenance of tissues. Present at sites of cell-cell contact are the adherens junctions and tight junctions. The adherens junctions mediate cell-cell adhesion via the actions of nectins and cadherins. The tight junctions regulate passage of ions and small molecules between cells and establish cell polarity. Historically, the adherens and tight junctions have been thought of as discrete complexes. However, it is now clear that a high level of interdependency exists between the two junctional complexes. The adherens junctions and tight junctions are physically linked, by the zonula occludens proteins, and linked via signaling molecules including several polarity complexes and actin cytoskeletal modifiers. This review will first describe the individual components of both the adherens and tight junctions and then discuss the coupling of the two complexes with an emphasis on the signaling links and physical interactions between the two junctional complexes.
Collapse
Affiliation(s)
- Hannah K Campbell
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jessica L Maiers
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kris A DeMali
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
126
|
Rossignoli A, Shang MM, Gladh H, Moessinger C, Foroughi Asl H, Talukdar HA, Franzén O, Mueller S, Björkegren JL, Folestad E, Skogsberg J. Poliovirus Receptor–Related 2. Arterioscler Thromb Vasc Biol 2017; 37:534-542. [DOI: 10.1161/atvbaha.116.308715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022]
Abstract
Objective—
Recently, poliovirus receptor–related 2 (
Pvrl2
) emerged as a top gene in a global gene expression study aiming to detect plasma cholesterol–responsive genes causally related to atherosclerosis regression in hypercholesterolemic mice. PVRL2 is an adherens junction protein implied to play a role in transendothelial migration of leukocytes, a key feature in atherosclerosis development. In this study, we investigated the effect of
Pvrl2
deficiency on atherosclerosis development and transendothelial migration of leukocytes activity.
Approach and Results—
Pvrl2
-deficient mice bred onto an atherosclerosis-prone background (
Pvrl2
−/−
Ldlr
−/−
Apob
100/100
) had less atherosclerotic lesions and more stable plaques compared with littermate controls (
Pvrl2
+/+
Ldlr
−/−
Apob
100/100
).
Pvrl2
−/−
Ldlr
−/−
Apob
100/100
mice also showed a 49% decrease in transendothelial migration of leukocytes activity observed using the in vivo air pouch model. In accordance, augmented arterial wall expression of
Pvrl2
during atherosclerosis progression coincided with an increased gene expression of migrating leukocytes into the vessel wall. Both in human and mice, gene and protein expression of PVRL2 was predominantly observed in the vascular endothelium according to the immunohistochemical and gene expression data. In addition, the cholesterol responsiveness of
PVRL2
was also observed in humans.
Conclusions—
PVRL2 is a plasma cholesterol–responsive gene acting at endothelial sites of vascular inflammation that could potentially be a new therapeutic target for atherosclerosis prevention through its suggested transendothelial migration of leukocytes modulating activity.
Collapse
Affiliation(s)
- Aránzazu Rossignoli
- From the Division of Vascular Biology, Department of Medical Biochemistry and Biophysics (A.R., H.G., C.M., H.F.A., H.A.T., J.L.M.B., E.F., J.S.) and Unit of Computational Medicine, Department of Medicine (M.-M.S.), Karolinska Institutet, Stockholm, Sweden; Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (O.F., J.L.M.B.); and Department of Molecular Genetics and Microbiology, Stony Brook University, New
| | - Ming-Mei Shang
- From the Division of Vascular Biology, Department of Medical Biochemistry and Biophysics (A.R., H.G., C.M., H.F.A., H.A.T., J.L.M.B., E.F., J.S.) and Unit of Computational Medicine, Department of Medicine (M.-M.S.), Karolinska Institutet, Stockholm, Sweden; Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (O.F., J.L.M.B.); and Department of Molecular Genetics and Microbiology, Stony Brook University, New
| | - Hanna Gladh
- From the Division of Vascular Biology, Department of Medical Biochemistry and Biophysics (A.R., H.G., C.M., H.F.A., H.A.T., J.L.M.B., E.F., J.S.) and Unit of Computational Medicine, Department of Medicine (M.-M.S.), Karolinska Institutet, Stockholm, Sweden; Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (O.F., J.L.M.B.); and Department of Molecular Genetics and Microbiology, Stony Brook University, New
| | - Christine Moessinger
- From the Division of Vascular Biology, Department of Medical Biochemistry and Biophysics (A.R., H.G., C.M., H.F.A., H.A.T., J.L.M.B., E.F., J.S.) and Unit of Computational Medicine, Department of Medicine (M.-M.S.), Karolinska Institutet, Stockholm, Sweden; Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (O.F., J.L.M.B.); and Department of Molecular Genetics and Microbiology, Stony Brook University, New
| | - Hassan Foroughi Asl
- From the Division of Vascular Biology, Department of Medical Biochemistry and Biophysics (A.R., H.G., C.M., H.F.A., H.A.T., J.L.M.B., E.F., J.S.) and Unit of Computational Medicine, Department of Medicine (M.-M.S.), Karolinska Institutet, Stockholm, Sweden; Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (O.F., J.L.M.B.); and Department of Molecular Genetics and Microbiology, Stony Brook University, New
| | - Husain Ahammad Talukdar
- From the Division of Vascular Biology, Department of Medical Biochemistry and Biophysics (A.R., H.G., C.M., H.F.A., H.A.T., J.L.M.B., E.F., J.S.) and Unit of Computational Medicine, Department of Medicine (M.-M.S.), Karolinska Institutet, Stockholm, Sweden; Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (O.F., J.L.M.B.); and Department of Molecular Genetics and Microbiology, Stony Brook University, New
| | - Oscar Franzén
- From the Division of Vascular Biology, Department of Medical Biochemistry and Biophysics (A.R., H.G., C.M., H.F.A., H.A.T., J.L.M.B., E.F., J.S.) and Unit of Computational Medicine, Department of Medicine (M.-M.S.), Karolinska Institutet, Stockholm, Sweden; Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (O.F., J.L.M.B.); and Department of Molecular Genetics and Microbiology, Stony Brook University, New
| | - Steffen Mueller
- From the Division of Vascular Biology, Department of Medical Biochemistry and Biophysics (A.R., H.G., C.M., H.F.A., H.A.T., J.L.M.B., E.F., J.S.) and Unit of Computational Medicine, Department of Medicine (M.-M.S.), Karolinska Institutet, Stockholm, Sweden; Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (O.F., J.L.M.B.); and Department of Molecular Genetics and Microbiology, Stony Brook University, New
| | - Johan L.M. Björkegren
- From the Division of Vascular Biology, Department of Medical Biochemistry and Biophysics (A.R., H.G., C.M., H.F.A., H.A.T., J.L.M.B., E.F., J.S.) and Unit of Computational Medicine, Department of Medicine (M.-M.S.), Karolinska Institutet, Stockholm, Sweden; Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (O.F., J.L.M.B.); and Department of Molecular Genetics and Microbiology, Stony Brook University, New
| | - Erika Folestad
- From the Division of Vascular Biology, Department of Medical Biochemistry and Biophysics (A.R., H.G., C.M., H.F.A., H.A.T., J.L.M.B., E.F., J.S.) and Unit of Computational Medicine, Department of Medicine (M.-M.S.), Karolinska Institutet, Stockholm, Sweden; Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (O.F., J.L.M.B.); and Department of Molecular Genetics and Microbiology, Stony Brook University, New
| | - Josefin Skogsberg
- From the Division of Vascular Biology, Department of Medical Biochemistry and Biophysics (A.R., H.G., C.M., H.F.A., H.A.T., J.L.M.B., E.F., J.S.) and Unit of Computational Medicine, Department of Medicine (M.-M.S.), Karolinska Institutet, Stockholm, Sweden; Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (O.F., J.L.M.B.); and Department of Molecular Genetics and Microbiology, Stony Brook University, New
| |
Collapse
|
127
|
Boylan KL, Buchanan PC, Manion RD, Shukla DM, Braumberger K, Bruggemeyer C, Skubitz AP. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget 2017; 8:9717-9738. [PMID: 28038455 PMCID: PMC5354766 DOI: 10.18632/oncotarget.14206] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022] Open
Abstract
The cell adhesion molecule Nectin-4 is overexpressed in epithelial cancers, including ovarian cancer. The objective of this study was to determine the biological significance of Nectin-4 in the adhesion, aggregation, migration, and proliferation of ovarian cancer cells. Nectin-4 and its binding partner Nectin-1 were detected in patients' primary tumors, omental metastases, and ascites cells. The human cell lines NIH:OVCAR5 and CAOV3 were genetically modified to alter Nectin-4 expression. Cells that overexpressed Nectin-4 adhered to Nectin-1 in a concentration and time-dependent manner, and adhesion was inhibited by antibodies to Nectin-4 and Nectin-1, as well as synthetic Nectin peptides. In functional assays, CAOV3 cells with Nectin-4 knock-down were unable to form spheroids and migrated more slowly than CAOV3 parental cells expressing Nectin-4. NIH:OVCAR5 parental cells proliferated more rapidly, migrated faster, and formed larger spheroids than either the Nectin-4 knock-down or over-expressing cells. Parental cell lines expressed higher levels of epithelial markers and lower levels of mesenchymal markers compared to Nectin-4 knock-down cells, suggesting a role for Nectin-4 in epithelial-mesenchymal transition. Our results demonstrate that Nectin-4 promotes cell-cell adhesion, migration, and proliferation. Understanding the biology of Nectin-4 in ovarian cancer progression is critical to facilitate its development as a novel therapeutic target.
Collapse
Affiliation(s)
- Kristin L.M. Boylan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Petra C. Buchanan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Rory D. Manion
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Dip M. Shukla
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kelly Braumberger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Cody Bruggemeyer
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Amy P.N. Skubitz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
128
|
Zankov DP, Shimizu A, Tanaka-Okamoto M, Miyoshi J, Ogita H. Protective effects of intercalated disk protein afadin on chronic pressure overload-induced myocardial damage. Sci Rep 2017; 7:39335. [PMID: 28045017 PMCID: PMC5206728 DOI: 10.1038/srep39335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Adhesive intercellular connections at cardiomyocyte intercalated disks (IDs) support contractile force and maintain structural integrity of the heart muscle. Disturbances of the proteins at IDs deteriorate cardiac function and morphology. An adaptor protein afadin, one of the components of adherens junctions, is expressed ubiquitously including IDs. At present, the precise role of afadin in cardiac physiology or disease is unknown. To explore this, we generated conditional knockout (cKO) mice with cardiomyocyte-targeted deletion of afadin. Afadin cKO mice were born according to the expected Mendelian ratio and have no detectable changes in cardiac phenotype. On the other hand, chronic pressure overload induced by transverse aortic constriction (TAC) caused systolic dysfunction, enhanced fibrogenesis and apoptosis in afadin cKO mice. Afadin deletion increased macrophage infiltration and monocyte chemoattractant protein-1 expression, and suppressed transforming growth factor (TGF) β receptor signaling early after TAC procedure. Afadin also associated with TGFβ receptor I at IDs. Pharmacological antagonist of TGFβ receptor I (SB431542) augmented mononuclear infiltration and fibrosis in the hearts of TAC-operated control mice. In conclusion, afadin is a critical molecule for cardiac protection against chronic pressure overload. The beneficial effects are likely to be a result from modulation of TGFβ receptor signaling pathways by afadin.
Collapse
Affiliation(s)
- Dimitar P Zankov
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Jun Miyoshi
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
129
|
Nectins and nectin-like molecules (Necls): Recent findings and their role and regulation in spermatogenesis. Semin Cell Dev Biol 2016; 59:54-61. [DOI: 10.1016/j.semcdb.2016.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 12/29/2022]
|
130
|
Zhao H, Zhao G, Wang W. Susceptibility of porcine preimplantation embryos to viruses associated with reproductive failure. Theriogenology 2016; 86:1631-6. [PMID: 27423729 DOI: 10.1016/j.theriogenology.2016.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/13/2016] [Accepted: 06/03/2016] [Indexed: 11/16/2022]
Abstract
In the modern biological area, the applications of pig as a laboratory model have extensive prospects, such as gene transfer, IVF, SCNT, and xenotransplantation. However, the risk of pathogen transmission by porcine embryos is always a topic to be investigated, especially the viruses related to reproductive failure, for instance, pseudorabies virus, porcine reproductive and respiratory syndrome virus, porcine parvovirus, and porcine circovirus type 2. It should be mentioned that the zona pellucida (ZP) of porcine embryos can be a barrier against the viruses, but certain pathogens may stick to or even pass through the ZP. With intact, free, and damaged ZP, porcine preimplantation embryos are susceptible to these viruses in varying degrees, which may be associated with the virus-specific receptor on embryonic cell membrane. These topics are discussed in the present review.
Collapse
Affiliation(s)
- Haijing Zhao
- Center for Reproductive Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Guangyuan Zhao
- Center for Reproductive Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Wenjun Wang
- Center for Reproductive Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
131
|
Lopez M, Ghidouche A, Rochas C, Godelaine D, Carrasco J, Colau D, Hames G, Montero-Julian FA, Coulie PG, Olive D. Identification of a naturally processed HLA-A*02:01-restricted CTL epitope from the human tumor-associated antigen Nectin-4. Cancer Immunol Immunother 2016; 65:1177-88. [PMID: 27514672 PMCID: PMC11029526 DOI: 10.1007/s00262-016-1877-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Nectin-4 is a tumor antigen present on the surface of breast, ovarian and lung carcinoma cells. It is rarely present in normal adult tissues and is therefore a candidate target for cancer immunotherapy. Here, we identified a Nectin-4 antigenic peptide that is naturally presented to T cells by HLA-A2 molecules. We first screened the 502 nonamer peptides of Nectin-4 (510 amino acids) for binding to and off-rate from eight different HLA class I molecules. We then combined biochemical, cellular and algorithmic assays to select 5 Nectin-4 peptides that bound to HLA-A*02:01 molecules. Cytolytic T lymphocytes were obtained from healthy donors, that specifically lyzed HLA-A2(+) cells pulsed with 2 out of the 5 peptides, indicating the presence of anti-Nectin-4 CD8(+) T lymphocytes in the human T cell repertoire. Finally, an HLA-A2-restricted cytolytic T cell clone derived from a breast cancer patient recognized peptide Nectin-4145-153 (VLVPPLPSL) and lyzed HLA-A2(+) Nectin-4(+) breast carcinoma cells. These results indicate that peptide Nectin-4145-153 is naturally processed for recognition by T cells on HLA-A2 molecules. It could be used to monitor antitumor T cell responses or to immunize breast cancer patients.
Collapse
Affiliation(s)
- Marc Lopez
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Oncologie Moléculaire, UM 105, Institut Paoli-Calmettes, CNRS, UMR7258, Aix-Marseille University, Marseille, France
| | - Abderrezak Ghidouche
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Immunité et Cancer, UM 105, Institut Paoli-Calmettes, CNRS, UMR7258, Aix-Marseille University, 27 bd Lei Roure, 13009, Marseille, France
| | - Caroline Rochas
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Immunité et Cancer, UM 105, Institut Paoli-Calmettes, CNRS, UMR7258, Aix-Marseille University, 27 bd Lei Roure, 13009, Marseille, France
| | - Danièle Godelaine
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Javier Carrasco
- Department of Oncology and Hematology, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Didier Colau
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Gérald Hames
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Pierre G Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Daniel Olive
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Immunité et Cancer, UM 105, Institut Paoli-Calmettes, CNRS, UMR7258, Aix-Marseille University, 27 bd Lei Roure, 13009, Marseille, France.
| |
Collapse
|
132
|
Luissint AC, Parkos CA, Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology 2016; 151:616-32. [PMID: 27436072 PMCID: PMC5317033 DOI: 10.1053/j.gastro.2016.07.008] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte-epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation.
Collapse
Affiliation(s)
- Anny-Claude Luissint
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
133
|
B Virus (Macacine Herpesvirus 1) Divergence: Variations in Glycoprotein D from Clinical and Laboratory Isolates Diversify Virus Entry Strategies. J Virol 2016; 90:9420-32. [PMID: 27512063 DOI: 10.1128/jvi.00799-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED B virus (Macacine herpesvirus 1) can cause deadly zoonotic disease in humans. Molecular mechanisms of B virus cell entry are poorly understood for both macaques and humans. Here we investigated the abilities of clinical B virus isolates to use entry receptors of herpes simplex viruses (HSV). We showed that resistant B78H1 cells became susceptible to B virus clinical strains upon expression of either human nectin-2 or nectin-1. Antibody against glycoprotein D (gD) protected these nectin-bearing cells from B virus infection, and a gD-negative recombinant B virus failed to enter these cells, indicating that the nectin-mediated B virus entry depends on gD. We observed that the infectivity of B virus isolates with a single amino acid substitution (D122N) in the IgV-core of the gD ectodomain was impaired on nectin-1-bearing cells. Computational homology-based modeling of the B virus gD-nectin-1 complex revealed conformational differences between the structures of the gD-122N and gD-122D variants that affected the gD-nectin-1 protein-protein interface and binding affinity. Unlike HSV, B virus clinical strains were unable to use herpesvirus entry mediator (HVEM) as a receptor, regardless of conservation of the gD amino acid residues essential for HSV-1 entry via HVEM. Based on the model of the B virus gD-HVEM interface, we predict that residues R7, R11, and G15 are largely responsible for the inability of B virus to utilize HVEM for entry. The ability of B virus to enter cells of a human host by using a combination of receptors distinct from those for HSV-1 or HSV-2 suggests a possible mechanism of enhanced neuropathogenicity associated with zoonotic infections. IMPORTANCE B virus causes brainstem destruction in infected humans in the absence of timely diagnosis and intervention. Nectins are cell adhesion molecules that are widely expressed in human tissues, including neurons and neuronal synapses. Here we report that human nectin-2 is a target receptor for B virus entry, in addition to the reported receptor human nectin-1. Similar to a B virus lab strain, B virus clinical strains can effectively use both nectin-1 and nectin-2 as cellular receptors for entry into human cells, but unlike HSV-1 and HSV-2, none of the clinical strains uses an HVEM-mediated entry pathway. Ultimately, these differences between B virus and HSV-1 and -2 may provide insight into the neuropathogenicity of B virus during zoonotic infections.
Collapse
|
134
|
Poon CE, Madawala RJ, Dowland SN, Murphy CR. Nectin-3 Is Increased in the Cell Junctions of the Uterine Epithelium at Implantation. Reprod Sci 2016; 23:1580-1592. [DOI: 10.1177/1933719116648216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Connie E. Poon
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Romanthi J. Madawala
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Samson N. Dowland
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R. Murphy
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
135
|
Togashi H. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia. Front Cell Dev Biol 2016; 4:104. [PMID: 27695692 PMCID: PMC5023662 DOI: 10.3389/fcell.2016.00104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/31/2016] [Indexed: 11/13/2022] Open
Abstract
Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.
Collapse
Affiliation(s)
- Hideru Togashi
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine Kobe, Japan
| |
Collapse
|
136
|
Budzko L, Marcinkowska-Swojak M, Jackowiak P, Kozlowski P, Figlerowicz M. Copy number variation of genes involved in the hepatitis C virus-human interactome. Sci Rep 2016; 6:31340. [PMID: 27510840 PMCID: PMC4980658 DOI: 10.1038/srep31340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
Abstract
Copy number variation (CNV) is a newly discovered form of intra-species genetic polymorphism that is defined as deletions or duplications of genome segments ranging from 1 kbp to several Mbp. CNV accounts for the majority of the genetic variation observed in humans (CNV regions cover more than 10% of the human genome); therefore, it may significantly influence both the phenotype and susceptibility to various diseases. Unfortunately, the impact of CNV on a number of diseases, including hepatitis C virus (HCV) infection, remains largely unexplored. Here, we analyzed 421 human genes encoding proteins that have been shown to interact with HCV proteins or genomic RNA (proteins from the HCV-human interactome). We found that 19 of the 421 candidate genes are located in putative CNV regions. For all of these genes, copy numbers were determined for European, Asiatic and African populations using the multiplex ligation-dependent amplification (MLPA) method. As a result, we identified 4 genes, IGLL1, MLLT4, PDPK1, PPP1R13L, for which the CN-genotype ranged from 1 to 6. All of these genes are involved in host-virus interaction; thus, their polymorphism has a potential impact on the development of HCV infection and/or therapy outcome.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
137
|
Katsunuma S, Honda H, Shinoda T, Ishimoto Y, Miyata T, Kiyonari H, Abe T, Nibu KI, Takai Y, Togashi H. Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium. J Cell Biol 2016; 212:561-75. [PMID: 26929452 PMCID: PMC4772500 DOI: 10.1083/jcb.201509020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cellular rearrangements between olfactory cells and supporting cells, driven by the different expression and distribution of nectins and cadherins, are required for mosaic cellular patterning in the olfactory epithelium. In the olfactory epithelium (OE), olfactory cells (OCs) and supporting cells (SCs), which express different cadherins, are arranged in a characteristic mosaic pattern in which OCs are enclosed by SCs. However, the mechanism underlying this cellular patterning is unclear. Here, we show that the cellular pattern of the OE is established by cellular rearrangements during development. In the OE, OCs express nectin-2 and N-cadherin, and SCs express nectin-2, nectin-3, E-cadherin, and N-cadherin. Heterophilic trans-interaction between nectin-2 on OCs and nectin-3 on SCs preferentially recruits cadherin via α-catenin to heterotypic junctions, and the differential distributions of cadherins between junctions promote cellular intercalations, resulting in the formation of the mosaic pattern. These observations are confirmed by model cell systems, and various cellular patterns are generated by the combinatorial expression of nectins and cadherins. Collectively, the synergistic action of nectins and cadherins generates mosaic pattern, which cannot be achieved by a single mechanism.
Collapse
Affiliation(s)
- Sayaka Katsunuma
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hisao Honda
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Tomoyasu Shinoda
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yukitaka Ishimoto
- Department of Machine Intelligence and Systems Engineering, Akita Prefectural University, Akita 015-0055, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Takaya Abe
- Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Ken-Ichi Nibu
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan CREST, Japan Science and Technology Agency, Kobe 650-0047, Japan
| | - Hideru Togashi
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
138
|
Gao YY, Hong XY, Wang HJ. Role of Nectin-1/c-Src Signaling in the Analgesic Effect of GDNF on a Rat Model of Chronic Constrictive Injury. J Mol Neurosci 2016; 60:258-66. [DOI: 10.1007/s12031-016-0792-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/30/2016] [Indexed: 12/20/2022]
|
139
|
The Contribution of Ig-Superfamily and MARVEL D Tight Junction Proteins to Cancer Pathobiology. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
140
|
Aldiri I, Ajioka I, Xu B, Zhang J, Chen X, Benavente C, Finkelstein D, Johnson D, Akiyama J, Pennacchio LA, Dyer MA. Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma. Development 2016; 142:4092-106. [PMID: 26628093 PMCID: PMC4712833 DOI: 10.1242/dev.124800] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulate retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms. Summary: The SWI/SNF protein Brg1 controls cell cycle length, cell cycle exit and cell survival, and is required for cell differentiation and retinal lamination, in the developing mouse retina.
Collapse
Affiliation(s)
- Issam Aldiri
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiakun Zhang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Claudia Benavente
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dianna Johnson
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer Akiyama
- Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, CA 94701, USA Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Len A Pennacchio
- Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, CA 94701, USA Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
141
|
Al-Maghrebi M, Renno WM, Al-Somali HF, Botras MS, Qadhi IN. Lutein modulates transcription dysregulation of adhesion molecules and spermatogenesis transcription factors induced by testicular ischemia reperfusion injury: it could be SAFE. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:539-51. [DOI: 10.1007/s00210-016-1223-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022]
|
142
|
Cell biology of mesangial cells: the third cell that maintains the glomerular capillary. Anat Sci Int 2016; 92:173-186. [PMID: 26910209 DOI: 10.1007/s12565-016-0334-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/14/2016] [Indexed: 10/22/2022]
Abstract
The renal glomerulus consists of glomerular endothelial cells, podocytes, and mesangial cells, which cooperate with each other for glomerular filtration. We have produced monoclonal antibodies against glomerular cells in order to identify different types of glomerular cells. Among these antibodies, the E30 clone specifically recognizes the Thy1.1 molecule expressed on mesangial cells. An injection of this antibody into rats resulted in mesangial cell-specific injury within 15 min, and induced mesangial proliferative glomerulonephritis in a reproducible manner. We examined the role of mesangial cells in glomerular function using several experimental tools, including an E30-induced nephritis model, mesangial cell culture, and the deletion of specific genes. Herein, we describe the characterization of E30-induced nephritis, formation of the glomerular capillary network, mesangial matrix turnover, and intercellular signaling between glomerular cells. New molecules that are involved in a wide variety of mesangial cell functions are also introduced.
Collapse
|
143
|
Tian Y, Gawlak G, O'Donnell JJ, Birukova AA, Birukov KG. Activation of Vascular Endothelial Growth Factor (VEGF) Receptor 2 Mediates Endothelial Permeability Caused by Cyclic Stretch. J Biol Chem 2016; 291:10032-45. [PMID: 26884340 DOI: 10.1074/jbc.m115.690487] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
High tidal volume mechanical ventilation and the resultant excessive mechanical forces experienced by lung vascular endothelium are known to lead to increased vascular endothelial leak, but the underlying molecular mechanisms remain incompletely understood. One reported mechanotransduction pathway of increased endothelial cell (EC) permeability caused by high magnitude cyclic stretch (18% CS) involves CS-induced activation of the focal adhesion associated signalosome, which triggers Rho GTPase signaling. This study identified an alternative pathway of CS-induced EC permeability. We show here that high magnitude cyclic stretch (18% CS) rapidly activates VEGF receptor 2 (VEGFR2) signaling by dissociating VEGFR2 from VE-cadherin at the cell junctions. This results in VEGFR2 activation, Src-dependent VE-cadherin tyrosine phosphorylation, and internalization leading to increased endothelial permeability. This process is also accompanied by CS-induced phosphorylation and internalization of PECAM1. Importantly, CS-induced endothelial barrier disruption was attenuated by VEGFR2 inhibition. 18% CS-induced EC permeability was linked to dissociation of cell junction scaffold afadin from the adherens junctions. Forced expression of recombinant afadin in pulmonary endothelium attenuated CS-induced VEGFR2 and VE-cadherin phosphorylation, preserved adherens junction integrity and VEGFR2·VE-cadherin complex, and suppressed CS-induced EC permeability. This study shows for the first time a mechanism whereby VEGFR2 activation mediates EC permeability induced by pathologically relevant cyclic stretch. In this mechanism, CS induces dissociation of the VE-cadherin·VEGFR2 complex localized at the adherens juctions, causing activation of VEGFR2, VEGFR2-mediated Src-dependent phosphorylation of VE-cadherin, disassembly of adherens junctions, and EC barrier failure.
Collapse
Affiliation(s)
- Yufeng Tian
- From the Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Grzegorz Gawlak
- From the Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - James J O'Donnell
- From the Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Anna A Birukova
- From the Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Konstantin G Birukov
- From the Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
144
|
Karabulut M, Gunaldi M, Alis H, Afsar CU, Karabulut S, Serilmez M, Akarsu C, Seyit H, Aykan NF. Serum nectin-2 levels are diagnostic and prognostic in patients with colorectal carcinoma. Clin Transl Oncol 2016; 18:160-171. [PMID: 26184725 DOI: 10.1007/s12094-015-1348-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Nectins are a family of integral protein and immunoglobulin-like cell adhesion molecules involved in the formation of functioning adherence and tight junctions. Aberrant expression is associated with cancer progression, apoptosis and cell proliferation but little is known how these effects change in cell behavior. The objective of this study was to evaluate the serum levels of nectin-2 with regard to diagnostic, predictive and prognostic value in colorectal cancer (CRC) patients. MATERIALS AND METHODS One-hundred and forty CRC patients were enrolled in this study. Serum nectin-2 levels were determined by enzyme-linked immunosorbent assay method. Age- and sex-matched 40 healthy controls were included in the analysis. RESULTS Median age of patients was 60 years old, range 24-84 years. The localization of tumor in majority of the patients was colon (n = 81, 58 %). Non-metastatic (stage II and III) and metastatic patients' baseline serum nectin-2 levels were significantly higher than those in the healthy control group (p < 0.001; for two group). However, known clinical variables including response to CTx (chemotherapy) were not found to be correlated with serum nectin-2 concentrations (p > 0.05). While non-metastatic group patients with elevated serum nectin-2 levels showed significant adverse effect on PFS, metastatic group patients with elevated serum nectin-2 levels showed no significant adverse effect on PFS (p = 0.05 and p = 0.29, respectively). On the other hand, our study results did not show statistically significant serum nectin-2 concentrations regarding overall survival rates. CONCLUSION Serum levels of nectin-2 may have diagnostic roles for CRC patients. Moreover, our study results show the prognostic role of nectin-2 in non-metastatic group patients.
Collapse
Affiliation(s)
- M Karabulut
- Clinic of General Surgery, Istanbul Bakırköy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - M Gunaldi
- Clinic of Medical Oncology, Istanbul Bakirkoy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - H Alis
- Clinic of General Surgery, Istanbul Bakırköy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - C U Afsar
- Department of Medical Oncology, Ministry of Health, Istanbul Training and Research Hospital, Istanbul, Turkey.
| | - S Karabulut
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - M Serilmez
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - C Akarsu
- Clinic of General Surgery, Istanbul Bakırköy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - H Seyit
- Clinic of General Surgery, Istanbul Bakırköy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - N F Aykan
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
145
|
Tsurumi H, Kurihara H, Miura K, Tanego A, Ohta Y, Igarashi T, Oka A, Horita S, Hattori M, Harita Y. Afadin is localized at cell-cell contact sites in mesangial cells and regulates migratory polarity. J Transl Med 2016; 96:49-59. [PMID: 26568295 PMCID: PMC5399166 DOI: 10.1038/labinvest.2015.133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/14/2015] [Accepted: 10/17/2015] [Indexed: 01/01/2023] Open
Abstract
In kidney glomeruli, mesangial cells provide structural support to counteract for expansile forces caused by pressure gradients and to regulate the blood flow. Glomerular injury results in proliferation and aberrant migration of mesangial cells, which is the pathological characteristic of mesangial proliferative glomerulonephritis. To date, molecular changes that occur in mesangial cells during glomerular injury and their association with the pathogenesis of glomerulonephritis remain largely unclear. During the search for proteins regulating the morphology of mesangial cells, we found that afadin, a multi-domain F-actin-binding protein, and β-catenin are expressed in cell-cell contact sites of cultured mesangial cells and mesangial cells in vivo. Afadin forms a protein complex with β-catenin in glomeruli and in cultured mesangial cells. Protein expression of afadin at mesangial intercellular junctions was dramatically decreased in mesangial proliferative nephritis in rats and in patients with glomerulonephritis. RNA interference-mediated depletion of afadin in cultured mesangial cells did not affect proliferation rate but resulted in delayed directional cell migration. Furthermore, reorientation of the Golgi complex at the leading edges of migrating cells in wound-healing assay was disturbed in afadin-depleted cells, suggesting the role of aberrant migratory polarity in the pathogenesis of proliferative glomerulonephritis. These data shed light on glomerulonephritis-associated changes in cell-cell adhesion between mesangial cells, which might be related to migratory polarity.
Collapse
Affiliation(s)
- Haruko Tsurumi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidetake Kurihara
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Tanego
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, Japan
| | | | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeru Horita
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. E-mail:
| |
Collapse
|
146
|
A soluble form of human nectin-2 impairs exocrine secretion of pancreas and formation of zymogen granules in transgenic mice. Biochem Biophys Rep 2015; 5:196-202. [PMID: 28955824 PMCID: PMC5600445 DOI: 10.1016/j.bbrep.2015.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
Abstract
Transgenic mouse lines expressing a soluble form of human nectin-2 (hNectin-2Ig Tg) exhibited distinctive elevation of amylase and lipase levels in the sera. In this study, we aimed to clarify the histopathology and to propose the transgenic mouse lines as new animal model for characteristic pancreatic exocrine defects. The significant increase of amylase and lipase levels in sera of the transgenic lines approximately peaked at 8 weeks old and thereafter, plateaued or gradually decreased. The histopathology in transgenic acinar cells was characterized by intracytoplasmic accumulation of abnormal proteins with decrease of normal zymogen granules. The hNectin-2Ig expression was observed in the cytoplasm of pancreatic acinar cells, which was consistent with zymogen granules. However, signals of hNectin-2Ig were very weak in the transgenic acinar cells with the abnormal cytoplasmic accumulaion. The PCNA-positive cells increased in the transgenic pancreas, which suggested the affected acinar cells were regenerated. Acinar cells of hNectin-2Ig Tg had markedly small number of zymogen granules with remarkable dilation of the endoplasmic reticulum (ER) lumen containing abundant abnormal proteins. In conclusion, hNectin-2Ig Tg is proposed as a new animal model for characteristic pancreatic exocrine defects, which are due to the ER stress induced by expression of mutated cell adhesion molecule that is a soluble form of human nectin-2. We generated transgenic mice expressing a soluble nectin-2 (hNectin-2Ig Tg). hNectin-2Ig Tg exhibited abnormal formation of zymogen granules. Abnormal proteins were accumulated in dilated ER of acinar cells of hNectin-2Ig Tg. hNectin-2Ig Tg is new animal model for exocrine defects associated with ER stress.
Collapse
|
147
|
Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion. EBioMedicine 2015; 2:1528-35. [PMID: 26629549 PMCID: PMC4634783 DOI: 10.1016/j.ebiom.2015.09.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/20/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022] Open
Abstract
Successful embryo implantation requires synchronous development and communication between the blastocyst and the endometrium, however the mechanisms of communication in humans are virtually unknown. Recent studies have revealed that microRNAs (miRs) are present in bodily fluids and secreted by cells in culture. We have identified that human blastocysts differentially secrete miRs in a pattern associated with their implantation outcome. miR-661 was the most highly expressed miR in blastocyst culture media (BCM) from blastocysts that failed to implant (non-implanted) compared to blastocysts that implanted (implanted). Our results indicate a possible role for Argonaute 1 in the transport of miR-661 in non-implanted BCM and taken up by primary human endometrial epithelial cells (HEECs). miR-661 uptake by HEEC reduced trophoblast cell line spheroid attachment to HEEC via PVRL1. Our results suggest that human blastocysts alter the endometrial epithelial adhesion, the initiating event of implantation, via the secretion of miR, abnormalities in which result in implantation failure. microRNAs are secreted by human blastocysts relative to implantation potential during IVF. microRNA-661 is secreted by blastocysts that fail to implant and taken up by endometrial epithelial cells via Argonaute 1. microRNA-661 reduces adhesion of trophoblast spheroids to endometrial cells.
Implantation failure is a large problem affecting the success rate of in vitro fertilisation (IVF). There are no effective treatments for implantation failure. Our study demonstrated that human embryos secrete microRNA and their expression is differentially expressed in embryos that achieve a successful pregnancy compared to embryos that fail. The study identified that microRNA 661 secreted by embryos, was taken up by human endometrial epithelial cells via attachment to a protein and inhibited endometrial cell adhesiveness. This suggests that abnormally produced microRNA may prevent attachment of human embryos to the endometrial lining and prevent implantation and pregnancy.
Collapse
|
148
|
Singh BK, Hornick AL, Krishnamurthy S, Locke AC, Mendoza CA, Mateo M, Miller-Hunt CL, Cattaneo R, Sinn PL. The Nectin-4/Afadin Protein Complex and Intercellular Membrane Pores Contribute to Rapid Spread of Measles Virus in Primary Human Airway Epithelia. J Virol 2015; 89:7089-96. [PMID: 25926640 PMCID: PMC4473566 DOI: 10.1128/jvi.00821-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/21/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The discovery that measles virus (MV) uses the adherens junction protein nectin-4 as its epithelial receptor provides a new vantage point from which to characterize its rapid spread in the airway epithelium. We show here that in well-differentiated primary cultures of airway epithelial cells from human donors (HAE), MV infectious centers form rapidly and become larger than those of other respiratory pathogens: human respiratory syncytial virus, parainfluenza virus 5, and Sendai virus. While visible syncytia do not form after MV infection of HAE, the cytoplasm of an infected cell suddenly flows into an adjacent cell, as visualized through wild-type MV-expressed cytoplasmic green fluorescent protein (GFP). High-resolution video microscopy documents that GFP flows through openings that form on the lateral surfaces between columnar epithelial cells. To assess the relevance of the protein afadin, which connects nectin-4 to the actin cytoskeleton, we knocked down its mRNA. This resulted in more-limited infectious-center formation. We also generated a nectin-4 mutant without the afadin-binding site in its cytoplasmic tail. This mutant was less effective than wild-type human nectin-4 at promoting MV infection in primary cultures of porcine airway epithelia. Thus, in airway epithelial cells, MV spread requires the nectin-4/afadin complex and is based on cytoplasm transfer between columnar cells. Since the viral membrane fusion apparatus may open the passages that allow cytoplasm transfer, we refer to them as intercellular membrane pores. Virus-induced intercellular pores may contribute to extremely efficient measles contagion by promoting the rapid spread of the virus through the upper respiratory epithelium. IMPORTANCE Measles virus (MV), while targeted for eradication, still causes about 120,000 deaths per year worldwide. The recent reemergence of measles in insufficiently vaccinated populations in Europe and North America reminds us that measles is extremely contagious, but the processes favoring its spread in the respiratory epithelium remain poorly defined. Here we characterize wild-type MV spread in well-differentiated primary cultures of human airway epithelial cells. We observed that viral infection promotes the flow of cytoplasmic contents from infected to proximal uninfected columnar epithelial cells. Cytoplasm flows through openings that form on the lateral surfaces. Infectious-center growth is facilitated by afadin, a protein connecting the adherens junction and the actin cytoskeleton. The viral fusion apparatus may open intercellular pores, and the cytoskeleton may stabilize them. Rapid homogenization of cytoplasmic contents in epithelial infectious centers may favor rapid spread and contribute to the extremely contagious nature of measles.
Collapse
Affiliation(s)
- Brajesh K Singh
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Andrew L Hornick
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Sateesh Krishnamurthy
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Anna C Locke
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Crystal A Mendoza
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mathieu Mateo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Catherine L Miller-Hunt
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick L Sinn
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
149
|
Functions for the cAMP/Epac/Rap1 Signaling Pathway in Low-Dose Endothelial Monocyte-Activating Polypeptide-II-Induced Opening of Blood-Tumor Barrier. J Mol Neurosci 2015; 57:1-10. [PMID: 26044663 DOI: 10.1007/s12031-015-0594-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Previous studies have demonstrated that low-dose endothelial monocyte-activating polypeptide-II (EMAP-II) induces blood-tumor barrier (BTB) hyperpermeability via both paracellular and transcellular pathways. In a recent study, we revealed that cAMP/PKA-dependent and cAMP/PKA-independent signaling pathways are both involved in EMAP-II-induced BTB hyperpermeability. The present study further investigated the exact mechanisms through which the cAMP/PKA-independent signaling pathway affects EMAP-II-induced BTB hyperpermeability. In an in vitro BTB model, low-dose EMAP-II (0.05 nM) induced a significant decrease in Rap1 activity in RBMECs. Pretreatment with forskolin to elevate intracellular cAMP concentration completely blocked EMAP-II-induced Rap1 inactivation. Epac/Rap1 activation by 8-pCPT-2'-O-Me-cAMP significantly prevented EMAP-II-induced activation of RhoA/ROCK. Furthermore, 8-pCPT-2'-O-Me-cAMP pretreatment significantly inhibited EMAP-II-induced decreases in TEER and increases in HRP flux. Pretreatment also significantly prevented EMAP-II-induced changes in MLC phosphorylation, actin cytoskeleton arrangement, and expression and distribution of ZO-1 in RBMECs. This study demonstrates that the cAMP/Epac/Rap1 signaling cascade is a crucial pathway in EMAP-II-induced BTB hyperpermeability.
Collapse
|
150
|
Murakawa H, Togashi H. Continuous models for cell–cell adhesion. J Theor Biol 2015; 374:1-12. [DOI: 10.1016/j.jtbi.2015.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/14/2015] [Accepted: 03/03/2015] [Indexed: 11/24/2022]
|