101
|
Hochegger H, Takeda S, Hunt T. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol 2008; 9:910-6. [PMID: 18813291 DOI: 10.1038/nrm2510] [Citation(s) in RCA: 414] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-cycle transitions in higher eukaryotes are regulated by different cyclin-dependent kinases (CDKs) and their activating cyclin subunits. Based on pioneering findings that a dominant-negative mutation of CDK1 blocks the cell cycle at G2-M phase, whereas dominant-negative CDK2 inhibits the transition into S phase, a model of cell-cycle control has emerged in which each transition is regulated by a specific subset of CDKs and cyclins. Recent work with gene-targeted mice has led to a revision of this model. We discuss cell-cycle control in light of overlapping and essential functions of the different CDKs and cyclins.
Collapse
Affiliation(s)
- Helfrid Hochegger
- Helfrid Hochegger is at the Genome Damage and Stability Centre, University of Sussex, Falmer Brighton, BN1 9RQ, UK
| | | | | |
Collapse
|
102
|
Mielnichuk N, Pérez-Martín J. 14-3-3 regulates the G2/M transition in the basidiomycete Ustilago maydis. Fungal Genet Biol 2008; 45:1206-15. [DOI: 10.1016/j.fgb.2008.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 01/04/2023]
|
103
|
Pal G, Paraz MTZ, Kellogg DR. Regulation of Mih1/Cdc25 by protein phosphatase 2A and casein kinase 1. ACTA ACUST UNITED AC 2008; 180:931-45. [PMID: 18316413 PMCID: PMC2265403 DOI: 10.1083/jcb.200711014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Cdc25 phosphatase promotes entry into mitosis by removing cyclin-dependent kinase 1 (Cdk1) inhibitory phosphorylation. Previous work suggested that Cdc25 is activated by Cdk1 in a positive feedback loop promoting entry into mitosis; however, it has remained unclear how the feedback loop is initiated. To learn more about the mechanisms that regulate entry into mitosis, we have characterized the function and regulation of Mih1, the budding yeast homologue of Cdc25. We found that Mih1 is hyperphosphorylated early in the cell cycle and is dephosphorylated as cells enter mitosis. Casein kinase 1 is responsible for most of the hyperphosphorylation of Mih1, whereas protein phosphatase 2A associated with Cdc55 dephosphorylates Mih1. Cdk1 appears to directly phosphorylate Mih1 and is required for initiation of Mih1 dephosphorylation as cells enter mitosis. Collectively, these observations suggest that Mih1 regulation is achieved by a balance of opposing kinase and phosphatase activities. Because casein kinase 1 is associated with sites of polar growth, it may regulate Mih1 as part of a signaling mechanism that links successful completion of growth-related events to cell cycle progression.
Collapse
Affiliation(s)
- Gayatri Pal
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
104
|
Abstract
Cell growth and osmotic volume regulation are undoubtedly linked to the progression of the cell cycle as with each division, a newly generated cell must compensate for loss of half of its volume to its sister cell. The extent to which size influences cell cycle decisions, however, is controversial in mammalian cells. Further, a mechanism by which cells can monitor and therefore regulate their size has not been fully elucidated. Despite an ongoing debate, there have been few studies which directly address the question in single cell real-time experiments. In this study we used fluorescent time-lapse imaging to quantitatively assess volume in individual spontaneously dividing cells throughout the cell cycle. Together with biophysical studies, these establish that the efflux of salt and water brings about a condensation of cytoplasmic volume as glioma cells progress through mitosis. As cells undergo this pre-mitotic condensation (PMC) they approach a preferred cell volume preceding each division. This is functionally linked to chromatin condensation, suggesting that PMC plays an integral role in mitosis.
Collapse
Affiliation(s)
- Christa W. Habela
- Department of Neurobiology; Center for Glial Biology in Medicine; University of Alabama at Birmingham; Birmingham, Alabama USA
| | - Harald Sontheimer
- Department of Neurobiology; Center for Glial Biology in Medicine; University of Alabama at Birmingham; Birmingham, Alabama USA
| |
Collapse
|
105
|
Ferjani A, Horiguchi G, Yano S, Tsukaya H. Analysis of leaf development in fugu mutants of Arabidopsis reveals three compensation modes that modulate cell expansion in determinate organs. PLANT PHYSIOLOGY 2007; 144:988-99. [PMID: 17468216 PMCID: PMC1914195 DOI: 10.1104/pp.107.099325] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In multicellular organisms, the coordination of cell proliferation and expansion is fundamental for proper organogenesis, yet the molecular mechanisms involved in this coordination are largely unexplored. In plant leaves, the existence of this coordination is suggested by compensation, in which a decrease in cell number triggers an increase in mature cell size. To elucidate the mechanisms of compensation, we isolated five new Arabidopsis (Arabidopsis thaliana) mutants (fugu1-fugu5) that exhibit compensation. These mutants were characterized together with angustifolia3 (an3), erecta (er), and a KIP-RELATED PROTEIN2 (KRP2) overexpressor, which were previously reported to exhibit compensation. Time-course analyses of leaf development revealed that enhanced cell expansion in fugu2-1, fugu5-1, an3-4, and er-102 mutants is induced postmitotically, indicating that cell enlargement is not caused by the uncoupling of cell division from cell growth. In each of the mutants, either the rate or duration of cell expansion was selectively enhanced. In contrast, we found that enhanced cell expansion in KRP2 overexpressor occurs during cell proliferation. We further demonstrated that enhanced cell expansion occurs in cotyledons with dynamics similar to that in leaves. In contrast, cell expansion was not enhanced in roots even though they exhibit decreased cell numbers. Thus, compensation was confirmed to occur preferentially in determinate organs. Flow cytometric analyses revealed that increases in ploidy level are not always required to trigger compensation, suggesting that compensation is only partially mediated by ploidy-dependent processes. Our results suggest that compensation reflects an organ-wide coordination of cell proliferation and expansion in determinate organs, and involves at least three different expansion pathways.
Collapse
Affiliation(s)
- Ali Ferjani
- Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
106
|
Okamoto K, Sagata N. Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase. Proc Natl Acad Sci U S A 2007; 104:3753-8. [PMID: 17360425 PMCID: PMC1820656 DOI: 10.1073/pnas.0607357104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Wee1, the inhibitory kinase of cyclin B/Cdc2, undergoes a phosphorylation-dependent catalytic inactivation at M phase of the mitotic cell cycle, but the precise mechanism for this inactivation is not known. Using Xenopus egg and extract systems, we show here that the kinase activity of Xenopus somatic Wee1 (XeWee1B) is regulated by its N-terminal, small, well conserved region, termed here the Wee-box. The Wee-box is essential for the normal kinase activity of XeWee1B during interphase, acting positively on the C-terminal catalytic domain, which alone cannot efficiently phosphorylate Cdc2. Significantly, a Thr-186-Pro (TP) motif within the Wee-box is phosphorylated by Cdc2 at M phase and specifically binds the cis/trans prolyl isomerase Pin1. This Pin1 binding is required for the inactivation of XeWee1B at M phase, presumably causing isomerization of the phospho-TP motif and thereby impairing the function of the Wee-box. These results provide important insights into the mechanism of Wee1 inactivation at M phase.
Collapse
Affiliation(s)
- Kengo Okamoto
- *Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan; and
| | - Noriyuki Sagata
- *Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan; and
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
107
|
Arai S, Miyake K, Voit R, Nemoto S, Wakeland EK, Grummt I, Miyazaki T. Death-effector domain-containing protein DEDD is an inhibitor of mitotic Cdk1/cyclin B1. Proc Natl Acad Sci U S A 2007; 104:2289-94. [PMID: 17283331 PMCID: PMC1793902 DOI: 10.1073/pnas.0611167104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has shown that many molecules, including some cyclin-dependent kinases (Cdks) and cyclins, as well as the death-effector domain (DED)-containing FADD, function for both apoptosis and cell cycle. Here we identified that DEDD, which also possesses the DED domain, acts as a novel inhibitor of the mitotic Cdk1/cyclin B1 complex. DEDD associates with mitotic Cdk1/cyclin B1 complexes via direct binding to cyclin B1 and reduces their function. In agreement, kinase activity of nuclear Cdk1/cyclin B1 in DEDD-null (DEDD-/-) embryonic fibroblasts is increased compared with that in DEDD+/+ cells, which results in accelerated mitotic progression, thus exhibiting a shortened G2/M stage. Interestingly, DEDD-/- cells also demonstrated decreased G1 duration, which perhaps enhanced the overall reduction in rRNA amounts and cell volume, primarily caused by the rapid termination of rRNA synthesis before cell division. Likewise, DEDD-/- mice show decreased body and organ weights relative to DEDD+/+ mice. Thus, DEDD is an impeder of cell mitosis, and its absence critically influences cell and body size via modulation of rRNA synthesis.
Collapse
Affiliation(s)
- Satoko Arai
- *Division of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Center for Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, NA7200, Dallas, TX 75390-9093; and
| | - Katsuhisa Miyake
- Center for Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, NA7200, Dallas, TX 75390-9093; and
| | - Renate Voit
- Department of Molecular Biology of the Cell II, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Shino Nemoto
- *Division of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Edward K. Wakeland
- Center for Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, NA7200, Dallas, TX 75390-9093; and
| | - Ingrid Grummt
- Department of Molecular Biology of the Cell II, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Toru Miyazaki
- *Division of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Center for Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, NA7200, Dallas, TX 75390-9093; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
108
|
Abstract
To maximize the probability of survival and proliferation, cells coordinate various intracellular activities in response to changes in the extracellular environment. Eukaryotic cells transduce diverse cellular stimuli by multiple mitogen-activated protein kinase (MAPK) cascades. Exposure of cells to stress results in rapid activation of a highly conserved family of MAPKs, known as stress-activated protein kinases (SAPKs). Activation of SAPKs results in the generation of a set of adaptive responses that leads to the modulation of several aspects of cell physiology essential for cell survival, such as gene expression, translation, and morphogenesis. This chapter proposes that regulation of cell cycle progression is another general stress response critical for cell survival. Studies from yeast, both Schizosaccharomyces pombe and Saccharomyces cerevisiae, have served to start understanding how SAPKs control cell cycle progression in response to stress.
Collapse
Affiliation(s)
- J Clotet
- Department of Molecular and Cellular Biology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | | |
Collapse
|
109
|
Disch S, Anastasiou E, Sharma VK, Laux T, Fletcher JC, Lenhard M. The E3 ubiquitin ligase BIG BROTHER controls arabidopsis organ size in a dosage-dependent manner. Curr Biol 2006; 16:272-9. [PMID: 16461280 DOI: 10.1016/j.cub.2005.12.026] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 12/06/2005] [Accepted: 12/06/2005] [Indexed: 11/18/2022]
Abstract
Organ growth up to a species-specific size is tightly regulated in plants and animals. Final organ size is remarkably constant within a given species, suggesting that a species-specific size checkpoint terminates organ growth in a coordinated and timely manner. Phytohormones influence plant organ size, but their precise functions in size control are unclear because of their pleiotropic and complex developmental roles. The Arabidopsis transcription factors AINTEGUMENTA and JAGGED promote organ growth by maintaining cellular proliferation potential. Loss of the Antirrhinum transcription factor CINCINNATA causes leaf overgrowth, yet also leads to a highly abnormal leaf shape. Thus, no dedicated factor that limits the final size of plant organs has been isolated. Here, we identify the novel RING-finger protein BIG BROTHER (BB) as a repressor of plant organ growth. Small changes in BB expression levels substantially alter organ size, indicating a central regulatory role for BB in growth control. Recombinant BB protein has E3 ubiquitin-ligase activity that is essential for its in vivo function, suggesting that BB acts by marking cellular proteins for degradation. Our data indicate that plants limit the duration of organ growth and ultimately organ size by actively degrading critical growth stimulators.
Collapse
Affiliation(s)
- Sabine Disch
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
110
|
Enserink JM, Smolka MB, Zhou H, Kolodner RD. Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae. J Cell Biol 2006; 175:729-41. [PMID: 17130284 PMCID: PMC2064673 DOI: 10.1083/jcb.200605080] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 10/30/2006] [Indexed: 11/22/2022] Open
Abstract
In response to DNA replication stress in Saccharomyces cerevisiae, the DNA replication checkpoint maintains replication fork stability, prevents precocious chromosome segregation, and causes cells to arrest as large-budded cells. The checkpoint kinases Mec1 and Rad53 act in this checkpoint. Treatment of mec1 or rad53Delta mutants with replication inhibitors results in replication fork collapse and inappropriate partitioning of partially replicated chromosomes, leading to cell death. We describe a previously unappreciated function of various replication stress checkpoint proteins, including Rad53, in the control of cell morphology. Checkpoint mutants have aberrant cell morphology and cell walls, and show defective bud site selection. Rad53 shows genetic interactions with septin ring pathway components, and, along with other checkpoint proteins, controls the timely degradation of Swe1 during replication stress, thereby facilitating proper bud growth. Thus, checkpoint proteins play an important role in coordinating morphogenetic events with DNA replication during replication stress.
Collapse
Affiliation(s)
- Jorrit M Enserink
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
111
|
Abstract
BACKGROUND Cell physiology is regulated along the 24-h time scale by a circadian timing system composed of molecular clocks within each cell and a central coordination system in the brain. The mammalian molecular clock is made of interconnected molecular loops involving at least 12 circadian genes. The cellular clocks are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker which also helps the organism adjust to environmental cycles. The rest-activity rhythm is a reliable marker of the circadian system function in both rodents and man. This circadian organization is responsible for predictable changes in the tolerability and efficacy of anticancer agents, and possibly also in tumor promotion or growth. METHODS Expected least toxic times of chemotherapy were extrapolated from experimental models to human subjects with reference to the rest-activity cycle. The clinical relevance of the chronotherapy principle, i.e. treatment administration as a function of rhythms, has been demonstrated in randomized multicenter trials. RESULTS Chronotherapeutic schedules have been used to safely document the activity of the association of oxaliplatin, 5-FU and leucovorin against metastatic colorectal cancer and to set up a new medicosurgical management of this disease which achieved unprecedented long term survival. CONCLUSION The chronotherapy concept offers further promises for improving current cancer treatment options as well as for optimizing the development of new anticancer or supportive agents.
Collapse
Affiliation(s)
- Francis Lévi
- INSERM E0354 Chronothérapeutique des cancers, Hôpital Paul Brousse (I.C.I.G), 94807 - Villejuif Cedex, France.
| |
Collapse
|
112
|
Hood-DeGrenier JK, Boulton CN, Lyo V. Cytoplasmic Clb2 is required for timely inactivation of the mitotic inhibitor Swe1 and normal bud morphogenesis in Saccharomyces cerevisiae. Curr Genet 2006; 51:1-18. [PMID: 17033818 DOI: 10.1007/s00294-006-0102-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/05/2006] [Accepted: 09/10/2006] [Indexed: 10/24/2022]
Abstract
Subcellular localization is an important determinant of substrate and functional specificity for cyclin-cyclin dependent kinase (CDK) complexes. This work addresses the cytoplasmic function of the budding yeast mitotic cyclin Clb2, which is mostly nuclear but is also present in the bulk cytoplasm and at the mother-bud neck. Clb2 contains two leucine-rich nuclear export signals (NESs)--one of which we newly describe here--that maintain its presence in the cytoplasm. Yeast strains bearing mutations in one or both of these NESs have elongated buds, indicative of a G2/M cell cycle delay. A small number of these cells exhibit a filamentous-like morphology under conditions that do not normally induce filamentous growth. These phenotypes are enhanced by deletion of the other three mitotic cyclins (CLB1,3,4) and are dependent on expression of Swe1, the yeast Cdk1 inhibitory kinase. Deltaclb1,3,4 Deltabud3 cells, which fail to localize Clb2 to the bud neck, also exhibit a Swe1-dependent elongated bud phenotype. Our results support a model in which cytoplasmic Clb2-Cdk1 is required for timely inactivation of Swe1 at the G2/M transition and bud neck targeting of Clb2 contributes to the efficiency of this process. Cytoplasmic Clb2 may also be important for repression of filamentous growth.
Collapse
|
113
|
Martinez JS, Jeong DE, Choi E, Billings BM, Hall MC. Acm1 is a negative regulator of the CDH1-dependent anaphase-promoting complex/cyclosome in budding yeast. Mol Cell Biol 2006; 26:9162-76. [PMID: 17030612 PMCID: PMC1698549 DOI: 10.1128/mcb.00603-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cdh1 is a coactivator of the anaphase-promoting complex/cyclosome (APC/C) and contributes to mitotic exit and G1 maintenance by facilitating the polyubiquitination and subsequent proteolysis of specific substrates. Here, we report that budding yeast Cdh1 is a component of a cell cycle-regulated complex that includes the 14-3-3 homologs Bmh1 and Bmh2 and a previously uncharacterized protein, which we name Acm1 (APC/CCdh1 modulator 1). Association of Cdh1 with Bmh1 and Bmh2 requires Acm1, and the Acm1 protein is cell cycle regulated, appearing late in G1 and disappearing in late M. In acm1Delta strains, Cdh1 localization to the bud neck and association with two substrates, Clb2 and Hsl1, were strongly enhanced. Several lines of evidence suggest that Acm1 can suppress APC/CCdh1-mediated proteolysis of mitotic cyclins. First, overexpression of Acm1 fully restored viability to cells expressing toxic levels of Cdh1 or a constitutively active Cdh1 mutant lacking inhibitory phosphorylation sites. Second, overexpression of Acm1 was toxic in sic1Delta cells. Third, ACM1 deletion exacerbated a low-penetrance elongated-bud phenotype caused by modest overexpression of Cdh1. This bud elongation was independent of the morphogenesis checkpoint, and the combination of acm1Delta and hsl1Delta resulted in a dramatic enhancement of bud elongation and G2/M delay. Effects on bud elongation were attenuated when Cdh1 was replaced with a mutant lacking the C-terminal IR dipeptide, suggesting that APC/C-dependent proteolysis is required for this phenotype. We propose that Acm1 and Bmh1/Bmh2 constitute a specialized inhibitor of APC/CCdh1.
Collapse
Affiliation(s)
- Juan S Martinez
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | | | | | | | | |
Collapse
|
114
|
Helfer H, Gladfelter AS. AgSwe1p regulates mitosis in response to morphogenesis and nutrients in multinucleated Ashbya gossypii cells. Mol Biol Cell 2006; 17:4494-512. [PMID: 16899511 PMCID: PMC1635347 DOI: 10.1091/mbc.e06-03-0215] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclei in the filamentous, multinucleated fungus Ashbya gossypii divide asynchronously. We have investigated what internal and external signals spatially direct mitosis within these hyphal cells. Mitoses are most common near cortical septin rings found at growing tips and branchpoints. In septin mutants, mitoses are no longer concentrated at branchpoints, suggesting that the septin rings function to locally promote mitosis near new branches. Similarly, cells lacking AgSwe1p kinase (a Wee1 homologue), AgHsl1p (a Nim1-related kinase), and AgMih1p phosphatase (the Cdc25 homologue that likely counteracts AgSwe1p activity) also have mitoses distributed randomly in the hyphae as opposed to at branchpoints. Surprisingly, however, no phosphorylation of the CDK tyrosine 18 residue, the conserved substrate of Swe1p kinases, was detected in normally growing cells. In contrast, abundant CDK tyrosine phosphorylation was apparent in starving cells, resulting in diminished nuclear density. This starvation-induced CDK phosphorylation is AgSwe1p dependent, and overexpressed AgSwe1p is sufficient to delay nuclei even in rich nutrient conditions. In starving cells lacking septins or AgSwe1p negative regulators, the nuclear density is further diminished compared with wild type. We have generated a model in which AgSwe1p may regulate mitosis in response to cell intrinsic morphogenesis cues and external nutrient availability in multinucleated cells.
Collapse
Affiliation(s)
- Hanspeter Helfer
- University of Basel Biozentrum, Molecular Microbiology, 4056 Basel, Switzerland
| | | |
Collapse
|
115
|
Tang J, Erikson RL, Liu X. Checkpoint kinase 1 (Chk1) is required for mitotic progression through negative regulation of polo-like kinase 1 (Plk1). Proc Natl Acad Sci U S A 2006; 103:11964-9. [PMID: 16873548 PMCID: PMC1567681 DOI: 10.1073/pnas.0604987103] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the essential function of checkpoint kinase 1 (Chk1) in DNA damage response has been well established, the role of Chk1 in normal cell cycle progression is unclear. By using RNAi to specifically deplete Chk1, we determined loss-of-function phenotypes in HeLa cells. A vector-based RNAi approach showed that Chk1 is required for normal cell proliferation and survival, inasmuch as a dramatic cell-cycle arrest at G(2)/M phase and massive apoptosis were observed in Chk1-deficient cells. Coupling of siRNA with cell synchronization further revealed that Chk1 depletion leads to metaphase block, as indicated by various mitotic markers. Neither bipolar spindle formation nor centrosome functions were affected by Chk1 depletion; however, the depleted cells exhibited chromosome misalignment during metaphase, chromosome lagging during anaphase, and kinetochore defects within the regions of misaligned/lagging chromosomes. Moreover, we showed that Chk1 is a negative regulator of polo-like kinase 1 (Plk1), in either the absence or presence of DNA damage. Finally, Chk1 depletion leads to the activation of the spindle checkpoint because codepletion of spindle checkpoint proteins rescues the Chk1 depletion-induced mitotic arrest.
Collapse
Affiliation(s)
- Jiabin Tang
- *Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Department of Biochemistry and the Cancer Center, Purdue University, West Lafayette, IN 47907; and
| | - Raymond L. Erikson
- *Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Xiaoqi Liu
- *Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Department of Biochemistry and the Cancer Center, Purdue University, West Lafayette, IN 47907; and
- The Walther Cancer Institute, Indianapolis, IN 46202
| |
Collapse
|
116
|
Pérez-Martín J, Castillo-Lluva S, Sgarlata C, Flor-Parra I, Mielnichuk N, Torreblanca J, Carbó N. Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi. Mol Genet Genomics 2006; 276:211-29. [PMID: 16896795 DOI: 10.1007/s00438-006-0152-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 07/05/2006] [Indexed: 12/20/2022]
Abstract
Activation of virulence in pathogenic fungi often involves differentiation processes that need the reset of the cell cycle and induction of a new morphogenetic program. Therefore, the fungal capability to modify its cell cycle constitutes an important determinant in carrying out a successful infection. The dimorphic fungus Ustilago maydis is the causative agent of corn smut disease and has lately become a highly attractive model in addressing fundamental questions about development in pathogenic fungi. The different morphological and genetic changes of U. maydis cells during the pathogenic process advocate an accurate control of the cell cycle in these transitions. This is why this model pathogen deserves attention as a powerful tool in analyzing the relationships between cell cycle, morphogenesis, and pathogenicity. The aim of this review is to summarize recent advances in the unveiling of cell cycle regulation in U. maydis. We also discuss the connection between cell cycle and virulence and how cell cycle control is an important downstream target in the fungus-plant interaction.
Collapse
Affiliation(s)
- José Pérez-Martín
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco-UAM, 28049, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
117
|
Gutierrez GJ, Ronai Z. Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem Sci 2006; 31:324-32. [PMID: 16647857 PMCID: PMC3061571 DOI: 10.1016/j.tibs.2006.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 03/08/2006] [Accepted: 04/07/2006] [Indexed: 01/09/2023]
Abstract
Proteolysis mediated by the ubiquitin-proteasome system is a crucial regulatory mechanism in signal transduction cascades of temporal cellular processes such as cell division. Two principal subtypes of modular ubiquitin ligase, the anaphase-promoting complex or cyclosome (APC/C) and the Skp1/Cullin-1/F-box protein complex, have emerged as essential regulators of key events in the cell cycle. The importance of these ligases is best illustrated by their roles in the checkpoint and repair pathways or in response to multiple stresses, where they affect activation of the M-phase-promoting factor or proper formation and/or maintenance of the mitotic spindle. Recent studies have considerably improved our understanding of the function of the concerted action of the phosphorylation and ubiquitin or SUMO systems in the regulation of the stability and activity of key components of the mitotic checkpoint.
Collapse
Affiliation(s)
- Gustavo J Gutierrez
- Signal Transduction Program, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
118
|
Tominaga Y, Li C, Wang RH, Deng CX. Murine Wee1 plays a critical role in cell cycle regulation and pre-implantation stages of embryonic development. Int J Biol Sci 2006; 2:161-70. [PMID: 16810330 PMCID: PMC1483124 DOI: 10.7150/ijbs.2.161] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 05/15/2006] [Indexed: 11/21/2022] Open
Abstract
Wee1 kinase regulates the G2/M cell cycle checkpoint by phosphorylating and inactivating the mitotic cyclin-dependent kinase 1 (Cdk1). Loss of Wee1 in many systems, including yeast and drosophila, leads to premature mitotic entry. However, the developmental role of Wee1 in mammals remains unclear. In this study, we established Wee1 knockout mice by gene targeting. We found that Wee-/- embryos were defective in the G2/M cell cycle checkpoint induced by γ-irradiation and died of apoptosis before embryonic (E) day 3.5. To study the function of Wee1 further, we have developed MEF cells in which Wee1 is disrupted by a tamoxifen inducible Cre-LoxP approach. We found that acute deletion of Wee1 resulted in profound growth defects and cell death. Wee1 deficient cells displayed chromosome aneuploidy and DNA damage as revealed by γ-H2AX foci formation and Chk2 activation. Further studies revealed a conserved mechanism of Wee1 in regulating mitotic entry and the G2/M checkpoint compared with other lower organisms. These data provide in vivo evidence that mammalian Wee1 plays a critical role in maintaining genome integrity and is essential for embryonic survival at the pre-implantation stage of mouse development.
Collapse
Affiliation(s)
- Yohei Tominaga
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10/9N105, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
119
|
Clotet J, Escoté X, Adrover MÀ, Yaakov G, Garí E, Aldea M, de Nadal E, Posas F. Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J 2006; 25:2338-46. [PMID: 16688223 PMCID: PMC1478172 DOI: 10.1038/sj.emboj.7601095] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 03/22/2006] [Indexed: 11/09/2022] Open
Abstract
Control of cell cycle progression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. Exposure of yeast to osmostress leads to activation of the Hog1 SAPK, which controls cell cycle at G1 by the targeting of Sic1. Here, we show that survival to osmostress also requires regulation of G2 progression. Activated Hog1 interacts and directly phosphorylates a residue within the Hsl7-docking site of the Hsl1 checkpoint kinase, which results in delocalization of Hsl7 from the septin ring and leads to Swe1 accumulation. Upon Hog1 activation, cells containing a nonphosphorylatable Hsl1 by Hog1 are unable to promote Hsl7 delocalization, fail to arrest at G2 and become sensitive to osmostress. Together, we present a novel mechanism that regulates the Hsl1-Hsl7 complex to integrate stress signals to mediate cell cycle arrest and, demonstrate that a single MAPK coordinately modulates different cell cycle checkpoints to improve cell survival upon stress.
Collapse
Affiliation(s)
- Josep Clotet
- Department of Molecular and Cellular Biology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Xavier Escoté
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miquel Àngel Adrover
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gilad Yaakov
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eloi Garí
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Martí Aldea
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Eulàlia de Nadal
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Dr. Aiguader, 80, 08003 Barcelona, Spain. Tel.: +34 93 542 2848; Fax: +34 93 542 2802; E-mail:
| |
Collapse
|
120
|
Csikász-Nagy A, Battogtokh D, Chen KC, Novák B, Tyson JJ. Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys J 2006; 90:4361-79. [PMID: 16581849 PMCID: PMC1471857 DOI: 10.1529/biophysj.106.081240] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We propose a protein interaction network for the regulation of DNA synthesis and mitosis that emphasizes the universality of the regulatory system among eukaryotic cells. The idiosyncrasies of cell cycle regulation in particular organisms can be attributed, we claim, to specific settings of rate constants in the dynamic network of chemical reactions. The values of these rate constants are determined ultimately by the genetic makeup of an organism. To support these claims, we convert the reaction mechanism into a set of governing kinetic equations and provide parameter values (specific to budding yeast, fission yeast, frog eggs, and mammalian cells) that account for many curious features of cell cycle regulation in these organisms. Using one-parameter bifurcation diagrams, we show how overall cell growth drives progression through the cell cycle, how cell-size homeostasis can be achieved by two different strategies, and how mutations remodel bifurcation diagrams and create unusual cell-division phenotypes. The relation between gene dosage and phenotype can be summarized compactly in two-parameter bifurcation diagrams. Our approach provides a theoretical framework in which to understand both the universality and particularity of cell cycle regulation, and to construct, in modular fashion, increasingly complex models of the networks controlling cell growth and division.
Collapse
Affiliation(s)
- Attila Csikász-Nagy
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0406, USA
| | | | | | | | | |
Collapse
|
121
|
Horiguchi G, Ferjani A, Fujikura U, Tsukaya H. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2006; 119:37-42. [PMID: 16284709 DOI: 10.1007/s10265-005-0232-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 08/31/2005] [Indexed: 05/05/2023]
Abstract
Size is an important parameter in the characterization of organ morphology and function. To understand the mechanisms that control leaf size, we previously isolated a number of Arabidopsis thaliana mutants with altered leaf size. Because leaf morphogenesis depends on determinate cell proliferation, the size of a mature leaf is controlled by variation in cell size and number. Therefore, leaf-size mutants should be classified according to the effects of the mutations on the cell number and/or size. A group of mutants represented by angustifolia3/grf-interacting factor1 and aintegumenta exhibits an intriguing cellular phenotype termed compensation: when the leaf cell number is decreased due to the mutation, the leaf cell size increases, leading to compensation in leaf area. Several lines of genetic evidence suggest that compensation is probably not a result of the uncoupling of cell division from cell growth. Rather, the evidence suggests an organ-wide mechanism that coordinates cell proliferation with cell expansion during leaf development. Our results provide a key, novel concept that explains how leaf size is controlled at the organ level.
Collapse
Affiliation(s)
- Gorou Horiguchi
- National Institute for Basic Biology/Okazaki Institute for Integrated Bioscience, Myodaiji-cho Nishigo Naka 38, Okazaki 444-8585, Japan.
| | | | | | | |
Collapse
|
122
|
Sgarlata C, Pérez-Martín J. The cdc25 phosphatase is essential for the G2/M phase transition in the basidiomycete yeast Ustilago maydis. Mol Microbiol 2005; 58:1482-96. [PMID: 16313631 DOI: 10.1111/j.1365-2958.2005.04925.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cdc25-related phosphatases reverse the inhibitory phosphorylation of mitotic Cyclin-dependent kinases mediated by Wee1-related kinases, thereby promoting entry into mitosis. In the fission yeast, Schizosaccharomyces pombe, Cdc25 is required for entry into mitosis, while in the budding yeast Saccharomyces cerevisiae, Mih1 (the homologue of Cdc25) is not required for entry into mitosis or for viability. As these differences were linked to the different cell division and growth mechanism of these species, we sought to analyse the roles of Cdc25 in Ustilago maydis, which as S. cerevisiae divides by budding, but relies in a polar growth. This basidiomycete yeast is perfectly suited to analyse the relationships between cell cycle and morphogenesis. We show that U. maydis contains a single Cdc25-related protein, which is essential for growth. Loss of Cdc25 function results in a specific G2 arrest that correlated with high level of Tyr15 phosphorylation of Cdk1. Moreover, we show genetic interactions of cdc25 with wee1 and clb2 that support the notion that in U. maydis Cdc25 counteracts the Wee1-mediated inhibitory phosphorylation of Cdk1-Clb2 complex. Our results supports a model in which inhibitory phosphorylation of Cdk1 is a primary mechanism operating at G2/M transition in this fungus.
Collapse
Affiliation(s)
- Cecilia Sgarlata
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | | |
Collapse
|
123
|
Zhang C, Gong FC, Lambert GM, Galbraith DW. Cell type-specific characterization of nuclear DNA contents within complex tissues and organs. PLANT METHODS 2005; 1:7. [PMID: 16270943 PMCID: PMC1277020 DOI: 10.1186/1746-4811-1-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 10/04/2005] [Indexed: 05/05/2023]
Abstract
BACKGROUND Eukaryotic organisms are defined by the presence of a nucleus, which encloses the chromosomal DNA, and is characterized by its DNA content (C-value). Complex eukaryotic organisms contain organs and tissues that comprise interspersions of different cell types, within which polysomaty, endoreduplication, and cell cycle arrest is frequently observed. Little is known about the distribution of C-values across different cell types within these organs and tissues. RESULTS We have developed, and describe here, a method to precisely define the C-value status within any specific cell type within complex organs and tissues of plants. We illustrate the application of this method to Arabidopsis thaliana, specifically focusing on the different cell types found within the root. CONCLUSION The method accurately and conveniently charts C-value within specific cell types, and provides novel insight into developmental processes. The method is, in principle, applicable to any transformable organism, including mammals, within which cell type specificity of regulation of endoreduplication, of polysomaty, and of cell cycle arrest is suspected.
Collapse
Affiliation(s)
- Changqing Zhang
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Fang Cheng Gong
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
- Operon Biotechnologies, Inc., 2705 Artie Street Bldg. 400, Ste. 27, Huntsville, AL 35805, USA
| | - Georgina M Lambert
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - David W Galbraith
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
124
|
Harvey SL, Charlet A, Haas W, Gygi SP, Kellogg DR. Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell 2005; 122:407-20. [PMID: 16096060 DOI: 10.1016/j.cell.2005.05.029] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 04/27/2005] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
The Wee1 kinase phosphorylates and inhibits cyclin-dependent kinase 1 (Cdk1), thereby delaying entry into mitosis until appropriate conditions have been met. An understanding of the mechanisms that regulate Wee1 should provide new insight into how cells make the decision to enter mitosis. We report here that Swe1, the budding-yeast homolog of Wee1, is directly regulated by Cdk1. Phosphorylation of Swe1 by Cdk1 activates Swe1 and is required for formation of a stable Swe1-Cdk1 complex that maintains Cdk1 in the inhibited state. Dephosphorylation of Cdk1 leads to further phosphorylation of Swe1 and release of Cdk1. Thus, Cdk1 both positively and negatively regulates its own inhibitor. Regulation of the Swe1-Cdk1 complex is likely to play a critical role in controlling the transition into mitosis.
Collapse
Affiliation(s)
- Stacy L Harvey
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
125
|
Shimada M, Namikawa-Yamada C, Nakanishi M, Murakami H. Regulation of Cdc2p and Cdc13p Is Required for Cell Cycle Arrest Induced by Defective RNA Splicing in Fission Yeast. J Biol Chem 2005; 280:32640-8. [PMID: 16049013 DOI: 10.1074/jbc.m504746200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Screening of cdc mutants of fission yeast for those whose cell cycle arrest is independent of the DNA damage checkpoint identified the RNA splicing-deficient cdc28 mutant. A search for mutants of cdc28 cells that enter mitosis with unspliced RNA resulted in the identification of an orb5 point mutant. The orb5+ gene, which encodes a catalytic subunit of casein kinase II, was found to be required for cell cycle arrest in other mutants with defective RNA metabolism but not for operation of the DNA replication or DNA damage checkpoints. Loss of function of wee1+ or rad24+ also suppressed the arrest of several splicing mutants. Overexpression of the major B-type cyclin Cdc13p induced cdc28 cells to enter mitosis. The abundance of Cdc13p was reduced, and the phosphorylation of Cdc2p on tyrosine 15 was maintained in splicing-defective cells. These results suggest that regulation of Cdc13p and Cdc2p is required for G2 arrest in splicing mutants.
Collapse
Affiliation(s)
- Midori Shimada
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | |
Collapse
|
126
|
Douglas LM, Alvarez FJ, McCreary C, Konopka JB. Septin function in yeast model systems and pathogenic fungi. EUKARYOTIC CELL 2005; 4:1503-12. [PMID: 16151244 PMCID: PMC1214204 DOI: 10.1128/ec.4.9.1503-1512.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Lois M. Douglas
- Department of Molecular Genetics and Microbiology, Graduate Program in Genetics, State University of New York, Stony Brook, New York 11794-5222
| | - Francisco J. Alvarez
- Department of Molecular Genetics and Microbiology, Graduate Program in Genetics, State University of New York, Stony Brook, New York 11794-5222
| | - Cheryl McCreary
- Department of Molecular Genetics and Microbiology, Graduate Program in Genetics, State University of New York, Stony Brook, New York 11794-5222
| | - James B. Konopka
- Department of Molecular Genetics and Microbiology, Graduate Program in Genetics, State University of New York, Stony Brook, New York 11794-5222
| |
Collapse
|
127
|
Sgarlata C, Pérez-Martín J. Inhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungusUstilago maydis. J Cell Sci 2005; 118:3607-22. [PMID: 16046476 DOI: 10.1242/jcs.02499] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The regulation of cyclin-dependent kinase (CDK) activity through inhibitory phosphorylation seems to play an important role in the eukaryotic cell cycle. We have investigated the influence that inhibitory phosphorylation of the catalytic subunit of mitotic CDK has on cell growth and pathogenicity of the corn smut fungus Ustilago maydis. This model pathogen is worthy of attention since it is well suited to analyze the relationships between the cell cycle, morphogenesis and pathogenicity. We set out to study these relationships by producing a cdk1 mutant allele that was refractory to inhibitory phosphorylation. The expression of this mutant in U. maydis cells dramatically altered their morphology. Since this kind of mutation makes the CDK catalytic subunit resistant to regulation by Wee1-related kinases in other organisms, we characterized the orthologous Wee1 kinase from U. maydis. We found that Wee1 is essential in U. maydis. Overexpression of wee1 produces cell cycle arrest in G2, the target of Wee1 apparently being the Cdk1/Clb2 complex, which is required specifically for the onset of mitosis. Given the connection between the cell cycle control and pathogenesis in U. maydis, we also analyzed whether cells with impaired inhibitory phosphorylation of Cdk1 were able to infect plants. We found that inhibitory phosphorylation was required for mating, a prerequisite to initiate pathogenic development. By examining plant-specific expression of the constitutively unphosphorylated cdk1AF allele, we also found that appropriate levels of inhibitory phosphorylation were required at stages of infection subsequent to penetration by the fungus. These data reinforces the connections between cell cycle, morphogenesis and virulence in this smut fungus.
Collapse
Affiliation(s)
- Cecilia Sgarlata
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | | |
Collapse
|
128
|
Filipski E, Innominato PF, Wu M, Li XM, Iacobelli S, Xian LJ, Lévi F. Effects of Light and Food Schedules on Liver and Tumor Molecular Clocks in Mice. J Natl Cancer Inst 2005; 97:507-17. [PMID: 15812076 DOI: 10.1093/jnci/dji083] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Disrupted circadian coordination accelerates malignant growth, but the molecular mechanism is unclear. METHODS Healthy or Glasgow osteosarcoma-bearing mice (n = 162) were synchronized with light and darkness over 2-3 weeks, submitted to an 8-hour advance onset of light every 2 days (chronic jet lag) to disrupt circadian coordination, or submitted to chronic jet lag and meal timing to prevent molecular clock alteration. The expression of molecular clock genes and of the cell cycle genes c-Myc and p53 in liver and tumor was determined with quantitative reverse transcription-polymerase chain reaction at six circadian times over a 24-hour period of light and darkness and analyzed with analysis of variance and cosinor. Tumor weight was measured daily over the course of the experiment. All statistical tests were two-sided. RESULTS In synchronized mice, mean mRNA levels of clock genes Rev-erbalpha, Per2, and Bmal1 varied by 206-, four-, and 26-fold, respectively, over the 24 hours in healthy mouse liver; by 36-, 35-, and 32-fold in the livers of tumor-bearing mice; and by 9.4-, 5.5-, and sixfold in tumor tissue (P = .046 to <.001). In mice subjected to chronic jet lag, the periodic changes were dampened and the clock gene rhythms were temporally shifted in liver and ablated in tumor, and tumor growth was accelerated. Meal timing reversed the chronic jet lag-induced alterations in Rev-erbalpha and Per2 expression in liver and of all three clock genes in tumor and slowed tumor growth. Tumor growth differed as a function of light and feeding schedules (P = .04). No obvious rhythm was detected for p53 or c-Myc in liver or tumor tissues of synchronized mice. In healthy mice subjected to chronic jet lag, the mean level of p53 expression was cut in half (P = .002), and a 12-fold circadian variation in c-Myc mRNA level (P = .03) was induced in the liver of healthy mice, whereas complex expression patterns were found in the liver and tumor of tumor-bearing mice. CONCLUSIONS Altered light-dark or feeding schedules modified the expression of molecular clock genes and genes involved in carcinogenesis and tumor progression.
Collapse
Affiliation(s)
- Elisabeth Filipski
- INSERM E 0354 Chronothérapeutique des cancers, Hôpital P. Brousse and Université Paris XI, 94807 Villejuif Cedex, France
| | | | | | | | | | | | | |
Collapse
|
129
|
Stumpff J, Duncan T, Homola E, Campbell SD, Su TT. Drosophila Wee1 kinase regulates Cdk1 and mitotic entry during embryogenesis. Curr Biol 2005; 14:2143-8. [PMID: 15589158 PMCID: PMC3242732 DOI: 10.1016/j.cub.2004.11.050] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 10/18/2004] [Accepted: 10/20/2004] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinases (Cdks) are the central regulators of the cell division cycle. Inhibitors of Cdks ensure proper coordination of cell cycle events and help regulate cell proliferation in the context of tissues and organs. Wee1 homologs phosphorylate a conserved tyrosine to inhibit the mitotic cyclin-dependent kinase Cdk1. Loss of Wee1 function in fission or budding yeast causes premature entry into mitosis. The importance of metazoan Wee1 homologs for timing mitosis, however, has been demonstrated only in Xenopus egg extracts and via ectopic Cdk1 activation . Here, we report that Drosophila Wee1 (dWee1) regulates Cdk1 via phosphorylation of tyrosine 15 and times mitotic entry during the cortical nuclear cycles of syncytial blastoderm embryos, which lack gap phases. Loss of maternal dwee1 leads to premature entry into mitosis, mitotic spindle defects, chromosome condensation problems, and a Chk2-dependent block of subsequent development, and then embryonic lethality. These findings modify previous models about cell cycle regulation in syncytial embryos and demonstrate that Wee1 kinases can regulate mitotic entry in vivo during metazoan development even in cycles that lack a G2 phase.
Collapse
Affiliation(s)
- Jason Stumpff
- Department of Molecular, Cellular, and Developmental Biology University of Colorado Boulder, Colorado 80309-0347
| | - Tod Duncan
- Department of Molecular, Cellular, and Developmental Biology University of Colorado Boulder, Colorado 80309-0347
| | - Ellen Homola
- Department of Biological Sciences University of Alberta Edmonton, Alberta T6G 2E9 Canada
| | - Shelagh D. Campbell
- Department of Biological Sciences University of Alberta Edmonton, Alberta T6G 2E9 Canada
| | - Tin Tin Su
- Department of Molecular, Cellular, and Developmental Biology University of Colorado Boulder, Colorado 80309-0347
- Correspondence:
| |
Collapse
|
130
|
Abstract
Regulated protein degradation has emerged as a key recurring theme in multiple aspects of cell-cycle regulation. Importantly, the irreversible nature of proteolysis makes it an invaluable complement to the intrinsically reversible regulation through phosphorylation and other post-translational modifications. Consequently, ubiquitin-protein ligases, the protagonists of regulated protein destruction, have gained prominence that compares to that of the cyclin-dependent kinases (Cdks) in driving the eukaryotic cell-cycle clock. This review will focus on the two main players, the related ubiquitin-protein ligases APC/C and SCF, and how they control cell-cycle progression. I will also try to delineate the regulation and interplay of these destruction mechanisms, which are intricately connected to the kinase network as well as to extrinsic signals. Moreover, cell-cycle ubiquitin-protein ligases are themselves subject to proteolytic control in cis as well as in trans. Finally, a careful comparison of the functions and regulation of APC/C and SCF shows that, in certain aspects, their logic of action is fundamentally different.
Collapse
Affiliation(s)
- Hartmut C Vodermaier
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
131
|
Aiken CEM, Swoboda PPL, Skepper JN, Johnson MH. The direct measurement of embryogenic volume and nucleo-cytoplasmic ratio during mouse pre-implantation development. Reproduction 2004; 128:527-35. [PMID: 15509698 DOI: 10.1530/rep.1.00281] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After fertilization, the mammalian conceptus undergoes cleavage, a process of cell proliferation in the absence of interphase growth. It is not known when cleavage ends and gives way to fully replicative cell cycles with a stable nucleo-cytoplasmic ratio. We have used two-photon excitation and confocal microscopy to measure directly volumes and nucleo-cytoplasmic ratios of whole murine concepti and their individual constituent blastomeres during pre-implantation development up to the early uterine attachment stage (day 5). We show that the total cytoplasmic volume of the conceptus remains constant during pre-implantation development, and that the average nucleo-cytoplasmic ratio increases exponentially throughout the same period. Data from individual blastomeres show that both volume and nucleo-cytoplasmic ratio diverge in the inner and outer subpopulations evident from the 16-cell stage (fifth developmental cycle) onwards. Cells from emergent outer trophoblast populations are larger and have smaller nucleo-cytoplasmic ratios than those from emergent inner pluriblast populations. Moreover, the nucleo-cytoplasmic ratio of the trophoblast appears to be stabilizing, suggesting that for this subpopulation cleavage may end at the 16–32-cell transition. Putative hypoblast and epiblast cell subpopulations within the pluriblast were not distinguishable by volume or nucleo-cytoplasmic ratio. Embryonic stem cell volume was higher than that of either cell subpopulation of expanded blastocysts, and their nucleo-cytoplasmic ratio was similar to that of trophoblast cells.
Collapse
|
132
|
Agapova LS, Volodina JL, Chumakov PM, Kopnin BP. Activation of Ras-Ral Pathway Attenuates p53-independent DNA Damage G2 Checkpoint. J Biol Chem 2004; 279:36382-9. [PMID: 15208305 DOI: 10.1074/jbc.m405007200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Earlier we have found that in p53-deficient cells the expression of activated Ras attenuates the DNA damage-induced arrest in G(1) and G(2). In the present work we studied Ras-mediated effects on the G(2) checkpoint in two human cell lines, MDAH041 immortalized fibroblasts and Saos-2 osteosarcoma cells. The transduction of the H-Ras mutants that retain certain functions (V12S35, V12G37, and V12C40 retain the ability to activate Raf or RalGDS or phosphatidylinositol 3-kinase, respectively) as well as the activated or dominant-negative mutants of RalA (V23 and N28, respectively) has revealed that the activation of Ras-RalGEFs-Ral pathway was responsible for the attenuation of the G(2) arrest induced by ethyl metanesulfonate or doxorubicin. Noteworthy, the activated RalA V23N49 mutant, which cannot interact with RLIP76/RalBP1 protein, one of the best studied Ral effectors, retained the ability to attenuate the DNA damage-induced G(2) arrest. Activation of the Ras-Ral signaling affected neither the level nor the intracellular localization of cyclin B1 and CDC2 but interfered with the CDC2 inhibitory phosphorylation at Tyr(15) and the decrease in the cyclin B/CDC2 kinase activity in damaged cells. The revealed function of the Ras-Ral pathway may contribute to the development of genetic instability in neoplastic cells.
Collapse
Affiliation(s)
- Larissa S Agapova
- Institute of Carcinogenesis, Russian Cancer Research Center, 115478 Moscow, Russia
| | | | | | | |
Collapse
|