101
|
The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. J Bacteriol 2010; 192:1279-91. [PMID: 20061486 DOI: 10.1128/jb.01285-09] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In Escherichia coli, expression of the RelE and HipA toxins in the absence of their cognate antitoxins has been associated with generating multidrug-tolerant "persisters." Here we show that unlike persisters of E. coli, persisters of Mycobacterium tuberculosis selected with one drug do not acquire cross-resistance to other classes of drugs. M. tuberculosis has three homologs of RelE arranged in operons with their apparent antitoxins. Each toxin individually arrests growth of both M. tuberculosis and E. coli, an effect that is neutralized by coexpression of the cognate antitoxin. Overexpression or deletion of each of the RelE toxins had a toxin- and drug-specific effect on the proportion of bacilli surviving antibiotic killing. All three toxins were upregulated in vivo, but none of the deletions affected survival during murine infection. RelE2 overexpression increased bacterial survival rates in the presence of rifampin in vitro, while deletion significantly decreased survival rates. Strikingly, deletion of this toxin had no discernible effect on the level of persisters seen in rifampin-treated mice. Our results suggest that, in vivo, RelE-generated persisters are unlikely to play a significant role in the generation of bacilli that survive in the face of multidrug therapy or in the generation of multidrug-resistant M. tuberculosis.
Collapse
|
102
|
Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A, Engelberg-Kulka H. A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS One 2009; 4:e6785. [PMID: 19707553 PMCID: PMC2727947 DOI: 10.1371/journal.pone.0006785] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 07/24/2009] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) modules are gene pairs specifying for a toxin and its antitoxin and are found on the chromosomes of many bacteria including pathogens. Here we report how each of five such TA systems in E. coli affect bacterial cell death differently in liquid media and during biofilm formation. Of all these systems, only the TA system mazEF mediated cell death both in liquid media and during biofilm formation. At the other extreme, as our results have revealed here, the TA system dinJ-YafQ is unique in that it is involved only in the death process during biofilm formation. Cell death governed by mazEF and dinJ-YafQ seems to participate in biofilm formation through a novel mechanism.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Reut Verdiger
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Ayalla Shlosberg-Fedida
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Hanna Engelberg-Kulka
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
103
|
The vapBC Operon from Mycobacterium smegmatis Is An Autoregulated Toxin–Antitoxin Module That Controls Growth via Inhibition of Translation. J Mol Biol 2009; 390:353-67. [DOI: 10.1016/j.jmb.2009.05.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 12/19/2022]
|
104
|
Drobnak I, Korencic A, Loris R, Marianovsky I, Glaser G, Jamnik A, Vesnaver G, Lah J. Energetics of MazG unfolding in correlation with its structural features. J Mol Biol 2009; 392:63-74. [PMID: 19523960 DOI: 10.1016/j.jmb.2009.05.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022]
Abstract
MazG is a homodimeric alpha-helical protein that belongs to the superfamily of all-alpha NTP pyrophosphatases. Its function has been connected to the regulation of the toxin-antitoxin module mazEF, implicated in programmed growth arrest/cell death of Escherichia coli cells under conditions of amino acid starvation. The goal of the first detailed biophysical study of a member of the all-alpha NTP pyrophosphatase superfamily, presented here, is to improve molecular understanding of the unfolding of this type of proteins. Thermal unfolding of MazG monitored by differential scanning calorimetry, circular dichroism spectroscopy, and fluorimetry at neutral pH in the presence of a reducing agent (dithiothreitol) can be successfully described as a reversible four-state transition between a dimeric native state, two dimeric intermediate states, and a monomeric denatured state. The first intermediate state appears to have a structure similar to that of the native state while the final thermally denatured monomeric state is not fully unfolded and contains a significant fraction of residual alpha-helical structure. In the absence of dithiothreitol, disulfide cross-linking causes misfolding of MazG that appears to be responsible for the formation of multimeric aggregates. MazG is most stable at pH 7-8, while at pH <6, it exists in a molten-globule-like state. The thermodynamic parameters characterizing each step of MazG denaturation transition obtained by global fitting of the four-state model to differential scanning calorimetry, circular dichroism, and fluorimetry temperature profiles are in agreement with the observed structural characteristics of the MazG conformational states and their assumed functional role.
Collapse
|
105
|
Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol 2009; 191:4854-62. [PMID: 19502408 PMCID: PMC2715734 DOI: 10.1128/jb.01272-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that often carries temperate bacteriophages. As part of a program to characterize the genetic makeup of prophages associated with clinical strains and to assess the potential roles that they play in the biology and pathogenesis in their host, we performed comparative genomic analysis of 10 temperate pneumococcal phages. All of the genomes are organized into five major gene clusters: lysogeny, replication, packaging, morphogenesis, and lysis clusters. All of the phage particles observed showed a Siphoviridae morphology. The only genes that are well conserved in all the genomes studied are those involved in the integration and the lysis of the host in addition to two genes, of unknown function, within the replication module. We observed that a high percentage of the open reading frames contained no similarities to any sequences catalogued in public databases; however, genes that were homologous to known phage virulence genes, including the pblB gene of Streptococcus mitis and the vapE gene of Dichelobacter nodosus, were also identified. Interestingly, bioinformatic tools showed the presence of a toxin-antitoxin system in the phage phiSpn_6, and this represents the first time that an addition system in a pneumophage has been identified. Collectively, the temperate pneumophages contain a diverse set of genes with various levels of similarity among them.
Collapse
|
106
|
Hurley JM, Woychik NA. Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites. J Biol Chem 2009; 284:18605-13. [PMID: 19423702 DOI: 10.1074/jbc.m109.008763] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most pathogenic Proteus species are primarily associated with urinary tract infections, especially in persons with indwelling catheters or functional/anatomic abnormalities of the urinary tract. Urinary tract infections caused by Proteus vulgaris typically form biofilms and are resistant to commonly used antibiotics. The Rts1 conjugative plasmid from a clinical isolate of P. vulgaris carries over 300 predicted open reading frames, including antibiotic resistance genes. The maintenance of the Rts1 plasmid is ensured in part by the HigBA toxin-antitoxin system. We determined the precise mechanism of action of the HigB toxin in vivo, which is distinct from other known toxins. We demonstrate that HigB is an endoribonuclease whose enzymatic activity is dependent on association with ribosomes through the 50 S subunit. Using primer extension analysis of several test mRNAs, we showed that HigB cleaved extensively across the entire length of coding regions only at specific recognition sequences. HigB mediated cleavage of 100% of both in-frame and out-of-frame AAA sequences. In addition, HigB cleaved approximately 20% of AA sequences in coding regions and occasionally cut single As. Remarkably, the cleavage specificity of HigB coincided with one of the most frequently used codons in the AT-rich Proteus spp., AAA (lysine). Therefore, the HigB-mediated plasmid maintenance system for the Rts1 plasmid highlights the intimate relationship between host cells and extrachromosomal DNA that enables the dynamic acquisition of genes that impart a spectrum of survival advantages, including those encoding multidrug resistance and virulence factors.
Collapse
Affiliation(s)
- Jennifer M Hurley
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
107
|
Kolodkin-Gal I, Engelberg-Kulka H. The stationary-phase sigma factor sigma(S) is responsible for the resistance of Escherichia coli stationary-phase cells to mazEF-mediated cell death. J Bacteriol 2009; 191:3177-82. [PMID: 19251848 PMCID: PMC2681799 DOI: 10.1128/jb.00011-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/11/2009] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli mazEF is a toxin-antitoxin gene module that mediates cell death during exponential-phase cellular growth through either reactive oxygen species (ROS)-dependent or ROS-independent pathways. Here, we found that the stationary-phase sigma factor sigma(S) was responsible for the resistance to mazEF-mediated cell death during stationary growth phase. Deletion of rpoS, the gene encoding sigma(S) from the bacterial chromosome, permitted mazEF-mediated cell death during stationary growth phase.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Molecular Biology, the Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
108
|
Amitai S, Kolodkin-Gal I, Hananya-Meltabashi M, Sacher A, Engelberg-Kulka H. Escherichia coli MazF leads to the simultaneous selective synthesis of both "death proteins" and "survival proteins". PLoS Genet 2009; 5:e1000390. [PMID: 19282968 PMCID: PMC2646832 DOI: 10.1371/journal.pgen.1000390] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 01/21/2009] [Indexed: 12/02/2022] Open
Abstract
The Escherichia coli mazEF module is one of the most thoroughly studied toxin–antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. MazF is an endoribonuclease that leads to the inhibition of protein synthesis by cleaving mRNAs at ACA sequences. Here, using 2D-gels, we show that in E. coli, although MazF induction leads to the inhibition of the synthesis of most proteins, the synthesis of an exclusive group of proteins, mostly smaller than about 20 kDa, is still permitted. We identified some of those small proteins by mass spectrometry. By deleting the genes encoding those proteins from the E. coli chromosome, we showed that they were required for the death of most of the cellular population. Under the same experimental conditions, which induce mazEF-mediated cell death, other such proteins were found to be required for the survival of a small sub-population of cells. Thus, MazF appears to be a regulator that induces downstream pathways leading to death of most of the population and the continued survival of a small sub-population, which will likely become the nucleus of a new population when growth conditions become less stressful. The enteric bacterium E. coli, as most other bacteria, carries a pair of genes on its chromosome; one of them specifies a toxin and the other one an antitoxin. Previously, we have shown that that the mazEF toxin–antitoxin system in E. coli is responsible for bacterial cell death under stressful conditions. Clearly, a system that causes any given cell to die is not advantageous to that particular cell. On the other hand, the death of an individual cell may be advantageous for the bacterial population as a whole. Here, for the first time, we report that MazF activates a complex network of proteins. Moreover, we also show, for the first time, that MazF affects two opposite processes: cell death and cell survival. We suggest that this dual effect may provide an evolutionary rational for mazEF-mediated cell death. When exposed to stressful conditions, most of the cell population undergoes programmed cell death; however, there appears to be an active process that keeps a small fraction of the population alive. When growth conditions become less stressful, it is probably this small sub-population of survivors that becomes the basis of a new cell population.
Collapse
Affiliation(s)
- Shahar Amitai
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mirit Hananya-Meltabashi
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ayelet Sacher
- The Maiman Institute for Proteome Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanna Engelberg-Kulka
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
109
|
Overexpression of MazFsa in Staphylococcus aureus induces bacteriostasis by selectively targeting mRNAs for cleavage. J Bacteriol 2009; 191:2051-9. [PMID: 19168622 DOI: 10.1128/jb.00907-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of chromosomally encoded toxin-antitoxin (TA) loci in bacterial physiology has been under debate, with the toxin proposed as either an inducer of bacteriostasis or a mediator of programmed cell death (PCD). We report here that ectopic expression of MazF(Sa), a toxin of the TA module from Staphylococcus aureus, led to a rapid decrease in CFU counts but most cells remained viable as determined by differential Syto 9 and propidium iodide staining after MazF(Sa) induction. This finding suggested that the toxin MazF(Sa) induced cell stasis rather than cell death. We also showed that MazF(Sa) selectively cleaves cellular mRNAs in vivo, avoiding "important" transcripts such as recA, gyrB, and sarA mRNAs in MazF(Sa)-induced cells, while these three mRNAs can be cleaved in vitro. The results of Northwestern blotting showed that both sarA and recA mRNAs bind strongly to a putative RNA-binding protein. These data suggest that S. aureus likely undergoes stasis by protecting selective mRNA with RNA-binding proteins upon the expression of MazF(Sa) in vivo.
Collapse
|
110
|
The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci U S A 2009; 106:894-9. [PMID: 19124776 DOI: 10.1073/pnas.0808832106] [Citation(s) in RCA: 402] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Various mechanisms exist that enable bacteria to resist bacteriophage infection. Resistance strategies include the abortive infection (Abi) systems, which promote cell death and limit phage replication within a bacterial population. A highly effective 2-gene Abi system from the phytopathogen Erwinia carotovora subspecies atroseptica, designated ToxIN, is described. The ToxIN Abi system also functions as a toxin-antitoxin (TA) pair, with ToxN inhibiting bacterial growth and the tandemly repeated ToxI RNA antitoxin counteracting the toxicity. TA modules are currently divided into 2 classes, protein and RNA antisense. We provide evidence that ToxIN defines an entirely new TA class that functions via a novel protein-RNA mechanism, with analogous systems present in diverse bacteria. Despite the debated role of TA systems, we demonstrate that ToxIN provides viral resistance in a range of bacterial genera against multiple phages. This is the first demonstration of a novel mechanistic class of TA systems and of an Abi system functioning in different bacterial genera, both with implications for the dynamics of phage-bacterial interactions.
Collapse
|
111
|
Yamaguchi Y, Inouye M. mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:467-500. [PMID: 19215780 DOI: 10.1016/s0079-6603(08)00812-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Escherichia coli contains a large number of suicide or toxin genes, whose expression leads to cell growth arrest and eventual cell death. One such toxin, MazF, is an ACA-specific endoribonuclease, termed "mRNA interferase."E. coli contains other mRNA interferases with different sequence specificities, which are considered to play important roles in growth regulation under stress conditions, and also in eliminating stress-damaged cells from a population. Recently, MazF homologues with 5-base recognition sequences have been identified, for example, those from Mycobacterium tuberculosis. These sequences are significantly underrepresented in the genes for protein families playing a role in the immunity and pathogenesis of M. tuberculosis. An mRNA interferase in Myxococcus xanthus is essential for programmed cell death during fruiting body formation. We propose that mRNA interferases play roles not only in cell growth regulation and programmed cell death, but also in regulation of specific gene expression (either positively or negatively) in bacteria.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
112
|
Miallau L, Faller M, Chiang J, Arbing M, Guo F, Cascio D, Eisenberg D. Structure and proposed activity of a member of the VapBC family of toxin-antitoxin systems. VapBC-5 from Mycobacterium tuberculosis. J Biol Chem 2008; 284:276-283. [PMID: 18952600 DOI: 10.1074/jbc.m805061200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In prokaryotes, cognate toxin-antitoxin pairs have long been known, but no three-dimensional structure has been available for any given complex from Mycobacterium tuberculosis. Here we report the crystal structure and activity of a member of the VapBC family of complexes from M. tuberculosis. The toxin VapC-5 is a compact, 150 residues, two domain alpha/beta protein. Bent around the toxin is the VapB-5 antitoxin, a 33-residue alpha-helix. Assays suggest that the toxin is an Mg-enabled endoribonuclease, inhibited by the antitoxin. The lack of DNase activity is consistent with earlier suggestions that the complex represses its own operon. Furthermore, analysis of the interactions in the binding of the antitoxin to the toxin suggest that exquisite control is required to protect the bacteria cell from toxic VapC-5.
Collapse
Affiliation(s)
- Linda Miallau
- UCLA-DOE Institute of Genomics and Proteomics, the Department of Biological Chemistry, David Geffen School of Medicine, Molecular Cell and Developmental Biology, and the Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1570
| | - Michael Faller
- UCLA-DOE Institute of Genomics and Proteomics, the Department of Biological Chemistry, David Geffen School of Medicine, Molecular Cell and Developmental Biology, and the Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1570
| | - Janet Chiang
- UCLA-DOE Institute of Genomics and Proteomics, the Department of Biological Chemistry, David Geffen School of Medicine, Molecular Cell and Developmental Biology, and the Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1570
| | - Mark Arbing
- UCLA-DOE Institute of Genomics and Proteomics, the Department of Biological Chemistry, David Geffen School of Medicine, Molecular Cell and Developmental Biology, and the Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1570
| | - Feng Guo
- UCLA-DOE Institute of Genomics and Proteomics, the Department of Biological Chemistry, David Geffen School of Medicine, Molecular Cell and Developmental Biology, and the Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1570
| | - Duilio Cascio
- UCLA-DOE Institute of Genomics and Proteomics, the Department of Biological Chemistry, David Geffen School of Medicine, Molecular Cell and Developmental Biology, and the Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1570; UCLA-DOE Institute of Genomics and Proteomics, the Department of Biological Chemistry, David Geffen School of Medicine, Molecular Cell and Developmental Biology, and the Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1570; UCLA-DOE Institute of Genomics and Proteomics, the Department of Biological Chemistry, David Geffen School of Medicine, Molecular Cell and Developmental Biology, and the Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1570
| | - David Eisenberg
- UCLA-DOE Institute of Genomics and Proteomics, the Department of Biological Chemistry, David Geffen School of Medicine, Molecular Cell and Developmental Biology, and the Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1570; UCLA-DOE Institute of Genomics and Proteomics, the Department of Biological Chemistry, David Geffen School of Medicine, Molecular Cell and Developmental Biology, and the Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1570; UCLA-DOE Institute of Genomics and Proteomics, the Department of Biological Chemistry, David Geffen School of Medicine, Molecular Cell and Developmental Biology, and the Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1570.
| |
Collapse
|
113
|
Samuilov VD, Bulakhov AV, Kiselevsky DB, Kuznetsova YE, Molchanova DV, Sinitsyn SV, Shestak AA. Tolerance to antimicrobial agents and persistence of Escherichia coli and cyanobacteria. BIOCHEMISTRY (MOSCOW) 2008; 73:833-8. [PMID: 18707592 DOI: 10.1134/s0006297908070122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial persistence is the tolerance of a small part of a cell population to bactericidal agents, which is attained by a suppression of important cell functions and subsequent deceleration or cessation of cell division. The growth rate is the decisive factor in the transition of the cells to the persister state. A comparative study of quickly growing Escherichia coli K-12 strain MC 4100 and cyanobacteria Synechocystis sp. PCC 6803 and Anabaena variabilis ATCC 29413 growing slowly was performed. The cyanobacterial cells, like E. coli cells, differed in sensitivity to antimicrobial substances depending on the growth phase. Carbenicillin inhibiting the synthesis of peptidoglycan, a component of the bacterial cell wall, and lincomycin inhibiting the protein synthesis gave rise to nucleoid decay in cells from exponential cultures of Synechocystis 6803 and did not influence the nucleoids in cells from stationary cultures. Carbenicillin suppressed the growth of exponential cultures and had no effect on cyanobacterial stationary cultures. A suppression of Synechocystis 6803 growth in the exponential phase by lincomycin was stronger than in the stationary phase. Similar data were obtained with cyanobacterial cells under the action of H2O2 or menadione, an inducer of reactive oxygen species production. Slowly growing cyanobacteria were similar to quickly growing E. coli in their characteristics. Persistence is a characteristic feature of cyanobacteria.
Collapse
Affiliation(s)
- V D Samuilov
- Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
114
|
Kolodkin-Gal I, Engelberg-Kulka H. The extracellular death factor: physiological and genetic factors influencing its production and response in Escherichia coli. J Bacteriol 2008; 190:3169-75. [PMID: 18310334 PMCID: PMC2347391 DOI: 10.1128/jb.01918-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 02/19/2008] [Indexed: 11/20/2022] Open
Abstract
Gene pairs specific for a toxin and its antitoxin are called toxin-antitoxin modules and are found on the chromosomes of many bacteria. The most studied of these modules is Escherichia coli mazEF, in which mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. In a previous report from this laboratory, it was shown that mazEF-mediated cell death is a population phenomenon requiring a quorum-sensing peptide called the extracellular death factor (EDF). EDF is the linear pentapeptide NNWNN (32). Here, we further confirm that EDF is a signal molecule in a mixed population. In addition, we characterize some physiological conditions and genes required for EDF production and response. Furthermore, stress response and the gene specifying MazEF, the Zwf (glucose-6-phosphate dehydrogenase) gene, and the protease ClpXP are critical in EDF production. Significant strain differences in EDF production and response explain variations in the induction of mazEF-mediated cell death.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
115
|
Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit. Proc Natl Acad Sci U S A 2008; 105:5885-90. [PMID: 18398006 DOI: 10.1073/pnas.0711949105] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems (or "addiction modules") typically facilitate cell survival during intervals of stress by inducing a state of reversible growth arrest. However, upon prolonged stress, TA toxin action leads to cell death. TA systems have also been implicated in several clinically important phenomena: biofilm formation, bacterial persistence during antibiotic treatment, and bacterial pathogenesis. TA systems harbored by pathogens also serve as attractive antibiotic targets. To date, the mechanism of action of the majority of known TA toxins has not yet been elucidated. We determined the mode of action of the Doc toxin of the Phd-Doc TA system. Doc expression resulted in rapid cell growth arrest and marked inhibition of translation without significant perturbation of transcription or replication. However, Doc did not cleave mRNA as do other addiction-module toxins whose activities result in translation inhibition. Instead, Doc induction mimicked the effects of treatment with the aminoglycoside antibiotic hygromycin B (HygB): Both Doc and HygB interacted with 30S ribosomal subunits, stabilized polysomes, and resulted in a significant increase in mRNA half-life. HygB also competed with ribosome-bound Doc, whereas HygB-resistant mutants suppressed Doc toxicity, suggesting that the Doc-binding site includes that of HygB (i.e., helix 44 region of 16S rRNA containing the A, P, and E sites). Overall, our results illuminate an intracellular target and mechanism of TA toxin action drawn from aminoglycoside antibiotics: Doc toxicity is the result of inhibition of translation elongation, possibly at the translocation step, through its interaction with the 30S ribosomal subunit.
Collapse
|
116
|
Søgaard-Andersen L, Yang Z. Programmed Cell Death: Role for MazF and MrpC in Myxococcus Multicellular Development. Curr Biol 2008; 18:R337-9. [DOI: 10.1016/j.cub.2008.02.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
117
|
Rice KC, Bayles KW. Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 2008; 72:85-109, table of contents. [PMID: 18322035 PMCID: PMC2268280 DOI: 10.1128/mmbr.00030-07] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although the phenomenon of bacterial cell death and lysis has been studied for over 100 years, the contribution of these important processes to bacterial physiology and development has only recently been recognized. Contemporary study of cell death and lysis in a number of different bacteria has revealed that these processes, once thought of as being passive and unregulated, are actually governed by highly complex regulatory systems. An emerging paradigm in this field suggests that, analogous to programmed cell death in eukaryotes, regulated cell death and lysis in bacteria play an important role in both developmental processes, such as competence and biofilm development, and the elimination of damaged cells, such as those irreversibly injured by environmental or antibiotic stress. Further study in this exciting field of bacterial research may provide new insight into the potential evolutionary link between control of cell death in bacteria and programmed cell death (apoptosis) in eukaryotes.
Collapse
Affiliation(s)
- Kelly C Rice
- Department of Microbiology and Pathology, University of Nebraska Medical Center, 668 S. 41st St., PYH4014, Omaha, NE 68198-6245, USA
| | | |
Collapse
|
118
|
Affiliation(s)
- Karl Drlica
- Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 225 Warren St., Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
119
|
Nariya H, Inouye M. MazF, an mRNA Interferase, Mediates Programmed Cell Death during Multicellular Myxococcus Development. Cell 2008; 132:55-66. [DOI: 10.1016/j.cell.2007.11.044] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 09/25/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
|
120
|
Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H. A Linear Pentapeptide Is a Quorum-Sensing Factor Required for mazEF-Mediated Cell Death in Escherichia coli. Science 2007; 318:652-5. [DOI: 10.1126/science.1147248] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
mazEF is a toxin-antitoxin module located on many bacterial chromosomes, including those of pathogens. Here, we report that Escherichia coli mazEF-mediated cell death is a population phenomenon requiring a quorum-sensing molecule that we call the extracellular death factor (EDF). Structural analysis revealed that EDF is a linear pentapeptide, Asn-Asn-Trp-Asn-Asn. Each of the five amino acids of EDF is important for its activity.
Collapse
|
121
|
Abstract
The mazEF homologs of Staphylococcus aureus, designated mazEF(sa), have been shown to cotranscribe with the sigB operon under stress conditions. In this study, we showed that MazEF(Sa), as with their Escherichia coli counterparts, compose a toxin-antitoxin module wherein MazF(Sa) leads to rapid cell growth arrest and loss in viable CFU upon overexpression. MazF(Sa) is a novel sequence-specific endoribonuclease which cleaves mRNA to inhibit protein synthesis. Using ctpA mRNA as the model substrate both in vitro and in vivo, we demonstrated that MazF(Sa) cleaves single-strand RNA preferentially at the 5' side of the first U or 3' side of the second U residue within the consensus sequences VUUV' (where V and V' are A, C, or G and may or may not be identical). Binding studies confirmed that the antitoxin MazE(Sa) binds MazF(Sa) to form a complex to inhibit the endoribonuclease activity of MazF(Sa). Contrary to the system in E. coli, exposure to selected antibiotics augmented mazEF(sa) transcription, akin to what one would anticipate from the environmental stress response of the sigB system. These data indicate that the mazEF system of S. aureus differs from the gram-negative counterparts with respect to mRNA cleavage specificity and antibiotic stresses.
Collapse
|
122
|
Affiliation(s)
- Roy David Magnuson
- Department of Biological Sciences, University of Alabama in Huntsville, 301 Sparkman Drive, WH 258, Huntsville, AL 35758, USA.
| |
Collapse
|
123
|
Wang NR, Hergenrother PJ. A continuous fluorometric assay for the assessment of MazF ribonuclease activity. Anal Biochem 2007; 371:173-83. [PMID: 17706586 PMCID: PMC2443740 DOI: 10.1016/j.ab.2007.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
Plasmids maintain themselves in their bacterial host through several different mechanisms, one of which involves the synthesis of plasmid-encoded toxin and antitoxin proteins. When the plasmid is present, the antitoxin binds to and neutralizes the toxin. If a plasmid-free daughter cell arises, however, the labile antitoxin is degraded (and not replenished) and the toxin kills the cell from within. These toxin-antitoxin (TA) systems thereby function as postsegregational killing systems, and the disruption of the TA interaction represents an intriguing antibacterial strategy. It was recently discovered that the genes for one particular TA system, MazEF, are ubiquitous on plasmids isolated from clinical vancomycin-resistant enterococci (VRE) strains. Thus, it appears that small molecule disruptors of the MazEF interaction have potential as antibacterial agents. The MazF toxin protein is known to be a ribonuclease. Unfortunately, traditional methods for the assessment of MazF activity rely on the use of radiolabeled substrates followed by analysis with polyacrylamide gel electrophoresis. This article describes a simple and convenient continuous assay for the assessment of MazF activity. The assay uses an oligonucleotide with a fluorophore on the 5' end and a quencher on the 3' end, and processing of this substrate by MazF results in a large increase in the fluorescence signal. Through this assay, we have for the first time determined K(M) and V(max) values for this enzyme and have also found that MazF is not inhibited by standard ribonuclease inhibitors. This assay will be useful to those interested in the biochemistry of the MazF family of toxins and the disruption of MazE/MazF.
Collapse
|
124
|
Kamphuis MB, Monti MC, van den Heuvel RHH, Santos-Sierra S, Folkers GE, Lemonnier M, Díaz-Orejas R, Heck AJR, Boelens R. Interactions between the toxin Kid of the bacterial parD system and the antitoxins Kis and MazE. Proteins 2007; 67:219-31. [PMID: 17206710 DOI: 10.1002/prot.21254] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The proteins Kid and Kis are the toxin and antitoxin, respectively, encoded by the parD operon of Escherichia coli plasmid R1. Kis prevents the inhibition of E. coli cell growth caused by the RNA cleavage activity of Kid. Overproduction of MazE, the chromosome-encoded homologue of Kis, has been demonstrated to neutralize Kid toxicity to a certain extent in the absence of native Kis. Here, we show that a high structural similarity exists between these antitoxins, using NMR spectroscopy. We report about the interactions between Kid and Kis that are responsible for neutralization of Kid toxicity and enhance autoregulation of parD transcription. Native macromolecular mass spectrometry data demonstrate that Kid and Kis form multiple complexes. At Kis:Kid ratios equal to or exceeding 1:1, as found in vivo in a plasmid-containing cell, various complexes are present, ranging from Kid(2)-Kis(2) tetramer up to Kis(2)-Kid(2)-Kis(2)-Kid(2)-Kis(2) decamer. When Kid is in excess of Kis, corresponding to an in vivo situation immediately after loss of the plasmid, the Kid(2)-Kis(2)-Kid(2) heterohexamer is the most abundant species. NMR chemical shift and intensity perturbations in the (1)H (15)N HSQC spectra of Kid and Kis, observed when titrating the partner protein, show that the interaction sites of Kid and Kis resemble those within the previously reported MazF(2)-MazE(2)-MazF(2) complex. Furthermore, we demonstrate that Kid(2)-MazE(2) tetramers can be formed via weak interactions involving a limited part of the Kis-binding residues of Kid. The functional roles of the identified Kid-Kis and Kid-MazE interaction sites and complexes in toxin neutralization and repression of transcription are discussed.
Collapse
Affiliation(s)
- Monique B Kamphuis
- Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Villain-Guillot P, Gualtieri M, Bastide L, Leonetti JP. In vitro activities of different inhibitors of bacterial transcription against Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 2007; 51:3117-21. [PMID: 17606690 PMCID: PMC2043205 DOI: 10.1128/aac.00343-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is a major cause of nosocomial infections because of its ability to form biofilms on the surface of medical devices. Only a few antibacterial agents are relatively active against biofilms, and rifampin, a transcription inhibitor, ranks among the most effective molecules against biofilm-related infections. Whether this efficacy is due to advantageous structural properties of rifampin or to the fact that the RNA polymerase is a favorable target remains unclear. In an attempt to answer this question, we investigated the action of different transcription inhibitors against S. epidermidis biofilm, including the newest synthetic transcription inhibitors. This comparison suggests that most of the antibiotics that target the RNA polymerase are active on S. epidermidis biofilms at concentrations close to their MICs. One of these compounds, CBR703, despite its high MIC ranks among the best antibiotics to eradicate biofilm-embedded bacteria.
Collapse
Affiliation(s)
- Philippe Villain-Guillot
- CNRS UMR 5236, Centre d'Etudes d'Agents Pathogènes et Biotechnologies pour la Santé, Faculté de Pharmacie, Montpellier, France
| | | | | | | |
Collapse
|
126
|
Wilbaux M, Mine N, Guérout AM, Mazel D, Van Melderen L. Functional interactions between coexisting toxin-antitoxin systems of the ccd family in Escherichia coli O157:H7. J Bacteriol 2007; 189:2712-9. [PMID: 17259320 PMCID: PMC1855815 DOI: 10.1128/jb.01679-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems are widely represented on mobile genetic elements as well as in bacterial chromosomes. TA systems encode a toxin and an antitoxin neutralizing it. We have characterized a homolog of the ccd TA system of the F plasmid (ccd(F)) located in the chromosomal backbone of the pathogenic O157:H7 Escherichia coli strain (ccd(O157)). The ccd(F) and the ccd(O157) systems coexist in O157:H7 isolates, as these pathogenic strains contain an F-related virulence plasmid carrying the ccd(F) system. We have shown that the chromosomal ccd(O157) system encodes functional toxin and antitoxin proteins that share properties with their plasmidic homologs: the CcdB(O157) toxin targets the DNA gyrase, and the CcdA(O157) antitoxin is degraded by the Lon protease. The ccd(O157) chromosomal system is expressed in its natural context, although promoter activity analyses revealed that its expression is weaker than that of ccd(F). ccd(O157) is unable to mediate postsegregational killing when cloned in an unstable plasmid, supporting the idea that chromosomal TA systems play a role(s) other than stabilization in bacterial physiology. Our cross-interaction experiments revealed that the chromosomal toxin is neutralized by the plasmidic antitoxin while the plasmidic toxin is not neutralized by the chromosomal antitoxin, whether expressed ectopically or from its natural context. Moreover, the ccd(F) system is able to mediate postsegregational killing in an E. coli strain harboring the ccd(O157) system in its chromosome. This shows that the plasmidic ccd(F) system is functional in the presence of its chromosomal counterpart.
Collapse
Affiliation(s)
- Myriam Wilbaux
- Laboratoire de Génétique des Procaryotes, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | | | | | | | | |
Collapse
|
127
|
Szekeres S, Dauti M, Wilde C, Mazel D, Rowe-Magnus DA. Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions in the absence of selection. Mol Microbiol 2007; 63:1588-605. [PMID: 17367382 DOI: 10.1111/j.1365-2958.2007.05613.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Superintegrons (SIs) are chromosomal genetic elements containing assemblies of genes, each flanked by a recombination sequence (attC site) targeted by the integron integrase. SIs may contain hundreds of attC sites and intrinsic instability is anticipated; yet SIs are remarkably stable. This implies that either selective pressure maintains the genes or mechanisms exist which favour their persistence in the absence of selection. Toxin/antitoxin (TA) systems encode a stable toxin and a specific, unstable antitoxin. Once activated, the continued synthesis of the unstable antitoxin is necessary for cell survival. A bioinformatic search of accessible microbial genomes for SIs and TA systems revealed that large SIs harboured TA gene cassettes while smaller SIs did not. We demonstrated the function of TA loci in different genomic contexts where large-scale deletions can occur; in SIs and in a 165 kb dispensable region of the Escherichia coli genome. When devoid of TA loci, large-scale genome loss was evident in both environments. The inclusion of two TA loci, relBE1 and parDE1, which we identified in the Vibrio vulnificus SI rendered these environments refractory to gene loss. Thus, chromosomal TA loci can stabilize massive SI arrays and limit the extensive gene loss that is a hallmark of reductive evolution.
Collapse
Affiliation(s)
- Silvia Szekeres
- Division of Clinical Integrative Biology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, S1-26A, Toronto, Ontario, M4N 3N5, Canada
| | | | | | | | | |
Collapse
|
128
|
Moritz EM, Hergenrother PJ. Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc Natl Acad Sci U S A 2006; 104:311-6. [PMID: 17190821 PMCID: PMC1765457 DOI: 10.1073/pnas.0601168104] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are common hospital pathogens that are resistant to most major classes of antibiotics. The incidence of VRE is increasing rapidly, to the point where over one-quarter of enterococcal infections in intensive care units are now resistant to vancomycin. The exact mechanism by which VRE maintains its plasmid-encoded resistance genes is ill-defined, and novel targets for the treatment of VRE are lacking. In an effort to identify novel protein targets for the treatment of VRE infections, we probed the plasmids obtained from 75 VRE isolates for the presence of toxin-antitoxin (TA) gene systems. Remarkably, genes for one particular TA pair, the mazEF system (originally identified on the Escherichia coli chromosome), were present on plasmids from 75/75 (100%) of the isolates. Furthermore, mazEF was on the same plasmid as vanA in the vast majority of cases (>90%). Plasmid stability tests and RT-PCR raise the possibility that this plasmid-encoded mazEF is indeed functional in enterococci. Given this ubiquity of mazEF in VRE and the deleterious activity of the MazF toxin, disruption of mazEF with pharmacological agents is an attractive strategy for tailored antimicrobial therapy.
Collapse
Affiliation(s)
| | - Paul J. Hergenrother
- Chemistry, and
- Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
129
|
Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2006; 2:e135. [PMID: 17069462 PMCID: PMC1626106 DOI: 10.1371/journal.pgen.0020135] [Citation(s) in RCA: 318] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traditionally, programmed cell death (PCD) is associated with eukaryotic multicellular organisms. However, recently, PCD systems have also been observed in bacteria. Here we review recent research on two kinds of genetic programs that promote bacterial cell death. The first is mediated by mazEF, a toxin–antitoxin module found in the chromosomes of many kinds of bacteria, and mainly studied in Escherichia coli. The second program is found in Bacillus subtilis, in which the skf and sdp operons mediate the death of a subpopulation of sporulating bacterial cells. We relate these two bacterial PCD systems to the ways in which bacterial populations resemble multicellular organisms.
Collapse
Affiliation(s)
- Hanna Engelberg-Kulka
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | | | |
Collapse
|
130
|
Budde PP, Davis BM, Yuan J, Waldor MK. Characterization of a higBA toxin-antitoxin locus in Vibrio cholerae. J Bacteriol 2006; 189:491-500. [PMID: 17085558 PMCID: PMC1797405 DOI: 10.1128/jb.00909-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) loci, which were initially characterized as plasmid stabilization agents, have in recent years been detected on the chromosomes of numerous free-living bacteria. Vibrio cholerae, the causative agent of cholera, contains 13 putative TA loci, all of which are clustered within the superintegron on chromosome II. Here we report the characterization of the V. cholerae higBA locus, also known as VCA0391/2. Deletion of higA alone was not possible, consistent with predictions that it encodes an antitoxin, and biochemical analyses confirmed that HigA interacts with HigB. Transient exogenous expression of the toxin HigB dramatically slowed growth of V. cholerae and Escherichia coli and reduced the numbers of CFU by several orders of magnitude. HigB toxicity could be counteracted by simultaneous or delayed production of HigA, although HigA's effect diminished as the delay lengthened. Transcripts from endogenous higBA increased following treatment of V. cholerae with translational inhibitors, presumably due to reduced levels of HigA, which represses the higBA locus. However, no higBA-dependent cell death was observed in response to such stimuli. Thus, at least under the conditions tested, activation of endogenous HigB does not appear to be bactericidal.
Collapse
Affiliation(s)
- Priya Prakash Budde
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
131
|
Kolodkin-Gal I, Engelberg-Kulka H. Induction of Escherichia coli chromosomal mazEF by stressful conditions causes an irreversible loss of viability. J Bacteriol 2006; 188:3420-3. [PMID: 16621839 PMCID: PMC1447462 DOI: 10.1128/jb.188.9.3420-3423.2006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 02/22/2006] [Indexed: 11/20/2022] Open
Abstract
mazEF is a stress-induced toxin-antitoxin module located on the chromosomes of many bacteria. Here we induced Escherichia coli chromosomal mazEF by various stressful conditions. We found an irreversible loss of viability, which is the basic characteristic of cell death. These results further support our previous conclusion that E. coli mazEF mediation of cell death is not a passive process, but an active and genetically "programmed" death response.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
132
|
Zhu L, Zhang Y, Teh JS, Zhang J, Connell N, Rubin H, Inouye M. Characterization of mRNA interferases from Mycobacterium tuberculosis. J Biol Chem 2006; 281:18638-43. [PMID: 16611633 DOI: 10.1074/jbc.m512693200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mRNA interferases are sequence-specific endoribonucleases encoded by the toxin-antitoxin systems in the bacterial genomes. MazF from Escherichia coli has been shown to be an mRNA interferase that specifically cleaves at ACA sequences in single-stranded RNAs. It has been shown that MazF induction in E. coli effectively inhibits protein synthesis leading to cell growth arrest in the quasidormant state. Here we have demonstrated that Mycobacterium tuberculosis contains at least seven genes encoding MazF homologues (MazF-mt1 to -mt7), four of which (MazF-mt1, -mt3, -mt4, and -mt6) caused cell growth arrest when induced in E. coli. MazF-mt1 and MazF-mt6 were purified and characterized for their mRNA interferase specificities. We showed that MazF-mt1 preferentially cleaves the era mRNA between U and A in UAC triplet sequences, whereas MazF-mt6 preferentially cleaves U-rich regions in the era mRNA both in vivo and in vitro. These results indicate that M. tuberculosis contains sequence-specific mRNA interferases, which may play a role in the persistent dormancy of this devastating pathogen in human tissues.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|