101
|
Dasargyri A, Hervella P, Christiansen A, Proulx ST, Detmar M, Leroux JC. Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles. J Control Release 2016; 224:229-238. [PMID: 26774218 DOI: 10.1016/j.jconrel.2016.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Anisamide is a small benzamide previously suggested as a tumor-targeting ligand for nanocarriers and it has been shown to enhance tumor uptake in vitro as well as in vivo when grafted on the nanoparticle surface. Anisamide has been hypothesized to interact with the Sigma-1 receptor, based on the binding of larger benzamides, which contain anisamide in their structure, to this receptor. However, the interaction between anisamide and Sigma-1 receptor has never been thoroughly studied. We developed fluorescent PEGylated particles decorated with anisamide, which were preferentially taken up in vitro by melanoma cells compared to macrophages. The anisamide-decorated particles were used to study their interaction with the Sigma-1 receptor. The absence of competition of Sigma-1 receptor ligands for the particle uptake was a first indication that the receptor might not be involved in the uptake process. In addition, the extent of particle uptake did not correlate with the levels of cellular expression of Sigma-1 receptor in the cell models tested. Immunostaining of the receptor on melanoma cells revealed intracellular localization, indirectly excluding the possibility of anisamide binding to the receptor when grafted on the particles. All these data question the previously suggested Sigma-1 receptor-mediated uptake of the anisamide-decorated particles, a finding which may have an impact on the use of anisamide as a targeting ligand.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Pablo Hervella
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Ailsa Christiansen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Steven T Proulx
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Michael Detmar
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland.
| |
Collapse
|
102
|
Schulz AM, Stutte S, Hogl S, Luckashenak N, Dudziak D, Leroy C, Forné I, Imhof A, Müller SA, Brakebusch CH, Lichtenthaler SF, Brocker T. Cdc42-dependent actin dynamics controls maturation and secretory activity of dendritic cells. J Cell Biol 2016; 211:553-67. [PMID: 26553928 PMCID: PMC4639873 DOI: 10.1083/jcb.201503128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdc42 control of actin dynamics keeps DCs in an immature state, and loss of Cdc42 activity facilitates secretion and rapid up-regulation of intracellular molecules to the cell surface, which shows that Cdc42 contributes to DC immunogenicity by regulating the DC actin cytoskeleton. Cell division cycle 42 (Cdc42) is a member of the Rho guanosine triphosphatase family and has pivotal functions in actin organization, cell migration, and proliferation. To further study the molecular mechanisms of dendritic cell (DC) regulation by Cdc42, we used Cdc42-deficient DCs. Cdc42 deficiency renders DCs phenotypically mature as they up-regulate the co-stimulatory molecule CD86 from intracellular storages to the cell surface. Cdc42 knockout DCs also accumulate high amounts of invariant chain–major histocompatibility complex (MHC) class II complexes at the cell surface, which cannot efficiently present peptide antigens (Ag’s) for priming of Ag-specific CD4 T cells. Proteome analyses showed a significant reduction in lysosomal MHC class II–processing proteins, such as cathepsins, which are lost from DCs by enhanced secretion. As these effects on DCs can be mimicked by chemical actin disruption, our results propose that Cdc42 control of actin dynamics keeps DCs in an immature state, and cessation of Cdc42 activity during DC maturation facilitates secretion as well as rapid up-regulation of intracellular molecules to the cell surface.
Collapse
Affiliation(s)
- Anna M Schulz
- Institute for Immunology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Susanne Stutte
- Institute for Immunology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Sebastian Hogl
- Deutsches Zentrum für Neurodegenerative Erkrankungen, 81377 Munich, Germany
| | - Nancy Luckashenak
- Institute for Immunology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Diana Dudziak
- Department of Dermatology, University Hospital of Erlangen, 91052 Erlangen, Germany
| | - Céline Leroy
- Institute for Immunology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Ignasi Forné
- Adolf Butenandt Institute, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Axel Imhof
- Adolf Butenandt Institute, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Stephan A Müller
- Deutsches Zentrum für Neurodegenerative Erkrankungen, 81377 Munich, Germany
| | - Cord H Brakebusch
- Molecular Pathology Section, Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefan F Lichtenthaler
- Munich Cluster for Systems Neurology, Ludwig Maximilians University Munich, 80336 Munich, Germany Deutsches Zentrum für Neurodegenerative Erkrankungen, 81377 Munich, Germany Neuroproteomics, Klinikum rechts der Isar, Institute for Advanced Study, Technische Universität München, 80333 Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| |
Collapse
|
103
|
Cell Penetrating Peptide Conjugated Chitosan for Enhanced Delivery of Nucleic Acid. Int J Mol Sci 2015; 16:28912-30. [PMID: 26690119 PMCID: PMC4691089 DOI: 10.3390/ijms161226142] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 01/05/2023] Open
Abstract
Gene therapy is an emerging therapeutic strategy for the cure or treatment of a spectrum of genetic disorders. Nevertheless, advances in gene therapy are immensely reliant upon design of an efficient gene carrier that can deliver genetic cargoes into the desired cell populations. Among various nonviral gene delivery systems, chitosan-based carriers have gained increasing attention because of their high cationic charge density, excellent biocompatibility, nearly nonexistent cytotoxicity, negligible immune response, and ideal ability to undergo chemical conjugation. However, a major shortcoming of chitosan-based carriers is their poor cellular uptake, leading to inadequate transfection efficiency. The intrinsic feature of cell penetrating peptides (CPPs) for transporting diverse cargoes into multiple cell and tissue types in a safe manner suggests that they can be conjugated to chitosan for improving its transfection efficiency. In this review, we briefly discuss CPPs and their classification, and also the major mechanisms contributing to the cellular uptake of CPPs and cargo conjugates. We also discuss immense improvements for the delivery of nucleic acids using CPP-conjugated chitosan-based carriers with special emphasis on plasmid DNA and small interfering RNA.
Collapse
|
104
|
Choudhary GS, Yao X, Wang J, Peng B, Bader RA, Ren D. Human Granulocyte Macrophage Colony-Stimulating Factor Enhances Antibiotic Susceptibility of Pseudomonas aeruginosa Persister Cells. Sci Rep 2015; 5:17315. [PMID: 26616387 PMCID: PMC4663479 DOI: 10.1038/srep17315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022] Open
Abstract
Bacterial persister cells are highly tolerant to antibiotics and cause chronic infections. However, little is known about the interaction between host immune systems with this subpopulation of metabolically inactive cells, and direct effects of host immune factors (in the absence of immune cells) on persister cells have not been studied. Here we report that human granulocyte macrophage-colony stimulating factor (GM-CSF) can sensitize the persister cells of Pseudomonas aeruginosa PAO1 and PDO300 to multiple antibiotics including ciprofloxacin, tobramycin, tetracycline, and gentamicin. GM-CSF also sensitized the biofilm cells of P. aeruginosa PAO1 and PDO300 to tobramycin in the presence of biofilm matrix degrading enzymes. The DNA microarray and qPCR results indicated that GM-CSF induced the genes for flagellar motility and pyocin production in the persister cells, but not the normal cells of P. aeruginosa PAO1. Consistently, the supernatants from GM-CSF treated P. aeruginosa PAO1 persister cell suspensions were found cidal to the pyocin sensitive strain P. aeruginosa PAK. Collectively, these findings suggest that host immune factors and bacterial persisters may directly interact, leading to enhanced susceptibility of persister cells to antibiotics.
Collapse
Affiliation(s)
- Geetika S Choudhary
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Xiangyu Yao
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Jing Wang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Bo Peng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Rebecca A Bader
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA.,Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA.,Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
105
|
Kim JH, Jang M, Kim YJ, Ahn HJ. Design and Application of Rolling Circle Amplification for a Tumor-Specific Drug Carrier. J Med Chem 2015; 58:7863-73. [DOI: 10.1021/acs.jmedchem.5b01126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jong Hwan Kim
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-Gu, Seoul 136-791, South Korea
| | - Mihue Jang
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-Gu, Seoul 136-791, South Korea
| | - Young-Je Kim
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-Gu, Seoul 136-791, South Korea
| | - Hyung Jun Ahn
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-Gu, Seoul 136-791, South Korea
| |
Collapse
|
106
|
Le Guével X, Perez Perrino M, Fernández TD, Palomares F, Torres MJ, Blanca M, Rojo J, Mayorga C. Multivalent Glycosylation of Fluorescent Gold Nanoclusters Promotes Increased Human Dendritic Cell Targeting via Multiple Endocytic Pathways. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20945-56. [PMID: 26329370 DOI: 10.1021/acsami.5b06541] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the synthesis and characterization of gold nanoclusters (Au NCs) stabilized by a mixture of zwitterionic and multivalent mannose ligands. Characterization of this carbohydrated nanosystem confirms its small size (∼2 nm), intense red-NIR fluorescence, relatively high affinity to lectin (ConA), and stability in physiological media. Cell studies performed using human-monocyte-derived dendritic cells (DCs) show that Au NC uptake efficiency is greatly enhanced by the presence of surface carbohydrate (>250% compared to noncarbohydrated Au NCs), allowing their detection in cells by fluorescence following incubation with concentrations as low as 1 μg mL(-1). Investigation using electron microscopy and pharmacological inhibitors indicates that Au NC uptake is mediated by multiple endocytic pathways involving the engulfment of Au NCs into endosomes and partial transport to lysosomes. Results show that clathrin- and F-actin-dependent pathways play major roles in Au NC uptake by DCs, regardless of whether or not they are coated with carbohydrates. In contrast, a specific C-lectin inhibitor induces a 60% decrease in DC particle uptake only for the carbohydrate-coated Au NCs. This study demonstrates that the combination of ultrasmall gold NCs and functionalization with multivalent mannose ligands results in greatly enhanced human DC targeting, presumably due to increased diffusion and target cell binding, respectively.
Collapse
Affiliation(s)
- Xavier Le Guével
- Therapeutic Nanosystems, The Andalusian Centre for Nanomedicine and Biotechnology (BIONAND) , 29590 Málaga, Spain
| | - Monica Perez Perrino
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC-University of Seville , 41092 Seville, Spain
| | | | | | | | | | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC-University of Seville , 41092 Seville, Spain
| | | |
Collapse
|
107
|
Harmsen S, Huang R, Wall MA, Karabeber H, Samii JM, Spaliviero M, White JR, Monette S, O'Connor R, Pitter KL, Sastra SA, Saborowski M, Holland EC, Singer S, Olive KP, Lowe SW, Blasberg RG, Kircher MF. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med 2015; 7:271ra7. [PMID: 25609167 DOI: 10.1126/scitranslmed.3010633] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The inability to visualize the true extent of cancers represents a significant challenge in many areas of oncology. The margins of most cancer types are not well demarcated because the cancer diffusely infiltrates the surrounding tissues. Furthermore, cancers may be multifocal and characterized by the presence of microscopic satellite lesions. Such microscopic foci represent a major reason for persistence of cancer, local recurrences, and metastatic spread, and are usually impossible to visualize with currently available imaging technologies. An imaging method to reveal the true extent of tumors is desired clinically and surgically. We show the precise visualization of tumor margins, microscopic tumor invasion, and multifocal locoregional tumor spread using a new generation of surface-enhanced resonance Raman scattering (SERRS) nanoparticles, which are termed SERRS nanostars. The SERRS nanostars feature a star-shaped gold core, a Raman reporter resonant in the near-infrared spectrum, and a primer-free silication method. In genetically engineered mouse models of pancreatic cancer, breast cancer, prostate cancer, and sarcoma, and in one human sarcoma xenograft model, SERRS nanostars enabled accurate detection of macroscopic malignant lesions, as well as microscopic disease, without the need for a targeting moiety. Moreover, the sensitivity (1.5 fM limit of detection) of SERRS nanostars allowed imaging of premalignant lesions of pancreatic and prostatic neoplasias. High sensitivity and broad applicability, in conjunction with their inert gold-silica composition, render SERRS nanostars a promising imaging agent for more precise cancer imaging and resection.
Collapse
Affiliation(s)
- Stefan Harmsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruimin Huang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew A Wall
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Hazem Karabeber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason M Samii
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Massimiliano Spaliviero
- Urology Service, Department of Surgery, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julie R White
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, and Weill Cornell Medical College, New York, NY 10065, USA. Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, and Weill Cornell Medical College, New York, NY 10065, USA. Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rachael O'Connor
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenneth L Pitter
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen A Sastra
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA. Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Saborowski
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric C Holland
- Human Biology Division and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Alvord Brain Tumor Center, University of Washington, Seattle, WA 98109, USA
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenneth P Olive
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA. Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Ronald G Blasberg
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
108
|
Jefferson A, Cadet VE, Hielscher A. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer. Crit Rev Oncol Hematol 2015; 95:407-16. [PMID: 25900073 DOI: 10.1016/j.critrevonc.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
The use of oncolytic viruses for the treatment of cancer is an emerging field of cancer research and therapy. Oncolytic viruses are designed to induce tumor specific immunity while replicating selectively within cancer cells to cause lysis of the tumor cells. While there are several forms of oncolytic viruses, the use of vaccinia viruses for oncolysis may be more beneficial than other forms of oncolytic viruses. For example, vaccinia viruses have been shown to exert their anti-tumor effects through genetic engineering strategies which enhance their therapeutic efficacy. This paper will address some of the most common forms of genetically modified vaccinia viruses and will explore the mechanisms whereby they selectively target, enter and destroy cancer cells. Furthermore, this review will highlight how vaccinia viruses activate host immune responses against cancer cells and will address clinical trials evaluating the tumor-directed and killing efficacy of these viruses against solid tumors.
Collapse
Affiliation(s)
- Artrish Jefferson
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Valerie E Cadet
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Abigail Hielscher
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States.
| |
Collapse
|
109
|
Jang M, Kim JH, Nam HY, Kwon IC, Ahn HJ. Design of a platform technology for systemic delivery of siRNA to tumours using rolling circle transcription. Nat Commun 2015; 6:7930. [PMID: 26246279 PMCID: PMC4918333 DOI: 10.1038/ncomms8930] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/25/2015] [Indexed: 11/23/2022] Open
Abstract
For therapeutic applications of siRNA, there are technical challenges with respect to targeted and systemic delivery. We here report a new siRNA carrier, RNAtr NPs, in a way that multiple tandem copies of RNA hairpins as a result of rolling circle transcription (RCT) can be readily adapted in tumour-targeted and systemic siRNA delivery. RNAtr NPs provide a means of condensing large amounts of multimeric RNA transcripts into the compact nanoparticles, especially without the aid of polycationic agents, and thus reduce the risk of immunogenicity and cytotoxicity by avoiding the use of synthetic polycationic reagents. This strategy allows the design of a platform technology for systemic delivery of siRNA to tumour sites, because RCT reaction, which enzymatically generates RNA polymers in multiple copy numbers at low cost, can lead to directly accessible routes to targeted and systemic delivery. Therefore, RNAtr NPs suggest great potentials as the siRNA therapeutics for cancer treatment. RNA interference has provided a promising tool to suppress the expression of specific genes associated with human diseases. Here, the authors present a platform technology for the systemic delivery of siRNA to tumour sites using rolling circle transcription.
Collapse
Affiliation(s)
- Mihue Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 136-791, South Korea
| | - Jong Hwan Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 136-791, South Korea
| | - Hae Yun Nam
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, 388-1 Pungnap-2 dong, Songpa-Gu, Seoul 136-736, South Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 136-791, South Korea
| | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 136-791, South Korea
| |
Collapse
|
110
|
Rust A, Hassan HHA, Sedelnikova S, Niranjan D, Hautbergue G, Abbas SA, Partridge L, Rice D, Binz T, Davletov B. Two complementary approaches for intracellular delivery of exogenous enzymes. Sci Rep 2015; 5:12444. [PMID: 26207613 PMCID: PMC4513551 DOI: 10.1038/srep12444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/26/2015] [Indexed: 01/08/2023] Open
Abstract
Intracellular delivery of biologically active proteins remains a formidable challenge in biomedical research. Here we show that biomedically relevant enzymes can be delivered into cells using a new DNA transfection reagent, lipofectamine 3000, allowing assessment of their intracellular functions. We also show that the J774.2 macrophage cell line exhibits unusual intracellular uptake of structurally and functionally distinct enzymes providing a convenient, reagent-free approach for evaluation of intracellular activities of enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Rice
- The University of Sheffield, Western Bank, Sheffield, UK
| | - Thomas Binz
- Medizinische Hochschule Hannover, Carl-Neuberg-Straße, Hannover, Germany
| | | |
Collapse
|
111
|
Chabaud M, Heuzé ML, Bretou M, Vargas P, Maiuri P, Solanes P, Maurin M, Terriac E, Le Berre M, Lankar D, Piolot T, Adelstein RS, Zhang Y, Sixt M, Jacobelli J, Bénichou O, Voituriez R, Piel M, Lennon-Duménil AM. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells. Nat Commun 2015; 6:7526. [PMID: 26109323 PMCID: PMC4491822 DOI: 10.1038/ncomms8526] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/16/2015] [Indexed: 12/23/2022] Open
Abstract
The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space.
Collapse
Affiliation(s)
- Mélanie Chabaud
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Mélina L. Heuzé
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Marine Bretou
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Pablo Vargas
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Paolo Maiuri
- CNRS UMR144, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Paola Solanes
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Mathieu Maurin
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Emmanuel Terriac
- CNRS UMR144, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Maël Le Berre
- CNRS UMR144, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Danielle Lankar
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Tristan Piolot
- CNRS UMR3215/Inserm U934, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Robert S. Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yingfan Zhang
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Sixt
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jordan Jacobelli
- National Jewish Health & University of Colorado, 1250 14th Street, Denver, USA
| | - Olivier Bénichou
- CNRS UMR 7600, Université Pierre et Marie Curie, 4 Place Jussieu, 7600 Paris, France
| | - Raphaël Voituriez
- CNRS UMR 7600, Université Pierre et Marie Curie, 4 Place Jussieu, 7600 Paris, France
- CNRS FRE 3231, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
| | - Matthieu Piel
- CNRS UMR144, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | |
Collapse
|
112
|
Nakase I, Kobayashi NB, Takatani-Nakase T, Yoshida T. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep 2015; 5:10300. [PMID: 26036864 PMCID: PMC4453128 DOI: 10.1038/srep10300] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/08/2015] [Indexed: 12/18/2022] Open
Abstract
Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Nahoko Bailey Kobayashi
- 1] Keio Advanced Research Centers (KARC), Keio University, Tsukuba, Ibaraki 300-2611, Japan [2] Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan
| | - Tetsuhiko Yoshida
- 1] Keio Advanced Research Centers (KARC), Keio University, Tsukuba, Ibaraki 300-2611, Japan [2] Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba, Ibaraki 300-2611, Japan
| |
Collapse
|
113
|
Maltese WA, Overmeyer JH. Non-apoptotic cell death associated with perturbations of macropinocytosis. Front Physiol 2015; 6:38. [PMID: 25762935 PMCID: PMC4329815 DOI: 10.3389/fphys.2015.00038] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/26/2015] [Indexed: 11/24/2022] Open
Abstract
Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed “methuosis,” from the Greek methuo (to drink to intoxication). It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms.
Collapse
Affiliation(s)
- William A Maltese
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Jean H Overmeyer
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| |
Collapse
|
114
|
Lei H, Hofferberth SC, Liu R, Colby A, Tevis KM, Catalano P, Grinstaff MW, Colson YL. Paclitaxel-loaded expansile nanoparticles enhance chemotherapeutic drug delivery in mesothelioma 3-dimensional multicellular spheroids. J Thorac Cardiovasc Surg 2015; 149:1417-24; discussion 1424-25.e1. [PMID: 25841659 DOI: 10.1016/j.jtcvs.2015.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Intraperitoneal administration of paclitaxel-loaded expansile nanoparticles (Pax-eNPs) significantly improves survival in an in vivo model of malignant mesothelioma compared with conventional drug delivery with the clinically utilized Cremophor EL/ethanol (C/E) excipient. However, in vitro monolayer cell culture experiments do not replicate this superior efficacy, suggesting Pax-eNPs utilize a unique mechanism of drug delivery. Using a mesothelioma spheroid model, we characterized the mechanisms of enhanced tumor cytotoxicity leveraged by Pax-eNPs. METHODS Human malignant mesothelioma (MSTO-211H) spheroids were co-incubated for 24 hours with Oregon Green-conjugated paclitaxel dissolved in C/E or loaded into eNPs. Oregon Green-paclitaxel uptake was measured as Oregon Green intensity via confocal microscopy and kinetics of tumor cytotoxicity were assessed via propidium iodide staining. Pharmacologic endocytotic inhibitors were used to elucidate mechanisms of eNP uptake into spheroids. RESULTS Increased drug penetration and a 38-fold higher intraspheroidal drug concentration were observed 24 hours after MSTO-211H spheroids were treated with Oregon Green-conjugated paclitaxel loaded into eNPs compared with Oregon Green-conjugated paclitaxel dissolved in C/E (P < .01). Macropinocytosis was the dominant endocytotic pathway of eNP uptake. Spheroids were more susceptible to paclitaxel when delivered via eNP, exhibiting more than twice the propidium iodine intensity compared with an equivalent paclitaxel-C/E dose. CONCLUSIONS Compared with monolayer cell culture, the in vitro 3-D tumor spheroid model better reflects the superior in vivo efficacy of Pax-eNPs. Persistent tumor penetration and prolonged intratumoral release are unique mechanisms of Pax-eNP cytotoxicity. 3-D spheroid models are valuable tools for investigating cytotoxic mechanisms and nanoparticle-tumor interactions, particularly given the costs and limitations of in vivo animal studies.
Collapse
Affiliation(s)
- Hongyi Lei
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Mass; Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sophie C Hofferberth
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Rong Liu
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Aaron Colby
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Mass
| | - Kristie M Tevis
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Mass
| | - Paul Catalano
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Mark W Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Mass
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Mass.
| |
Collapse
|
115
|
Ben-Dov N, Korenstein R. The uptake of HIV Tat peptide proceeds via two pathways which differ from macropinocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:869-77. [PMID: 25542781 DOI: 10.1016/j.bbamem.2014.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/16/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022]
Abstract
Cell penetrating peptides (CPPs) have been extensively studied as vectors for cellular delivery of therapeutic molecules, yet the identity of their uptake routes remained unclear and is still under debate. In this study we provide new insights into CPP entry routes by quantitatively measuring the intracellular uptake of FAM-labeled Tat-peptide under rigorous kinetic and thermal conditions. The uptake of Tat-peptide between 4 and 15°C corresponds to Q10=1.1, proceeding through a prompt (<5 min), temperature-independent process, suggesting direct membrane translocation. At longer durations, Tat rate of uptake shows linear dependence on temperature with Q10=1.44, accompanied by activation energy Ea=4.45 Kcal/mole. These values are significantly lower than those we found for the macropinocytosis probe dextran (Q10=2.2 and Ea=7.2 Kcal/mole) which possesses an exponential dependence on temperature, characteristic of endocytosis processes. Tat-peptide and dextran do not interfere with each other's uptake rate and the ratio of Tat-peptide uptake to its extracellular concentration is ~15 times higher than that for dextran. In addition, Phloretin, a modulator of cell membrane dipole potential, is shown to increase dextran uptake but to reduce that of Tat. We conclude that the uptake of Tat differs from that of dextran in all parameters. Tat uptake proceeds by dual entry routes which differ by their energy dependence.
Collapse
Affiliation(s)
- Nadav Ben-Dov
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel.
| | - Rafi Korenstein
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel.
| |
Collapse
|
116
|
Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 2014; 190:485-99. [PMID: 24984011 PMCID: PMC4153400 DOI: 10.1016/j.jconrel.2014.06.038] [Citation(s) in RCA: 541] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 12/27/2022]
Abstract
Collaborative efforts from the fields of biology, materials science, and engineering are leading to exciting progress in the development of nanomedicines. Since the targets of many therapeutic agents are localized in subcellular compartments, modulation of nanoparticle-cell interactions for efficient cellular uptake through the plasma membrane and the development of nanomedicines for precise delivery to subcellular compartments remain formidable challenges. Cellular internalization routes determine the post-internalization fate and intracellular localization of nanoparticles. This review highlights the cellular uptake routes most relevant to the field of non-targeted nanomedicine and presents an account of ligand-targeted nanoparticles for receptor-mediated cellular internalization as a strategy for modulating the cellular uptake of nanoparticles. Ligand-targeted nanoparticles have been the main impetus behind the progress of nanomedicines towards the clinic. This strategy has already resulted in remarkable progress towards effective oral delivery of nanomedicines that can overcome the intestinal epithelial barrier. A detailed overview of the recent developments in subcellular targeting as a novel platform for next-generation organelle-specific nanomedicines is also provided. Each section of the review includes prospects, potential, and concrete expectations from the field of targeted nanomedicines and strategies to meet those expectations.
Collapse
Affiliation(s)
- Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Won Il Choi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Cristian Vilos
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA; Universidad Andres Bello, Facultad de Medicina, Center for Integrative Medicine and Innovative Science (CIMIS), Echaurren 183, Santiago, Chile
| | - Archana Swami
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Jinjun Shi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA; King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
117
|
Saito AC, Ogura T, Fujiwara K, Murata S, Nomura SIM. Introducing micrometer-sized artificial objects into live cells: a method for cell-giant unilamellar vesicle electrofusion. PLoS One 2014; 9:e106853. [PMID: 25229561 PMCID: PMC4167692 DOI: 10.1371/journal.pone.0106853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/03/2014] [Indexed: 12/27/2022] Open
Abstract
Here, we report a method for introducing large objects of up to a micrometer in diameter into cultured mammalian cells by electrofusion of giant unilamellar vesicles. We prepared GUVs containing various artificial objects using a water-in-oil (w/o) emulsion centrifugation method. GUVs and dispersed HeLa cells were exposed to an alternating current (AC) field to induce a linear cell–GUV alignment, and then a direct current (DC) pulse was applied to facilitate transient electrofusion. With uniformly sized fluorescent beads as size indexes, we successfully and efficiently introduced beads of 1 µm in diameter into living cells along with a plasmid mammalian expression vector. Our electrofusion did not affect cell viability. After the electrofusion, cells proliferated normally until confluence was reached, and the introduced fluorescent beads were inherited during cell division. Analysis by both confocal microscopy and flow cytometry supported these findings. As an alternative approach, we also introduced a designed nanostructure (DNA origami) into live cells. The results we report here represent a milestone for designing artificial symbiosis of functionally active objects (such as micro-machines) in living cells. Moreover, our technique can be used for drug delivery, tissue engineering, and cell manipulation.
Collapse
Affiliation(s)
- Akira C. Saito
- Department of Bioengineering and Robotics, Tohoku University, Aoba-ku, Sendai, Japan
| | - Toshihiko Ogura
- Department of Developmental Neurobiology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Aoba-ku, Sendai, Japan
- CREST, JST, Tohoku University, Sendai, Miyagi, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, Hiyoshi, Kohokuku, Yokohama, Japan
- JSPS Research Fellow, Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Satoshi Murata
- Department of Bioengineering and Robotics, Tohoku University, Aoba-ku, Sendai, Japan
| | - Shin-ichiro M. Nomura
- Department of Bioengineering and Robotics, Tohoku University, Aoba-ku, Sendai, Japan
- * E-mail:
| |
Collapse
|
118
|
Berven L, Karppinen P, Hetland G, Samuelsen ABC. The polar high molecular weight fraction of the Agaricus blazei Murill extract, AndoSan™, reduces the activity of the tumor-associated protease, legumain, in RAW 264.7 cells. J Med Food 2014; 18:429-38. [PMID: 25136950 DOI: 10.1089/jmf.2014.0018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AndoSan™ is an extract of Agaricus blazei Murill (AbM; 82.4%), Hericium erinaceum (14.7%), and Grifola frondosa (2.9%). The main ingredient of AndoSan, AbM, is rich in different forms of β-glucans. Since these exhibit potent antitumor activity and have immunomodulatory effects, the stimulatory effect of AndoSan on the production of different cytokines, chemokines, and leukocyte growth factors has predominantly been attributed to β-glucans. AndoSan has been claimed to consist of 90% carbohydrate, of which 2.8% is β-glucans, but in this study, we show that the carbohydrate content is only 2% of the dry weight, corresponding to 0.09% β-glucan per mL of AndoSan. Fractionation of AndoSan, followed by carbohydrate analysis and HPLC analysis revealed that most of the glucose was concentrated in the polar high molecular weight fraction of AndoSan (ethanol insoluble water extract [EIWE]-A) and that this extract was able to significantly inhibit the activity of the tumor-associated protease, legumain, in RAW 264.7 cells. Legumain is synthesized as a zymogen and undergoes pH-dependent autoactivation of the proform to reach an enzymatically active form. In this study, we demonstrate that both the polar and nonpolar AndoSan fractions are able to inhibit the autoactivation of prolegumain, and that the polar fractions of AndoSan are the most potent inhibitors of the active form of the enzyme.
Collapse
Affiliation(s)
- Lise Berven
- 1 Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo , Oslo, Norway
| | | | | | | |
Collapse
|
119
|
Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 2014; 57:78-94. [PMID: 24795041 DOI: 10.1016/j.peptides.2014.04.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/19/2014] [Accepted: 04/19/2014] [Indexed: 01/24/2023]
Abstract
Efficient delivery of therapeutic and diagnostic molecules to the cells and tissues is a difficult challenge. The cellular membrane is very effective in its role as a selectively permeable barrier. While it is essential for cell survival and function, also presents a major barrier for intracellular delivery of cargo such as therapeutic and diagnostic agents. In recent years, cell-penetrating peptides (CPPs), that are relatively short cationic and/or amphipathic peptides, received great attention as efficient cellular delivery vectors due to their intrinsic ability to enter cells and mediate uptake of a wide range of macromolecular cargo such as plasmid DNA (pDNA), small interfering RNA (siRNAs), drugs, and nanoparticulate pharmaceutical carriers. This review discusses the various uptake mechanisms of these peptides. Furthermore, we discuss recent advances in the use of CPP for the efficient delivery of nanoparticles, nanocarriers, DNA, siRNA, and anticancer drugs to the cells. In addition, we have been highlighting new results for improving endosomal escape of CPP-cargo molecules. Finally, pH-responsive and activable CPPs for tumor-targeting therapy have been described.
Collapse
Affiliation(s)
- Samad Mussa Farkhani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| | - Hadi Karami
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Sardasht, 38481 Arak, Iran.
| | - Samane Mohammadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| | - Nasrin Sohrabi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| | - Fariba Badrzadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| |
Collapse
|
120
|
Nagasawa S, Ogura K, Tsutsuki H, Saitoh H, Moss J, Iwase H, Noda M, Yahiro K. Uptake of Shiga-toxigenic Escherichia coli SubAB by HeLa cells requires an actin- and lipid raft-dependent pathway. Cell Microbiol 2014; 16:1582-601. [PMID: 24844382 DOI: 10.1111/cmi.12315] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023]
Abstract
The novel cytotoxic factor subtilase cytotoxin (SubAB) is produced mainly by non-O157 Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves the molecular chaperone BiP/GRP78 in the endoplasmic reticulum (ER), leading to activation of RNA-dependent protein kinase (PKR)-like ER kinase (PERK), followed by caspase-dependent cell death. However, the SubAB uptake mechanism in HeLa cells is unknown. In this study, a variety of inhibitors and siRNAs were employed to characterize the SubAB uptake process. SubAB-induced BiP cleavage was inhibited by high concentrations of Dynasore, and methyl-β-cyclodextrin (mβCD) and Filipin III, but not suppressed in clathrin-, dynamin I/II-, caveolin1- and caveolin2-knockdown cells. We observed that SubAB treatment led to dramatic actin rearrangements, e.g. formation of plasma membrane blebs, with a significant increase in fluid uptake. Confocal microscopy analysis showed that SubAB uptake required actin cytoskeleton remodelling and lipid raft cholesterol. Furthermore, internalized SubAB in cells was found in the detergent-resistant domain (DRM) structure. Interestingly, IPA-3, an inhibitor of serine/threonine kinase p21-activated kinase (PAK1), an important protein of macropinocytosis, directly inhibited SubAB-mediated BiP cleavage and SubAB internalization. Thus, our findings suggest that SubAB uses lipid raft- and actin-dependent, but not clathrin-, caveolin- and dynamin-dependent pathways as its major endocytic translocation route.
Collapse
Affiliation(s)
- Sayaka Nagasawa
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Rajendran M, Yapici E, Miller LW. Lanthanide-based imaging of protein-protein interactions in live cells. Inorg Chem 2014; 53:1839-53. [PMID: 24144069 PMCID: PMC3944735 DOI: 10.1021/ic4018739] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to deduce the molecular mechanisms of biological function, it is necessary to monitor changes in the subcellular location, activation, and interaction of proteins within living cells in real time. Förster resonance energy-transfer (FRET)-based biosensors that incorporate genetically encoded, fluorescent proteins permit high spatial resolution imaging of protein-protein interactions or protein conformational dynamics. However, a nonspecific fluorescence background often obscures small FRET signal changes, and intensity-based biosensor measurements require careful interpretation and several control experiments. These problems can be overcome by using lanthanide [Tb(III) or Eu(III)] complexes as donors and green fluorescent protein (GFP) or other conventional fluorophores as acceptors. Essential features of this approach are the long-lifetime (approximately milliseconds) luminescence of Tb(III) complexes and time-gated luminescence microscopy. This allows pulsed excitation, followed by a brief delay, which eliminates nonspecific fluorescence before the detection of Tb(III)-to-GFP emission. The challenges of intracellular delivery, selective protein labeling, and time-gated imaging of lanthanide luminescence are presented, and recent efforts to investigate the cellular uptake of lanthanide probes are reviewed. Data are presented showing that conjugation to arginine-rich, cell-penetrating peptides (CPPs) can be used as a general strategy for the cellular delivery of membrane-impermeable lanthanide complexes. A heterodimer of a luminescent Tb(III) complex, Lumi4, linked to trimethoprim and conjugated to nonaarginine via a reducible disulfide linker rapidly (∼10 min) translocates into the cytoplasm of Maden Darby canine kidney cells from the culture medium. With this reagent, the intracellular interaction between GFP fused to FK506 binding protein 12 (GFP-FKBP12) and the rapamycin binding domain of mTOR fused to Escherichia coli dihydrofolate reductase (FRB-eDHFR) were imaged at high signal-to-noise ratio with fast (1-3 s) image acquisition using a time-gated luminescence microscope. The data reviewed and presented here show that lanthanide biosensors enable fast, sensitive, and technically simple imaging of protein-protein interactions in live cells.
Collapse
Affiliation(s)
- Megha Rajendran
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607
| | - Engin Yapici
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607
| | - Lawrence W. Miller
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607
| |
Collapse
|
122
|
Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens. PLoS Pathog 2014; 10:e1003879. [PMID: 24497827 PMCID: PMC3907376 DOI: 10.1371/journal.ppat.1003879] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/18/2013] [Indexed: 12/17/2022] Open
Abstract
Following an infectious challenge, macrophages have to be activated in order to allow efficient clearance of infectious pathogens, but how macrophage activation is coupled to increased clearance remains largely unknown. We here describe that inflammatory stimuli induced the reprogramming of the macrophage endocytic machinery from receptor-mediated phagocytosis to macropinocytosis, allowing the rapid transfer of internalized cargo to lysosomes in a receptor-independent manner. Reprogramming occurred through protein kinase C-mediated phosphorylation of the macrophage protein coronin 1, thereby activating phosphoinositol (PI)-3-kinase activity necessary for macropinocytic uptake. Expression of a phosphomimetic form of coronin 1 was sufficient to induce PI3-kinase activation and macropinocytosis even in the absence of inflammatory stimuli. Together these results suggest a hitherto unknown mechanism to regulate the internalization and degradation of infectious material during inflammation. The main cells that are involved in cleaning up microbial pathogens are macrophages. Upon an infection, macrophages are being recruited to the site of infection by a number of different stimuli. In addition, during an infection, macrophages are also activated by cytokines such as interferon-γ and tumor necrosis factor-α that is released from other immune cells. Such macrophage activation is important to achieve a rapid and efficient clearance of microbial pathogens. In this study, we found that macrophage activation induces uptake through macropinocytosis rather than receptor-mediate phagocytosis. As a consequence, microbial material as well as particles can be internalized far more efficiently; In addition, the internalized cargo is rapidly destroyed within lysosomes. We also provide the mechanisms for the switch from phagocytosis to macropinocytosis, which turned out to be the cytokine-induced phosphorylation of the host protein coronin 1. Phosphorylated coronin 1 activated the lipid kinase phosphoinositide 3-kinase, which is known to be responsible for the entry of cargo through macropinocytosis. Together these results provide evidence for a hitherto unrecognized mechanisms to regulate the internalization and degradation of infectious material during an infection.
Collapse
|
123
|
Chlorotoxin-Fc fusion inhibits release of MMP-2 from pancreatic cancer cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:152659. [PMID: 24511528 PMCID: PMC3910484 DOI: 10.1155/2014/152659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/11/2013] [Indexed: 11/18/2022]
Abstract
Chlorotoxin (CTX) is a 36-amino acid peptide derived from Leiurus quinquestriatus (scorpion) venom, which inhibits low-conductance chloride channels in colonic epithelial cells. It has been reported that CTX also binds to matrix metalloproteinase-2 (MMP-2), membrane type-1 MMP, and tissue inhibitor of metalloproteinase-2, as well as CLC-3 chloride ion channels and other proteins. Pancreatic cancer cells require the activation of MMP-2 during invasion and migration. In this study, the fusion protein was generated by joining the CTX peptide to the amino terminus of the human IgG-Fc domain without a hinge domain, the monomeric form of chlorotoxin (M-CTX-Fc). The resulting fusion protein was then used to target pancreatic cancer cells (PANC-1) in vitro. M-CTX-Fc decreased MMP-2 release into the media of PANC-1 cells in a dose-dependent manner. M-CTX-Fc internalization into PANC-1 cells was observed. When the cells were treated with chlorpromazine (CPZ), the internalization of the fusion protein was reduced, implicating a clathrin-dependent internalization mechanism of M-CTX-Fc in PANC-1 cells. Furthermore, M-CTX-Fc clearly exhibited the inhibition of the migration depending on the concentration, but human IgG, as negative control of Fc, was not affected. The M-CTX-Fc may be an effective instrument for targeting pancreatic cancer.
Collapse
|
124
|
Cellular Mechanisms in Nanomaterial Internalization, Intracellular Trafficking, and Toxicity. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
125
|
Kim J, Sunshine JC, Green JJ. Differential polymer structure tunes mechanism of cellular uptake and transfection routes of poly(β-amino ester) polyplexes in human breast cancer cells. Bioconjug Chem 2013; 25:43-51. [PMID: 24320687 DOI: 10.1021/bc4002322] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Successful gene delivery with nonviral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of PBAE polyplexes and the dependence of cellular uptake on the end group and molecular weight of the polymer. We synthesized three different analogues of PBAEs with the same base polymer poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) (B4S4) but with small changes in the end group or molecular weight. We quantified the uptake and transfection efficiencies of the pDNA polyplexes formulated from these polymers in hard-to-transfect triple negative human breast cancer cells (MDA-MB 231). All polymers formed positively charged (10-17 mV) nanoparticles of ∼200 nm in size. Cellular internalization of all three formulations was inhibited the most (60-90% decrease in cellular uptake) by blocking caveolae-mediated endocytosis. Greater inhibition was shown with polymers that had a 1-(3-aminopropyl)-4-methylpiperazine end group (E7) than the others with a 2-(3-aminopropylamino)-ethanol end group (E6) or higher molecular weight. However, caveolae-mediated endocytosis was generally not as efficient as clathrin-mediated endocytosis in leading to transfection. These findings indicate that PBAE polyplexes can be used to transfect triple negative human breast cancer cells and that small changes to the same base polymer can modulate their cellular uptake and transfection routes.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center and §Department of Ophthalmology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21231, United States
| | | | | |
Collapse
|
126
|
|
127
|
Kamei N, Onuki Y, Takayama K, Takeda-Morishita M. Mechanistic Study of the Uptake/Permeation of Cell-Penetrating Peptides Across a Caco-2 Monolayer and Their Stimulatory Effect on Epithelial Insulin Transport. J Pharm Sci 2013; 102:3998-4008. [DOI: 10.1002/jps.23708] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/16/2013] [Accepted: 07/31/2013] [Indexed: 11/07/2022]
|
128
|
Lee SY, Tyler JY, Kim S, Park K, Cheng JX. FRET imaging reveals different cellular entry routes of self-assembled and disulfide bonded polymeric micelles. Mol Pharm 2013; 10:3497-506. [PMID: 23901940 DOI: 10.1021/mp4003333] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although nanocarriers hold promise for cancer chemotherapy, their intracellular drug delivery pathways are not fully understood. In particular, the influence of nanocarrier stability on cellular uptake is still uncertain. By physically loading hydrophobic FRET probes, we revealed different intracellular drug delivery routes of self-assembled and disulfide bonded micelles. The self-assembled micelles were structurally dissociated by micelle-membrane interactions, and the hydrophobic probes were distributed on the plasma membrane. Alternatively, intact disulfide bonded micelles carrying hydrophobic probes were internalized into cancer cells via multiple endocytic pathways. Following internalization, disulfide bonded micelles were decomposed in early endosomes by glutathione-mediated disulfide bond reduction, exposing the probes to intracellular organelles.
Collapse
Affiliation(s)
- Seung-Young Lee
- Weldon School of Biomedical Engineering, ‡Department of Industrial and Physical Pharmacy, and §Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|
129
|
Solis GP, Hülsbusch N, Radon Y, Katanaev VL, Plattner H, Stuermer CAO. Reggies/flotillins interact with Rab11a and SNX4 at the tubulovesicular recycling compartment and function in transferrin receptor and E-cadherin trafficking. Mol Biol Cell 2013; 24:2689-702. [PMID: 23825023 PMCID: PMC3756921 DOI: 10.1091/mbc.e12-12-0854] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In this study reggie-1/flotillin-2 is identified as a component of the tubulovesicular sorting and recycling compartment, where it interacts with and controls the activity of Rab11a and SNX4. Evidence is given that reggie-1 expression is necessary for the proper recycling of transferrin receptor and E-cadherin in HeLa and A431 cells, respectively. The lipid raft proteins reggie-1 and -2 (flotillins) are implicated in membrane protein trafficking but exactly how has been elusive. We find that reggie-1 and -2 associate with the Rab11a, SNX4, and EHD1–decorated tubulovesicular recycling compartment in HeLa cells and that reggie-1 directly interacts with Rab11a and SNX4. Short hairpin RNA–mediated down-regulation of reggie-1 (and -2) in HeLa cells reduces association of Rab11a with tubular structures and impairs recycling of the transferrin–transferrin receptor (TfR) complex to the plasma membrane. Overexpression of constitutively active Rab11a rescues TfR recycling in reggie-deficient HeLa cells. Similarly, in a Ca2+ switch assay in reggie-depleted A431 cells, internalized E-cadherin is not efficiently recycled to the plasma membrane upon Ca2+ repletion. E-cadherin recycling is rescued, however, by overexpression of constitutively active Rab11a or SNX4 in reggie-deficient A431 cells. This suggests that the function of reggie-1 in sorting and recycling occurs in association with Rab11a and SNX4. Of interest, impaired recycling in reggie-deficient cells leads to de novo E-cadherin biosynthesis and cell contact reformation, showing that cells have ways to compensate the loss of reggies. Together our results identify reggie-1 as a regulator of the Rab11a/SNX4-controlled sorting and recycling pathway, which is, like reggies, evolutionarily conserved.
Collapse
Affiliation(s)
- Gonzalo P Solis
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
130
|
Alginates induce legumain activity in RAW 264.7 cells and accelerate autoactivation of prolegumain. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bcdf.2013.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
131
|
Lacruz RS, Brookes SJ, Wen X, Jimenez JM, Vikman S, Hu P, White SN, Lyngstadaas SP, Okamoto CT, Smith CE, Paine ML. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis. J Bone Miner Res 2013; 28:672-87. [PMID: 23044750 PMCID: PMC3562759 DOI: 10.1002/jbmr.1779] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data together define an endocytotic pathway likely used by ameloblasts to remove the enamel matrix during enamel maturation.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Hsu CY, Uludağ H. Cellular uptake pathways of lipid-modified cationic polymers in gene delivery to primary cells. Biomaterials 2012; 33:7834-48. [DOI: 10.1016/j.biomaterials.2012.06.093] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
|
133
|
CXCR4 Stimulates Macropinocytosis: Implications for Cellular Uptake of Arginine-Rich Cell-Penetrating Peptides and HIV. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.chembiol.2012.09.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
134
|
Khafagy ES, Kamei N, Takeda-Morishita M. Cell-penetrating Peptide-biodrug Strategy for Oral and Nasal Delivery: Review of Recent Findings. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.jecm.2012.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
135
|
Abstract
Because RNA interference (RNAi) can be applied to any gene, this technique has been widely used for studying gene functions. In addition, many researchers are attempting to use RNAi technology in RNAi-based therapies. However, several challenging and controversial issues have arisen during the widespread application of RNAi including target gene specificity, target cell specificity, and spatiotemporal control of gene silencing. To address these issues, several groups have utilized photochemistry to control the RNA release, both spatially and temporally. In this Account, we focus on recent studies using photocleavable protecting groups, photosensitizers, Hand gold nanoparticles for photoinduced RNAi. In 2005 the first report of photoinduced RNAi used a caged short interfering RNA (siRNA), an siRNA carrying a photocleavable protecting group. Caging groups block the bioactivities of target molecules, but allow for complete recovery of these functions via photoactivation. However, some RNAi activity can occur in these caged siRNAs, so it will be necessary to decrease this "leakage" and raise the RNAi activity restored after irradiation. This technique also uses UV light around 350 nm, which is cytotoxic, but in the near future we expect that it will be possible to use visible and near-infrared light We also examine the application of photochemical internalization (PCI) to RNAi technology, which involves a combination of photosensitizers and light. Instead of inducing RNAi using light, the strategy behind this method was to enhance RNAi using RNA carriers. Many wellknown RNA carriers deliver siRNAs into cells by endocytosis. The siRNAs are trapped in endocytic vesicles and have to be released into the cytoplasm in order to express their activity. To achieve the endosomal escape of siRNAs, PCI technology employed photosensitizers to generate light-dependent reactive oxygen species (ROS) that disrupted the endocytic vesicles. In most studies, RNAi-mediated knockdown of the target gene was detected even without PCI. Recently, a polymer capable of trapping the siRNA in endocytic vesicles controlled RNAi almost entirely by light. CLIP-RNAi uses photosensitizing carrier proteins that can be activated over a wide range of visible light wavelengths. With this method RNA carrier/siRNA complexes are completely trapped within endosomes, and RNAi is controlled strictly by light. Such precise, light-dependent control will open up new possibilities for cellular and molecular biology and therapy. Most recently, gold nanoparticles (AuNPs) conjugated to siRNA have provided temporal and spatial control of RNAi. The light-dependent melting of AuNPs accompanied by a shape transformation induces the release of thiolated siRNAs from AuNPs. In this method, the unique optical properties of the AuNP enable deep penetration of the excitation light into tissues at nearinfrared wavelengths. The development of photoinduced RNAi technology will lead to novel insights into gene functions and selective drug delivery, and many other scientific fields will continue to influence its progress.
Collapse
Affiliation(s)
- Yuka Matsushita-Ishiodori
- Department of Bioscience and Biotechnology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Takashi Ohtsuki
- Department of Bioscience and Biotechnology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
136
|
Khafagy ES, Morishita M. Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev 2012; 64:531-9. [PMID: 22245080 DOI: 10.1016/j.addr.2011.12.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 12/25/2022]
Abstract
During the past few decades, the novel biotherapeutic agents such as peptides and proteins have been contributed to the treatment of several diseases. However, their oral absorption is significantly limited due to their poor delivery through the intestinal mucosa. Therefore, the feasible approaches are needed for improving the oral bioavailability of biodrugs. Recently, cell-penetrating peptides (CPPs) such as HIV-1 Tat, penetratin and oligoarginine are considered as a useful tool for the intracellular delivery of therapeutic macromolecules. Hence, it was expected that the ability of CPPs may be applicable to enhance the absorption of biodrugs through intestinal epithelial membrane. CPPs are likely to become powerful tools for overcoming the low permeability of therapeutic peptides and proteins through the intestinal membrane, the major barrier to their oral delivery. Further advantage of this promising strategy is that this successful intestinal absorption could be achieved by more convenient methodology, coadministration of CPP with drugs via intermolecular interaction among them. Hereafter, the further establishment of delivery system based on CPPs is required to realize the development of the oral forms of therapeutic peptides and proteins. The aim here is to introduce our vision focusing on oral biodrug delivery by the use of CPPs as potential peptide carrier in order to provide new information in the design and development of new oral delivery systems for novel biotherapeutics.
Collapse
|
137
|
Vaidyanath A, Hashizume T, Nagaoka T, Takeyasu N, Satoh H, Chen L, Wang J, Kasai T, Kudoh T, Satoh A, Fu L, Seno M. Enhanced internalization of ErbB2 in SK-BR-3 cells with multivalent forms of an artificial ligand. J Cell Mol Med 2012; 15:2525-38. [PMID: 21323863 PMCID: PMC3822962 DOI: 10.1111/j.1582-4934.2011.01277.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Targeting and down-regulation of ErbB2, a member of EGF receptor family, is regarded as one of the key aspect for cancer treatment because it is often overexpressed in breast and ovarian cancer cells. Although natural ligands for ErbB2 have not been found, unlike other ErbB receptors, EC-1, a 20-amino acid circular peptide, has been shown to bind to ErbB2 as an artificial ligand. Previously we showed EC-1 peptide did not induce the internalization of ErbB2 in SK-BR-3 cells. In this report, we designed divalent and multivalent forms of EC-1 peptide with the Fc portion of the human IgG and bionanocapsule modified with ZZ-tag on its surface to improve the interaction with ErbB2. These forms showed higher affinity to ErbB2 than that of EC-1 monomer. Furthermore, prominent endosomal accumulation of ErbB2 occurred in SK-BR-3 cells when stimulated with EC-Fc ligand multivalently displayed on the surface of the bionanocapsule, whereas SK-BR-3 cells as themselves displayed stringent mechanism against ErbB2 internalization without stimulation. The multivalent form of EC-1 peptide appeared to internalize ErbB2 more efficiently than divalent form did. This internalization was unaffected by the inhibition of clathrin association, but inhibited when the cholesterol was depleted which explained either caveolar or GPI-AP-early endocytic compartment (GEEC) pathway. Because of the lack of caveolin-1 expression, caveolar machinery may be lost in SK-BR-3 cell line. Therefore, it is suggested that the multivalent form of EC-1 induces the internalization of ErbB2 through the GEEC pathway.
Collapse
Affiliation(s)
- Arun Vaidyanath
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Biotechnology, Okayama University, Kita-ku, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Haspot F, Lavault A, Sinzger C, Laib Sampaio K, Stierhof YD, Pilet P, Bressolette-Bodin C, Halary F. Human cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway in a pH-independent and cholesterol-dependent manner. PLoS One 2012; 7:e34795. [PMID: 22496863 PMCID: PMC3322158 DOI: 10.1371/journal.pone.0034795] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 03/08/2012] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that is able to infect fibroblastic, epithelial, endothelial and hematopoietic cells. Over the past ten years, several groups have provided direct evidence that dendritic cells (DCs) fully support the HCMV lytic cycle. We previously demonstrated that the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) has a prominent role in the docking of HCMV on monocyte-derived DCs (MDDCs). The DC-SIGN/HCMV interaction was demonstrated to be a crucial and early event that substantially enhanced infection in trans, i.e., from one CMV-bearing cell to another non-infected cell (or trans-infection), and rendered susceptible cells fully permissive to HCMV infection. Nevertheless, nothing is yet known about how HCMV enters MDDCs. In this study, we demonstrated that VHL/E HCMV virions (an endothelio/dendrotropic strain) are first internalized into MDDCs by a macropinocytosis-like process in an actin- and cholesterol-dependent, but pH-independent, manner. We observed the accumulation of virions in large uncoated vesicles with endosomal features, and the virions remained as intact particles that retained infectious potential for several hours. This trans-infection property was specific to MDDCs because monocyte-derived macrophages or monocytes from the same donor were unable to allow the accumulation of and the subsequent transmission of the virus. Together, these data allowed us to delineate the early mechanisms of the internalization and entry of an endothelio/dendrotropic HCMV strain into human MDDCs and to propose that DCs can serve as a "Trojan horse" to convey CMV from entry sites to other locations that may favor the occurrence of either latency or acute infection.
Collapse
Affiliation(s)
- Fabienne Haspot
- Unité Mixte de Recherche_S 1064, ex643, Institut National de la Santé et de la Recherche Médicale, Institute for Transplantation/Urology and Nephrology, Nantes, France.
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Muñoz A, Costa M. Elucidating the mechanisms of nickel compound uptake: a review of particulate and nano-nickel endocytosis and toxicity. Toxicol Appl Pharmacol 2012; 260:1-16. [PMID: 22206756 PMCID: PMC3306469 DOI: 10.1016/j.taap.2011.12.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
Nickel (Ni) is a worldwide pollutant and contaminant that humans are exposed to through various avenues resulting in multiple toxic responses - most alarming is its clear carcinogenic nature. A variety of particulate Ni compounds persist in the environment and can be distinguished by characteristics such as solubility, structure, and surface charge. These characteristics influence cellular uptake and toxicity. Some particulate forms of Ni are carcinogenic and are directly and rapidly endocytized by cells. A series of studies conducted in the 1980s observed this process, and we have reanalyzed the results of these studies to help elucidate the molecular mechanism of particulate Ni uptake. Originally the process of uptake observed was described as phagocytosis, however in the context of recent research we hypothesize that the process is macropinocytosis and/or clathrin mediated endocytosis. Primary considerations in determining the route of uptake here include calcium dependence, particle size, and inhibition through temperature and pharmacological approaches. Particle characteristics that influenced uptake include size, charge, surface characteristics, and structure. This discussion is relevant in the context of nanoparticle studies and the emerging interest in nano-nickel (nano-Ni), where toxicity assessments require a clear understanding of the parameters of particulate uptake and where establishment of such parameters is often obscured through inconsistencies across experimental systems. In this regard, this review aims to carefully document one system (particulate nickel compound uptake) and characterize its properties.
Collapse
Affiliation(s)
- Alexandra Muñoz
- New York University School of Medicine, Nelson Institute of Environmental Medicine, 57 Old Forge Road, NY 10987
| | - Max Costa
- New York University School of Medicine, Nelson Institute of Environmental Medicine, 57 Old Forge Road, NY 10987
| |
Collapse
|
140
|
Solis GP, Schrock Y, Hülsbusch N, Wiechers M, Plattner H, Stuermer CAO. Reggies/flotillins regulate E-cadherin-mediated cell contact formation by affecting EGFR trafficking. Mol Biol Cell 2012; 23:1812-25. [PMID: 22438585 PMCID: PMC3350547 DOI: 10.1091/mbc.e11-12-1006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In epithelial cells, the reggie/flotillin proteins regulate—in association with PrP—the formation of E-cadherin adherens junctions (AJs) via the EGFR. Reggies control the EGF-mediated phosphorylation and internalization of EGFR. EGF signaling at the plasma membrane induces the macropinocytosis of E-cadherin and thus the formation of AJs. The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggie effects on Src tyrosine kinases and epidermal growth factor receptor (EGFR): loss of reggies reduces Src activation and EGFR phosphorylation at residues targeted by Src and c-cbl and leads to increased surface exposure of EGFR by blocking its internalization. The prolonged EGFR signaling at the plasma membrane enhances cell motility and macropinocytosis, by which junction-associated E-cadherin is internalized and recycled back to AJs. Accordingly, blockage of EGFR signaling or macropinocytosis in reggie-deficient cells restores normal AJ formation. Thus, by promoting EGFR internalization, reggies restrict the EGFR signaling involved in E-cadherin macropinocytosis and recycling and regulate AJ formation and dynamics and thereby cell adhesion.
Collapse
Affiliation(s)
- Gonzalo P Solis
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
141
|
Uptake mechanisms of non-viral gene delivery. J Control Release 2012; 158:371-8. [DOI: 10.1016/j.jconrel.2011.09.093] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/23/2011] [Indexed: 01/04/2023]
|
142
|
Kataoka C, Kaname Y, Taguwa S, Abe T, Fukuhara T, Tani H, Moriishi K, Matsuura Y. Baculovirus GP64-mediated entry into mammalian cells. J Virol 2012; 86:2610-20. [PMID: 22190715 PMCID: PMC3302255 DOI: 10.1128/jvi.06704-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/09/2011] [Indexed: 11/20/2022] Open
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) serves as an efficient viral vector, not only for abundant gene expression in insect cells, but also for gene delivery into mammalian cells. Lentivirus vectors pseudotyped with the baculovirus envelope glycoprotein GP64 have been shown to acquire more potent gene transduction than those with vesicular stomatitis virus (VSV) envelope glycoprotein G. However, there are conflicting hypotheses about the molecular mechanisms of the entry of AcMNPV. Moreover, the mechanisms of the entry of pseudotyped viruses bearing GP64 into mammalian cells are not well characterized. Determination of the entry mechanisms of AcMNPV and the pseudotyped viruses bearing GP64 is important for future development of viral vectors that can deliver genes into mammalian cells with greater efficiency and specificity. In this study, we generated three pseudotyped VSVs, NPVpv, VSVpv, and MLVpv, bearing envelope proteins of AcMNPV, VSV, and murine leukemia virus, respectively. Depletion of membrane cholesterol by treatment with methyl-β-cyclodextrin, which removes cholesterol from cellular membranes, inhibited GP64-mediated internalization in a dose-dependent manner but did not inhibit attachment to the cell surface. Treatment of cells with inhibitors or the expression of dominant-negative mutants for dynamin- and clathrin-mediated endocytosis abrogated the internalization of AcMNPV and NPVpv into mammalian cells, whereas inhibition of caveolin-mediated endocytosis did not. Furthermore, inhibition of macropinocytosis reduced GP64-mediated internalization. These results suggest that cholesterol in the plasma membrane, dynamin- and clathrin-dependent endocytosis, and macropinocytosis play crucial roles in the entry of viruses bearing baculovirus GP64 into mammalian cells.
Collapse
Affiliation(s)
- Chikako Kataoka
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka
| | - Yuuki Kaname
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka
| | - Shuhei Taguwa
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka
| | - Takayuki Abe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka
| | - Hideki Tani
- Department of Virology I, National Institute of Infectious Diseases, Tokyo
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Yamanashi University, Yamanashi, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka
| |
Collapse
|
143
|
Stuermer CAO. How reggies regulate regeneration and axon growth. Cell Tissue Res 2012; 349:71-7. [DOI: 10.1007/s00441-012-1343-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/25/2012] [Indexed: 12/01/2022]
|
144
|
de Curtis I, Meldolesi J. Cell surface dynamics – how Rho GTPases orchestrate the interplay between the plasma membrane and the cortical cytoskeleton. J Cell Sci 2012; 125:4435-44. [DOI: 10.1242/jcs.108266] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Small GTPases are known to regulate hundreds of cell functions. In particular, Rho family GTPases are master regulators of the cytoskeleton. By regulating actin nucleation complexes, Rho GTPases control changes in cell shape, including the extension and/or retraction of surface protrusions and invaginations. Protrusion and invagination of the plasma membrane also involves the interaction between the plasma membrane and the cortical cytoskeleton. This interplay between membranes and the cytoskeleton can lead to an increase or decrease in the plasma membrane surface area and its tension as a result of the fusion (exocytosis) or internalization (endocytosis) of membranous compartments, respectively. For a long time, the cytoskeleton and plasma membrane dynamics were investigated separately. However, studies from many laboratories have now revealed that Rho GTPases, their modulation of the cytoskeleton, and membrane traffic are closely connected during the dynamic remodeling of the cell surface. Arf- and Rab-dependent exocytosis of specific vesicles contributes to the targeting of Rho GTPases and their regulatory factors to discrete sites of the plasma membrane. Rho GTPases regulate the tethering of exocytic vesicles and modulate their subsequent fusion. They also have crucial roles in the different forms of endocytosis, where they participate in the sorting of membrane domains as well as the sculpting and sealing of membrane flasks and cups. Here, we discuss how cell surface dynamics depend on the orchestration of the cytoskeleton and the plasma membrane by Rho GTPases.
Collapse
|
145
|
Lee CYD, Tse W, Smith JD, Landreth GE. Apolipoprotein E promotes β-amyloid trafficking and degradation by modulating microglial cholesterol levels. J Biol Chem 2011; 287:2032-44. [PMID: 22130662 DOI: 10.1074/jbc.m111.295451] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Allelic variation in the apolipoprotein E (APOE) gene is the major risk factor of sporadic Alzheimer disease. ApoE is the primary cholesterol carrier in the brain. Previously, we demonstrated that intracellular degradation of β-amyloid (Aβ) peptides by microglia is dramatically enhanced in the presence of apoE. However, the molecular mechanisms subserving this effect remain unknown. This study reports a mechanistic link between apoE-regulated cholesterol homeostasis and Aβ degradation. We demonstrate that promoting intracellular Aβ degradation by microglia is a common feature of HDL apolipoproteins, including apoE and apoA-I. This effect was not dependent on the direct interaction of apoE and Aβ. Regulation of Aβ degradation was achieved by solely manipulating cellular cholesterol levels. The expression and the activity of Aβ degrading enzymes, however, were not regulated by cholesterol. We observed that reducing cellular cholesterol levels by apoE resulted in faster delivery of Aβ to lysosomes and enhanced degradation. Moreover, apoE facilitated the recycling of Rab7, a small GTPase responsible for recruiting the motor complex to late endosomes/lysosomes. These data indicate that faster endocytic trafficking of Aβ-containing vesicles in the presence of apoE resulted from efficient recycling of Rab7 from lysosomes to early endosomes. Thus, apoE-induced intracellular Aβ degradation is mediated by the cholesterol efflux function of apoE, which lowers cellular cholesterol levels and subsequently facilitates the intracellular trafficking of Aβ to lysosomes for degradation. These findings demonstrate a direct role of cholesterol in the intracellular Aβ degradation.
Collapse
Affiliation(s)
- C Y Daniel Lee
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
146
|
Antigen stored in dendritic cells after macropinocytosis is released unprocessed from late endosomes to target B cells. Blood 2011; 119:95-105. [PMID: 22049514 DOI: 10.1182/blood-2011-02-336123] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
B lymphocytes can be triggered in lymph nodes by nonopsonized antigens (Ag), potentially in their native form. However, the mechanisms that promote encounter of B lymphocytes with unprocessed antigens in lymph nodes are still elusive. We show here that antigens are detected in B cells in the draining lymph nodes of mice injected with live, but not fixed, dendritic cells (DCs) loaded with antigens. This highlights active processes in DCs to promote Ag transfer to B lymphocytes. In addition, antigen-loaded DCs found in the draining lymph node were CD103+. Using 3 different model Ag, we then show that immature DCs efficiently take up Ag by macropinocytosis and store the internalized material in late endocytic compartments. We find that DCs have a unique ability to release antigens from these compartments in the extracellular medium, which is controlled by Rab27. B cells take up the regurgitated Ag and the chemokine CXCL13, essential to attract B cells in lymph nodes, enhances this transfer. Our results reveal a unique property of DCs to regurgitate unprocessed Ag that could play an important role in B-cell activation.
Collapse
|
147
|
Investigating circular dorsal ruffles through varying substrate stiffness and mathematical modeling. Biophys J 2011; 101:2122-30. [PMID: 22067149 DOI: 10.1016/j.bpj.2011.09.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/16/2011] [Accepted: 09/29/2011] [Indexed: 11/20/2022] Open
Abstract
Circular dorsal ruffles (CDRs) are transient actin-rich ringlike structures that form on the dorsal surface of growth-factor stimulated cells. However, the dynamics and mechanism of formation of CDRs are still unknown. It has been observed that CDR formation leads to stress fibers disappearing near the CDRs. Because stress fiber formation can be modified by substrate stiffness, we examined the effect of substrate stiffness on CDR formation by seeding NIH 3T3 fibroblasts on glass and polydimethylsiloxane substrates of varying stiffnesses from 20 kPa to 1800 kPa. We found that increasing substrate stiffness increased the lifetime of the CDRs. We developed a mathematical model of the signaling pathways involved in CDR formation to provide insight into this lifetime and size dependence that is linked to substrate stiffness via Rac-Rho antagonism. From the model, increasing stiffness raised mDia1-nucleated stress fiber formation due to Rho activation. The increased stress fibers present increased replenishment of the G-actin pool, therefore prolonging Arp2/3-nucleated CDR formation due to Rac activation. Negative feedback by WAVE-related RacGAP on Rac explained how CDR actin propagates as an excitable wave, much like wave propagation in other excitable medium, e.g., nerve signal transmission.
Collapse
|
148
|
Lukyanenko V, Malyukova I, Hubbard A, Delannoy M, Boedeker E, Zhu C, Cebotaru L, Kovbasnjuk O. Enterohemorrhagic Escherichia coli infection stimulates Shiga toxin 1 macropinocytosis and transcytosis across intestinal epithelial cells. Am J Physiol Cell Physiol 2011; 301:C1140-9. [PMID: 21832249 PMCID: PMC3213915 DOI: 10.1152/ajpcell.00036.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 08/04/2011] [Indexed: 01/01/2023]
Abstract
Gastrointestinal infection with Shiga toxins producing enterohemorrhagic Escherichia coli causes the spectrum of gastrointestinal and systemic complications, including hemorrhagic colitis and hemolytic uremic syndrome, which is fatal in ∼10% of patients. However, the molecular mechanisms of Stx endocytosis by enterocytes and the toxins cross the intestinal epithelium are largely uncharacterized. We have studied Shiga toxin 1 entry into enterohemorrhagic E. coli-infected intestinal epithelial cells and found that bacteria stimulate Shiga toxin 1 macropinocytosis through actin remodeling. This enterohemorrhagic E. coli-caused macropinocytosis occurs through a nonmuscle myosin II and cell division control 42 (Cdc42)-dependent mechanism. Macropinocytosis of Shiga toxin 1 is followed by its transcytosis to the basolateral environment, a step that is necessary for its systemic spread. Inhibition of Shiga toxin 1 macropinocytosis significantly decreases toxin uptake by intestinal epithelial cells and in this way provides an attractive, antibiotic-independent strategy for prevention of the harmful consequences of enterohemorrhagic E. coli infection.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
149
|
von Kleist L, Haucke V. At the crossroads of chemistry and cell biology: inhibiting membrane traffic by small molecules. Traffic 2011; 13:495-504. [PMID: 21951680 DOI: 10.1111/j.1600-0854.2011.01292.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 01/12/2023]
Abstract
Intracellular membrane traffic regulates cell physiology at multiple levels ranging from cell growth and development to the function of the nervous and immune systems. Multiple endocytic routes are used by distinct cargoes including ligands bound to their receptors but also viruses and pathogens to gain access to the cell interior. Within the endosomal system, proteins and lipids are sorted for degradation or recycling allowing cells to dynamically respond to environmental signals and to regulate cell shape and morphology. Some receptors or toxins are sorted along the retrograde pathway from endosomes to the Golgi complex, where they intersect with secretory cargo destined for exocytosis. Genetic manipulations of these pathways frequently cause problems with regard to data interpretation as the resulting phenotypes may be indirect consequences resulting from perturbation of multiple steps or trafficking routes. Hence, novel approaches are needed to acutely and reversibly perturb intracellular membrane traffic, e.g., by small molecule inhibitors. Such drugs may also be pharmacologically important as they offer new avenues to fight human diseases. Here, we provide an overview of the small molecules available to interfere with intracellular membrane traffic and outline strategies for future research.
Collapse
Affiliation(s)
- Lisa von Kleist
- Department of Membrane Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | | |
Collapse
|
150
|
Mehrmohamamdi M, Qu M, Ma LL, Romanovicz DK, Johnston KP, Sokolov KV, Emelianov SY. Pulsed magneto-motive ultrasound imaging to detect intracellular trafficking of magnetic nanoparticles. NANOTECHNOLOGY 2011; 22:415105. [PMID: 21926454 PMCID: PMC3471148 DOI: 10.1088/0957-4484/22/41/415105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As applications of nanoparticles in medical imaging and biomedicine rapidly expand, the interactions of nanoparticles with living cells have become an area of active interest. For example, intracellular accumulation of nanoparticles-an important part of cell-nanoparticle interaction-has been well studied using plasmonic nanoparticles and optical or optics-based techniques due to the change in optical properties of the nanoparticle aggregates. However, magnetic nanoparticles, despite their wide range of clinical applications, do not exhibit plasmonic-resonant properties and therefore their intracellular aggregation cannot be detected by optics-based imaging techniques. In this study, we investigated the feasibility of a novel imaging technique-pulsed magneto-motive ultrasound (pMMUS)-to identify intracellular accumulation of endocytosed magnetic nanoparticles. In pMMUS imaging a focused, high intensity, pulsed magnetic field is used to excite the cells labeled with magnetic nanoparticles, and ultrasound imaging is then used to monitor the mechanical response of the tissue. We demonstrated previously that clusters of magnetic nanoparticles amplify the pMMUS signal in comparison to the signal from individual nanoparticles. Here we further demonstrate that pMMUS imaging can identify interaction between magnetic nanoparticles and living cells, i.e. intracellular accumulation of nanoparticles within the cells. The results of our study suggest that pMMUS imaging can not only detect the presence of magnetic nanoparticles but also provides information about their intracellular accumulation non-invasively and in real-time.
Collapse
Affiliation(s)
| | - Min Qu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Li L. Ma
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Dwight K. Romanovicz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Keith P. Johnston
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Konstantin V. Sokolov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stanislav Y. Emelianov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|