101
|
Lu C, Cardoso RC, Puttabyatappa M, Padmanabhan V. Developmental Programming: Prenatal Testosterone Excess and Insulin Signaling Disruptions in Female Sheep. Biol Reprod 2016; 94:113. [PMID: 27053365 PMCID: PMC4939741 DOI: 10.1095/biolreprod.115.136283] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/05/2016] [Indexed: 12/25/2022] Open
Abstract
Women with polycystic ovary syndrome often manifest insulin resistance. Using a sheep model of polycystic ovary syndrome-like phenotype, we explored the contribution of androgen and insulin in programming and maintaining disruptions in insulin signaling in metabolic tissues. Phosphorylation of AKT, ERK, GSK3beta, mTOR, and p70S6K was examined in the liver, muscle, and adipose tissue of control and prenatal testosterone (T)-, prenatal T plus androgen antagonist (flutamide)-, and prenatal T plus insulin sensitizer (rosiglitazone)-treated fetuses as well as 2-yr-old females. Insulin-stimulated phospho (p)-AKT was evaluated in control and prenatal T-, prenatal T plus postnatal flutamide-, and prenatal T plus postnatal rosiglitazone-treated females at 3 yr of age. GLUT4 expression was evaluated in the muscle at all time points. Prenatal T treatment increased mTOR, p-p70S6K, and p-GSK3beta levels in the fetal liver with both androgen antagonist and insulin sensitizer preventing the mTOR increase. Both interventions had partial effect in preventing the increase in p-GSK3beta. In the fetal muscle, prenatal T excess decreased p-GSK3beta and GLUT4. The decrease in muscle p-GSK3beta was partially prevented by insulin sensitizer cotreatment. Both interventions partially prevented the decrease in GLUT4. Prenatal T treatment had no effect on basal expression of any of the markers in 2-yr-old females. At 3 yr of age, prenatal T treatment prevented the insulin-stimulated increase in p-AKT in liver and muscle, but not in adipose tissue, and neither postnatal intervention restored p-AKT response to insulin stimulation. Our findings provide evidence that prenatal T excess changes insulin sensitivity in a tissue- and development-specific manner and that both androgens and insulin may be involved in the programming of these metabolic disruptions.
Collapse
Affiliation(s)
- Chunxia Lu
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Rodolfo C Cardoso
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | | |
Collapse
|
102
|
Boyle KE, Patinkin ZW, Shapiro ALB, Baker PR, Dabelea D, Friedman JE. Mesenchymal Stem Cells From Infants Born to Obese Mothers Exhibit Greater Potential for Adipogenesis: The Healthy Start BabyBUMP Project. Diabetes 2016; 65:647-59. [PMID: 26631736 PMCID: PMC4764150 DOI: 10.2337/db15-0849] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022]
Abstract
Maternal obesity increases the risk for pediatric obesity; however, the molecular mechanisms in human infants remain poorly understood. We hypothesized that mesenchymal stem cells (MSCs) from infants born to obese mothers would demonstrate greater potential for adipogenesis and less potential for myogenesis, driven by differences in β-catenin, a regulator of MSC commitment. MSCs were cultured from the umbilical cords of infants born to normal-weight (prepregnancy [pp] BMI 21.1 ± 0.3 kg/m(2); n = 15; NW-MSCs) and obese mothers (ppBMI 34.6 ± 1.0 kg/m(2); n = 14; Ob-MSCs). Upon differentiation, Ob-MSCs exhibit evidence of greater adipogenesis (+30% Oil Red O stain [ORO], +50% peroxisome proliferator-activated receptor (PPAR)-γ protein; P < 0.05) compared with NW-MSCs. In undifferentiated cells, total β-catenin protein content was 10% lower and phosphorylated Thr41Ser45/total β-catenin was 25% higher (P < 0.05) in Ob-MSCs versus NW-MSCs (P < 0.05). Coupled with 25% lower inhibitory phosphorylation of GSK-3β in Ob-MSCs (P < 0.05), these data suggest greater β-catenin degradation in Ob-MSCs. Lithium chloride inhibition of GSK-3β increased nuclear β-catenin content and normalized nuclear PPAR-γ in Ob-MSCs. Last, ORO in adipogenic differentiating cells was positively correlated with the percent fat mass in infants (r = 0.475; P < 0.05). These results suggest that altered GSK-3β/β-catenin signaling in MSCs of infants exposed to maternal obesity may have important consequences for MSC lineage commitment, fetal fat accrual, and offspring obesity risk.
Collapse
Affiliation(s)
- Kristen E Boyle
- Section of Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Zachary W Patinkin
- Section of Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | | - Peter R Baker
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | | - Jacob E Friedman
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
103
|
Glycogen Synthase Kinase 3β Is Positively Regulated by Protein Kinase Cζ-Mediated Phosphorylation Induced by Wnt Agonists. Mol Cell Biol 2015; 36:731-41. [PMID: 26711256 DOI: 10.1128/mcb.00828-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/04/2015] [Indexed: 02/01/2023] Open
Abstract
The molecular events that drive Wnt-induced regulation of glycogen synthase kinase 3β (GSK-3β) activity are poorly defined. In this study, we found that protein kinase Cζ (PKCζ) and GSK-3β interact mainly in colon cancer cells. Wnt stimulation induced a rapid GSK-3β redistribution from the cytoplasm to the nuclei in malignant cells and a transient PKC-mediated phosphorylation of GSK-3β at a different site from serine 9. In addition, while Wnt treatment induced a decrease in PKC-mediated phosphorylation of GSK-3β in nonmalignant cells, in malignant cells, this phosphorylation was increased. Pharmacological inhibition and small interfering RNA (siRNA)-mediated silencing of PKCζ abolished all of these effects, but unexpectedly, it also abolished the constitutive basal activity of GSK-3β. In vitro activity assays demonstrated that GSK-3β phosphorylation mediated by PKCζ enhanced GSK-3β activity. We mapped Ser147 of GSK-3β as the site phosphorylated by PKCζ, i.e., its mutation into alanine abolished GSK-3β activity, resulting in β-catenin stabilization and increased transcriptional activity, whereas phosphomimetic replacement of Ser147 by glutamic acid maintained GSK-3β basal activity. Thus, we found that PKCζ phosphorylates GSK-3β at Ser147 to maintain its constitutive activity in resting cells and that Wnt stimulation modifies the phosphorylation of Ser147 to regulate GSK-3β activity in opposite manners in normal and malignant colon cells.
Collapse
|
104
|
Abedini A, Zamberlam G, Lapointe E, Tourigny C, Boyer A, Paquet M, Hayashi K, Honda H, Kikuchi A, Price C, Boerboom D. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling. FASEB J 2015; 30:1534-47. [PMID: 26667040 DOI: 10.1096/fj.15-280313] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/08/2015] [Indexed: 12/28/2022]
Abstract
Whereas the roles of the canonical wingless-type MMTV (mouse mammary tumor virus) integration site family (WNT) signaling pathway in the regulation of ovarian follicle growth and steroidogenesis are now established, noncanonical WNT signaling in the ovary has been largely overlooked. Noncanonical WNTs, including WNT5a and WNT11, are expressed in granulosa cells (GCs) and are differentially regulated throughout follicle development, but their physiologic roles remain unknown. Using conditional gene targeting, we found that GC-specific inactivation ofWnt5a(but notWnt11) results in the female subfertility associated with increased follicular atresia and decreased rates of ovulation. Microarray analyses have revealed that WNT5a acts to down-regulate the expression of FSH-responsive genesin vitro, and corresponding increases in the expression of these genes have been found in the GCs of conditional knockout mice. Unexpectedly, we found that WNT5a regulates its target genes not by signalingviathe WNT/Ca(2+)or planar cell polarity pathways, but rather by inhibiting the canonical pathway, causing both β-catenin (CTNNB1) and cAMP responsive element binding (CREB) protein levels to decreaseviaa glycogen synthase kinase-3β-dependent mechanism. We further found that WNT5a prevents follicle-stimulating hormone and luteinizing protein from up-regulating the CTNNB1 and CREB proteins and their target genes, indicating that WNT5a functions as a physiologic inhibitor of gonadotropin signaling. Together, these findings identify WNT5a as a key regulator of follicle development and gonadotropin responsiveness.-Abedini, A., Zamberlam, G., Lapointe, E., Tourigny, C., Boyer, A., Paquet, M., Hayashi, K., Honda, H., Kikuchi, A., Price, C., Boerboom, D. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling.
Collapse
Affiliation(s)
- Atefeh Abedini
- *Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; and Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Gustavo Zamberlam
- *Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; and Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Evelyne Lapointe
- *Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; and Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Catherine Tourigny
- *Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; and Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Alexandre Boyer
- *Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; and Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Marilène Paquet
- *Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; and Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kanako Hayashi
- *Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; and Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroaki Honda
- *Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; and Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akira Kikuchi
- *Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; and Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Christopher Price
- *Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; and Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Derek Boerboom
- *Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; and Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
105
|
Dixit M, Raghuvanshi A, Gupta CP, Kureel J, Mansoori MN, Shukla P, John AA, Singh K, Purohit D, Awasthi P, Singh D, Goel A. Medicarpin, a Natural Pterocarpan, Heals Cortical Bone Defect by Activation of Notch and Wnt Canonical Signaling Pathways. PLoS One 2015; 10:e0144541. [PMID: 26657206 PMCID: PMC4676632 DOI: 10.1371/journal.pone.0144541] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/19/2015] [Indexed: 02/07/2023] Open
Abstract
We evaluated the bone regeneration and healing effect of Medicarpin (med) in cortical bone defect model that heals by intramembranous ossification. For the study, female Sprague–Dawley rats were ovariectomized and rendered osteopenic. A drill hole injury was generated in mid femoral bones of all the animals. Med treatment was commenced the day after and continued for 15 days. PTH was taken as a reference standard. Fifteen days post-treatment, animals were sacrificed. Bones were collected for histomorphometry studies at the injury site by micro-computed tomography (μCT) and confocal microscopy. RNA and protein was harvested from newly generated bone. For immunohistochemistry, 5μm sections of decalcified femur bone adjoining the drill hole site were cut. By μCT analysis and calcein labeling of newly generated bone it was found that med promotes bone healing and new bone formation at the injury site and was comparable to PTH in many aspects. Med treatment led to increase in the Runx-2 and osteocalcin signals indicating expansion of osteoprogenitors at the injury site as evaluated by qPCR and immunohistochemical localization. It was observed that med promoted bone regeneration by activating canonical Wnt and notch signaling pathway. This was evident by increased transcript and protein levels of Wnt and notch signaling components in the defect region. Finally, we confirmed that med treatment leads to elevated bone healing in pre-osteoblasts by co localization of beta catenin with osteoblast marker alkaline phosphatase. In conclusion, med treatment promotes new bone regeneration and healing at the injury site by activating Wnt/canonical and notch signaling pathways. This study also forms a strong case for evaluation of med in delayed union and non-union fracture cases.
Collapse
Affiliation(s)
- Manisha Dixit
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI)CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Ashutosh Raghuvanshi
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Chandra Prakash Gupta
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Jyoti Kureel
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI)CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Mohd Nizam Mansoori
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI)CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Priyanka Shukla
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI)CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Aijaz A. John
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI)CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Kavita Singh
- Sophisticated Analysis and Instrumentation Facilities, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Dipak Purohit
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Pallavi Awasthi
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Divya Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI)CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
- * E-mail: (DS); (AG)
| | - Atul Goel
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
- * E-mail: (DS); (AG)
| |
Collapse
|
106
|
Liu B, Zhang R, Tao G, Lehwald NC, Liu B, Koh Y, Sylvester KG. Augmented Wnt signaling as a therapeutic tool to prevent ischemia/reperfusion injury in liver: Preclinical studies in a mouse model. Liver Transpl 2015; 21:1533-42. [PMID: 26335930 DOI: 10.1002/lt.24331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/21/2015] [Accepted: 08/27/2015] [Indexed: 01/08/2023]
Abstract
The Wnt signaling pathway has established biological roles in liver development, regeneration, and carcinogenesis. Given the common need for cellular energy utilization in each of these processes, we hypothesized that Wnt signaling would directly regulate hepatocyte mitochondrial function. Mice were engineered to overexpress Wnt1 in hepatocytes under the control of a tetracycline analogue. Wnt1 and wild-type mice underwent ischemia/reperfusion injury (IRI) to induce oxidative mitochondrial injury. Alpha mouse liver 12 (AML12) hepatocytes were exposed to Wnt agonists for in vitro hypoxia/reoxygenation (H-R) experiments. We observed stabilized mitochondrial membrane potential and reduced levels of hepatocyte apoptosis involving the mitochondrial pathway in Wnt1 mice compared to controls following IRI. Wnt1 mice also demonstrated increased mitochondrial DNA copy number, as well as an increased tricarboxylic acid cycle activity and adenosine triphosphate levels indicating that mitochondrial function is preserved by Wnt1 overexpression following IRI. AML12 cells treated by Wnt3a or the glycogen synthase kinase 3β inhibitor LiCl exposed to H-R demonstrated decreased reactive oxygen species and reduced apoptosis compared to controls. Increased nucleus-localized PGC-1α and phosphorylated SIRT1 was observed in both Wnt1+ mice as well as AML12 cells treated with Wnt3a or LiCl. Activated Wnt signaling protects hepatocytes against oxidative injury and apoptosis through mitochondrial stabilization and preserved oxidative phosphorylation function. Mechanistically, these effects are accompanied by an increase in phosphorylated SIRT1 and nucleus-localized PGC-1α. These findings expand the understanding of Wnt signaling biology in hepatocytes and suggest the potential for the therapeutic application of Wnt pathway manipulation in a variety of clinical applications including organ transplantation.
Collapse
Affiliation(s)
- Bowen Liu
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA
| | - Rong Zhang
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA
| | - Guozhong Tao
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA
| | - Nadja Corinna Lehwald
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA.,Department of General, Visceral and Pediatric Surgery, School of Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Bo Liu
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA
| | - Yangseok Koh
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA
| | - Karl G Sylvester
- Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA.,Lucile Packard Children's Hospital Stanford, Stanford, CA
| |
Collapse
|
107
|
Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. Post-transcriptional Wnt Signaling Governs Epididymal Sperm Maturation. Cell 2015; 163:1225-1236. [DOI: 10.1016/j.cell.2015.10.029] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/03/2015] [Accepted: 09/23/2015] [Indexed: 01/11/2023]
|
108
|
Gerlach JP, Emmink BL, Nojima H, Kranenburg O, Maurice MM. Wnt signalling induces accumulation of phosphorylated β-catenin in two distinct cytosolic complexes. Open Biol 2015; 4:140120. [PMID: 25392450 PMCID: PMC4248064 DOI: 10.1098/rsob.140120] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wnt/β-catenin signalling controls development and adult tissue homeostasis and causes cancer when inappropriately activated. In unstimulated cells, an Axin1-centred multi-protein complex phosphorylates the transcriptional co-activator β-catenin, marking it for degradation. Wnt signalling antagonizes β-catenin proteolysis, leading to its accumulation and target gene expression. How Wnt stimulation alters the size distribution, composition and activity of endogenous Axin1 complexes remains poorly understood. Here, we employed two-dimensional blue native/SDS-PAGE to analyse endogenous Axin1 and β-catenin complexes during Wnt signalling. We show that the size range of Axin1 complexes is conserved between species and remains largely unaffected by Wnt stimulation. We detect a striking Wnt-dependent, cytosolic accumulation of both non-phosphorylated and phosphorylated β-catenin within a 450 kDa Axin1-based complex and in a distinct, Axin1-free complex of 200 kDa. These results argue that during Wnt stimulation, phosphorylated β-catenin is released from the Axin1 complex but fails to undergo immediate degradation. Importantly, in APC-mutant cancer cells, the distribution of Axin1 and β-catenin complexes strongly resembles that of Wnt-stimulated cells. Our findings argue that Wnt signals and APC mutations interfere with the turnover of phosphorylated β-catenin. Furthermore, our results suggest that the accumulation of small-sized β-catenin complexes may serve as an indicator of Wnt pathway activity in primary cancer cells.
Collapse
Affiliation(s)
- Jan P Gerlach
- Department of Cell Biology, Center for Molecular Medicine, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Benjamin L Emmink
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Hisashi Nojima
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Madelon M Maurice
- Department of Cell Biology, Center for Molecular Medicine, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| |
Collapse
|
109
|
Thorvaldsen TE, Pedersen NM, Wenzel EM, Schultz SW, Brech A, Liestøl K, Waaler J, Krauss S, Stenmark H. Structure, Dynamics, and Functionality of Tankyrase Inhibitor-Induced Degradasomes. Mol Cancer Res 2015; 13:1487-501. [PMID: 26124443 DOI: 10.1158/1541-7786.mcr-15-0125] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/12/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Tankyrase (TNKS) enzymes, due to their poly(ADP-ribose) polymerase activity, have emerged as potential targets in experimental cancer therapy. However, the functional consequences of TNKS inhibition remain incompletely resolved because of the binding promiscuity of TNKS. One of the hallmarks of small-molecule TNKS inhibitors (TNKSi) is the stabilization of AXIN, which plays a pivotal role in the WNT/β-catenin signaling pathway. The present study focused on the known ability of TNKSi to induce cytoplasmic puncta (degradasomes) consisting of components of the signal-limiting WNT/β-catenin destruction complex. Using the colorectal cancer cell line SW480 stably transfected with GFP-TNKS1, it was demonstrated that a TNKS-specific inhibitor (G007-LK) induces highly dynamic and mobile degradasomes that contain phosphorylated β-catenin, ubiquitin, and β-TrCP. Likewise, G007-LK was found to induce similar degradasomes in other colorectal cancer cell lines expressing wild-type or truncated versions of the degradasome component APC. Super-resolution and electron microscopy revealed that the induced degradasomes in SW480 cells are membrane-free structures that consist of a filamentous assembly of high electron densities and discrete subdomains of various destruction complex components. Fluorescence recovery after photobleaching experiments further demonstrated that β-catenin-mCherry was rapidly turned over in the G007-LK-induced degradasomes, whereas GFP-TNKS1 remained stable. In conclusion, TNKS inhibition attenuates WNT/β-catenin signaling by promoting dynamic assemblies of functional active destruction complexes into a TNKS-containing scaffold even in the presence of an APC truncation. IMPLICATIONS This study demonstrates that β-catenin is rapidly turned over in highly dynamic assemblies of WNT destruction complexes (degradasomes) upon tankyrase inhibition and provides a direct mechanistic link between degradasome formation and reduced WNT signaling in colorectal cancer cells.
Collapse
Affiliation(s)
- Tor Espen Thorvaldsen
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Eva M Wenzel
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Sebastian W Schultz
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Knut Liestøl
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Informatics, University of Oslo, Oslo, Norway
| | - Jo Waaler
- Department of Microbiology, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Oslo, Norway
| | - Stefan Krauss
- Department of Microbiology, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.
| |
Collapse
|
110
|
Choedon T, Mathan G, Kumar V. The traditional Tibetan medicine Yukyung Karne exhibits a potent anti-metastatic activity by inhibiting the epithelial to mesenchymal transition and cell migration. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:182. [PMID: 26070932 PMCID: PMC4471927 DOI: 10.1186/s12906-015-0707-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND In Traditional Tibetan medicine, Yukyung Karne has been used for the treatment of ovarian cancer. Though Yukyung Karne has been reported to be clinically effective, the molecular mechanism of its anti-metstatic action remains elusive. METHODS The cytotoxic property of Yukyung Karne was evaluated by crystal violet staining while its ability to induce ceramide production was analyzed by sphingomyelinase assay. The anti-metastatic property was investigated using adhesion, invasion, migration and colony formation assays. The effect of Yukyung Karne on the expression of extracellular matrix components, and epithelial and mesenchymal markers were evaluated by confocal microscopy and western blotting. RESULTS Yukyung Karne exhibited a strong anti-metastatic property by significantly reducing the invasion, migration and colony formation ability of ovarian cancer cells. Besides it inhibited the levels of biomarkers involved in epithelial to mesenchymal transition such as down-regulation of vimentin and N-cadherin and up-regulation of epithelial E-cadherin. Yukyung Karne also induced the neutral sphingomyelinase II (nSMNaseII) enzyme activity that is known to hydrolyze sphingomyelins into pro-apoptotic intracellular molecule ceramide. CONCLUSIONS The study provides some compelling evidences supporting the anti-metastatic potential of Yukyung Karne which strongly suggests its possible usage as a promising alternative medicine. Thus, Yukyung Karne may be used as an anticancer and anti-metastatic agent along with other conventional anticancer therapeutics to increase their efficacy.
Collapse
Affiliation(s)
- Tenzin Choedon
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Ganeshan Mathan
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
111
|
Feng Q, Gao N. Keeping Wnt signalosome in check by vesicular traffic. J Cell Physiol 2015; 230:1170-80. [PMID: 25336320 DOI: 10.1002/jcp.24853] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
Wg/Wnts are paracrine and autocrine ligands that activate distinct signaling pathways while being internalized through surface receptors. Converging and contrasting views are shaping our understanding of whether, where, and how endocytosis may modulate Wnt signaling. We gather considerable amount of evidences to elaborate the point that signal-receiving cells utilize distinct, flexible, and sophisticated vesicular trafficking mechanisms to keep Wnt signaling activity in check. Same molecules in a highly context-dependent fashion serve as regulatory hub for various signaling purposes: amplification, maintenance, inhibition, and termination. Updates are provided for the regulatory mechanisms related to the three critical cell surface complexes, Wnt-Fzd-LRP6, Dkk1-Kremen-LRP6, and R-spondin-LGR5-RNF43, which potently influence Wnt signaling. We pay particular attentions to how cells achieve sustained and delicate control of Wnt signaling strength by employing comprehensive aspects of vesicular trafficking.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | |
Collapse
|
112
|
Lin YU, Wu T, Yao Q, Zi S, Cui L, Yang M, Li J. LGR5 promotes the proliferation of colorectal cancer cells via the Wnt/β-catenin signaling pathway. Oncol Lett 2015; 9:2859-2863. [PMID: 26137160 DOI: 10.3892/ol.2015.3144] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) is an established cancer stem cell marker and is a target gene of the Wnt/β-catenin signaling pathway, a critical pathway in the process of tumor initiation and growth. In the present study, the mRNA expression levels of LGR5, adenomatous polyposis coli (APC) and β-catenin were detected in 20 colorectal cancer (CRC) tissues and matched healthy mucosa samples using reverse transcription-quantitative polymerase chain reaction. HT-29 CRC cell line was treated with siRNA-Lgr5; the APC, β-catenin and LGR5 RNA expressions were detected and cell viability was measured using a CCK8 assay. The results revealed that LGR5 was significantly overexpressed in CRC tissue compared with healthy mucosa (P<0.05). Furthermore, knockdown of LGR5 by small interfering RNA decreased the expression of APC and β-catenin in HT29 colon cancer cells as well as inhibited the proliferation of HT29 cells. These findings demonstrated that LGR5 expression is critical for the promotion of neoplastic CRC cell proliferation, indicating that LGR5 may be a novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Y U Lin
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China ; Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Tingyu Wu
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Qianqian Yao
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Shuming Zi
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Long Cui
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China ; Shanghai Colorectal Cancer Research Centre, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Ming Yang
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Jinming Li
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China ; Shanghai Colorectal Cancer Research Centre, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
113
|
Das A, Miller R, Lee P, Holden CA, Lindhorst SM, Jaboin J, Vandergrift WA, Banik NL, Giglio P, Varma AK, Raizer JJ, Patel SJ. A novel component from citrus, ginger, and mushroom family exhibits antitumor activity on human meningioma cells through suppressing the Wnt/β-catenin signaling pathway. Tumour Biol 2015; 36:7027-34. [PMID: 25864108 DOI: 10.1007/s13277-015-3388-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/24/2015] [Indexed: 12/22/2022] Open
Abstract
Recurrent meningiomas constitute an uncommon but significant problem after standard (surgery and radiation) therapy failure. Current chemotherapies (hydroxyurea, RU-486, and interferon-α) are only of marginal benefit. There is an urgent need for more effective treatments for meningioma patients who have failed surgery and radiation therapy. Limonin, Tangeritin, Zerumbone, 6-Gingerol, Ganoderic Acid A, and Ganoderic Acid DM are some of the plant derivatives that have anti-tumorgenic properties and cause cell death in meningioma cells in vitro. Due to its ease of administration, long-term tolerability, and low incidence of long-term side effects, we explored its potential as a therapeutic agent against meningiomas by examining their efficacy in vitro against meningioma cells. Treatment effects were assessed using MTT assay, Western blot analysis, caspases assay, and DNA fragmentation assay. Results indicated that treatments of IOMM-Lee and CH157MN meningioma cells with Limonin, Tangeritin, Zerumbone, 6-Gingerol, Ganoderic Acid A, and Ganoderic Acid DM induced apoptosis with enhanced phosphorylation of glycogen synthase kinase 3 β (GSK3β) via inhibition of the Wnt5/β-catenin pathway. These drugs did not induce apoptosis in normal human neurons. Other events in apoptosis included downregulation of tetraspanin protein (TSPAN12), survival proteins (Bcl-XL and Mcl-1), and overexpression apoptotic factors (Bax and caspase-3). These results provide preliminary strong evidence that medicinal plants containing Limonin, Tangeritin, 6-Gingerol, Zerumbone, Ganoderic Acid A, and Ganoderic Acid DM can be applied to high-grade meningiomas as a therapeutic agent, and suggests that further in vivo studies are necessary to explore its potential as a therapeutic agent against malignant meningiomas.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Neurosurgery, Neuro-oncology Division, MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA.
| | - Rickey Miller
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Philip Lee
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Scott M Lindhorst
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jerry Jaboin
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - William A Vandergrift
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Naren L Banik
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA.,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Pierre Giglio
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Neurological Surgery, Wexner Medical College, Ohio State University, Columbus, OH, 43210, USA
| | - Abhay K Varma
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jeffery J Raizer
- Department of Neurology and Northwestern Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sunil J Patel
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
114
|
Barkell AM, Holdsworth G, Waters LC, Veverka V, Slocombe PM, Muskett FW, Henry AJ, Robinson MK, Carr MD. Resonance assignment and secondary structure determination of full length human Dickkopf 4 (hDkk4), a secreted, disulphide-rich Wnt inhibitor protein. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:147-151. [PMID: 24816897 DOI: 10.1007/s12104-014-9562-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
A number of proteins have been shown to modulate canonical Wnt signalling at the cell surface, including members of the Dickkopf (Dkk) family (Baron and Rawadi in J Endocrinol 148:2635-2643, 2007; Cruciat and Niehrs in Cold Spring Harb Perspect Biol 5:a015081, 2013). The Dkk family includes four secreted proteins (Dkk1-4), which are characterised by two highly conserved cysteine-rich regions corresponding to C24-C73 and C128-C201 in human Dkk4 (hDkk4). Here we report essentially complete backbone and comprehensive side chain (15)N, (13)C and (1)H NMR assignments for full length mature hDkk4 (M1-L207) containing a short C-terminal hexa-histidine tag (E208-H222). Analysis of the backbone chemical shift data obtained indicates that there is a very limited amount of regular secondary structure, with only small stretches of β-strand identified in both cysteine-rich regions. The N-terminal region of hDkk4 (M1-G21) and the relatively long linker between the two cysteine-rich regions (E77-Q123) appear to be unstructured and relatively mobile.
Collapse
Affiliation(s)
- Alice M Barkell
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Haack F, Lemcke H, Ewald R, Rharass T, Uhrmacher AM. Spatio-temporal model of endogenous ROS and raft-dependent WNT/beta-catenin signaling driving cell fate commitment in human neural progenitor cells. PLoS Comput Biol 2015; 11:e1004106. [PMID: 25793621 PMCID: PMC4368204 DOI: 10.1371/journal.pcbi.1004106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/31/2014] [Indexed: 02/03/2023] Open
Abstract
Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the model. Thus, our results provide both new insights and means to further our understanding of canonical WNT/β-catenin signaling and the role of ROS as intracellular signaling mediator. Human neural progenitor cells offer the promising perspective of using in-vitro grown neural cell populations for replacement therapies in the context of neurodegenerative diseases, such as Parkinson’s or Huntington’s disease. However, to control hNPC differentiation within the scope of stem cell engineering, a thorough understanding of cell fate determination and its endogenous regulation is required. Here we investigate the spatio-temporal regulation of WNT/β-catenin signaling in the process of cell fate commitment in hNPCs, which has been reported to play a crucial role for the differentiation process of hNPCs. Based on a combined in-vitro and in-silico approach we demonstrate an elaborate interplay between endogenous ROS and lipid raft dependent WNT/beta-catenin signaling controlling the nuclear beta-catenin levels throughout the initial phase of neural differentiation. The stochastic multi-level computational model we derive from our experimental measurements adds to the family of existing WNT models, addressing major biochemical and spatial aspects of WNT/beta-catenin signaling that have not been considered in existing models so far. Cross validation studies manifest its predictive capability for other cells and cell lines rendering the model a suitable basis for further studies also in the context of embryonic development, developmental disorders and cancers.
Collapse
Affiliation(s)
- Fiete Haack
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
- * E-mail:
| | - Heiko Lemcke
- Live Cell Imaging Center, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University Medical Center Rostock, Rostock, Germany
| | - Roland Ewald
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
| | - Tareck Rharass
- Live Cell Imaging Center, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin-Buch, Berlin-Buch, Germany
| | - Adelinde M. Uhrmacher
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
| |
Collapse
|
116
|
Abstract
Glycogen synthase kinase-3 (GSK-3) is one of the few signaling molecules that regulate a truly astonishing number of critical intracellular signaling pathways. It has been implicated in several diseases including heart failure, bipolar disorder, diabetes mellitus, Alzheimer disease, aging, inflammation, and cancer. Furthermore, a recent clinical trial has validated the feasibility of targeting GSK-3 with small molecule inhibitors for human diseases. In the current review, we will focus on its expanding role in the heart, concentrating primarily on recent studies that have used cardiomyocyte- and fibroblast-specific conditional gene deletion in mouse models. We will highlight the role of the GSK-3 isoforms in various pathological conditions including myocardial aging, ischemic injury, myocardial fibrosis, and cardiomyocyte proliferation. We will discuss our recent findings that deletion of GSK-3α specifically in cardiomyocytes attenuates ventricular remodeling and cardiac dysfunction after myocardial infarction by limiting scar expansion and promoting cardiomyocyte proliferation. The recent emergence of GSK-3β as a regulator of myocardial fibrosis will also be discussed. We will review our recent findings that specific deletion of GSK-3β in cardiac fibroblasts leads to fibrogenesis, left ventricular dysfunction, and excessive scarring in the ischemic heart. Finally, we will examine the underlying mechanisms that drive the aberrant myocardial fibrosis in the models in which GSK-3β is specifically deleted in cardiac fibroblasts. We will summarize these recent results and offer explanations, whenever possible, and hypotheses when not. For these studies we will rely heavily on our models and those of others to reconcile some of the apparent inconsistencies in the literature.
Collapse
Affiliation(s)
- Hind Lal
- From the Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., T.F.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.W.).
| | - Firdos Ahmad
- From the Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., T.F.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.W.)
| | - James Woodgett
- From the Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., T.F.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.W.)
| | - Thomas Force
- From the Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., T.F.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.W.).
| |
Collapse
|
117
|
Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3β: autoregulation of GSK-3β in vivo. Biochem J 2015; 466:415-30. [DOI: 10.1042/bj20140207] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Andrographolide activates the canonical Wnt pathway and induces the transcription of Wnt target genes through a mechanism independent of Wnt ligand binding to its receptor, by direct substrate-competitive inhibition of GSK-3.
Collapse
|
118
|
Benary U, Kofahl B, Hecht A, Wolf J. Mathematical modelling suggests a differential impact of β-transducin repeat-containing protein paralogues on Wnt/β-catenin signalling dynamics. FEBS J 2015; 282:1080-96. [PMID: 25601154 DOI: 10.1111/febs.13204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/15/2014] [Accepted: 01/15/2015] [Indexed: 12/12/2022]
Abstract
The Wnt/β-catenin signalling pathway is involved in the regulation of a multitude of cellular processes by controlling the concentration of the transcriptional regulator β-catenin. Proteasomal degradation of β-catenin is mediated by two β-transducin repeat-containing protein paralogues, homologous to Slimb protein (HOS) and F-box/WD repeat-containing protein 1A (FWD1), which are functionally interchangeable and thereby considered to function redundantly in the pathway. HOS and FWD1 are both regulated by Wnt/β-catenin signalling, albeit in opposite directions, thus establishing interlocked negative and positive feedback loops. The functional relevance of the opposite regulation of HOS and FWD1 by Wnt/β-catenin signalling in conjunction with their redundant activities in proteasomal degradation of β-catenin remains unresolved. Using a detailed ordinary differential equation model, we investigated the specific influence of each individual feedback mechanism and their combination on Wnt/β-catenin signal transduction under wild-type and cancerous conditions. We found that, under wild-type conditions, the signalling dynamics are predominantly affected by the HOS feedback as a result of a higher concentration of HOS than FWD1. Transcriptional up-regulation of FWD1 by other signalling pathways reduced the impact of the HOS feedback. The opposite regulation of HOS and FWD1 expression by Wnt/β-catenin signalling allows the FWD1 feedback to be employed as a compensation mechanism against aberrant pathway activation as a result of a reduced HOS concentration. By contrast, the FWD1 feedback provides no protection against aberrant activation in adenomatous polyposis coli protein mutant cancer cells.
Collapse
Affiliation(s)
- Uwe Benary
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine Berlin-Buch, Germany
| | | | | | | |
Collapse
|
119
|
Mrak E, Casati L, Pagani F, Rubinacci A, Zarattini G, Sibilia V. Ghrelin Increases Beta-Catenin Level through Protein Kinase A Activation and Regulates OPG Expression in Rat Primary Osteoblasts. Int J Endocrinol 2015; 2015:547473. [PMID: 25866509 PMCID: PMC4381660 DOI: 10.1155/2015/547473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 01/18/2023] Open
Abstract
Ghrelin, by binding growth hormone secretagogue receptor (GHS-R), promotes osteoblast proliferation but the signaling mechanism of GHS-R on these cells remains unclear. Since canonical Wnt/β-catenin pathway is critically associated with bone homeostasis, we investigated its involvement in mediating ghrelin effects in osteoblasts and in osteoblast-osteoclast cross talk. Ghrelin (10(-10)M) significantly increased β-catenin levels in rat osteoblasts (rOB). This stimulatory action on β-catenin involves a specific interaction with GHS-R1a, as it is prevented by the selective GHS-R1a antagonist, D-Lys(3)-GHRP-6 (10(-7)M). The effect of ghrelin on β-catenin involves the phosphorylation and inactivation of GSK-3β via protein kinase A (PKA). Inhibition of PKA activity reduces the facilitatory action of ghrelin on β-catenin stabilization. Ghrelin treatment of rOB significantly increases the expression of osteoprotegerin (OPG), which plays an important role in the regulation of osteoclastogenesis, and this effect is blocked by D-Lys(3)-GHRP-6. Furthermore, ghrelin reduced RANKL/OPG ratio thus contrasting osteoclastogenesis. Accordingly, conditioned media from rOB treated with ghrelin decreased the number of multinucleated TRAcP+ cells as compared with the conditioned media from untreated-control rOB. Our data suggest new roles for ghrelin in modulating bone homeostasis via a specific interaction with GHSR-1a in osteoblasts with subsequent enhancement of both β-catenin levels and OPG expression.
Collapse
Affiliation(s)
- Emanuela Mrak
- Department of Medical Biotechnology and Translational Medicine, Medical Pharmacology Unit, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnology and Translational Medicine, Medical Pharmacology Unit, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Francesca Pagani
- Department of Medical Biotechnology and Translational Medicine, Medical Pharmacology Unit, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Alessandro Rubinacci
- Bone Metabolism Unit, Scientific Institute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Guido Zarattini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine, Medical Pharmacology Unit, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy
- *Valeria Sibilia:
| |
Collapse
|
120
|
Rath G, Jawanjal P, Salhan S, Nalliah M, Dhawan I. Clinical significance of inactivated glycogen synthase kinase 3β in HPV-associated cervical cancer: Relationship with Wnt/β-catenin pathway activation. Am J Reprod Immunol 2014; 73:460-78. [PMID: 25532422 DOI: 10.1111/aji.12346] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/18/2014] [Indexed: 11/29/2022] Open
Abstract
PROBLEM To determine the role of inactivated GSK3β with respect to Wnt/β-catenin pathway activation in HPV-16/18-associated cervical cancer. METHOD OF STUDY The expression of active (pGSK3β-Try(216)), inactive (pGSK3β-Ser(9)), and c-Myc as well as HPV-16/18 infection was analyzed in cervical intra-epithelial neoplasia (CIN), squamous cell carcinoma (SCCs) and normal by immunohistochemistry and multiplex PCR. The proteins level was also compared with β-catenin and APC expression. RESULTS The dramatic decrease of pGSK3β-Try(216) expression but ectopic overexpression of pGSK3β-Ser(9) and c-Myc was observed both in CIN and SCCs samples compared to normal tissues. 57/67 CIN and 132/153 SCCs showed HPV-16 infection, while 3/67 CIN and 4/153 SCCs were harbored with HPV-18 infection. Both the proteins were significantly upregulated in HPV-16 infected cases (P = 0.0001; P = 0.001) and also positively correlated with nuclear β-catenin (P = 0.0001; P = 0.0001). CONCLUSION The process of generation of HPV-16-associated cervical tumorigenesis is synergized with GSK3β inactivation and overactivation of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Gayatri Rath
- Department of Anatomy, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | | | | | | | | |
Collapse
|
121
|
Bernkopf DB, Hadjihannas MV, Behrens J. Negative-feedback regulation of the Wnt pathway by conductin/axin2 involves insensitivity to upstream signalling. J Cell Sci 2014; 128:33-9. [PMID: 25380820 DOI: 10.1242/jcs.159145] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Axin and conductin (also known as axin2) are structurally related inhibitors of Wnt/β-catenin signalling that promote degradation of β-catenin. Whereas axin is constitutively expressed, conductin is a Wnt target gene implicated in Wnt negative-feedback regulation. Here, we show that axin and conductin differ in their functional interaction with the upstream Wnt pathway component Dvl. Conductin shows reduced binding to Dvl2 compared to axin, and degradation of β-catenin by conductin is only poorly blocked by Dvl2. We propose that insensitivity to Dvl is an important feature of the role of conductin as a negative-feedback regulator of Wnt signalling.
Collapse
Affiliation(s)
- Dominic B Bernkopf
- Nikolaus-Fiebiger-Center, Chair of Experimental Medicine II, Friedrich-Alexander Universität Erlangen-Nürnberg, Glückstr. 6, D-91054 Erlangen, Germany
| | - Michel V Hadjihannas
- Nikolaus-Fiebiger-Center, Chair of Experimental Medicine II, Friedrich-Alexander Universität Erlangen-Nürnberg, Glückstr. 6, D-91054 Erlangen, Germany
| | - Jürgen Behrens
- Nikolaus-Fiebiger-Center, Chair of Experimental Medicine II, Friedrich-Alexander Universität Erlangen-Nürnberg, Glückstr. 6, D-91054 Erlangen, Germany
| |
Collapse
|
122
|
Schlupf J, Steinbeisser H. IGF antagonizes the Wnt/β-Catenin pathway and promotes differentiation of extra-embryonic endoderm. Differentiation 2014; 87:209-19. [PMID: 25287945 DOI: 10.1016/j.diff.2014.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/15/2014] [Indexed: 11/28/2022]
Abstract
Mouse F9 teratocarcinoma cells are an established model for the differentiation of extra-embryonic endoderm (ExEn). Primitive endoderm, parietal and visceral endoderm can be generated by stimulation of F9 cells with retinoic acid and dibutyryl cyclic adenosine monophosphate. Here we show that Wnt/β-Catenin signaling is down-regulated during ExEn differentiation in F9 cells and that the inhibition of the Wnt pathway promotes differentiation of the three extra-embryonic endoderm lineages. Wnt inhibition is achieved through the IGF pathway, which is up-regulated during differentiation. IGF signaling antagonizes the Wnt pathway by stimulating transcription of axin2 and by stabilizing Axin1 protein. Both Axin1 and Axin2 are components of the β-Catenin destruction complex and act as intra-cellular inhibitors of the Wnt/β-Catenin pathway. The data presented reveal a mechanism which restricts pluripotency of undifferentiated cells and directs them toward extra-embryonic lineages.
Collapse
Affiliation(s)
- Judith Schlupf
- Institute of Human Genetics, University Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| | - Herbert Steinbeisser
- Institute of Human Genetics, University Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| |
Collapse
|
123
|
Gagliardi M, Hernandez A, McGough IJ, Vincent JP. Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal β-catenin/Armadillo. J Cell Sci 2014; 127:4918-26. [PMID: 25236598 PMCID: PMC4231306 DOI: 10.1242/jcs.155424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A key step in the canonical Wnt signalling pathway is the inhibition of GSK3β, which results in the accumulation of nuclear β-catenin (also known as CTNNB1), and hence regulation of target genes. Evidence suggests that endocytosis is required for signalling, yet its role and the molecular understanding remains unclear. A recent and controversial model suggests that endocytosis contributes to Wnt signalling by causing the sequestration of the ligand-receptor complex, including LRP6 and GSK3 to multivesicular bodies (MVBs), thus preventing GSK3β from accessing β-catenin. Here, we use specific inhibitors (Dynasore and Dyngo-4a) to confirm the essential role of endocytosis in Wnt/Wingless signalling in human and Drosophila cells. However, we find no evidence that, in Drosophila cells or wing imaginal discs, LRP6/Arrow traffics to MVBs or that MVBs are required for Wnt/Wingless signalling. Moreover, we show that activation of signalling through chemical blockade of GSK3β is prevented by endocytosis inhibitors, suggesting that endocytosis impacts on Wnt/Wingless signalling downstream of the ligand-receptor complex. We propose that, through an unknown mechanism, endocytosis boosts the resting pool of β-catenin upon which GSK3β normally acts.
Collapse
Affiliation(s)
- Maria Gagliardi
- MRC's National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK
| | - Ana Hernandez
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ian J McGough
- MRC's National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK
| | - Jean-Paul Vincent
- MRC's National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK
| |
Collapse
|
124
|
Cruciat CM. Casein kinase 1 and Wnt/β-catenin signaling. Curr Opin Cell Biol 2014; 31:46-55. [PMID: 25200911 DOI: 10.1016/j.ceb.2014.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022]
Abstract
Casein kinase 1 (CK1) members play a critical and evolutionary conserved role in Wnt/β-catenin signaling. They phosphorylate several pathway components and exert a dual function, acting as both Wnt activators and Wnt inhibitors. Recent discoveries suggest that CK1 members act in a coordinated manner to regulate early responses to Wnt and notably that their enzymatic activity is regulated. Here, I provide a brief update of CK1 function and regulation in Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
125
|
Arstikaitis J, Gagné F, Cyr DG. Exposure of fathead minnows to municipal wastewater effluent affects intracellular signaling pathways in the liver. Comp Biochem Physiol C Toxicol Pharmacol 2014; 164:1-10. [PMID: 24747326 DOI: 10.1016/j.cbpc.2014.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 12/12/2022]
Abstract
Municipal wastewater effluent can impact its receiving environment. In the St. Lawrence River, male fish living downstream from Montreal exhibit increased hepatic vitellogenin, intersex, delayed spermatogenesis and altered immune function. Few studies have examined genome-wide effects associated with municipal effluent exposure in fish to decipher the mechanisms of toxicity. The present objective was to identify hepatic cellular signaling pathways in fathead minnows following exposure to municipal wastewater effluent. Immature minnows were exposed for 21 days to either 0% (Control) or 20% municipal effluent, the highest concentration in the St. Lawrence River. Hepatic RNA was extracted and used to hybridize a fathead minnow oligonucleotide microarray containing approximately 15k gene sequences. A total of 1300 genes were differentially expressed, of which 309 genes had more than 2-fold change in expression level between control and MWWE-exposed fish. Of those, 118 were up-regulated and 191 were down-regulated. Altered genes grouped according to function, indicated effects on various signaling pathways, apoptosis, immune responses, and cellular metabolism. Pathway analysis software predicted at least 5 signaling pathways that were altered by treatment: cell adhesion, inflammation, various kinases, estrogen receptor signaling and WNT signaling. Various components of the canonical Wnt pathway were dramatically down-regulated, while several other genes involved in the non-canonical Wnt pathway, such as Wnt4, LRP6, and PPP2R5E, which are known to inhibit the canonical Wnt pathway, were increased. These results indicate that municipal wastewater effluent from Montreal can target and inhibit various signaling including those implicated in hepatic Wnt signaling pathway in fathead minnows.
Collapse
Affiliation(s)
- Jennifer Arstikaitis
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7,Canada
| | - François Gagné
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7,Canada; Centre Saint-Laurent, Environment Canada, Montreal, Québec H2Y 2E7, Canada
| | - Daniel G Cyr
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7,Canada.
| |
Collapse
|
126
|
DACT2 is a functional tumor suppressor through inhibiting Wnt/β-catenin pathway and associated with poor survival in colon cancer. Oncogene 2014; 34:2575-85. [PMID: 25023701 PMCID: PMC4761644 DOI: 10.1038/onc.2014.201] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/12/2014] [Accepted: 06/06/2014] [Indexed: 12/22/2022]
Abstract
Dapper homolog (DACT) 2 is one of the Dact gene family members, which are important modulators of Wnt signaling pathway. We aim to clarify its epigenetic inactivation, biological function and clinical implication in colon cancer. DACT2 was silenced in five out of eight colon cancer cell lines, but robustly expressed in normal colon tissues. The loss of DACT2 expression was regulated by promoter hypermethylation. Restoring DACT2 expression in colon cancer cell lines suppressed tumor cell growth by inducing cell apoptosis and inhibiting cell proliferation both in vitro and in vivo. Moreover, DACT2 overexpression effectively reduced lung metastasis of colon cancer cells in nude mice. These effects by DACT2 were attributed to inhibition of Wnt/β-catenin signaling. Reexpression of DACT2 significantly suppressed the transcriptional activity of both wild-type β-catenin and degradation-resistant form mutant β-catenin (S33Y). DACT2 could actively shuttle into and out of nuclei, with its predominant steady-state localization in the cytoplasm dependent on its nuclear export signal. Co-immunoprecipitation results indicated that DACT2 strongly associated β-catenin as well as lymphoid enhancer-binding factor 1 (LEF1) and directly disrupted the formation of the β-catenin-LEF1 complex in the nucleus. Whereas in the cytoplasm, DACT2 restored junctional localization of E-cadherin-β-catenin complexes and prevented β-catenin nuclear translocation through direct interaction with β-catenin. DACT2 methylation was detected in 43.3% (29/67) of colon cancer tissues, but none in normal controls. Multivariate analysis revealed that patients with DACT2 methylation had a significant decrease in overall survival (P=0.006). Kaplan-Meier survival curves showed that DACT2 methylation was significantly associated with shortened survival in stage I-III colon cancer patients. In conclusion, DACT2 acts as a functional tumor suppressor in colon cancer through inhibiting Wnt/β-catenin signaling. Its methylation at early stages of colon carcinogenesis is an independent prognostic factor.
Collapse
|
127
|
Kumawat K, Koopmans T, Gosens R. β-catenin as a regulator and therapeutic target for asthmatic airway remodeling. Expert Opin Ther Targets 2014; 18:1023-34. [PMID: 25005144 DOI: 10.1517/14728222.2014.934813] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Pathological alteration in the airway structure, termed as airway remodeling, is a hallmark feature of individuals with asthma and has been described to negatively impact lung function in asthmatics. Recent studies have raised considerable interest in the regulatory role of β-catenin in remodeling asthmatic airways. The WNT/β-catenin signaling pathway is the key to normal lung development and tightly coordinates the maintenance of tissue homeostasis under steady-state conditions. Several studies indicate the crucial role of β-catenin signaling in airway remodeling in asthma and suggest that this pathway may be activated by both the growth factors and mechanical stimuli such as bronchoconstriction. AREAS COVERED In this review, we discuss recent literature regarding the mechanisms of β-catenin signaling activation and its mechanistic role in asthmatic airway remodeling. Further, we discuss the possibilities of therapeutic targeting of β-catenin. EXPERT OPINION The aberrant activation of β-catenin signaling by both WNT-dependent and -independent mechanisms in asthmatic airways plays a key role in remodeling the airways, including cell proliferation, differentiation, tissue repair and extracellular matrix production. These findings are interesting from both a mechanistic and therapeutic perspective, as several drug classes have now been described that target β-catenin signaling directly.
Collapse
Affiliation(s)
- Kuldeep Kumawat
- University of Groningen, Groningen Research Institute for Asthma and COPD, Department of Molecular Pharmacology , A. Deusinglaan 1, 9713 AV Groningen , The Netherlands +31 50 363 8177 ; +31 50 363 6908 ;
| | | | | |
Collapse
|
128
|
Chou SD, Murshid A, Eguchi T, Gong J, Calderwood SK. HSF1 regulation of β-catenin in mammary cancer cells through control of HuR/elavL1 expression. Oncogene 2014; 34:2178-2188. [PMID: 24954509 PMCID: PMC4275421 DOI: 10.1038/onc.2014.177] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/11/2014] [Accepted: 05/12/2014] [Indexed: 01/21/2023]
Abstract
There is now compelling evidence to indicate a place for heat shock factor 1 (HSF1) in mammary carcinogenesis, tumor progression and metastasis. Here we have investigated a role for HSF1 in regulating the expression of the stem cell renewal factor β-catenin in immortalized human mammary epithelial and carcinoma cells. We found HSF1 to be involved in regulating the translation of β–catenin, by investigating effects of gain and loss of HSF1 on this protein. Interestingly, although HSF1 is a potent transcription factor, it was not directly involved in regulating levels of β-catenin mRNA. Instead, our data suggest a complex role in translational regulation. HSF1 was shown to regulate levels of the RNA binding protein HuR that controlled β-catenin translation. An extra complexity was added to this scenario when it was shown that the long non-coding RNA molecule lincRNA-p21, known to be involved in β-catenin mRNA (CTNNB1) translational regulation, was controlled by HSF1 repression. We have shown previously that HSF1 was positively regulated through phosphorylation by mTOR kinase on a key residue, serine 326 essential for transcriptional activity. In this study we found that mTOR knockdown not only decreased HSF1-S326 phosphorylation in mammary cells, but also decreased β-catenin expression through a mechanism requiring HuR. Our data point to a complex role for HSF1 in the regulation of HuR and β-catenin expression that may be significant in mammary carcinogenesis.
Collapse
Affiliation(s)
- Shiuh-Dih Chou
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Takanori Eguchi
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Jianlin Gong
- Boston University Medical Center, Boston, MA02215
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| |
Collapse
|
129
|
Mennerich D, Dimova EY, Kietzmann T. Direct phosphorylation events involved in HIF-α regulation: the role of GSK-3β. HYPOXIA 2014; 2:35-45. [PMID: 27774465 PMCID: PMC5045055 DOI: 10.2147/hp.s60703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia-inducible factors (HIFs), consisting of α- and β-subunits, are critical regulators of the transcriptional response to hypoxia under both physiological and pathological conditions. To a large extent, the protein stability and the recruitment of coactivators to the C-terminal transactivation domain of the HIF α-subunits determine overall HIF activity. The regulation of HIF α-subunit protein stability and coactivator recruitment is mainly achieved by oxygen-dependent posttranslational hydroxylation of conserved proline and asparagine residues, respectively. Under hypoxia, the hydroxylation events are inhibited and HIF α-subunits stabilize, translocate to the nucleus, dimerize with the β-subunits, and trigger a transcriptional response. However, under normal oxygen conditions, HIF α-subunits can be activated by various growth and coagulation factors, hormones, cytokines, or stress factors implicating the involvement of different kinase pathways in their regulation, thereby making HIF-α-regulating kinases attractive therapeutic targets. From the kinases known to regulate HIF α-subunits, only a few phosphorylate HIF-α directly. Here, we review the direct phosphorylation of HIF-α with an emphasis on the role of glycogen synthase kinase-3β and the consequences for HIF-1α function.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
130
|
Voelkl J, Mia S, Meissner A, Ahmed MS, Feger M, Elvira B, Walker B, Alessi DR, Alesutan I, Lang F. PKB/SGK-resistant GSK-3 signaling following unilateral ureteral obstruction. Kidney Blood Press Res 2014; 38:156-64. [PMID: 24685987 DOI: 10.1159/000355763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal tissue fibrosis contributes to the development of end-stage renal disease. Causes for renal tissue fibrosis include obstructive nephropathy. The development of renal fibrosis following unilateral ureteral obstruction (UUO) is blunted in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase SGK1. Similar to Akt isoforms, SGK1 phosphorylates and thus inactivates glycogen synthase kinase GSK-3. The present study explored whether PKB/SGK-dependent phoshorylation of GSK-3α/β impacts on pro-fibrotic signaling following UUO. METHODS UUO was induced in mice carrying a PKB/SGK-resistant GSK-3α/β (gsk-3(KI)) and corresponding wild-type mice (gsk-3(WT)). Three days after the obstructive injury, expression of fibrosis markers in kidney tissues was analyzed by quantitative RT-PCR and western blotting. RESULTS GSK-3α and GSK-3β phosphorylation was absent in both, the non-obstructed and the obstructed kidney tissues from gsk-3(KI) mice but was increased by UUO in kidney tissues from gsk-3(WT) mice. Expression of α-smooth muscle actin, type I collagen and type III collagen in the non-obstructed kidney tissues was not significantly different between gsk-3(KI) mice and gsk-3(WT) mice but was significantly less increased in the obstructed kidney tissues from gsk-3(KI) mice than from gsk-3(WT) mice. After UUO treatment, renal β-catenin protein abundance and renal expression of the β-catenin sensitive genes: c-Myc, Dkk1, Twist and Lef1 were again significantly less increased in kidney tissues from gsk-3(KI) mice than from gsk-3(WT) mice. CONCLUSIONS PKB/SGK-dependent phosphorylation of glycogen synthase kinase GSK-3 contributes to the pro-fibrotic signaling leading to renal tissue fibrosis in obstructive nephropathy.
Collapse
Affiliation(s)
- Jakob Voelkl
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Vinyoles M, Del Valle-Pérez B, Curto J, Viñas-Castells R, Alba-Castellón L, García de Herreros A, Duñach M. Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6. Mol Cell 2014; 53:444-57. [PMID: 24412065 DOI: 10.1016/j.molcel.2013.12.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 01/15/2023]
Abstract
The Wnt canonical ligands elicit the activation of β-catenin transcriptional activity, a response dependent on, but not limited to, β-catenin stabilization through the inhibition of GSK3 activity. Two mechanisms have been proposed for this inhibition, one dependent on the binding and subsequent block of GSK3 to LRP5/6 Wnt coreceptor and another one on its sequestration into multivesicular bodies (MVBs). Here we report that internalization of the GSK3-containing Wnt-signalosome complex into MVBs is dependent on the dissociation of p120-catenin/cadherin from this complex. Disruption of cadherin-LRP5/6 interaction is controlled by cadherin phosphorylation and requires the previous separation of p120-catenin; thus, p120-catenin and cadherin mutants unable to dissociate from the complex block GSK3 sequestration into MVBs. These mutants substantially inhibit, but do not completely prevent, the β-catenin upregulation caused by Wnt3a. These results, besides elucidating how GSK3 is sequestered into MVBs, support this mechanism as cause of β-catenin stabilization by Wnt.
Collapse
Affiliation(s)
- Meritxell Vinyoles
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Beatriz Del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Josué Curto
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Rosa Viñas-Castells
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), E-08003 Barcelona, Spain
| | - Lorena Alba-Castellón
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), E-08003 Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), E-08003 Barcelona, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain.
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| |
Collapse
|
132
|
Son HS, Kwon HY, Sohn EJ, Lee JH, Woo HJ, Yun M, Kim SH, Kim YC. Activation of AMP-activated protein kinase and phosphorylation of glycogen synthase kinase3 β mediate ursolic acid induced apoptosis in HepG2 liver cancer cells. Phytother Res 2013; 27:1714-22. [PMID: 23325562 DOI: 10.1002/ptr.4925] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2023]
Abstract
Despite the antitumour effect of ursolic acid observed in several cancers, the underlying mechanism remains unclear. Thus, in the present study, the roles of AMP-activated protein kinase (AMPK) and glycogen synthase kinase 3 beta (GSK3β) were examined in ursolic acid induced apoptosis in HepG2 hepatocellular carcinoma cells. Ursolic acid significantly exerted cytotoxicity, increased the sub-G1 population and the number of ethidium homodimer and terminal deoxynucleotidyl transferase(TdT) mediated dUTP nick end labeling positive cells in HepG2 cells. Also, ursolic acid enhanced the cleavages of poly-ADP-ribose polymerase (PARP) and caspase3, attenuated the expression of astrocyte elevated gene (AEG1) and survivin in HepG2 cells. Interestingly, ursolic acid increased the phosphorylation of AMPK and coenzyme A carboxylase and also enhanced phosphorylation of GSK3β at inactive form serine 9, whereas ursolic acid attenuated the phosphorylation of AKT and mTOR in HepG2 cells. Conversely, AMPK inhibitor compound C or GSK3β inhibitor SB216763 blocked the cleavages of PARP and caspase 3 induced by ursolic acid in HepG2 cells. Furthermore, proteosomal inhibitor MG132 suppressed AMPK activation, GSK3β phosphorylation, cleaved PARP and deceased AEG-1 induced by ursolic acid in HepG2 cells. Overall, our findings suggest that ursolic acid induced apoptosis in HepG2 cells via AMPK activation and GSK3β phosphorylation as a potent chemopreventive agent.
Collapse
Affiliation(s)
- Hyun-Soo Son
- College of Oriental Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
133
|
James RG, Bosch KA, Kulikauskas RM, Yang PT, Robin NC, Toroni RA, Biechele TL, Berndt JD, von Haller PD, Eng JK, Wolf-Yadlin A, Chien AJ, Moon RT. Protein kinase PKN1 represses Wnt/β-catenin signaling in human melanoma cells. J Biol Chem 2013; 288:34658-70. [PMID: 24114839 PMCID: PMC3843078 DOI: 10.1074/jbc.m113.500314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Advances in phosphoproteomics have made it possible to monitor changes in protein phosphorylation that occur at different steps in signal transduction and have aided the identification of new pathway components. In the present study, we applied this technology to advance our understanding of the responses of melanoma cells to signaling initiated by the secreted ligand WNT3A. We started by comparing the phosphopeptide patterns of cells treated with WNT3A for different periods of time. Next, we integrated these data sets with the results from a siRNA screen that targeted protein kinases. This integration of siRNA screening and proteomics enabled us to identify four kinases that exhibit altered phosphorylation in response to WNT3A and that regulate a luciferase reporter of β-catenin-responsive transcription (β-catenin-activated reporter). We focused on one of these kinases, an atypical PKC kinase, protein kinase N1 (PKN1). Reducing the levels of PKN1 with siRNAs significantly enhances activation of β-catenin-activated reporter and increases apoptosis in melanoma cell lines. Using affinity purification followed by mass spectrometry, we then found that PKN1 is present in a protein complex with a WNT3A receptor, Frizzled 7, as well as with proteins that co-purify with Frizzled 7. These data establish that the protein kinase PKN1 inhibits Wnt/β-catenin signaling and sensitizes melanoma cells to cell death stimulated by WNT3A.
Collapse
|
134
|
Knöfler M, Pollheimer J. Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Front Genet 2013; 4:190. [PMID: 24133501 PMCID: PMC3783976 DOI: 10.3389/fgene.2013.00190] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/06/2013] [Indexed: 12/12/2022] Open
Abstract
Wingless ligands, a family of secreted proteins, are critically involved in organ development and tissue homeostasis by ensuring balanced rates of stem cell proliferation, cell death and differentiation. Wnt signaling components also play crucial roles in murine placental development controlling trophoblast lineage determination, chorioallantoic fusion and placental branching morphogenesis. However, the role of the pathway in human placentation, trophoblast development and differentiation is only partly understood. Here, we summarize our present knowledge about Wnt signaling in the human placenta and discuss its potential role in physiological and aberrant trophoblast invasion, gestational diseases and choriocarcinoma formation. Differentiation of proliferative first trimester cytotrophoblasts into invasive extravillous trophoblasts is associated with nuclear recruitment of β -catenin and induction of Wnt-dependent T-cell factor 4 suggesting that canonical Wnt signaling could be important for the formation and function of extravillous trophoblasts. Indeed, activation of the pathway was shown to promote trophoblast invasion in different in vitro trophoblast model systems as well as trophoblast cell fusion. Methylation-mediated silencing of inhibitors of Wnt signaling provided evidence for epigenetic activation of the pathway in placental tissues and choriocarcinoma cells. Similarly, abundant nuclear expression of β -catenin in invasive trophoblasts of complete hydatidiform moles suggested a role for hyper-activated Wnt signaling. In contrast, upregulation of Wnt inhibitors was noticed in placentae of women with preeclampsia, a disease characterized by shallow trophoblast invasion and incomplete spiral artery remodeling. Moreover, changes in Wnt signaling have been observed upon cytomegalovirus infection and in recurrent abortions. In summary, the current literature suggests a critical role of Wnt signaling in physiological and abnormal trophoblast function.
Collapse
Affiliation(s)
- Martin Knöfler
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna Austria
| | | |
Collapse
|
135
|
Lloyd-Lewis B, Fletcher AG, Dale TC, Byrne HM. Toward a quantitative understanding of the Wnt/β-catenin pathway through simulation and experiment. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:391-407. [PMID: 23554326 DOI: 10.1002/wsbm.1221] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wnt signaling regulates cell survival, proliferation, and differentiation throughout development and is aberrantly regulated in cancer. The pathway is activated when Wnt ligands bind to specific receptors on the cell surface, resulting in the stabilization and nuclear accumulation of the transcriptional co-activator β-catenin. Mathematical and computational models have been used to study the spatial and temporal regulation of the Wnt/β-catenin pathway and to investigate the functional impact of mutations in key components. Such models range in complexity, from time-dependent, ordinary differential equations that describe the biochemical interactions between key pathway components within a single cell, to complex, multiscale models that incorporate the role of the Wnt/β-catenin pathway target genes in tissue homeostasis and carcinogenesis. This review aims to summarize recent progress in mathematical modeling of the Wnt pathway and to highlight new biological results that could form the basis for future theoretical investigations designed to increase the utility of theoretical models of Wnt signaling in the biomedical arena.
Collapse
|
136
|
Skalka N, Caspi M, Caspi E, Loh YP, Rosin-Arbesfeld R. Carboxypeptidase E: a negative regulator of the canonical Wnt signaling pathway. Oncogene 2013; 32:2836-47. [PMID: 22824791 PMCID: PMC3676431 DOI: 10.1038/onc.2012.308] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 06/08/2012] [Accepted: 06/10/2012] [Indexed: 12/26/2022]
Abstract
Aberrant activation of the canonical Wnt signal transduction pathway is involved in many diseases including cancer and is especially implicated in the development and progression of colorectal cancer. The key effector protein of the canonical Wnt pathway is β-catenin, which functions with T-cell factor/lymphoid enhancer factor to activate expression of Wnt target genes. In this study, we used a new functional screen based on cell survival in the presence of cDNAs encoding proteins that activate the Wnt pathway thus identifying novel Wnt signaling components. Here we identify carboxypeptidase E (|CPE) and its splice variant, ΔN-CPE, as novel regulators of the Wnt pathway. We show that whereas ΔN-CPE activates the Wnt signal, the full-length CPE (F-CPE) protein is an inhibitor of Wnt/β-catenin signaling. F-CPE forms a complex with the Wnt3a ligand and the Frizzled receptor. Moreover, F-CPE disrupts disheveled-induced signalosomes that are important for transducing the Wnt signal and reduces β-catenin protein levels and activity. Taken together, our data indicate that F-CPE and ΔN-CPE regulate the canonical Wnt signaling pathway negatively and positively, respectively, and demonstrate that this screening approach can be a rapid means for isolation of novel Wnt signaling components.
Collapse
Affiliation(s)
- N Skalka
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - M Caspi
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - E Caspi
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - YP Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - R Rosin-Arbesfeld
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
137
|
Kim SE, Huang H, Zhao M, Zhang X, Zhang A, Semonov MV, MacDonald BT, Zhang X, Garcia Abreu J, Peng L, He X. Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 2013; 340:867-70. [PMID: 23579495 DOI: 10.1126/science.1232389] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Wnt signaling stabilizes β-catenin through the LRP6 receptor signaling complex, which antagonizes the β-catenin destruction complex. The Axin scaffold and associated glycogen synthase kinase-3 (GSK3) have central roles in both assemblies, but the transduction mechanism from the receptor to the destruction complex is contentious. We report that Wnt signaling is governed by phosphorylation regulation of the Axin scaffolding function. Phosphorylation by GSK3 kept Axin activated ("open") for β-catenin interaction and poised for engagement of LRP6. Formation of the Wnt-induced LRP6-Axin signaling complex promoted Axin dephosphorylation by protein phosphatase-1 and inactivated ("closed") Axin through an intramolecular interaction. Inactivation of Axin diminished its association with β-catenin and LRP6, thereby inhibiting β-catenin phosphorylation and enabling activated LRP6 to selectively recruit active Axin for inactivation reiteratively. Our findings reveal mechanisms for scaffold regulation and morphogen signaling.
Collapse
Affiliation(s)
- Sung-Eun Kim
- F. M. Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Price FD, Yin H, Jones A, van Ijcken W, Grosveld F, Rudnicki MA. Canonical Wnt Signaling Induces a Primitive Endoderm Metastable State in Mouse Embryonic Stem Cells. Stem Cells 2013; 31:752-64. [DOI: 10.1002/stem.1321] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/09/2012] [Indexed: 11/08/2022]
|
139
|
Cruciat CM, Dolde C, de Groot REA, Ohkawara B, Reinhard C, Korswagen HC, Niehrs C. RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-β-catenin signaling. Science 2013; 339:1436-41. [PMID: 23413191 DOI: 10.1126/science.1231499] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Casein kinase 1 (CK1) members play key roles in numerous biological processes. They are considered "rogue" kinases, because their enzymatic activity appears unregulated. Contrary to this notion, we have identified the DEAD-box RNA helicase DDX3 as a regulator of the Wnt-β-catenin network, where it acts as a regulatory subunit of CK1ε: In a Wnt-dependent manner, DDX3 binds CK1ε and directly stimulates its kinase activity, and promotes phosphorylation of the scaffold protein dishevelled. DDX3 is required for Wnt-β-catenin signaling in mammalian cells and during Xenopus and Caenorhabditis elegans development. The results also suggest that the kinase-stimulatory function extends to other DDX and CK1 members, opening fresh perspectives for one of the longest-studied protein kinase families.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
140
|
Impact of laminitis on the canonical Wnt signaling pathway in basal epithelial cells of the equine digital laminae. PLoS One 2013; 8:e56025. [PMID: 23405249 PMCID: PMC3566061 DOI: 10.1371/journal.pone.0056025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/04/2013] [Indexed: 01/28/2023] Open
Abstract
The digital laminae is a two layer tissue that attaches the distal phalanx to the inner hoof wall, thus suspending the horse's axial skeleton in the hoof capsule. This tissue fails at the epidermal:dermal junction in laminitic horses, causing crippling disease. Basal epithelial cells line the laminar epidermal:dermal junction, undergo physiological change in laminitic horses, and lose versican gene expression. Versican gene expression is purportedly under control of the canonical Wnt signaling pathway and is a trigger for mesenchymal-to-epithelial transition; thus, its repression in laminar epithelial cells of laminitic horses may be associated with suppression of the canonical Wnt signaling pathway and loss of the epithelial cell phenotype. In support of the former contention, we show, using laminae from healthy horses and horses with carbohydrate overload-induced laminitis, quantitative real-time polymerase chain reaction, Western blotting after sodium dodecylsulfate polyacrylamide gel electrophoresis, and immunofluorescent tissue staining, that positive and negative regulatory components of the canonical Wnt signaling pathway are expressed in laminar basal epithelial cells of healthy horses. Furthermore, expression of positive regulators is suppressed and negative regulators elevated in laminae of laminitic compared to healthy horses. We also show that versican gene expression in the epithelial cells correlates positively with that of β-catenin and T-cell Factor 4, consistent with regulation by the canonical Wnt signaling pathway. In addition, gene and protein expression of β-catenin correlates positively with that of integrin β4 and both are strongly suppressed in laminar basal epithelial cells of laminitic horses, which remain E-cadherin+/vimentin−, excluding mesenchymal transition as contributing to loss of the adherens junction and hemidesmosome components. We propose that suppression of the canonical Wnt signaling pathway, and accompanying reduced expression of β catenin and integrin β4 in laminar basal epithelial cells reduces cell:cell and cell:basement membrane attachment, thus, destabilizing the laminar epidermal:dermal junction.
Collapse
|
141
|
The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther 2013; 138:66-83. [PMID: 23328704 DOI: 10.1016/j.pharmthera.2013.01.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
Wingless/integrase-1 (WNT) signaling is a key pathway regulating various aspects of embryonic development; however it also underlies several pathological conditions in man, including various cancers and fibroproliferative diseases in several organs. Investigating the molecular processes involved in (canonical) WNT signaling will open new avenues for generating new therapeutics to specifically target diseases in which WNT signaling is aberrantly regulated. Here we describe the complexity of WNT signal transduction starting from the processes involved in WNT ligand biogenesis and secretion by WNT producing cells followed by a comprehensive overview of the molecular signaling events ultimately resulting in enhanced transcription of specific genes in WNT receiving cells. Finally, the possible targets for therapeutic intervention and the available pharmacological inhibitors for this complex signaling pathway are discussed.
Collapse
|
142
|
Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR. Physiological and molecular determinants of embryo implantation. Mol Aspects Med 2013; 34:939-80. [PMID: 23290997 DOI: 10.1016/j.mam.2012.12.011] [Citation(s) in RCA: 396] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 01/19/2023]
Abstract
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | | | | | | | | | | | | |
Collapse
|
143
|
Brigelius-Flohé R, Kipp AP. Selenium in the Redox Regulation of the Nrf2 and the Wnt Pathway. Methods Enzymol 2013; 527:65-86. [DOI: 10.1016/b978-0-12-405882-8.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
144
|
Maixner DW, Weng HR. The Role of Glycogen Synthase Kinase 3 Beta in Neuroinflammation and Pain. ACTA ACUST UNITED AC 2013; 1:001. [PMID: 25309941 DOI: 10.13188/2327-204x.1000001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroinflammation is a crucial mechanism related to many neurological diseases. Extensive studies in recent years have indicated that dysregulation of Glycogen Synthase Kinase 3 Beta (GSK3β) contributes to the development and progression of these disorders through regulating the neuroinflammation processes. Inhibitors of GSK3β have been shown to be beneficial in many neuroinflammatory disease models including Alzheimer's disease, multiple sclerosis and AIDS dem entia complex. Glial activation and elevated pro-inflammation cytokines (signs of neuroinflammation) in the spinal cord have been widely recognized as a pivotal mechanism underlying the development and maintenance of many types of pathological pain. The role of GSK3β in the pathogenesis of pain has recently emerged. In this review, we will first review the GSK3β structure, regulation, and mechanisms by which GSK3βregulates inflammation. We will then describe neuroinflammationin general and in specific types of neurological diseases and the potential beneficial effects induced by inhibiting GSK3β. Finally, we will provide new evidence linking aberrant levels of GSK3β in the development of pathological pain.
Collapse
Affiliation(s)
- Dylan Warren Maixner
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, 30606, USA
| | - Han-Rong Weng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, 30606, USA
| |
Collapse
|
145
|
MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb Perspect Biol 2012; 4:4/12/a007880. [PMID: 23209147 DOI: 10.1101/cshperspect.a007880] [Citation(s) in RCA: 462] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Frizzled and LRP5/6 are Wnt receptors that upon activation lead to stabilization of cytoplasmic β-catenin. In this study, we review the current knowledge of these two families of receptors, including their structures and interactions with Wnt proteins, and signaling mechanisms from receptor activation to the engagement of intracellular partners Dishevelled and Axin, and finally to the inhibition of β-catenin phosphorylation and ensuing β-catenin stabilization.
Collapse
Affiliation(s)
- Bryan T MacDonald
- The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
146
|
Kalkman HO. A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Mol Autism 2012; 3:10. [PMID: 23083465 PMCID: PMC3492093 DOI: 10.1186/2040-2392-3-10] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/04/2012] [Indexed: 12/21/2022] Open
Abstract
Microdeletion and microduplication copy number variations are found in patients with autism spectrum disorder and in a number of cases they include genes that are involved in the canonical Wnt signaling pathway (for example, FZD9, BCL9 or CDH8). Association studies investigating WNT2, DISC1, MET, DOCK4 or AHI1 also provide evidence that the canonical Wnt pathway might be affected in autism. Prenatal medication with sodium-valproate or antidepressant drugs increases autism risk. In animal studies, it has been found that these medications promote Wnt signaling, including among others an increase in Wnt2 gene expression. Notably, the available genetic information indicates that not only canonical Wnt pathway activation, but also inhibition seems to increase autism risk. The canonical Wnt pathway plays a role in dendrite growth and suboptimal activity negatively affects the dendritic arbor. In principle, this provides a logical explanation as to why both hypo- and hyperactivity may generate a similar set of behavioral and cognitive symptoms. However, without a validated biomarker to stratify for deviant canonical Wnt pathway activity, it is probably too dangerous to treat patients with compounds that modify pathway activity.
Collapse
Affiliation(s)
- Hans Otto Kalkman
- Neuroscience Department, Novartis Institute of Biomedical Research, Building 386-14,22,15, Basel, CH 4002, Switzerland.
| |
Collapse
|
147
|
Clague M, Liu H, Urbé S. Governance of Endocytic Trafficking and Signaling by Reversible Ubiquitylation. Dev Cell 2012; 23:457-67. [DOI: 10.1016/j.devcel.2012.08.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/27/2012] [Accepted: 08/21/2012] [Indexed: 12/17/2022]
|
148
|
Herr P, Hausmann G, Basler K. WNT secretion and signalling in human disease. Trends Mol Med 2012; 18:483-93. [PMID: 22796206 DOI: 10.1016/j.molmed.2012.06.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/07/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
Abstract
Wnt signalling, a key pathway involved in various aspects of embryonic development, also underlies many human diseases, in particular, cancer. Research focused on signal transduction within signal-receiving cells led to the discovery of many Wnt pathway components, but study of the secretion of Wnt ligands themselves was neglected until recently. Attention was drawn to this highly regulated process by the association of aberrant Wnt levels with an increasing number of diseases. Studying the biogenesis and processing of active Wnt ligands will open new avenues for generating therapeutics to specifically target aberrant Wnt signalling. Here we review the proteins required for Wnt secretion and signalling at the plasma membrane, ending with a discussion on potential therapeutic approaches to treat Wnt-induced diseases.
Collapse
Affiliation(s)
- Patrick Herr
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
149
|
Tran H, Polakis P. Reversible modification of adenomatous polyposis coli (APC) with K63-linked polyubiquitin regulates the assembly and activity of the β-catenin destruction complex. J Biol Chem 2012; 287:28552-63. [PMID: 22761442 DOI: 10.1074/jbc.m112.387878] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenomatous polyposis coli (APC) tumor suppressor forms a complex with Axin and GSK3β to promote the phosphorylation and degradation of β-catenin, a key co-activator of Wnt-induced transcription. Here, we establish that APC is modified predominantly with K63-linked ubiquitin chains when it is bound to Axin in unstimulated HEK293 cells. Wnt3a stimulation induced a time-dependent loss of K63-polyubiquitin adducts from APC, an effect synchronous with the dissociation of Axin from APC and the stabilization of cytosolic β-catenin. RNAi-mediated depletion of Axin or β-catenin, which negated the association between APC and Axin, resulted in the absence of K63-adducts on APC. Overexpression of wild-type and phosphodegron-mutant β-catenin, combined with analysis of thirteen human cancer cell lines that harbor oncogenic mutations in APC, Axin, or β-catenin, support the hypothesis that a fully assembled APC-Axin-GSK3β-phospho-β-catenin complex is necessary for the K63-polyubiquitylation of APC. Intriguingly, the degree of this modification on APC appears to correlate inversely with the levels of β-catenin in cells. Together, our results indicate that K63-linked polyubiquitin adducts on APC regulate the assembly and/or efficiency of the β-catenin destruction complex.
Collapse
Affiliation(s)
- Hoanh Tran
- Department of Cancer Targets, Genentech Inc., South San Francisco, California 94080, USA.
| | | |
Collapse
|
150
|
Glycogen synthase kinase 3: a point of integration in Alzheimer's disease and a therapeutic target? Int J Alzheimers Dis 2012; 2012:276803. [PMID: 22779025 PMCID: PMC3384908 DOI: 10.1155/2012/276803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/20/2012] [Accepted: 05/03/2012] [Indexed: 11/26/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) has been implicated in neurological disorders; therefore, it is not surprising that there has been an increased focus towards developing therapies directed to this kinase. Unfortunately, these current therapies have not taken into consideration the physiological role of GSK3 in crucial events like synaptic plasticity. With this in mind we will discuss the relationship of synaptic plasticity with GSK3 and tau protein and their role as potential targets for the development of therapeutic strategies. Finally, we will provide perspectives in developing a cocktail therapy for Alzheimer's treatment.
Collapse
|