101
|
Sirianant L, Ousingsawat J, Tian Y, Schreiber R, Kunzelmann K. TMC8 (EVER2) attenuates intracellular signaling by Zn2+ and Ca2+ and suppresses activation of Cl- currents. Cell Signal 2014; 26:2826-33. [PMID: 25220380 DOI: 10.1016/j.cellsig.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022]
Abstract
Eight paralogue members form the family of transmembrane channel-like (TMC) proteins that share considerable sequence homology to anoctamin 1 (Ano1, TMEM16A). Ano1 is a Ca(2+) activated Cl(-) channel that is related to head and neck cancer, often caused by human papilloma virus (HPV) infection. Mutations in TMC 6 and 8 (EVER1, EVER2) cause epidermodysplasia verruciformis. This rare skin disease is characterized by abnormal susceptibility to HPV infection and cancer. We found that in contrast to Ano1 the common paralogues TMC4-TMC8 did not produce Ca(2+) activated Cl(-) currents when expressed in HEK293 cells. On the contrary, TMC8 was found to be localized in the endoplasmic reticulum (ER), where it inhibited receptor mediated Ca(2+) release, activation of Ano1 and volume regulated LRRC8-related Cl(-) currents. Zn(2+) is co-released from the ER together with Ca(2+) and thereby further augments Ca(2+) store release. Because TMC8 is required to lower cytosolic Zn(2+) concentrations by the Zn(2+) transporter ZnT-1, we hypothesize that HPV infections and cancer caused by mutations in TMC8 are related to upregulated Zn(2+)/Ca(2+) signaling and activation of Ano1.
Collapse
Affiliation(s)
- Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Yuemin Tian
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
102
|
Song HY, Tian YM, Zhang YM, Zhou L, Lian H, Zhu JX. A novel finding of anoctamin 5 expression in the rodent gastrointestinal tract. Biochem Biophys Res Commun 2014; 451:258-62. [DOI: 10.1016/j.bbrc.2014.07.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 01/28/2023]
|
103
|
Singh RD, Gibbons SJ, Saravanaperumal SA, Du P, Hennig GW, Eisenman ST, Mazzone A, Hayashi Y, Cao C, Stoltz GJ, Ordog T, Rock JR, Harfe BD, Szurszewski JH, Farrugia G. Ano1, a Ca2+-activated Cl- channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal. J Physiol 2014; 592:4051-68. [PMID: 25063822 DOI: 10.1113/jphysiol.2014.277152] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interstitial cells of Cajal (ICC) are pacemaker cells that generate electrical activity to drive contractility in the gastrointestinal tract via ion channels. Ano1 (Tmem16a), a Ca(2+)-activated Cl(-) channel, is an ion channel expressed in ICC. Genetic deletion of Ano1 in mice resulted in loss of slow waves in smooth muscle of small intestine. In this study, we show that Ano1 is required to maintain coordinated Ca(2+) transients between myenteric ICC (ICC-MY) of small intestine. First, we found spontaneous Ca(2+) transients in ICC-MY in both Ano1 WT and knockout (KO) mice. However, Ca(2+) transients within the ICC-MY network in Ano1 KO mice were uncoordinated, while ICC-MY Ca(2+) transients in Ano1 WT mice were rhythmic and coordinated. To confirm the role of Ano1 in the loss of Ca(2+) transient coordination, we used pharmacological inhibitors of Ano1 activity and shRNA-mediated knock down of Ano1 expression in organotypic cultures of Ano1 WT small intestine. Coordinated Ca(2+) transients became uncoordinated using both these approaches, supporting the conclusion that Ano1 is required to maintain coordination/rhythmicity of Ca(2+) transients. We next determined the effect on smooth muscle contractility using spatiotemporal maps of contractile activity in Ano1 KO and WT tissues. Significantly decreased contractility that appeared to be non-rhythmic and uncoordinated was observed in Ano1 KO jejunum. In conclusion, Ano1 has a previously unidentified role in the regulation of coordinated gastrointestinal smooth muscle function through coordination of Ca(2+) transients in ICC-MY.
Collapse
Affiliation(s)
- Raman Deep Singh
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Simon J Gibbons
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | | | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Seth T Eisenman
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Amelia Mazzone
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Yujiro Hayashi
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Chike Cao
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Gary J Stoltz
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Jason R Rock
- Department of Anatomy, UCSF School of Medicine, San Francisco, CA, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Joseph H Szurszewski
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Gianrico Farrugia
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
104
|
Vocke K, Dauner K, Hahn A, Ulbrich A, Broecker J, Keller S, Frings S, Möhrlen F. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels. ACTA ACUST UNITED AC 2014; 142:381-404. [PMID: 24081981 PMCID: PMC3787769 DOI: 10.1085/jgp.201311015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl− channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.
Collapse
Affiliation(s)
- Kerstin Vocke
- Department of Molecular Physiology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch 2014; 467:1203-13. [PMID: 24974903 DOI: 10.1007/s00424-014-1559-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Intestinal epithelial electrolyte secretion is activated by increase in intracellular cAMP or Ca(2+) and opening of apical Cl(-) channels. In infants and young animals, but not in adults, Ca(2+)-activated chloride channels may cause secretory diarrhea during rotavirus infection. While detailed knowledge exists concerning the contribution of cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) channels, analysis of the role of Ca(2+)-dependent Cl(-) channels became possible through identification of the anoctamin (TMEM16) family of proteins. We demonstrate expression of several anoctamin paralogues in mouse small and large intestines. Using intestinal-specific mouse knockout models for anoctamin 1 (Ano1) and anoctamin 10 (Ano10) and a conventional knockout model for anoctamin 6 (Ano6), we demonstrate the role of anoctamins for Ca(2+)-dependent Cl(-) secretion induced by the muscarinic agonist carbachol (CCH). Ano1 is preferentially expressed in the ileum and large intestine, where it supports Ca(2+)-activated Cl(-) secretion. In contrast, Ano10 is essential for Ca(2+)-dependent Cl(-) secretion in jejunum, where expression of Ano1 was not detected. Although broadly expressed, Ano6 has no role in intestinal cholinergic Cl(-) secretion. Ano1 is located in a basolateral compartment/membrane rather than in the apical membrane, where it supports CCH-induced Ca(2+) increase, while the essential and possibly only apical Cl(-) channel is CFTR. These results define a new role of Ano1 for intestinal Ca(2+)-dependent Cl(-) secretion and demonstrate for the first time a contribution of Ano10 to intestinal transport.
Collapse
|
106
|
van der Post S, Hansson GC. Membrane protein profiling of human colon reveals distinct regional differences. Mol Cell Proteomics 2014; 13:2277-87. [PMID: 24889196 PMCID: PMC4159649 DOI: 10.1074/mcp.m114.040204] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The colonic epithelium is a highly dynamic system important for the regulation of ion and water homeostasis via absorption and secretion and for the maintenance of a protective barrier between the outer milieu and the inside of the body. These processes are known to gradually change along the length of the colon, although a complete characterization at the protein level is lacking. We therefore analyzed the membrane proteome of isolated human (n = 4) colonic epithelial cells from biopsies obtained via routine colonoscopy for four segments along the large intestine: ascending, transverse, descending, and sigmoid colon. Label-free quantitative proteomic analyses using high-resolution mass spectrometry were performed on enriched membrane proteins. The results showed a stable level for the majority of membrane proteins but a distinct decrease in proteins associated with bacterial sensing, cation transport, and O-glycosylation in the proximal to distal regions. In contrast, proteins involved in microbial defense and anion transport showed an opposing gradient and increased toward the distal end. The gradient of ion-transporter proteins could be directly related to previously observed ion transport activities. All individual glycosyltransferases required for the O-glycosylation of the major colonic mucin MUC2 were observed and correlated with the known glycosylation variation along the colon axis. This is the first comprehensive quantitative dataset of membrane protein abundance along the human colon and will add to the knowledge of the physiological function of the different regions of the colonic mucosa. Mass spectrometry data have been deposited to the ProteomeXchange with the identifier PXD000987.
Collapse
Affiliation(s)
- Sjoerd van der Post
- From the ‡Department of Medical Biochemistry, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- From the ‡Department of Medical Biochemistry, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| |
Collapse
|
107
|
Klein AH, Joe CL, Davoodi A, Takechi K, Carstens MI, Carstens E. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses. Neuroscience 2014; 271:45-55. [PMID: 24759772 DOI: 10.1016/j.neuroscience.2014.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/30/2022]
Abstract
Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42 °C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue.
Collapse
Affiliation(s)
- A H Klein
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - C L Joe
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - A Davoodi
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - K Takechi
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - M I Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - E Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
108
|
Lees-Green R, Gibbons SJ, Farrugia G, Sneyd J, Cheng LK. Computational modeling of anoctamin 1 calcium-activated chloride channels as pacemaker channels in interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2014; 306:G711-27. [PMID: 24481603 PMCID: PMC3989704 DOI: 10.1152/ajpgi.00449.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interstitial cells of Cajal (ICC) act as pacemaker cells in the gastrointestinal tract by generating electrical slow waves to regulate rhythmic smooth muscle contractions. Intrinsic Ca(2+) oscillations in ICC appear to produce the slow waves by activating pacemaker currents, currently thought to be carried by the Ca(2+)-activated Cl(-) channel anoctamin 1 (Ano1). In this article we present a novel model of small intestinal ICC pacemaker activity that incorporates store-operated Ca(2+) entry and a new model of Ano1 current. A series of simulations were carried out with the ICC model to investigate current controversies about the reversal potential of the Ano1 Cl(-) current in ICC and to predict the characteristics of the other ion channels that are necessary to generate slow waves. The model results show that Ano1 is a plausible pacemaker channel when coupled to a store-operated Ca(2+) channel but suggest that small cyclical depolarizations may still occur in ICC in Ano1 knockout mice. The results predict that voltage-dependent Ca(2+) current is likely to be negligible during the slow wave plateau phase. The model shows that the Cl(-) equilibrium potential is an important modulator of slow wave morphology, highlighting the need for a better understanding of Cl(-) dynamics in ICC.
Collapse
Affiliation(s)
- Rachel Lees-Green
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand;
| | - Simon J. Gibbons
- 2Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Gianrico Farrugia
- 2Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - James Sneyd
- 3Department of Mathematics, University of Auckland, New Zealand; and
| | - Leo K. Cheng
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; ,4Department of Surgery, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
109
|
Zhang S, Chen Y, An H, Liu H, Li J, Pang C, Ji Q, Zhan Y. A novel biophysical model on calcium and voltage dual dependent gating of calcium-activated chloride channel. J Theor Biol 2014; 355:229-35. [PMID: 24727189 DOI: 10.1016/j.jtbi.2014.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 01/21/2014] [Accepted: 04/01/2014] [Indexed: 11/28/2022]
Abstract
Ca(2+)-activated Cl(-) channels (CaCCs) are anion-selective channels and involved in physiological processes such as electrolyte/fluid secretion, smooth muscle excitability, and olfactory perception which critically depend on the Ca(2+) and voltage dual-dependent gating of channels. However, how the Ca(2+) and voltage regulate the gating of CaCCs still unclear. In this work, the authors constructed a biophysical model to illustrate the dual-dependent gating of CaCCs. For validation, we applied our model on both native CaCCs and exogenous TMEM16A which is thought to be the molecular basis of CaCCs. Our data show that the native CaCCs may share universal gating mechanism. We confirmed the assumption that by binding with the channel, Ca(2+) decreases the energy-barrier to open the channel, but not changes the voltage-sensitivity. For TMEM16A, our model indicates that the exogenous channels show different Ca(2+) dependent gating mechanism from the native ones. These results advance the understanding of intracellular Ca(2+) and membrane potential regulation in CaCCs, and shed new light on its function in aspect of physiology and pharmacology.
Collapse
Affiliation(s)
- Suhua Zhang
- School of Sciences, Hebei University of Technology, Tianjin 300130, China
| | - Yafei Chen
- School of Sciences, Hebei University of Technology, Tianjin 300130, China
| | - Hailong An
- School of Sciences, Hebei University of Technology, Tianjin 300130, China
| | - Hui Liu
- School of Sciences, Hebei University of Technology, Tianjin 300130, China
| | - Junwei Li
- School of Sciences, Hebei University of Technology, Tianjin 300130, China
| | - Chunli Pang
- School of Sciences, Hebei University of Technology, Tianjin 300130, China
| | - Qing Ji
- School of Sciences, Hebei University of Technology, Tianjin 300130, China
| | - Yong Zhan
- School of Sciences, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
110
|
Abstract
TMEM16 proteins, also known as anoctamins, are involved in a variety of functions that include ion transport, phospholipid scrambling, and regulation of other membrane proteins. The first two members of the family, TMEM16A (anoctamin-1, ANO1) and TMEM16B (anoctamin-2, ANO2), function as Ca2+-activated Cl- channels (CaCCs), a type of ion channel that plays important functions such as transepithelial ion transport, smooth muscle contraction, olfaction, phototransduction, nociception, and control of neuronal excitability. Genetic ablation of TMEM16A in mice causes impairment of epithelial Cl- secretion, tracheal abnormalities, and block of gastrointestinal peristalsis. TMEM16A is directly regulated by cytosolic Ca2+ as well as indirectly by its interaction with calmodulin. Other members of the anoctamin family, such as TMEM16C, TMEM16D, TMEM16F, TMEM16G, and TMEM16J, may work as phospholipid scramblases and/or ion channels. In particular, TMEM16F (ANO6) is a major contributor to the process of phosphatidylserine translocation from the inner to the outer leaflet of the plasma membrane. Intriguingly, TMEM16F is also associated with the appearance of anion/cation channels activated by very high Ca2+ concentrations. Furthermore, a TMEM16 protein expressed in Aspergillus fumigatus displays both ion channel and lipid scramblase activity. This finding suggests that dual function is an ancestral characteristic of TMEM16 proteins and that some members, such as TMEM16A and TMEM16B, have evolved to a pure channel function. Mutations in anoctamin genes (ANO3, ANO5, ANO6, and ANO10) cause various genetic diseases. These diseases suggest the involvement of anoctamins in a variety of cell functions whose link with ion transport and/or lipid scrambling needs to be clarified.
Collapse
|
111
|
Malvezzi M, Chalat M, Janjusevic R, Picollo A, Terashima H, Menon AK, Accardi A. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat Commun 2014; 4:2367. [PMID: 23996062 PMCID: PMC3970400 DOI: 10.1038/ncomms3367] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/29/2013] [Indexed: 12/13/2022] Open
Abstract
Phospholipid scramblases disrupt the lipid asymmetry of the plasma membrane, externalizing phosphatidylserine to trigger blood coagulation and mark apoptotic cells. Recently, members of the TMEM16 family of Ca2+-gated channels have been shown to be involved in Ca2+-dependent scrambling. It is however controversial whether they are scramblases or channels regulating scrambling. Here we show that purified afTMEM16, from Aspergillus fumigatus, is a dual-function protein: it is a Ca2+-gated channel, with characteristics of other TMEM16 homologues, and a Ca2+-dependent scramblase, with the expected properties of mammalian phospholipid scramblases. Remarkably, we find that a single Ca2+ site regulates separate transmembrane pathways for ions and lipids. Two other purified TMEM16-channel homologues do not mediate scrambling, suggesting that the family diverged into channels and channel/scramblases. We propose that the spatial separation of the ion and lipid pathways underlies the evolutionary divergence of the TMEM16 family, and that other homologues, such as TMEM16F, might also be dual-function channel/scramblases.
Collapse
Affiliation(s)
- Mattia Malvezzi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Zhao P, Torcaso A, Mariano A, Xu L, Mohsin S, Zhao L, Han R. Anoctamin 6 regulates C2C12 myoblast proliferation. PLoS One 2014; 9:e92749. [PMID: 24663380 PMCID: PMC3963950 DOI: 10.1371/journal.pone.0092749] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/24/2014] [Indexed: 11/27/2022] Open
Abstract
Anoctamin 6 (Ano6) belongs to a conserved gene family (TMEM16) predicted to code for eight transmembrane proteins with putative Ca2+-activated chloride channel (CaCC) activity. Recent work revealed that disruption of ANO6 leads to a blood coagulation defect and impaired skeletal development. However, its function in skeletal muscle cells remains to be determined. By using a RNA interference mediated (RNAi) loss-of-function approach, we show that Ano6 regulates C2C12 myoblast proliferation. Ano6 is highly expressed in C2C12 myoblasts and its expression decreases upon differentiation. Knocking down Ano6 significantly reduces C2C12 myoblast proliferation but has minimal effect on differentiation. Ano6 deficiency significantly reduces ERK/AKT phosphorylation, which has been shown to be involved in regulation of cancer cell proliferation by another Anoctamin member. Taken together, our data demonstrate for the first time that Ano6 plays an essential role in C2C12 myoblast proliferation, likely via regulating the ERK/AKT signaling pathway.
Collapse
Affiliation(s)
- Piming Zhao
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, Illinois, United States of America
| | - Audrey Torcaso
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, Illinois, United States of America
| | - Andrew Mariano
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, Illinois, United States of America
| | - Li Xu
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, Illinois, United States of America
| | - Sadia Mohsin
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, Illinois, United States of America
| | - Lixia Zhao
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, Illinois, United States of America
| | - Renzhi Han
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, Illinois, United States of America
- * E-mail:
| |
Collapse
|
113
|
Wanitchakool P, Wolf L, Koehl GE, Sirianant L, Schreiber R, Kulkarni S, Duvvuri U, Kunzelmann K. Role of anoctamins in cancer and apoptosis. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130096. [PMID: 24493744 PMCID: PMC3917350 DOI: 10.1098/rstb.2013.0096] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anoctamin 1 (TMEM16A, Ano1) is a recently identified Ca(2+)-activated chloride channel and a member of a large protein family comprising 10 paralogues. Before Ano1 was identified as a chloride channel protein, it was known as the cancer marker DOG1. DOG1/Ano1 is expressed in gastrointestinal stromal tumours (GIST) and particularly in head and neck squamous cell carcinoma, at very high levels never detected in other tissues. It is now emerging that Ano1 is part of the 11q13 locus, amplified in several types of tumour, where it is thought to augment cell proliferation, cell migration and metastasis. Notably, Ano1 is upregulated through histone deacetylase (HDAC), corresponding to the known role of HDAC in HNSCC. As Ano1 does not enhance proliferation in every cell type, its function is perhaps modulated by cell-specific factors, or by the abundance of other anoctamins. Thus Ano6, by regulating Ca(2+)-induced membrane phospholipid scrambling and annexin V binding, supports cellular apoptosis rather than proliferation. Current findings implicate other cellular functions of anoctamins, apart from their role as Ca(2+)-activated Cl(-) channels.
Collapse
Affiliation(s)
- Podchanart Wanitchakool
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Luisa Wolf
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Gudrun E. Koehl
- Department of Surgery, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Sucheta Kulkarni
- Ear & Eye Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Umamaheswar Duvvuri
- Ear & Eye Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| |
Collapse
|
114
|
Bill A, Hall ML, Borawski J, Hodgson C, Jenkins J, Piechon P, Popa O, Rothwell C, Tranter P, Tria S, Wagner T, Whitehead L, Gaither LA. Small molecule-facilitated degradation of ANO1 protein: a new targeting approach for anticancer therapeutics. J Biol Chem 2014; 289:11029-11041. [PMID: 24599954 PMCID: PMC4036244 DOI: 10.1074/jbc.m114.549188] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ANO1, a calcium-activated chloride channel, is highly expressed and amplified in human cancers and is a critical survival factor in these cancers. The ANO1 inhibitor CaCCinh-A01 decreases proliferation of ANO1-amplified cell lines; however, the mechanism of action remains elusive. We explored the mechanism behind the inhibitory effect of CaCCinh-A01 on cell proliferation using a combined experimental and in silico approach. We show that inhibition of ANO1 function is not sufficient to diminish proliferation of ANO1-dependent cancer cells. We report that CaCCinh-A01 reduces ANO1 protein levels by facilitating endoplasmic reticulum-associated, proteasomal turnover of ANO1. Washout of CaCCinh-A01 rescued ANO1 protein levels and resumed cell proliferation. Proliferation of newly derived CaCCinh-A01-resistant cell pools was not affected by CaCCinh-A01 as compared with the parental cells. Consistently, CaCCinh-A01 failed to reduce ANO1 protein levels in these cells, whereas ANO1 currents were still inhibited by CaCCinh-A01, indicating that CaCCinh-A01 inhibits cell proliferation by reducing ANO1 protein levels. Furthermore, we employed in silico methods to elucidate novel biological functions of ANO1 inhibitors. Specifically, we derived a pharmacophore model to describe inhibitors capable of promoting ANO1 degradation and report new inhibitors of ANO1-dependent cell proliferation. In summary, our data demonstrate that inhibition of the channel activity of ANO1 is not sufficient to inhibit ANO1-dependent cell proliferation, indicating that the role of ANO1 in cancer only partially depends on its function as a channel. Our results provide an impetus for gaining a deeper understanding of ANO1 modulation in cells and introduce a new targeting approach for antitumor therapy in ANO1-amplified cancers.
Collapse
Affiliation(s)
- Anke Bill
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Michelle Lynn Hall
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Jason Borawski
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Catherine Hodgson
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, RH12 5AB, United Kingdom, and
| | - Jeremy Jenkins
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Philippe Piechon
- the Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Oana Popa
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, RH12 5AB, United Kingdom, and
| | | | - Pamela Tranter
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, RH12 5AB, United Kingdom, and
| | - Scott Tria
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Trixie Wagner
- the Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Lewis Whitehead
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - L Alex Gaither
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139,.
| |
Collapse
|
115
|
Kunzelmann K, Nilius B, Owsianik G, Schreiber R, Ousingsawat J, Sirianant L, Wanitchakool P, Bevers EM, Heemskerk JWM. Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase? Pflugers Arch 2014; 466:407-14. [PMID: 23748496 DOI: 10.1007/s00424-013-1305-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
Anoctamin 6 (Ano6; TMEM16F gene) is a ubiquitous protein; the expression of which is defective in patients with Scott syndrome, an inherited bleeding disorder based on defective scrambling of plasma membrane phospholipids. For Ano6, quite diverse functions have been described: (1) it can form an outwardly rectifying, Ca(2+)-dependent and a volume-regulated Cl(-) channel; (2) it was claimed to be a Ca(2+)-regulated nonselective cation channel permeable for Ca(2+); (3) it was shown to be essential for Ca(2+)-mediated scrambling of membrane phospholipids; and (4) it can regulate cell blebbing and microparticle shedding. Deficiency of Ano6 in blood cells from Scott patients or Ano6 null mice appears to affect all of these cell responses. Furthermore, Ano6 deficiency in mice impairs the mineralization of osteoblasts, resulting in reduced skeletal development. These diverse results have been obtained under different experimental conditions, which may explain some of the contradictions. This review therefore aims to summarize the currently available information on the diverse roles of Ano6 and tries to clear up some of the existing controversies.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Takayama Y, Shibasaki K, Suzuki Y, Yamanaka A, Tominaga M. Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1. FASEB J 2014; 28:2238-48. [PMID: 24509911 DOI: 10.1096/fj.13-243436] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable channel, is highly expressed in the apical membrane of choroid plexus epithelial cells (CPECs) in the brain. The function of TRPV4 is unknown. Here, we show physical and functional interaction between TRPV4 and anoctamin 1 (ANO1) in HEK293T cells and CPECs. Chloride currents induced by a TRPV4 activator (GSK1016790A) were markedly increased in an extracellular calcium-dependent manner in HEK293T cells expressing TRPV4 with ANO1, but not with ANO4, ANO6, or ANO10, the mRNAs of which were expressed in the choroid plexus. We also found physical interaction between TRPV4 and ANO1 in both HEK293T cells and choroid plexus. We observed that ANO1 was activated at a warm temperature (37°C) in HEK293T cells and that the heat-evoked chloride currents were markedly enhanced after GSK1016790A application in CPECs. Simultaneous stimulation by warmth and hyposmosis induced chloride current activation in wild-type, but not in TRPV4-deficient, CPECs. Cell volume changes were induced by ANO1-mediated chloride currents in parallel with membrane potential changes, and the cell volume was significantly decreased at negative membrane potentials by TRPV4-induced ANO1 activation. Thus, physical and functional interactions between TRPV4 and ANO1 can modulate water transport in the choroid plexus.
Collapse
Affiliation(s)
- Yasunori Takayama
- 1Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan.
| | | | | | | | | |
Collapse
|
117
|
The calcium-activated chloride channel Anoctamin 1 contributes to the regulation of renal function. Kidney Int 2014; 85:1369-81. [PMID: 24476694 DOI: 10.1038/ki.2013.535] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/16/2013] [Accepted: 11/14/2013] [Indexed: 01/14/2023]
Abstract
The role of calcium-activated chloride channels for renal function is unknown. By immunohistochemistry we demonstrate dominant expression of the recently identified calcium-activated chloride channels, Anoctamin 1 (Ano1, TMEM16A) in human and mouse proximal tubular epithelial (PTE) cells, with some expression in podocytes and other tubular segments. Ano1-null mice had proteinuria and numerous large reabsorption vesicles in PTE cells. Selective knockout of Ano1 in podocytes (Ano1-/-/Nphs2-Cre) did not impair renal function, whereas tubular knockout in Ano1-/-/Ksp-Cre mice increased urine protein excretion and decreased urine electrolyte concentrations. Purinergic stimulation activated calcium-dependent chloride currents in isolated proximal tubule epithelial cells from wild-type but not from Ano1-/-/Ksp-Cre mice. Ano1 currents were activated by acidic pH, suggesting parallel stimulation of Ano1 chloride secretion with activation of the proton-ATPase. Lack of calcium-dependent chloride secretion in cells from Ano1-/-/Ksp-Cre mice was paralleled by attenuated proton secretion and reduced endosomal acidification, which compromised proximal tubular albumin uptake. Tubular knockout of Ano1 enhanced serum renin and aldosterone concentrations, probably leading to enhanced compensatory distal tubular reabsorption, thus maintaining normal blood pressure levels. Thus, Ano1 has a role in proximal tubular proton secretion and protein reabsorption. The results correspond to regulation of the proton-ATPase by the Ano1-homolog Ist2 in yeast.
Collapse
|
118
|
Abstract
Vertebrates can sense and avoid noxious heat that evokes pain. Many thermoTRP channels are associated with temperature sensation. TRPV1 is a representative ion channel that is activated by noxious heat. Anoctamin 1 (ANO1) is a Cl- channel activated by calcium that is highly expressed in small sensory neurons, colocalized with markers for nociceptors, and most surprisingly, activated by noxious heat over 44oC. Although ANO1 is a Cl- channel, opening of this channel leads to depolarization of sensory neurons, suggesting a role in nociception. Indeed, the functional deletion of ANO1 in sensory neurons triggers the reduction in thermal pain sensation. Thus, it seems clear that ANO1 is a heat sensor in a nociceptive pathway. Since ANO1 modulators are developed for the purpose of treating chronic diseases such as cystic fibrosis, this finding is likely to predict unwanted effects and provide a guide for better developmental strategy
Collapse
Affiliation(s)
- Hawon Cho
- Sensory Research Center, CRI, College of Pharmacy, Seoul National University
| | - Uhtaek Oh
- Sensory Research Center, CRI, College of Pharmacy, Seoul National University, ; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
119
|
Harper MT, Poole AW. Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity. Cell Death Dis 2013; 4:e969. [PMID: 24357800 PMCID: PMC3877565 DOI: 10.1038/cddis.2013.495] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/16/2013] [Accepted: 11/08/2013] [Indexed: 02/07/2023]
Abstract
Platelets enhance thrombin generation at sites of vascular injury by exposing phosphatidylserine during necrosis-like cell death. Anoctamin 6 (Ano6) is required for Ca(2+)-dependent phosphatidylserine exposure and is defective in patients with Scott syndrome, a rare bleeding disorder. Ano6 may also form Cl(-) channels, though the role of Cl(-) fluxes in platelet procoagulant activity has not been explored. We found that Cl(-) channel blockers or removal of extracellular Cl(-) inhibited agonist-induced phosphatidylserine exposure. However, this was not due to direct inhibition of Ca(2+)-dependent scrambling since Ca(2+) ionophore-induced phosphatidylserine exposure was normal. This implies that the role of Ano6 in Ca(2+-)dependent PS exposure is likely to differ from any putative function of Ano6 as a Cl(-) channel. Instead, Cl(-) channel blockade inhibited agonist-induced Ca(2+) entry. Importantly, Cl(-) channel blockers also prevented agonist-induced membrane hyperpolarization, resulting in depolarization. We propose that Cl(-) entry through Cl(-) channels is required for this hyperpolarization, maintaining the driving force for Ca(2+) entry and triggering full phosphatidylserine exposure. This demonstrates a novel role for Cl(-) channels in controlling platelet death and procoagulant activity.
Collapse
Affiliation(s)
- M T Harper
- School of Physiology and Pharmacology, Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - A W Poole
- School of Physiology and Pharmacology, Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
120
|
|
121
|
Kunzelmann K, Mehta A. CFTR: a hub for kinases and crosstalk of cAMP and Ca2+. FEBS J 2013; 280:4417-29. [PMID: 23895508 DOI: 10.1111/febs.12457] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/29/2013] [Accepted: 07/02/2013] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR). The resulting disease is pleiotropic consistent with the idea that CFTR acts as a node within a network of signalling proteins. CFTR is not only a regulator of multiple transport proteins and controlled by numerous kinases but also participates in many signalling pathways that are disrupted after expression of its commonest mutant (F508del-CFTR). It operates in membrane compartments creating a scaffold for cytoskeletal elements, surface receptors, kinases and phosphodiesterases. CFTR is exposed to membrane-local second messengers such that a CFTR-interacting, low cellular energy sensor kinase (AMP- and ADP-activated kinase, AMPK) signals through a high energy phosphohistidine protein kinase (nucleoside diphosphate kinase, NDPK). CFTR also translocates a Ca(2+)-dependent adenylate cyclase to its proximity so that a rigid separation between cAMP-dependent and Ca(2+)-dependent regulation of Cl(-) transport becomes obsolete. In the presence of wild-type CFTR, parallel activation of CFTR and outwardly rectifying anoctamin 6 Cl(-) channels is observed, while the Ca(2+)-activated anoctamin 1 Cl(-) channel is inhibited. In contrast, in CF cells, CFTR is missing/mislocalized and the outwardly rectifying chloride channel is attenuated while Ca(2+)-dependent Cl(-) secretion (anoctamin 1) appears upregulated. Additionally, we consider the idea that F508del-CFTR when trapped in the endoplasmic reticulum augments IP3-mediated Ca(2+) release by providing a shunt pathway for Cl(-). CFTR and the IP3 receptor share the characteristic that they both assemble their partner proteins to increase the plasticity of their hub responses. In CF, the CFTR hub fails to form at the plasma membrane, with widespread detrimental consequences for cell signalling.
Collapse
|
122
|
Jin X, Shah S, Liu Y, Zhang H, Lees M, Fu Z, Lippiat JD, Beech DJ, Sivaprasadarao A, Baldwin SA, Zhang H, Gamper N. Activation of the Cl- channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor. Sci Signal 2013; 6:ra73. [PMID: 23982204 DOI: 10.1126/scisignal.2004184] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report that anoctamin 1 (ANO1; also known as TMEM16A) Ca(2+)-activated Cl(-) channels in small neurons from dorsal root ganglia are preferentially activated by particular pools of intracellular Ca(2+). These ANO1 channels can be selectively activated by the G protein-coupled receptor (GPCR)-induced release of Ca(2+) from intracellular stores but not by Ca(2+) influx through voltage-gated Ca(2+) channels. This ability to discriminate between Ca(2+) pools was achieved by the tethering of ANO1-containing plasma membrane domains, which also contained GPCRs such as bradykinin receptor 2 and protease-activated receptor 2, to juxtamembrane regions of the endoplasmic reticulum. Interaction of the carboxyl terminus and the first intracellular loop of ANO1 with IP3R1 (inositol 1,4,5-trisphosphate receptor 1) contributed to the tethering. Disruption of membrane microdomains blocked the ANO1 and IP3R1 interaction and resulted in the loss of coupling between GPCR signaling and ANO1. The junctional signaling complex enabled ANO1-mediated excitation in response to specific Ca(2+)signals rather than to global changes in intracellular Ca(2+).
Collapse
Affiliation(s)
- Xin Jin
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Huang F, Wang X, Ostertag EM, Nuwal T, Huang B, Jan YN, Basbaum AI, Jan LY. TMEM16C facilitates Na(+)-activated K+ currents in rat sensory neurons and regulates pain processing. Nat Neurosci 2013; 16:1284-90. [PMID: 23872594 PMCID: PMC4034143 DOI: 10.1038/nn.3468] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/09/2013] [Indexed: 01/28/2023]
Abstract
TMEM16C belongs to the TMEM16 family, which includes the Ca2+-activated Cl– channels (CaCCs) TMEM16A and TMEM16B and a small conductance Ca2+-activated, non-selective cation channel (SCAN), TMEM16F. Here we report that in rat dorsal root ganglia (DRG) TMEM16C is expressed mainly in the IB4 positive, non-peptidergic nociceptors that also express the sodium-activated potassium (KNa) channel Slack. Together these channel proteins promote KNa channel activity and dampen neuronal excitability. DRG from TMEM16C knock out rats have reduced Slack expression, broadened action potential and increased excitability. Moreover, the TMEM16C knock out rats as well as rats with Slack knockdown via intrathecal injection of siRNA exhibit increased thermal and mechanical sensitivity. Experiments involving heterologous expression in HEK293 cells further show that TMEM16C modulates the single channel activity of Slack channels and increases its sodium sensitivity. Our study thus reveals that TMEM16C enhances KNa channel activity in DRG neurons and regulate the processing of pain messages.
Collapse
Affiliation(s)
- Fen Huang
- Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Rahimov F, Kunkel LM. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. ACTA ACUST UNITED AC 2013; 201:499-510. [PMID: 23671309 PMCID: PMC3653356 DOI: 10.1083/jcb.201212142] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying muscle degeneration. Moreover, these studies have revealed distinct molecular and cellular mechanisms that link genetic mutations to diverse muscle wasting phenotypes.
Collapse
Affiliation(s)
- Fedik Rahimov
- Program in Genomics, Division of Genetics, Boston Children's Hospital, and 2 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
125
|
Monjaret F, Suel-Petat L, Bourg-Alibert N, Vihola A, Marchand S, Roudaut C, Gicquel E, Udd B, Richard I, Charton K. The phenotype of dysferlin-deficient mice is not rescued by adeno-associated virus-mediated transfer of anoctamin 5. HUM GENE THER CL DEV 2013; 24:65-76. [PMID: 23721401 DOI: 10.1089/humc.2012.217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in dysferlin and anoctamin 5 are the cause of muscular disorders, with the main presentations as limb-girdle muscular dystrophy or Miyoshi type of distal myopathy. Both these proteins have been implicated in sarcolemmal resealing. On the basis of similarities in associated phenotypes and protein functions, we tested the hypothesis that ANO5 protein could compensate for dysferlin absence. We first defined that the main transcript of ANO5 expressed in skeletal muscle is the 22-exon full-length isoform, and we demonstrated that dysferlin-deficient (Dysf (prmd)) mice have lower Ano5 expression levels, an observation that further enhanced the rational of the tested hypothesis. We then showed that AAV-mediated transfer of human ANO5 (hANO5) did not lead to apparent toxicity in wild-type mice. Finally, we demonstrated that AAV-hANO5 injection was not able to compensate for dysferlin deficiency in the Dysf (prmd) mouse model or improve the membrane repair defect seen in the absence of dysferlin. Consequently, overexpressing hANO5 does not seem to provide a valuable therapeutic strategy for dysferlin deficiency.
Collapse
Affiliation(s)
- François Monjaret
- Généthon, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8587, 91000 Evry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Ponissery Saidu S, Stephan AB, Talaga AK, Zhao H, Reisert J. Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2. ACTA ACUST UNITED AC 2013; 141:691-703. [PMID: 23669718 PMCID: PMC3664704 DOI: 10.1085/jgp.201210937] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca(2+)-activated Cl(-) channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5' rapid amplification of cDNA ends analysis was conducted to characterize the 5' end of olfactory Ano2 transcripts, which showed that the most abundant Ano2 transcripts in the olfactory epithelium contain a novel starting exon that encodes a translation initiation site, whereas transcripts of the publically available sequence variant, which has an alternative and longer 5' end, were present in lower abundance. With two alternative starting exons and alternative splicing of exon 4, four olfactory ANO2 isoforms are thus possible. Patch-clamp experiments in transfected HEK293T cells expressing these isoforms showed that N-terminal sequences affect Ca(2+) sensitivity and that the exon 4-encoded sequence is required to form functional channels. Coexpression of the two predominant isoforms, one with and one without the exon 4 sequence, as well as coexpression of the two rarer isoforms showed alterations in channel properties, indicating that different isoforms interact with each other. Furthermore, channel properties observed from the coexpression of the predominant isoforms better recapitulated the native channel properties, suggesting that the native channel may be composed of two or more splicing isoforms acting as subunits that together shape the channel properties.
Collapse
|
127
|
Kmit A, van Kruchten R, Ousingsawat J, Mattheij NJA, Senden-Gijsbers B, Heemskerk JWM, Schreiber R, Bevers EM, Kunzelmann K. Calcium-activated and apoptotic phospholipid scrambling induced by Ano6 can occur independently of Ano6 ion currents. Cell Death Dis 2013; 4:e611. [PMID: 23618909 PMCID: PMC3668637 DOI: 10.1038/cddis.2013.135] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/16/2013] [Accepted: 03/11/2013] [Indexed: 11/17/2022]
Abstract
Immune cells and platelets maintain plasma membrane phospholipid asymmetry. Upon activation, this asymmetry is disrupted by phospholipid scrambling (PS), which is a major step during activation of immune cells, hemostasis and apoptosis. Anoctamin 6 (Ano6; TMEM16F) causes chloride (Cl(-)) and cation currents and is required for Ca(2+)-dependent PS. It is defective in blood cells from patients with Scott syndrome, a rare bleeding disorder. We examined if Cl(-) currents and PS are related, whether both processes are Ca(2+) dependent, and whether Ca(2+)-independent scrambling during intrinsic and extrinsic apoptosis is controlled by Ano6. Ca(2+) increase by ionomycin activated Ano6 Cl(-) currents and PS in normal lymphocytes, but not in B-lymphocytes from two different patients with Scott syndrome. Fas ligand (FasL) did not increase intracellular Ca(2+), but activated Cl(-) currents in normal but not in Scott lymphocytes. Whole-cell currents were inhibited by Cl(-) channel blockers and by siRNA knockdown of Ano6. In contrast, intrinsic mitochondrial apoptosis by ABT-737 did not induce Cl(-) currents in lymphocytes. PS was not inhibited by blockers of Ano6 or removal of Cl(-) ions. Remarkably, Ca(2+)-independent scrambling due to extrinsic (FasL) or intrinsic (ABT-737) apoptosis was unchanged in Scott cells. We conclude that: (i) Ano6 Cl(-) currents are activated by increase in cytosolic Ca(2+), or Ca(2+) independent by stimulation of Fas receptors; (ii) Ca(2+)-dependent PS induced by Ano6 does not require Cl(-) currents; (iii) Ca(2+)-independent PS does not require Ano6; (iv) Ano6 is necessary for Ca(2+)-dependent PS, but not by increasing intracellular Ca(2+).
Collapse
Affiliation(s)
- A Kmit
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - R van Kruchten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J Ousingsawat
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - N J A Mattheij
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - B Senden-Gijsbers
- Department of Internal Medicine, Division of Haematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - R Schreiber
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - E M Bevers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - K Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
128
|
Shimizu T, Iehara T, Sato K, Fujii T, Sakai H, Okada Y. TMEM16F is a component of a Ca2+-activated Cl- channel but not a volume-sensitive outwardly rectifying Cl- channel. Am J Physiol Cell Physiol 2013; 304:C748-59. [PMID: 23426967 DOI: 10.1152/ajpcell.00228.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TMEM16 (transmembrane protein 16) proteins, which possess eight putative transmembrane domains with intracellular NH2- and COOH-terminal tails, are thought to comprise a Cl(-) channel family. The function of TMEM16F, a member of the TMEM16 family, has been greatly controversial. In the present study, we performed whole cell patch-clamp recordings to investigate the function of human TMEM16F. In TMEM16F-transfected HEK293T cells but not TMEM16K- and mock-transfected cells, activation of membrane currents with strong outward rectification was found to be induced by application of a Ca(2+) ionophore, ionomycin, or by an increase in the intracellular free Ca(2+) concentration. The free Ca(2+) concentration for half-maximal activation of TMEM16F currents was 9.6 μM, which is distinctly higher than that for TMEM16A/B currents. The outwardly rectifying current-voltage relationship for TMEM16F currents was not changed by an increase in the intracellular Ca(2+) level, in contrast to TMEM16A/B currents. The Ca(2+)-activated TMEM16F currents were anion selective, because replacing Cl(-) with aspartate(-) in the bathing solution without changing cation concentrations caused a positive shift of the reversal potential. The anion selectivity sequence of the TMEM16F channel was I(-) > Br(-) > Cl(-) > F(-) > aspartate(-). Niflumic acid, a Ca(2+)-activated Cl(-) channel blocker, inhibited the TMEM16F-dependent Cl(-) currents. Neither overexpression nor knockdown of TMEM16F affected volume-sensitive outwardly rectifying Cl(-) channel (VSOR) currents activated by osmotic swelling or apoptotic stimulation. These results demonstrate that human TMEM16F is an essential component of a Ca(2+)-activated Cl(-) channel with a Ca(2+) sensitivity that is distinct from that of TMEM16A/B and that it is not related to VSOR activity.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | |
Collapse
|
129
|
Stefan CJ, Manford AG, Emr SD. ER-PM connections: sites of information transfer and inter-organelle communication. Curr Opin Cell Biol 2013; 25:434-42. [PMID: 23522446 DOI: 10.1016/j.ceb.2013.02.020] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 11/18/2022]
Abstract
Eukaryotic cells are divided into distinct membrane-bound organelles with unique identities and specialized metabolic functions. Communication between organelles must take place to regulate the size, shape, and composition of individual organelles, as well as to coordinate transport between organelles. The endoplasmic reticulum (ER) forms an expansive membrane network that contacts and participates in crosstalk with several other organelles in the cell, most notably the plasma membrane (PM). ER-PM junctions have well-established functions in the movement of small molecules, such as lipids and ions, between the ER and PM. Recent discoveries have revealed additional exciting roles for ER-PM junctions in the regulation of cell signaling, ER shape and architecture, and PM domain organization.
Collapse
Affiliation(s)
- Christopher J Stefan
- Weill Institute for Cell & Molecular Biology, Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, United States.
| | | | | |
Collapse
|
130
|
Tian Y, Schreiber R, Wanitchakool P, Kongsuphol P, Sousa M, Uliyakina I, Palma M, Faria D, Traynor-Kaplan AE, Fragata JI, Amaral MD, Kunzelmann K. Control of TMEM16A by INO-4995 and other inositolphosphates. Br J Pharmacol 2013; 168:253-65. [PMID: 22946960 PMCID: PMC3570019 DOI: 10.1111/j.1476-5381.2012.02193.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/06/2012] [Accepted: 07/31/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca(2+)-dependent Cl(-) secretion (CaCC) in airways and other tissues is due to activation of the Cl(-) channel TMEM16A (anoctamin 1). Earlier studies suggested that Ca(2+) -activated Cl(-) channels are regulated by membrane lipid inositol phosphates, and that 1-O-octyl-2-O-butyryl-myo-inositol 3,4,5,6-tetrakisphosphate octakis(propionoxymethyl) ester (INO-4995) augments CaCC. Here we examined whether TMEM16A is the target for INO-4995 and if the channel is regulated by inositol phosphates. EXPERIMENTAL APPROACH The effects of INO-4995 on CaCC were examined in overexpressing HEK293, colonic and primary airway epithelial cells as well as Xenopus oocytes. We used patch clamping, double electrode voltage clamp and Ussing chamber techniques. KEY RESULTS We found that INO-4995 directly activates a TMEM16A whole cell conductance of 6.1 ± 0.9 nS pF(-1) in overexpressing cells. The tetrakisphosphates Ins(3,4,5,6)P(4) or Ins(1,3,4,5)P(4) and enzymes controlling levels of InsP(4) or PIP(2) and PIP(3) had no effects on the magnitude or kinetics of TMEM16A currents. In contrast in Xenopus oocytes, human airways and colonic cells, which all express TMEM16A endogenously, Cl(-) currents were not acutely activated by INO-4995. However incubation with INO-4995 augmented 1.6- to 4-fold TMEM16A-dependent Cl(-) currents activated by ionomycin or ATP, while intracellular Ca(2+) signals were not affected. The potentiating effect of INO-4995 on transient ATP-activated TMEM16A-currents in cystic fibrosis (CF) airways was twice of that observed in non-CF airways. CONCLUSIONS AND IMPLICATIONS These data indicate that TMEM16A is the target for INO-4995, although the mode of action appears different for overexpressed and endogenous channels. INO-4995 may be useful for the treatment of CF lung disease.
Collapse
Key Words
- ino-4995
- ino4913
- anoctamin 1
- tmem16a
- inositol phosphates
- ins(3,4,5,6)p4
- inositol 3,4,5,6-tetrakisphosphate
- ins(1,3,4,5)p4
- inositol 1,3,4,5-tetrakisphosphate
- ca2+-activated cl− channels
- cacc
Collapse
Affiliation(s)
- Yuemin Tian
- Institut für Physiologie, Universität RegensburgRegensburg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität RegensburgRegensburg, Germany
| | | | | | - Marisa Sousa
- Faculty of Sciences, BioFIG – Centre for Biodiversity, Functional and Integrative Genomics, University of LisboaLisboa, Portugal
- Department of Genetics, National Institute of HealthLisboa, Portugal
| | - Inna Uliyakina
- Faculty of Sciences, BioFIG – Centre for Biodiversity, Functional and Integrative Genomics, University of LisboaLisboa, Portugal
- Department of Genetics, National Institute of HealthLisboa, Portugal
| | - Marta Palma
- Faculty of Sciences, BioFIG – Centre for Biodiversity, Functional and Integrative Genomics, University of LisboaLisboa, Portugal
| | - Diana Faria
- Institut für Physiologie, Universität RegensburgRegensburg, Germany
| | - Alexis E Traynor-Kaplan
- ISM TherapeuticsSeattle, WA, USA
- Division of Gastroenterology, Department of Medicine, University of WashingtonSeattle, WA, USA
| | - José I Fragata
- Department Cardio-Thoracic Surgery, Hospital de Santa MartaLisboa, Portugal
| | - Margarida D Amaral
- Faculty of Sciences, BioFIG – Centre for Biodiversity, Functional and Integrative Genomics, University of LisboaLisboa, Portugal
- Department of Genetics, National Institute of HealthLisboa, Portugal
| | - Karl Kunzelmann
- Institut für Physiologie, Universität RegensburgRegensburg, Germany
| |
Collapse
|
131
|
Yang J, Liu N, Kang AJ, Zhao SP, Huang XZ, Su BS, Chen XL, Li ZF. Significance of TMEM16A expression in colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2012; 20:3464-3469. [DOI: 10.11569/wcjd.v20.i35.3464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of transmembrane protein 16A (TMEM16A) in colorectal carcinoma.
METHODS: The expression of TMEM16A was detected by immunohistochemistry in 67 surgical colorectal carcinoma specimens and matched tumor-adjacent colorectal specimens.
RESULTS: TMEM16A was expressed in both cytoplasm and cell membrane. Among 67 colorectal carcinoma specimens, TMEM16A expression was negative in 4 cases (5.97%), weakly positive in 11 cases (16.42%), positive in 20 cases (29.85%), and strongly positive in 32 cases (47.76%). Among 67 tumor-adjacent healthy tissue specimens, TMEM16A expression was negative in 27 cases (40.30%), weakly positive in 35 cases (52.24%), positive in 3 cases (4.48%), and strongly positive in 2 cases (2.99%). The positive ("positive" plus "strongly positive") rate of TMEM16A expression was significantly higher in colorectal carcinoma tissue than in tumor adjacent healthy tissue (77.61% vs 7.46%, P < 0.005).
CONCLUSION: Aberrant expression of TMEM16A is a frequent feature in colorectal carcinoma. TMEM16A can be used as a new candidate target for diagnosis and treatment of colorectal carcinoma.
Collapse
|