101
|
Marino S, Di Foggia V. Invited Review: Polycomb group genes in the regeneration of the healthy and pathological skeletal muscle. Neuropathol Appl Neurobiol 2015; 42:407-22. [PMID: 26479276 DOI: 10.1111/nan.12290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022]
Abstract
The polycomb group (PcG) proteins are epigenetic repressors required during key developmental processes, such as maintenance of cell identity and stem cell differentiation. To exert their repressive function, PcG proteins assemble on chromatin into multiprotein complexes, known as polycomb repressive complex 1 and 2. In this review, we will focus on the role and mode of function of PcG proteins in the development and regeneration of the skeletal muscle, both in normal and pathological conditions and we will discuss the emerging concept of modulation of their expression to enhance the muscle-specific regenerative process for patient benefit.
Collapse
Affiliation(s)
- S Marino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - V Di Foggia
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
102
|
Velleman SG, Clark DL. Histopathologic and Myogenic Gene Expression Changes Associated with Wooden Breast in Broiler Breast Muscles. Avian Dis 2015; 59:410-8. [PMID: 26478160 DOI: 10.1637/11097-042015-reg.1] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The wooden breast condition is a myopathy affecting the pectoralis major (p. major) muscle in fast-growing commercial broiler lines. Currently, wooden breast-affected birds are phenotypically detected by palpation of the breast area, with affected birds having a very hard p. major muscle that is of lower value. The objective of this study was to compare the wooden breast myopathy in two fast-growing broiler lines (Lines A and B) with incidence of wooden breast to a slower growing broiler Line C with no phenotypically observable wooden breast. One of the characteristics of the wooden breast condition is fibrosis of the p. major muscle. Morphologic assessment of Lines A and B showed significant fibrosis in both lines, but the collagen distribution and arrangement of the collagen fibrils was different. In Line A, the collagen fibrils were tightly packed, whereas in Line B the collagen fibrils were diffuse. This difference in collagen organization may be due to the expression of the extracellular matrix proteoglycan decorin. Decorin is a regulator of collagen crosslinking and is expressed at significantly higher levels in Line A wooden breast-affected p. major muscle, which would lead to tightly packed collagen fibers due to high levels of collagen crosslinking. Furthermore, expression of the muscle-specific transcriptional regulatory factors for proliferation and differentiation of muscle cells leading to the regeneration of muscle in response to muscle damage was significantly elevated in Line A, and only the factor for differentiation, myogenin, was increased in Line B. The results from this study provide initial evidence that the etiology of the wooden breast myopathy may vary between fast-growing commercial broiler lines.
Collapse
|
103
|
McDonald AA, Hebert SL, McLoon LK. Sparing of the extraocular muscles in mdx mice with absent or reduced utrophin expression: A life span analysis. Neuromuscul Disord 2015; 25:873-87. [PMID: 26429098 PMCID: PMC4630113 DOI: 10.1016/j.nmd.2015.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/08/2015] [Accepted: 09/01/2015] [Indexed: 11/26/2022]
Abstract
Sparing of the extraocular muscles in muscular dystrophy is controversial. To address the potential role of utrophin in this sparing, mdx:utrophin(+/-) and mdx:utrophin(-/-) mice were examined for changes in myofiber size, central nucleation, and Pax7-positive and MyoD-positive cell density at intervals over their life span. Known to be spared in the mdx mouse, and contrary to previous reports, the extraocular muscles from both the mdx:utrophin(+/-) and mdx:utrophin(-/-) mice were also morphologically spared. In the mdx:utrophin(+/)(-) mice, which have a normal life span compared to the mdx:utrophin(-/-) mice, the myofibers were larger at 3 and 12 months than the wild type age-matched eye muscles. While there was a significant increase in central nucleation in the extraocular muscles from all mdx:utrophin(+/)(-) mice, the levels were still very low compared to age-matched limb skeletal muscles. Pax7- and MyoD-positive myogenic precursor cell populations were retained and were similar to age-matched wild type controls. These results support the hypothesis that utrophin is not involved in extraocular muscle sparing in these genotypes. In addition, it appears that these muscles retain the myogenic precursors that would allow them to maintain their regenerative capacity and normal morphology over a lifetime even in these more severe models of muscular dystrophy.
Collapse
Affiliation(s)
- Abby A McDonald
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Sadie L Hebert
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
104
|
Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015; 80:2-13. [PMID: 26453493 DOI: 10.1016/j.bone.2015.02.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/21/2022]
Abstract
Both skeletal muscle and bone are of mesodermal origin and derived from somites during embryonic development. Somites differentiate into the dorsal dermomyotome and the ventral sclerotome, which give rise to skeletal muscle and bone, respectively. Extracellular signaling molecules, such as Wnt and Shh, secreted from the surrounding environment, determine the developmental fate of skeletal muscle. Dermomyotome cells are specified as trunk muscle progenitor cells by transcription factor networks involving Pax3. These progenitor cells delaminate and migrate to form the myotome, where they are determined as myoblasts that differentiate into myotubes or myofibers. The MyoD family of transcription factors plays pivotal roles in myogenic determination and differentiation. Adult skeletal muscle regenerates upon exercise, muscle injury, or degeneration. Satellite cells are muscle-resident stem cells and play essential roles in muscle growth and regeneration. Muscle regeneration recapitulates the process of muscle development in many aspects. In certain muscle diseases, ectopic calcification or heterotopic ossification, as well as fibrosis and adipogenesis, occurs in skeletal muscle. Muscle-resident mesenchymal progenitor cells, which may be derived from vascular endothelial cells, are responsible for the ectopic osteogenesis, fibrogenesis, and adipogenesis. The small GTPase M-Ras is likely to participate in the ectopic calcification and ossification, as well as in osteogenesis during development. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
105
|
Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJC, Parise G. Satellite cells in human skeletal muscle plasticity. Front Physiol 2015; 6:283. [PMID: 26557092 PMCID: PMC4617172 DOI: 10.3389/fphys.2015.00283] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/23/2015] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada ; Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Maastricht, Netherlands
| | - Joshua P Nederveen
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| | - Bryon R McKay
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| | - Sophie Joanisse
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Maastricht, Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Maastricht, Netherlands
| | - Gianni Parise
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| |
Collapse
|
106
|
Randolph ME, Pavlath GK. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups. Front Aging Neurosci 2015; 7:190. [PMID: 26500547 PMCID: PMC4595652 DOI: 10.3389/fnagi.2015.00190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.
Collapse
|
107
|
Grasman JM, Zayas MJ, Page RL, Pins GD. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomater 2015. [PMID: 26219862 DOI: 10.1016/j.actbio.2015.07.038] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle. STATEMENT OF SIGNIFICANCE Volumetric muscle loss (VML) injuries result from traumatic incidents such as those presented from combat missions, where soft-tissue extremity injuries are represented in one of four cases. These injuries remove or destroy large amounts of skeletal muscle including the basement membrane and connective tissue, removing the structural, mechanical, and biochemical cues that usually direct its repair. This results in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. In this review, we examine current strategies for the development of scaffold materials designed for skeletal muscle regeneration, highlighting advances and limitations associated with these methodologies. Finally, we identify future approaches to enhance skeletal muscle regeneration.
Collapse
|
108
|
Imaoka Y, Kawai M, Mori F, Miyata H. Effect of eccentric contraction on satellite cell activation in human vastus lateralis muscle. J Physiol Sci 2015; 65:461-9. [PMID: 26115721 PMCID: PMC10717912 DOI: 10.1007/s12576-015-0385-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/08/2015] [Indexed: 12/28/2022]
Abstract
We compared the time-course of satellite cell (SC) activation between eccentric and concentric contractions in the vastus lateralis (VL) muscle after step exercise. Young adults participated in a 30-min step up/down exercise which mainly involved concentric contractions with the right VL muscle and eccentric contractions with the left VL muscle. The concentric and eccentric contraction phases of the VL muscles were identified by changes in the electromyogram (EMG) and knee joint angle. Biopsy samples were taken from both VL muscles at three time periods: before the exercise and 2 and 5 days after the exercise. We found that the numbers of SCs were significantly increased in the type IIa fibers of the left VL at 2 and 5 days after the exercise. The expression of both hepatocyte growth factor (HGF) and myogenic differentiation 1 (MyoD) mRNA had significantly increased in the left VL at 2 and 5 days after the exercise and in the right VL at 5 days after the exercise. The expression of transient receptor potential canonical (TRPC) 1 mRNA also increased in the left VL at 2 days after exercise. These results indicate that eccentric contraction can effectively activate SC proliferation for up to 5 days after exercise. Similar changes in HGF, MyoD and TRPC1 mRNA expression suggest that HGF/c-Met signal activation through cation influx has a major impact on skeletal muscle SC activation in response to eccentric exercise.
Collapse
Affiliation(s)
- Yoko Imaoka
- Department of Biological Sciences, Graduate School of Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515 Japan
| | - Minako Kawai
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Yamaguchi, Japan
| | - Futoshi Mori
- Department of Occupational Therapy, Hiroshima Prefectural University, Mihara, Japan
| | - Hirofumi Miyata
- Department of Biological Sciences, Graduate School of Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515 Japan
| |
Collapse
|
109
|
Gallo D, Gesmundo I, Trovato L, Pera G, Gargantini E, Minetto MA, Ghigo E, Granata R. GH-Releasing Hormone Promotes Survival and Prevents TNF-α-Induced Apoptosis and Atrophy in C2C12 Myotubes. Endocrinology 2015; 156:3239-52. [PMID: 26110916 DOI: 10.1210/en.2015-1098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal muscle atrophy is a consequence of different chronic diseases, including cancer, heart failure, and diabetes, and also occurs in aging and genetic myopathies. It results from an imbalance between anabolic and catabolic processes, and inflammatory cytokines, such as TNF-α, have been found elevated in muscle atrophy and implicated in its pathogenesis. GHRH, in addition to stimulating GH secretion from the pituitary, exerts survival and antiapoptotic effects in different cell types. Moreover, we and others have recently shown that GHRH displays antiapoptotic effects in isolated cardiac myocytes and protects the isolated heart from ischemia/reperfusion injury and myocardial infarction in vivo. On these bases, we investigated the effects of GHRH on survival and apoptosis of TNF-α-treated C2C12 myotubes along with the underlying mechanisms. GHRH increased myotube survival and prevented TNF-α-induced apoptosis through GHRH receptor-mediated mechanisms. These effects involved activation of phosphoinositide 3-kinase/Akt pathway and inactivation of glycogen synthase kinase-3β, whereas mammalian target of rapamycin was unaffected. GHRH also increased the expression of myosin heavy chain and the myogenic transcription factor myogenin, which were both reduced by the cytokine. Furthermore, GHRH inhibited TNF-α-induced expression of nuclear factor-κB, calpain, and muscle ring finger1, which are all involved in muscle protein degradation. In summary, these results indicate that GHRH exerts survival and antiapoptotic effects in skeletal muscle cells through the activation of anabolic pathways and the inhibition of proteolytic routes. Overall, our findings suggest a novel therapeutic role for GHRH in the treatment of muscle atrophy-associated diseases.
Collapse
Affiliation(s)
- Davide Gallo
- Laboratory of Molecular and Cellular Endocrinology (D.G., I.G., L.T., G.P., E.Ga., R.G.), and Division of Endocrinology, Diabetes, and Metabolism (D.G., I.G., L.T., G.P., E.Ga., M.A.M., E.Gh., R.G.), Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Iacopo Gesmundo
- Laboratory of Molecular and Cellular Endocrinology (D.G., I.G., L.T., G.P., E.Ga., R.G.), and Division of Endocrinology, Diabetes, and Metabolism (D.G., I.G., L.T., G.P., E.Ga., M.A.M., E.Gh., R.G.), Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Letizia Trovato
- Laboratory of Molecular and Cellular Endocrinology (D.G., I.G., L.T., G.P., E.Ga., R.G.), and Division of Endocrinology, Diabetes, and Metabolism (D.G., I.G., L.T., G.P., E.Ga., M.A.M., E.Gh., R.G.), Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Giulia Pera
- Laboratory of Molecular and Cellular Endocrinology (D.G., I.G., L.T., G.P., E.Ga., R.G.), and Division of Endocrinology, Diabetes, and Metabolism (D.G., I.G., L.T., G.P., E.Ga., M.A.M., E.Gh., R.G.), Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Eleonora Gargantini
- Laboratory of Molecular and Cellular Endocrinology (D.G., I.G., L.T., G.P., E.Ga., R.G.), and Division of Endocrinology, Diabetes, and Metabolism (D.G., I.G., L.T., G.P., E.Ga., M.A.M., E.Gh., R.G.), Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Marco Alessandro Minetto
- Laboratory of Molecular and Cellular Endocrinology (D.G., I.G., L.T., G.P., E.Ga., R.G.), and Division of Endocrinology, Diabetes, and Metabolism (D.G., I.G., L.T., G.P., E.Ga., M.A.M., E.Gh., R.G.), Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Ezio Ghigo
- Laboratory of Molecular and Cellular Endocrinology (D.G., I.G., L.T., G.P., E.Ga., R.G.), and Division of Endocrinology, Diabetes, and Metabolism (D.G., I.G., L.T., G.P., E.Ga., M.A.M., E.Gh., R.G.), Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology (D.G., I.G., L.T., G.P., E.Ga., R.G.), and Division of Endocrinology, Diabetes, and Metabolism (D.G., I.G., L.T., G.P., E.Ga., M.A.M., E.Gh., R.G.), Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
110
|
Tokutake Y, Yamada K, Ohata M, Obayashi Y, Tsuchiya M, Yonekura S. ALS-Linked P56S-VAPB Mutation Impairs the Formation of Multinuclear Myotube in C2C12 Cells. Int J Mol Sci 2015; 16:18628-41. [PMID: 26266407 PMCID: PMC4581263 DOI: 10.3390/ijms160818628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder that affects upper and lower motor neurons. Since motor neurons target skeletal muscles, the maintenance system of muscles is disturbed in ALS; however, the mechanism by which this occurs is unknown. In the present study, we investigated the effects of ALS-associated P56S-vesicle-associated membrane protein-associated protein B (VAPB) (P56S-VAPB) on the IRE1-XBP1 pathway, which is involved in the unfolded protein response (UPR) of the mouse myoblast cell line (C2C12 cells). Experiments with C2C12 cells transfected with wild-type wt-VAPB and P56S-VAPB expression vectors showed reduced myotube formation and aberrant myonuclear position in cells expressing P56S-VAPB. Activity of the IRE1-XBP1 pathway in the cells visualized with the ERAI system revealed that the pathway was disrupted in cells expressing P56S-VAPB, whereas the IRE1-XBP1 pathway activity was enhanced in the differentiation process of normal C2C12 cells. These results suggest that disruption of the IRE1-XBP1 pathway is a cause for the reduced myotube formation in P56S-VAPB-expressing cells. The expression level of the VAPB protein has been reported to be reduced in the neurons of patients with ALS. Therefore, it is expected that the IRE1-XBP1 pathway is also impaired in muscle tissues of patients with ALS, which causes a disturbance in the muscle maintenance system.
Collapse
Affiliation(s)
- Yukako Tokutake
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| | - Keita Yamada
- Graduate School of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| | - Masaki Ohata
- Graduate School of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| | - Yoshihito Obayashi
- Graduate School of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| | - Megumi Tsuchiya
- Graduate School of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| | - Shinichi Yonekura
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
- Graduate School of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| |
Collapse
|
111
|
Oishi Y, Roy RR, Ogata T, Ohira Y. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration. Muscle Nerve 2015; 52:1047-56. [DOI: 10.1002/mus.24686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Yasuharu Oishi
- Laboratory of Muscle Physiology; Faculty of Education, Kumamoto University; Kumamoto 860-8555 Japan
| | - Roland R. Roy
- Department of Integrative Biology and Physiology and Brain Research Institute; University of California Los Angeles; Los Angeles California USA
| | - Tomonori Ogata
- Faculty of Human Environmental Studies; Hiroshima-Shudo University; Hiroshima Japan
| | - Yoshinobu Ohira
- Research Center for Adipocyte & Muscle Science; Doshisha University; Kyotanabe City Kyoto Japan
| |
Collapse
|
112
|
Satellite cells: regenerative mechanisms and applicability in muscular dystrophy. Stem Cells Int 2015; 2015:487467. [PMID: 25763072 PMCID: PMC4339711 DOI: 10.1155/2015/487467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 11/17/2022] Open
Abstract
The satellite cells are long regarded as heterogeneous cell population, which is intimately linked to the processes of muscular recovery. The heterogeneous cell population may be classified by specific markers. In spite of the significant amount of variation amongst the satellite cell populations, it seems that their activity is tightly bound to the paired box 7 transcription factor expression, which is, therefore, used as a canonical marker for these cells. Muscular dystrophic diseases, such as Duchenne muscular dystrophy, elicit severe tissue injuries leading those patients to display a very specific pattern of muscular recovery abnormalities. There have been works on the application of precursors cells as a therapeutic alternative for Duchenne muscular dystrophy and initial attempts have proven the cells inefficient; however later endeavours have proposed solutions for the experiments improving significantly the results. The presence of a range of satellite cells populations indicates the existence of specific cells with enhanced capability of muscular recovery in afflicted muscles.
Collapse
|
113
|
Di Foggia V, Zhang X, Licastro D, Gerli MFM, Phadke R, Muntoni F, Mourikis P, Tajbakhsh S, Ellis M, Greaves LC, Taylor RW, Cossu G, Robson LG, Marino S. Bmi1 enhances skeletal muscle regeneration through MT1-mediated oxidative stress protection in a mouse model of dystrophinopathy. ACTA ACUST UNITED AC 2014; 211:2617-33. [PMID: 25452464 PMCID: PMC4267246 DOI: 10.1084/jem.20140317] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enhanced polycomb complex protein Bmi1 expression in adult stem cells of the skeletal muscle leads to improved muscle function in a model of Duchenne Muscular Dystrophy via metallothionein1-mediated protection from oxidative stress. The Polycomb group (PcG) protein Bmi1 is an essential epigenetic regulator of stem cell function during normal development and in adult organ systems. We show that mild up-regulation of Bmi1 expression in the adult stem cells of the skeletal muscle leads to a remarkable improvement of muscle function in a mouse model of Duchenne muscular dystrophy. The molecular mechanism underlying enhanced physiological function of Bmi1 depends on the injury context and it is mediated by metallothionein 1 (MT1)–driven modulation of resistance to oxidative stress in the satellite cell population. These results lay the basis for developing Bmi1 pharmacological activators, which either alone or in combination with MT1 agonists could be a powerful novel therapeutic approach to improve regeneration in muscle wasting conditions.
Collapse
Affiliation(s)
- Valentina Di Foggia
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | | | - Mattia F M Gerli
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, England, UK
| | - Rahul Phadke
- The Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 3JH, England, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 3JH, England, UK
| | - Philippos Mourikis
- Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, URA 2578 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, URA 2578 Paris, France
| | - Matthew Ellis
- Division of Neuropathology, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, England, UK
| | - Laura C Greaves
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE4 2HH, England, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE4 2HH, England, UK
| | - Giulio Cossu
- Institute for Inflammation and Repair, University of Manchester, Manchester M13 9PL, England, UK
| | - Lesley G Robson
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| |
Collapse
|
114
|
Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Hadj Sassi A, Seiliez I, Picard B, Bonnieu A. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci 2014; 71:4361-71. [PMID: 25080109 PMCID: PMC11113773 DOI: 10.1007/s00018-014-1689-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 12/16/2022]
Abstract
Myostatin, a member of the transforming growth factor-β superfamily, is a potent negative regulator of skeletal muscle growth and is conserved in many species, from rodents to humans. Myostatin inactivation can induce skeletal muscle hypertrophy, while its overexpression or systemic administration causes muscle atrophy. As it represents a potential target for stimulating muscle growth and/or preventing muscle wasting, myostatin regulation and functions in the control of muscle mass have been extensively studied. A wealth of data strongly suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression. Moreover, myostatin plays a central role in integrating/mediating anabolic and catabolic responses. Myostatin negatively regulates the activity of the Akt pathway, which promotes protein synthesis, and increases the activity of the ubiquitin-proteasome system to induce atrophy. Several new studies have brought new information on how myostatin may affect both ribosomal biogenesis and translation efficiency of specific mRNA subclasses. In addition, although myostatin has been identified as a modulator of the major catabolic pathways, including the ubiquitin-proteasome and the autophagy-lysosome systems, the underlying mechanisms are only partially understood. The goal of this review is to highlight outstanding questions about myostatin-mediated regulation of the anabolic and catabolic signaling pathways in skeletal muscle. Particular emphasis has been placed on (1) the cross-regulation between myostatin, the growth-promoting pathways and the proteolytic systems; (2) how myostatin inhibition leads to muscle hypertrophy; and (3) the regulation of translation by myostatin.
Collapse
Affiliation(s)
- J. Rodriguez
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, Université Montpellier 2, 2 Place Viala, 34060 Montpellier, France
| | - B. Vernus
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, Université Montpellier 2, 2 Place Viala, 34060 Montpellier, France
| | - I. Chelh
- INRA, VetAgro Sup, UMR1213 Herbivores, 63122 Saint-Genès-Champanelle, France
| | - I. Cassar-Malek
- INRA, VetAgro Sup, UMR1213 Herbivores, 63122 Saint-Genès-Champanelle, France
| | - J. C. Gabillard
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, France
| | - A. Hadj Sassi
- INRA-USC2009, Université Bordeaux 1, Avenue des Facultés, 33405 Talence, France
| | - I. Seiliez
- INRA, UR1067 Nutrition, Métabolisme, Aquaculture, 64310 Saint-Pée-sur-Nivelle, France
| | - B. Picard
- INRA, VetAgro Sup, UMR1213 Herbivores, 63122 Saint-Genès-Champanelle, France
| | - A. Bonnieu
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, Université Montpellier 2, 2 Place Viala, 34060 Montpellier, France
| |
Collapse
|
115
|
Mokbel N, Hoffman NJ, Girgis CM, Small L, Turner N, Daly RJ, Cooney GJ, Holt LJ. Grb10 deletion enhances muscle cell proliferation, differentiation and GLUT4 plasma membrane translocation. J Cell Physiol 2014; 229:1753-64. [PMID: 24664951 DOI: 10.1002/jcp.24628] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/21/2014] [Indexed: 12/25/2022]
Abstract
Grb10 is an intracellular adaptor protein which binds directly to several growth factor receptors, including those for insulin and insulin-like growth factor receptor-1 (IGF-1), and negatively regulates their actions. Grb10-ablated (Grb10(-/-) ) mice exhibit improved whole body glucose homeostasis and an increase in muscle mass associated specifically with an increase in myofiber number. This suggests that Grb10 may act as a negative regulator of myogenesis. In this study, we investigated in vitro, the molecular mechanisms underlying the increase in muscle mass and the improved glucose metabolism. Primary muscle cells isolated from Grb10(-/-) mice exhibited increased rates of proliferation and differentiation compared to primary cells isolated from wild-type mice. The improved proliferation capacity was associated with an enhanced phosphorylation of Akt and ERK in the basal state and changes in the expression of key cell cycle progression markers involved in regulating transition of cells from the G1 to S phase (e.g., retinoblastoma (Rb) and p21). The absence of Grb10 also promoted a faster transition to a myogenin positive, differentiated state. Glucose uptake was higher in Grb10(-/-) primary myotubes in the basal state and was associated with enhanced insulin signaling and an increase in GLUT4 translocation to the plasma membrane. These data demonstrate an important role for Grb10 as a link between muscle growth and metabolism with therapeutic implications for diseases, such as muscle wasting and type 2 diabetes.
Collapse
Affiliation(s)
- Nancy Mokbel
- Diabetes and Obesity Research Program, The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Price FD, von Maltzahn J, Bentzinger CF, Dumont NA, Yin H, Chang NC, Wilson DH, Frenette J, Rudnicki MA. Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med 2014; 20:1174-81. [PMID: 25194569 PMCID: PMC4191983 DOI: 10.1038/nm.3655] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/14/2014] [Indexed: 02/08/2023]
Abstract
Diminished regenerative capacity of skeletal muscle occurs during adulthood. We identified a reduction in the intrinsic capacity of murine adult satellite cells to contribute to regeneration and repopulate the niche. Gene expression analysis identified an increase in expression of JAK/STAT signaling targets between 3 week old and 18 month old mice. Knockdown of Jak2 or Stat3 significantly stimulated symmetric satellite stem cell divisions on cultured myofibers. Knockdown of Jak2 or Stat3 in prospectively isolated satellite cells markedly enhanced their ability to repopulate the satellite cell niche. Pharmacological inhibition of Jak2 and Stat3 similarly stimulated symmetric expansion of satellite cells in vitro and their engraftment in vivo. Intramuscular injection of these drugs resulted in a dramatic enhancement of muscle repair and force generation. Together these results reveal intrinsic properties that functionally distinguish adult satellite cells and suggest a promising therapeutic avenue for the treatment of muscle wasting diseases.
Collapse
Affiliation(s)
- Feodor D Price
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada. [3]
| | - Julia von Maltzahn
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada. [3] [4]
| | - C Florian Bentzinger
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Nicolas A Dumont
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Hang Yin
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Natasha C Chang
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - David H Wilson
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Jérôme Frenette
- Programme de Physiothérapie, Département de Réadaptation, Université Laval, Québec, Canada
| | - Michael A Rudnicki
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
117
|
Gunage RD, Reichert H, VijayRaghavan K. Identification of a new stem cell population that generates Drosophila flight muscles. eLife 2014; 3:e03126. [PMID: 25135939 PMCID: PMC4171707 DOI: 10.7554/elife.03126] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/15/2014] [Indexed: 12/20/2022] Open
Abstract
How myoblast populations are regulated for the formation of muscles of different sizes is an essentially unanswered question. The large flight muscles of Drosophila develop from adult muscle progenitor (AMP) cells set-aside embryonically. The thoracic segments are all allotted the same small AMP number, while those associated with the wing-disc proliferate extensively to give rise to over 2500 myoblasts. An initial amplification occurs through symmetric divisions and is followed by a switch to asymmetric divisions in which the AMPs self-renew and generate post-mitotic myoblasts. Notch signaling controls the initial amplification of AMPs, while the switch to asymmetric division additionally requires Wingless, which regulates Numb expression in the AMP lineage. In both cases, the epidermal tissue of the wing imaginal disc acts as a niche expressing the ligands Serrate and Wingless. The disc-associated AMPs are a novel muscle stem cell population that orchestrates the early phases of adult flight muscle development.
Collapse
Affiliation(s)
- Rajesh D Gunage
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
118
|
Specific pattern of cell cycle during limb fetal myogenesis. Dev Biol 2014; 392:308-23. [DOI: 10.1016/j.ydbio.2014.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 05/21/2014] [Indexed: 01/20/2023]
|
119
|
Lim HJ, Joo S, Oh SH, Jackson JD, Eckman DM, Bledsoe TM, Pierson CR, Childers MK, Atala A, Yoo JJ. Syngeneic Myoblast Transplantation Improves Muscle Function in a Murine Model of X-Linked Myotubular Myopathy. Cell Transplant 2014; 24:1887-900. [PMID: 25197964 DOI: 10.3727/096368914x683494] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM) is an isogenic muscle disease characterized by progressive wasting of skeletal muscle, weakness, and premature death of affected male offspring. Recently, the XLMTM gene knock-in mouse, Mtm1 p.R69C, was found to have a similar phenotype as the Mtm1 gene mutation in humans (e.g., central nucleation of small myofibers, attenuated muscle strength, and motor unit potentials). Using this rodent model, we investigated whether syngeneic cell therapy could mitigate muscle weakness. Donor skeletal muscle-derived myoblasts were isolated from C57BL6 wild-type (WT) and Mtm1 p.R69C (KI) mice for transplantation into the gastrocnemius muscle of recipient KI mice. Initial experiments demonstrated that donor skeletal muscle-derived myoblasts from WT and KI mice remained in the gastrocnemius muscle of the recipient KI mouse for up to 4 weeks posttransplantation. KI mice receiving syngeneic skeletal muscle-derived myoblasts displayed an increase in skeletal muscle mass, augmented force generation, and increased nerve-evoked skeletal muscle action potential amplitude. Taken together, these results support our hypothesis that syngeneic cell therapy may potentially be used to ameliorate muscle weakness and delay the progression of XLMTM, as application expands to other muscles.
Collapse
Affiliation(s)
- Hyun Ju Lim
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
JAROCHA DANUTA, STANGEL-WOJCIKIEWICZ KLAUDIA, BASTA ANTONI, MAJKA MARCIN. Efficient myoblast expansion for regenerative medicine use. Int J Mol Med 2014; 34:83-91. [PMID: 24788458 PMCID: PMC4072397 DOI: 10.3892/ijmm.2014.1763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/04/2014] [Indexed: 02/02/2023] Open
Abstract
Cellular therapy using expanded autologous myoblasts is a treatment modality for a variety of diseases. In the present study, we compared the commercial skeletal muscle cell growth medium-2 (SKGM-2) with a medium designed by our group for the expansion of skeletal myoblasts. The use of an in-house medium [DMEM/F12 medium supplemented with EGF, bFGF, HGF, insulin and dexamethasone (DFEFH)] resulted in a greater number of myoblast colonies (>50%) and a 3-, 4- and 9‑fold higher proliferation rate, eventually resulting in a 3-, 7- and 87-fold greater number of cells at the 1st, 2nd and 3rd passage, respectively, compared with the cells grown in SKGM-2 medium. The average CD56 expression level was higher in the myoblasts cultured in DFEFH than in those culturd in SKGM-2 medium. At the 3rd passage, lower expression levels of myostatin and considerably higher expression levels of myogenin were observed in the cells that were grown in DFEFH medium. The results of our study indicated that myoblasts cultured in both medium types displayed fusogenic potential at the 3rd passage. Furthermore, it was shown that cells cultured in DFEFH medium created myotubes with a considerably higher number of nuclei. Additionally, we observed that the fusion potential of the cells markedly decreased with the subsequent passages and that the morphology of the myoblasts differed between the 2 cultured media. Our data demonstrate that culture in the DFEFH medium leads to an approximately 90‑fold greater number of myoblasts, with improved morphology and greater fusion potential, compared with culture in the commercial SKGM-2 medium.
Collapse
Affiliation(s)
- DANUTA JAROCHA
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University School of Medicine, 30-663 Cracow, Poland
| | | | - ANTONI BASTA
- Department of Gynecology and Oncology, Jagiellonian University School of Medicine, 31-501 Cracow, Poland
| | - MARCIN MAJKA
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University School of Medicine, 30-663 Cracow, Poland
| |
Collapse
|
121
|
Huang P, Schulz TJ, Beauvais A, Tseng YH, Gussoni E. Intramuscular adipogenesis is inhibited by myo-endothelial progenitors with functioning Bmpr1a signalling. Nat Commun 2014; 5:4063. [PMID: 24898859 PMCID: PMC4084855 DOI: 10.1038/ncomms5063] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 05/06/2014] [Indexed: 12/20/2022] Open
Abstract
Developing human muscle contains inter-myofiber progenitors expressing Bmp-receptor 1a (Bmpr1a) and Myf5 that respond to stimulation with Bmp4. Here we ablate Bmpr1a in Myf5- and MyoD-expressing cells in vivo. Mutant mice reveal increased intramuscular fat and reduced myofiber size in selected muscles, or following muscle injury. Myo-endothelial progenitors are the most affected cell type: clonal studies demonstrate that ablation of Bmpr1a in myo-endothelial cells results in decreased myogenic activity, while adipogenic differentiation is significantly increased. Downstream phospho-Smad 1, 5, 8 signaling is also severely decreased in mutant myo-endothelial cells. Lineage tracing of endothelial cells using VE-cadherinCre driver failed to reveal a significant contribution of these cells to developing or injured skeletal muscle. Thus, myo-endothelial progenitors with functioning Bmpr1a signaling demonstrate myogenic potential, but their main function in vivo is to inhibit intramuscular adipogenesis, both through a cell-autonomous and a cell-cell interaction mechanism.
Collapse
Affiliation(s)
- Ping Huang
- Division of Genetics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Tim J Schulz
- 1] Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts 02115, USA [2]
| | - Ariane Beauvais
- 1] Division of Genetics, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2]
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts 02115, USA
| | - Emanuela Gussoni
- Division of Genetics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
122
|
Tu MK, Borodinsky LN. Spontaneous calcium transients manifest in the regenerating muscle and are necessary for skeletal muscle replenishment. Cell Calcium 2014; 56:34-41. [PMID: 24854233 DOI: 10.1016/j.ceca.2014.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/18/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
Tissue regeneration entails replenishing of damaged cells, appropriate cell differentiation and inclusion of regenerated cells into functioning tissues. In adult humans, the capacity of the injured spinal cord and muscle to self-repair is limited. In contrast, the amphibian larva can regenerate its tail after amputation with complete recovery of muscle, notochord and spinal cord. The cellular and molecular mechanisms underlying this phenomenon are still unclear. Here we show that upon injury muscle cell precursors exhibit Ca(2+) transients that depend on Ca(2+) release from ryanodine receptor-operated stores. Blockade of these transients impairs muscle regeneration. Furthermore, inhibiting Ca(2+) transients in the regenerating tail prevents the activation and proliferation of muscle satellite cells, which results in deficient muscle replenishment. These findings suggest that Ca(2+)-mediated activity is critical for the early stages of muscle regeneration, which may lead to developing effective therapies for tissue repair.
Collapse
Affiliation(s)
- Michelle Kim Tu
- Department of Physiology & Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis School of Medicine, 2425 Stockton Boulevard, Sacramento, CA 95817, United States
| | - Laura Noemi Borodinsky
- Department of Physiology & Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis School of Medicine, 2425 Stockton Boulevard, Sacramento, CA 95817, United States.
| |
Collapse
|
123
|
Jinno N, Nagata M, Takahashi T. Marginal zinc deficiency negatively affects recovery from muscle injury in mice. Biol Trace Elem Res 2014; 158:65-72. [PMID: 24488209 DOI: 10.1007/s12011-014-9901-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/21/2014] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to elucidate whether the recovery from muscle injury is impaired in marginal zinc deficiency. C57BL/6 male mice were fed a marginally zinc-deficient diet (MZD: 8 mg Zn/kg diet), a zinc-adequate diet (ZA: zinc 35 mg Zn/kg diet), and a zinc-high diet (ZH: 190 mg Zn/kg diet) for 4 weeks. Muscle injury was induced in the gastrocnemius muscles using cardiotoxin. The gastrocnemius muscles of these mice were harvested at 3, 5, 7, 10, 14, and 20 days after injury. We evaluated the regeneration of the skeletal muscle with hematoxylin and eosin staining and developmental myosin heavy-chain (dMHC: implicated in regeneration) immunostaining. The rate of dMHC-positive cells was significantly low in MZD mice compared with ZA mice at 3 days after cardiotoxin injection. The peak dMHC expression was found at 3 days after injection in ZA mice, 5 days in ZH mice, and 7 days in MZD mice. These results suggest that recovery from muscle injury might be partly impaired and delayed in MZD mice. Therefore, we strongly suggest the appropriate zinc intake to prevent the impairment of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Nobuko Jinno
- Food Science Research Laboratories, Meiji Co., Ltd., 540 Naruda, Odawara City, Kanagawa, 250-0862, Japan,
| | | | | |
Collapse
|
124
|
|
125
|
Nonaka K, Akiyama J, Tatsuta N, Une S, Ito K, Ogaya S, Kataoka M, Iwata A, Okuda K. Carbon Dioxide Water Bathing Enhances Myogenin but Not MyoD Protein Expression after Skeletal Muscle Injury. J Phys Ther Sci 2013; 25:709-11. [PMID: 24259835 PMCID: PMC3805014 DOI: 10.1589/jpts.25.709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/08/2013] [Indexed: 11/24/2022] Open
Abstract
[Purpose] We reported that carbon dioxide (CO2) water bathing accelerates
skeletal muscle regeneration; however, the underlying mechanism was unclear. MyoD and
myogenin play roles in muscle regeneration, and the purpose of this study was to determine
changes in MyoD and myogenin caused by CO2 water bathing after injury.
[Subjects] Sixteen female Wistar rats (n = 4 per group) were used. [Methods] The rats were
divided into four groups: no-injury (NI), injury (IC), injury + tap water bathing (ITW),
and injury + CO2 water bathing (ICO2). Muscle injury was induced by
injection of bupivacaine hydrochloride into the left tibial anterior (TA) muscles. Tap
water and CO2 (1,000 ppm) water bathing were performed at 37 °C for 30 minutes
once a day. The left TA muscles were removed 4 days after injury, and the expressions of
MyoD and myogenin were measured. [Results] MyoD and myogenin were increased in the IC,
ITW, and ICO2 groups compared with the NI group. Although the MyoD level was
similar in the IC, ITW, and ICO2 groups, myogenin increased more in the
ICO2 group than in the IC and ITW groups. [Conclusion] CO2 water
bathing after muscle injury appears to induce an increase in the expression of
myogenin.
Collapse
Affiliation(s)
- Koji Nonaka
- Department of Physical Therapy, Osaka Prefecture University
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
MacGrogan D, Luxán G, de la Pompa JL. Genetic and functional genomics approaches targeting the Notch pathway in cardiac development and congenital heart disease. Brief Funct Genomics 2013; 13:15-27. [PMID: 24106100 DOI: 10.1093/bfgp/elt036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Notch signalling pathway plays crucial roles in cardiac development and postnatal cardiac homoeostasis. Gain- and loss-of-function approaches indicate that Notch promotes or inhibits cardiogenesis in a stage-dependent manner. However, the molecular mechanisms are poorly defined because many downstream effectors remain to be identified. Genome-scale analyses are shedding light on the genes that are regulated by Notch signalling and the mechanisms underlying this regulation. We review the functional data that implicates Notch in cardiac morphogenetic processes and expression profiling studies that enlighten the regulatory networks behind them. A recurring theme is that Notch cross-talks reiteratively with other key signalling pathways including Wnt and Bmp to coordinate cell and tissue interactions during cardiogenesis.
Collapse
Affiliation(s)
- Donal MacGrogan
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain. Tel.: +34-620-936633; Fax: +34-91-4531304;
| | | | | |
Collapse
|
127
|
Marti M, Montserrat N, Pardo C, Mulero L, Miquel-Serra L, Rodrigues AMC, Andrés Vaquero J, Kuebler B, Morera C, Barrero MJ, Izpisua Belmonte JC. M-cadherin-mediated intercellular interactions activate satellite cell division. J Cell Sci 2013; 126:5116-31. [PMID: 24046443 DOI: 10.1242/jcs.123562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adult muscle stem cells and their committed myogenic precursors, commonly referred to as the satellite cell population, are involved in both muscle growth after birth and regeneration after damage. It has been previously proposed that, under these circumstances, satellite cells first become activated, divide and differentiate, and only later fuse to the existing myofiber through M-cadherin-mediated intercellular interactions. Our data show that satellite cells fuse with the myofiber concomitantly to cell division, and only when the nuclei of the daughter cells are inside the myofiber, do they complete the process of differentiation. Here we demonstrate that M-cadherin plays an important role in cell-to-cell recognition and fusion, and is crucial for cell division activation. Treatment of satellite cells with M-cadherin in vitro stimulates cell division, whereas addition of anti-M-cadherin antibodies reduces the cell division rate. Our results suggest an alternative model for the contribution of satellite cells to muscle development, which might be useful in understanding muscle regeneration, as well as muscle-related dystrophies.
Collapse
Affiliation(s)
- Merce Marti
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Storer NY, White RM, Uong A, Price E, Nielsen GP, Langenau DM, Zon LI. Zebrafish rhabdomyosarcoma reflects the developmental stage of oncogene expression during myogenesis. Development 2013; 140:3040-50. [PMID: 23821038 DOI: 10.1242/dev.087858] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhabdomyosarcoma is a pediatric malignancy thought to arise from the uncontrolled proliferation of myogenic cells. Here, we have generated models of rhabdomyosarcoma in the zebrafish by inducing oncogenic KRAS(G12D) expression at different stages during muscle development. Several zebrafish promoters were used, including the cdh15 and rag2 promoters, which drive gene expression in early muscle progenitors, and the mylz2 promoter, which is expressed in differentiating myoblasts. The tumors that developed differed in their ability to recapitulate normal myogenesis. cdh15:KRAS(G12D) and rag2:KRAS(G12D) fish developed tumors that displayed an inability to complete muscle differentiation as determined by histological appearance and gene expression analyses. By contrast, mylz2:KRAS(G12D) tumors more closely resembled mature skeletal muscle and were most similar to well-differentiated human rhabdomyosarcoma in terms of gene expression. mylz2:KRAS(G12D) fish showed significantly improved survival compared with cdh15:KRAS(G12D) and rag2:KRAS(G12D) fish. Tumor-propagating activity was enriched in myf5-expressing cell populations within all of the tumor types. Our results demonstrate that oncogenic KRAS(G12D) expression at different stages during muscle development has profound effects on the ability of tumor cells to recapitulate normal myogenesis, altering the tumorigenic capability of these cells.
Collapse
Affiliation(s)
- Narie Y Storer
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 2013; 13:590-601. [PMID: 23933088 DOI: 10.1016/j.stem.2013.07.016] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 07/12/2013] [Accepted: 07/19/2013] [Indexed: 11/21/2022]
Abstract
Skeletal muscle contains Pax7-expressing muscle stem or satellite cells, enabling muscle regeneration throughout most of adult life. Here, we demonstrate that induced inactivation of Pax7 in Pax7-expressing cells of adult mice leads to loss of muscle stem cells and reduced heterochromatin condensation in rare surviving satellite cells. Inactivation of Pax7 in Myf5-expressing cells revealed that the majority of adult muscle stem cells originate from myogenic lineages, which express the myogenic regulators Myf5 or MyoD. Likewise, the majority of muscle stem cells are replenished from Myf5-expressing myogenic cells during adult life, and inactivation of Pax7 in Myf5-expressing cells after muscle damage leads to a complete arrest of muscle regeneration. Finally, we demonstrate that a relatively small number of muscle stem cells are sufficient for efficient repair of skeletal muscles. We conclude that Pax7 acts at different levels in a nonhierarchical regulatory network controlling muscle-satellite-cell-mediated muscle regeneration.
Collapse
|
130
|
Shah R, Knowles JC, Hunt NP, Lewis MP. Development of a novel smart scaffold for human skeletal muscle regeneration. J Tissue Eng Regen Med 2013; 10:162-71. [DOI: 10.1002/term.1780] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/03/2013] [Accepted: 04/22/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Rishma Shah
- Orthodontic Unit and Division of Biomaterials and Tissue Engineering; UCL Eastman Dental Institute; London UK
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK and WCU Research Centre of Nanobiomedical Science; Dankook University; Chungnam South Korea
| | - Nigel P. Hunt
- Orthodontic Unit; UCL Eastman Dental Institute; London UK
| | - Mark P. Lewis
- Molecular and Cellular Physiology, Musculoskeletal Biology Research Group, School of Sport, Exercise and Health Sciences; Loughborough University, Loughborough and Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute; London UK
| |
Collapse
|
131
|
Jiménez-Amilburu V, Salmerón C, Codina M, Navarro I, Capilla E, Gutiérrez J. Insulin-like growth factors effects on the expression of myogenic regulatory factors in gilthead sea bream muscle cells. Gen Comp Endocrinol 2013; 188:151-8. [PMID: 23500676 DOI: 10.1016/j.ygcen.2013.02.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/19/2013] [Indexed: 11/22/2022]
Abstract
Gilthead sea bream (Sparus aurata) is a widely cultured fish; however, muscle development regulation is poorly known. Myogenesis can be activated by the myogenic regulatory factors (MRFs: MyoD, Myf5, myogenin and MRF4) and by endocrine signals from the growth hormone (GH)/insulin-like growth factors (IGFs) axis. We cultured gilthead sea bream myocytes to better understand the role of IGFs in muscle growth and differentiation through the regulation of MRFs expression. First, we studied the expression pattern during culture development of IGFs and IGF-I splice variants. The expression of igf-II was highest at the beginning of the culture and decreased when the cells started to differentiate, similarly to that observed for total igf-I. Igf-Ib showed a paralleled expression pattern as that of total igf-I, whereas igf-Ic was more stable during culture progression. Next, we analyzed the expression of IGFs and MRFs after incubation of cells at day 4 with GH, IGF-I, IGF-II and combinations of them at 3, 6 and 18 h. IGF-II increased myod2 and myf5 expression, genes involved in early muscle cell proliferation. Moreover, IGF-I caused an increase on mrf4 and myogenin expression, both involved in the later stages of development corresponding to differentiation. Regarding the regulation of IGFs expression, igf-I was stimulated by GH and IGF-II alone and combined, whereas igf-II expression was increased in response to IGF-I, suggesting a nice model of crossed regulation. Overall, the present model could be very useful to understand the different regulatory roles of these endocrine and transcription factors on fish myogenesis.
Collapse
Affiliation(s)
- Vanesa Jiménez-Amilburu
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Barcelona Knowledge Campus, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
132
|
Alsharidah M, Lazarus NR, George TE, Agley CC, Velloso CP, Harridge SDR. Primary human muscle precursor cells obtained from young and old donors produce similar proliferative, differentiation and senescent profiles in culture. Aging Cell 2013; 12:333-44. [PMID: 23374245 DOI: 10.1111/acel.12051] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2013] [Indexed: 11/28/2022] Open
Abstract
The myogenic behaviour of primary human muscle precursor cells (MPCs) obtained from young (aged 20-25 years) and elderly people (aged 67-82 years) was studied in culture. Cells were compared in terms of proliferation, DNA damage, time course and extent of myogenic marker expression during differentiation, fusion, size of the formed myotubes, secretion of the myogenic regulatory cytokine TGF-β1 and sensitivity to TGF-β1 treatment. No differences were observed between cells obtained from the young and elderly people. The cell populations were expanded in culture until replicative senescence. Cultures that maintained their initial proportion of myogenic cells (desmin positive) with passaging (n = 5) were studied and compared with cells from the same individuals in the non-senescent state. The senescent cells exhibited a greater number of cells with DNA damage (γ-H2AX positive), showed impaired expression of markers of differentiation, fused less well, formed smaller myotubes and secreted more TGF-β. The data strongly suggest that MPCs from young and elderly people have similar myogenic behaviour.
Collapse
Affiliation(s)
- Mansour Alsharidah
- Centre of Human & Aerospace Physiological Sciences King's College London London SE1 1ULUK
| | - Norman R. Lazarus
- Centre of Human & Aerospace Physiological Sciences King's College London London SE1 1ULUK
| | - Tomasz E. George
- Centre of Human & Aerospace Physiological Sciences King's College London London SE1 1ULUK
| | - Chibeza C. Agley
- Centre of Human & Aerospace Physiological Sciences King's College London London SE1 1ULUK
| | - Cristiana P. Velloso
- Centre of Human & Aerospace Physiological Sciences King's College London London SE1 1ULUK
| | - Stephen D. R. Harridge
- Centre of Human & Aerospace Physiological Sciences King's College London London SE1 1ULUK
| |
Collapse
|
133
|
Hagiwara K, Chen G, Kawazoe N, Tabata Y, Komuro H. Promotion of muscle regeneration by myoblast transplantation combined with the controlled and sustained release of bFGFcpr. J Tissue Eng Regen Med 2013; 10:325-33. [PMID: 23554408 DOI: 10.1002/term.1732] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/02/2012] [Accepted: 01/29/2013] [Indexed: 11/09/2022]
Abstract
Although myoblast transplantation is an attractive method for muscle regeneration, its efficiency remains limited. The efficacy of myoblast transplantation in combination with the controlled and sustained delivery of basic fibroblast growth factor (bFGF) was investigated. Defects of thigh muscle in Sprague-Dawley (SD) rats were created, and GFP-positive myoblasts were subsequently transplanted. The rats were divided into three groups. In control group 1 (C1) only myoblasts were transplanted, while in control group 2 (C2) myoblasts were introduced along with empty gelatin hydrogel microspheres. In the experimental group (Ex), myoblasts were transplanted along with bFGF incorporated into gelatin hydrogel microspheres. Four weeks after transplantation, GFP-positive myoblasts were found to be integrated into the recipient muscle and to contribute to muscle fibre regeneration in all groups. A significantly higher expression level of GFP in the Ex group demonstrated that the survival rate of transplanted myoblasts in Ex was remarkably improved compared with that in C1 and C2. Furthermore, myofibre regeneration, characterized by centralization of the nuclei, was markedly accelerated in Ex. The expression level of CD31 in Ex was higher than that in both C1 and C2, but the differences were not statistically significant. A significantly higher expression level of Myogenin and a lower expression level of MyoD1 were both observed in Ex after 4 weeks, suggesting the promotion of differentiation to myotubes. Our findings suggest that the controlled and sustained release of bFGF from gelatin hydrogel microspheres improves the survival rate of transplanted myoblasts and promotes muscle regeneration by facilitating myogenesis rather than angiogenesis.
Collapse
Affiliation(s)
- Koki Hagiwara
- Department of Paediatric Surgery, Faculty of Medicine, University of Tsukuba, Japan.,Organoid Group, Biomaterial Centre, National Institute for Materials Science, Tsukuba, Japan
| | - Guoping Chen
- Organoid Group, Biomaterial Centre, National Institute for Materials Science, Tsukuba, Japan
| | - Naoki Kawazoe
- Organoid Group, Biomaterial Centre, National Institute for Materials Science, Tsukuba, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Japan
| | - Hiroaki Komuro
- Department of Paediatric Surgery, Graduate School of Medicine, University of Tokyo, Japan
| |
Collapse
|
134
|
Li J, Chen Y, Wang YG, Zhao XL, Gilbert ER, Liu YP, Wang Y, Hu YD, Zhu Q. MUSTN1 mRNA Abundance and Protein Localization is Greatest in Muscle Tissues of Chinese Meat-Quality Chickens. Int J Mol Sci 2013; 14:5545-59. [PMID: 23528857 PMCID: PMC3634495 DOI: 10.3390/ijms14035545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/19/2013] [Accepted: 01/31/2013] [Indexed: 11/27/2022] Open
Abstract
The Mustang, Musculoskeletal Temporally Activated Novel-1 Gene (MUSTN1) plays an important role in regulating musculoskeletal development in mammals. We evaluated the developmental and tissue-specific regulation of MUSTN1 mRNA and protein abundance in Erlang Mountainous (EM) chickens. Results indicated that MUSTN1 mRNA/protein was expressed in most tissues with especially high expression in heart and skeletal muscle. The MUSTN1 protein localized to the nucleus in myocardium and skeletal muscle fibers. There were significant differences in mRNA and protein abundance among tissues, ages and between males and females. In conclusion, MUSTN1 was expressed the greatest in skeletal muscle where it localized to the nucleus. Thus, in chickens MUSTN1 may play a vital role in muscle development.
Collapse
Affiliation(s)
- Juan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, Sichuan, China; E-Mails: (J.L.); (Y.C.); (Y.-G.W.); (X.-L.Z.); (Y.-P.L.); (Y.W.); (Y.-D.H.)
| | - Yang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, Sichuan, China; E-Mails: (J.L.); (Y.C.); (Y.-G.W.); (X.-L.Z.); (Y.-P.L.); (Y.W.); (Y.-D.H.)
| | - Ya-Gang Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, Sichuan, China; E-Mails: (J.L.); (Y.C.); (Y.-G.W.); (X.-L.Z.); (Y.-P.L.); (Y.W.); (Y.-D.H.)
| | - Xiao-Ling Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, Sichuan, China; E-Mails: (J.L.); (Y.C.); (Y.-G.W.); (X.-L.Z.); (Y.-P.L.); (Y.W.); (Y.-D.H.)
| | - Elizabeth Ruth Gilbert
- Department of Animal and Poultry Sciences 0306, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; E-Mail:
| | - Yi-Ping Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, Sichuan, China; E-Mails: (J.L.); (Y.C.); (Y.-G.W.); (X.-L.Z.); (Y.-P.L.); (Y.W.); (Y.-D.H.)
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, Sichuan, China; E-Mails: (J.L.); (Y.C.); (Y.-G.W.); (X.-L.Z.); (Y.-P.L.); (Y.W.); (Y.-D.H.)
| | - Yao-Dong Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, Sichuan, China; E-Mails: (J.L.); (Y.C.); (Y.-G.W.); (X.-L.Z.); (Y.-P.L.); (Y.W.); (Y.-D.H.)
| | - Qing Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, Sichuan, China; E-Mails: (J.L.); (Y.C.); (Y.-G.W.); (X.-L.Z.); (Y.-P.L.); (Y.W.); (Y.-D.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-835-2882006; Fax: +86-835-2886080
| |
Collapse
|
135
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
136
|
McKay BR, Ogborn DI, Baker JM, Toth KG, Tarnopolsky MA, Parise G. Elevated SOCS3 and altered IL-6 signaling is associated with age-related human muscle stem cell dysfunction. Am J Physiol Cell Physiol 2013; 304:C717-28. [PMID: 23392112 DOI: 10.1152/ajpcell.00305.2012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aging is associated with increased circulating interleukin-6 (IL-6) and a reduced myogenic capacity, marked by reduced muscle stem cell [satellite cell (SC)] activity. Although IL-6 is important for normal SC function, it is unclear whether elevated IL-6 associated with aging alters SC function. We hypothesized that mild chronically elevated IL-6 would be associated with a blunted SC response through altered IL-6 signaling and elevated suppressor of cytokine signaling-3 (SOCS3) in the elderly. Nine healthy older adult men (OA; 69.6 ± 3.9 yr) and 9 young male controls (YC; 21. 3 ± 3.1 yr) completed 4 sets of 10 repetitions of unilateral leg press and knee extension (75% of 1-RM). Muscle biopsies and blood were obtained before and 3, 24, and 48 h after exercise. Basal SC number was 33% lower in OA vs. YC, and the response was blunted in OA. IL-6(+)/Pax7(+) cells demonstrated a divergent response in OA, with YC increasing to 69% at 3 h and peaking at 24 h (72%), while IL-6(+)/Pax7(+) cells were not increased until 48 h in OA (61%). Type II fiber-associated phosphorylated signal transducer and activator of transcription (pSTAT3)(+)/Pax7(+) cells demonstrated a similar delay in OA, not increasing until 48 h (vs. 3 h in YC). SOCS3 protein was 86% higher in OA. These data demonstrate an age-related impairment in normal SC function that appears to be influenced by SOCS3 protein and delayed induction of IL-6 and pSTAT3 in the SCs of OA. Collectively, these data suggest dysregulated IL-6 signaling as a consequence of aging contributes to the blunted muscle stem cell response.
Collapse
Affiliation(s)
- Bryon R McKay
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
137
|
Wang M, Amano SU, Flach RJR, Chawla A, Aouadi M, Czech MP. Identification of Map4k4 as a novel suppressor of skeletal muscle differentiation. Mol Cell Biol 2013; 33:678-87. [PMID: 23207904 PMCID: PMC3571342 DOI: 10.1128/mcb.00618-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/20/2012] [Indexed: 12/19/2022] Open
Abstract
Myoblast differentiation into mature myotubes is a critical step in the development and repair of human skeletal muscle. Here we show that small interfering RNA (siRNA)-based silencing of the Ste20-like mitogen-activated protein 4 kinase 4 (Map4k4) in C2C12 myoblasts markedly enhances expression of myogenic differentiation genes, myoblast fusion, and myotube diameter. In contrast, adenovirus-mediated expression of native Map4k4 in C2C12 cells attenuates each of these processes, indicating that Map4k4 is a negative regulator of myogenic differentiation and hypertrophy. Expression of a Map4k4 kinase-inactive mutant enhances myotube formation, suggesting that the kinase activity of Map4k4 is essential for its inhibition of muscle differentiation. Map4k4 regulation of myogenesis is unlikely to be mediated by classic mitogen-activated protein kinase (MAPK) signaling pathways, because no significant difference in phosphorylation of extracellular signal-regulated kinase (ERK), p38, or c-Jun N-terminal kinase (JNK) is observed in Map4k4-silenced cells. Furthermore, silencing of these other MAPKs does not result in a hypertrophic myotube phenotype like that seen with Map4k4 depletion. Uniquely, Map4k4 silencing upregulates the expression of the myogenic regulatory factor Myf5, whose depletion inhibits myogenesis. Furthermore, Myf5 is required for enhancement of myotube formation in Map4k4-silenced cells, while Myf5 overexpression rescues Map4k4-mediated inhibition of myogenic differentiation. These results demonstrate that Map4k4 is a novel suppressor of skeletal muscle differentiation, acting through a Myf5-dependent mechanism.
Collapse
Affiliation(s)
- Mengxi Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
138
|
Meregalli M, Farini A, Belicchi M, Parolini D, Cassinelli L, Razini P, Sitzia C, Torrente Y. Perspectives of stem cell therapy in Duchenne muscular dystrophy. FEBS J 2013. [DOI: 10.1111/febs.12083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mirella Meregalli
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Andrea Farini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Marzia Belicchi
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Daniele Parolini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Letizia Cassinelli
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Paola Razini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Clementina Sitzia
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Yvan Torrente
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| |
Collapse
|
139
|
Lemos DR, Paylor B, Chang C, Sampaio A, Underhill TM, Rossi FMV. Functionally convergent white adipogenic progenitors of different lineages participate in a diffused system supporting tissue regeneration. Stem Cells 2012; 30:1152-62. [PMID: 22415977 DOI: 10.1002/stem.1082] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pathologies characterized by lipomatous infiltration of craniofacial structures as well as certain forms of lipodystrophies suggest the existence of a distinct adipogenic program in the cephalic region of mammals. Using lineage tracing, we studied the origin of craniofacial adipocytes that accumulate both in cranial fat depots and during ectopic lipomatous infiltration of craniofacial muscles. We found that unlike their counterparts in limb muscle, a significant percentage of cranial adipocytes is derived from the neural crest (NC). In addition, we identified a population of NC-derived Lin(-)/α7(-)/CD34(+)/Sca-1(+) fibro/adipogenic progenitors (NC-FAPs) that resides exclusively in the mesenchyme of cephalic fat and muscle. Comparative analysis of the adipogenic potential, impact on metabolism, and contribution to the regenerative response of NC-FAPs and mesoderm-derived FAPs (M-FAPs) suggests that these cells are functionally indistinguishable. While both NC- and M-FAPs express mesenchymal markers and promyogenic cytokines upon damage-induced activation, NC-FAPs additionally express components of the NC developmental program. Furthermore, we show that craniofacial FAP composition changes with age, with young mice containing FAPs that are almost exclusively of NC origin, while NC-FAPs are progressively replaced by M-FAPs as mice age. Based on these results, we propose that in the adult, ontogenetically distinct FAPs form a diffused system reminiscent of the endothelium, which can originate from multiple developmental intermediates to seed all anatomical locations.
Collapse
Affiliation(s)
- Dario R Lemos
- The Biomedical Research Centre, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
140
|
Poussard S, Pires-Alves A, Diallo R, Dupuy JW, Dargelos E. A natural antioxidant pine bark extract, Oligopin®, regulates the stress chaperone HSPB1 in human skeletal muscle cells: a proteomics approach. Phytother Res 2012. [PMID: 23192879 DOI: 10.1002/ptr.4895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gradual loss of muscle mass affecting all the elderly (sarcopenia) is most likely due to a decreased number and/or function of satellite cells. Accumulation of reactive oxygen species (ROS) has been clearly correlated to sarcopenia and could contribute to the impairment of satellite cell function. In this study, we analyzed the protective mechanism of action of a natural pine bark extract (Oligopin®) in human muscle satellite cells exposed to oxidative stress (H2O2). This polyphenol belongs to the flavonoid family and was able to abolish the H2 O2-induced apoptotic cell death. A large-scale proteomic strategy allowed us to identify several proteins that may function as early regulators of ROS-mediated events in muscle cells. Interestingly, we identified the stress chaperone heat shock protein beta-1, a main protector of muscle necrosis, as a target of Oligopin® and showed that this polyphenol was able to modulate its stress induced phosphorylation.
Collapse
Affiliation(s)
- Sylvie Poussard
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, F-33600, Pessac, France
| | | | | | | | | |
Collapse
|
141
|
Andres-Mateos E, Mejias R, Soleimani A, Lin BM, Burks TN, Marx R, Lin B, Zellars RC, Zhang Y, Huso DL, Marr TG, Leinwand LA, Merriman DK, Cohn RD. Impaired skeletal muscle regeneration in the absence of fibrosis during hibernation in 13-lined ground squirrels. PLoS One 2012; 7:e48884. [PMID: 23155423 PMCID: PMC3498346 DOI: 10.1371/journal.pone.0048884] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 10/02/2012] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes to the regeneration of muscle, but whether satellite cells play a role in hibernation is unknown. In the hibernating 13-lined ground squirrel we show that muscles ablated of satellite cells were still protected against atrophy, demonstrating that satellite cells are not involved in the maintenance of skeletal muscle during hibernation. Additionally, hibernating skeletal muscle showed extremely slow regeneration in response to injury, due to repression of satellite cell activation and myoblast differentiation caused by a fine-tuned interplay of p21, myostatin, MAPK, and Wnt signaling pathways. Interestingly, despite long periods of inflammation and lack of efficient regeneration, injured skeletal muscle from hibernating animals did not develop fibrosis and was capable of complete recovery when animals emerged naturally from hibernation. We propose that hibernating squirrels represent a new model system that permits evaluation of impaired skeletal muscle remodeling in the absence of formation of tissue fibrosis.
Collapse
Affiliation(s)
- Eva Andres-Mateos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rebeca Mejias
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Arshia Soleimani
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Brian M. Lin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tyesha N. Burks
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ruth Marx
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Benjamin Lin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard C. Zellars
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Yonggang Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - David L. Huso
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tom G. Marr
- Hiberna Corporation, Boulder, Colorado, United States of America
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Dana K. Merriman
- Department of Biology and Microbiology, University of Wisconsin, Oshkosh, Wisconsin, United States of America
| | - Ronald D. Cohn
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
142
|
Song H, Ochi E, Lee K, Hiranuma K, Nakazato K. Characteristics of myogenic response and ankle torque recovery after lengthening contraction-induced rat gastrocnemius injury. BMC Musculoskelet Disord 2012; 13:211. [PMID: 23110577 PMCID: PMC3566911 DOI: 10.1186/1471-2474-13-211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 10/22/2012] [Indexed: 11/28/2022] Open
Abstract
Background Although muscle dysfunction caused by unfamiliar lengthening contraction is one of most important issues in sports medicine, there is little known about the molecular events on regeneration process. The purpose of this study was to investigate the temporal and spatial expression patterns of myogenin, myoD, pax7, and myostatin after acute lengthening contraction (LC)-induced injury in the rat hindlimb. Methods We employed our originally developed device with LC in rat gastrocnemius muscle (n = 24). Male Wistar rats were anesthetized with isoflurane (aspiration rate, 450 ml/min, concentration, 2.0%). The triceps surae muscle of the right hindlimb was then electrically stimulated with forced isokinetic dorsi-flexion (180°/sec and from 0 to 45°). Tissue contents of myoD, myogenin, pax7, myostatin were measured by western blotting and localizations of myoD and pax7 was measured by immunohistochemistry. After measuring isometric tetanic torque, a single bout of LC was performed in vivo. Results The torque was significantly decreased on days 2 and 5 as compared to the pre-treatment value, and recovered by day 7. The content of myoD and pax7 showed significant increases on day 2. Myogenin showed an increase from day 2 to 5. Myostatin on days 5 and 7 were significantly increased. Immunohistochemical analysis showed that myoD-positive/pax7-positive cells increased on day 2, suggesting that activated satellite cells play a role in the destruction and the early recovery phases. Conclusion We, thus, conclude that myogenic events associate with torque recovery after LC-induced injury.
Collapse
Affiliation(s)
- Hongsun Song
- Korea Institute of Sport Science, San223-19, Gongneung-2DongNowon-gu, Seoul 139-242, South Korea
| | | | | | | | | |
Collapse
|
143
|
Shah R, Ready D, Knowles JC, Hunt NP, Lewis MP. Sequential identification of a degradable phosphate glass scaffold for skeletal muscle regeneration. J Tissue Eng Regen Med 2012; 8:801-10. [PMID: 23086759 DOI: 10.1002/term.1581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/28/2012] [Accepted: 06/26/2012] [Indexed: 11/08/2022]
Abstract
Tissue engineering has the potential to overcome limitations associated with current management of skeletal muscle defects. This study aimed to sequentially identify a degradable phosphate glass scaffold for the restoration of muscle defects. A series of glass compositions were investigated for the potential to promote bacterial growth. Thereafter, the response of human craniofacial muscle-derived cells was determined. Glass compositions containing Fe4- and 5 mol% did not promote greater Staphylococcus aureus and Staphylococcus epidermidis growth compared to the control (p > 0.05). Following confirmation of myogenicity, further studies assessed the biocompatibility of glasses containing Fe5 mol%. Cells seeded on collagen-coated disks demonstrated comparable cellular metabolic activity to control. Upregulation of genes encoding for myogenic regulatory factors (MRFs) confirmed myofibre formation and there was expression of developmental MYH genes. The use of 3-D aligned fibre scaffolds supported unidirectional cell alignment and upregulation of MRF and developmental MYH genes. Compared to the 2-D disks, there was also expression of MYH2 and MYH7 genes, indicating further myofibre maturation on the 3-D scaffolds and confirming the importance of key biophysical cues.
Collapse
Affiliation(s)
- Rishma Shah
- Orthodontic Unit, UCL Eastman Dental Institute, UK; Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, UK
| | | | | | | | | |
Collapse
|
144
|
Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 2012; 139:2845-56. [PMID: 22833472 DOI: 10.1242/dev.069088] [Citation(s) in RCA: 593] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Following their discovery in 1961, it was speculated that satellite cells were dormant myoblasts, held in reserve until required for skeletal muscle repair. Evidence for this accumulated over the years, until the link between satellite cells and the myoblasts that appear during muscle regeneration was finally established. Subsequently, it was demonstrated that, when grafted, satellite cells could also self-renew, conferring on them the coveted status of 'stem cell'. The emergence of other cell types with myogenic potential, however, questioned the precise role of satellite cells. Here, we review recent recombination-based studies that have furthered our understanding of satellite cell biology. The clear consensus is that skeletal muscle does not regenerate without satellite cells, confirming their pivotal and non-redundant role.
Collapse
|
145
|
Grefte S, Vullinghs S, Kuijpers-Jagtman AM, Torensma R, Von den Hoff JW. Matrigel, but not collagen I, maintains the differentiation capacity of muscle derived cells in vitro. Biomed Mater 2012; 7:055004. [PMID: 22791687 DOI: 10.1088/1748-6041/7/5/055004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Satellite cells are key cells for post-natal muscle growth and regeneration and they play a central role in the search for therapies to treat muscle injuries. In this study the proliferation and differentiation capacity of muscle progenitor cells was studied in 2D and 3D cultures with collagen type I and Matrigel, which contain the niche factors laminin and collagen type IV. Muscle progenitor cells were cultured to induce proliferation and differentiation in collagen- or Matrigel-coated surfaces (2D) or in gels (3D). In the 2D cultures, muscle progenitor cells proliferated faster in Matrigel than in collagen. The numbers of Pax7(+) and MyoD(+) cells were also significantly higher in Matrigel than in collagen. During differentiation, muscle progenitor cells formed more and larger MyoD(+) and myogenin(+) myotubes in Matrigel. In the 3D cultures, muscle progenitor cells in Matrigel expressed higher mRNA levels of MyoD and myogenin, and formed elongated myotubes expressing myogenin and myosin. In collagen gels, the myotubes were short and rounded. In conclusion, muscle progenitor cells, both in 2D and 3D, lose their differentiation capacity in collagen but not in Matrigel. Although Matrigel contains growth factors, our results indicate that the kind of biomaterial steers the maintenance of the myogenic potential and their proper differentiation to achieve optimal skeletal muscle restoration.
Collapse
Affiliation(s)
- S Grefte
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
146
|
Haghighipour N, Heidarian S, Shokrgozar MA, Amirizadeh N. Differential effects of cyclic uniaxial stretch on human mesenchymal stem cell into skeletal muscle cell. Cell Biol Int 2012; 36:669-675. [PMID: 22681392 DOI: 10.1042/cbi20110400] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Both fetal and adult skeletal muscle cells are continually being subjected to biomechanical forces. Biomechanical stimulation during cell growth affects proliferation, differentiation and maturation of skeletal muscle cells. Bone marrow-derived hMSCs [human MSCs (mesenchymal stem cells)] can differentiate into a variety of cell types, including skeletal muscle cells that are potentially a source for muscle regeneration. Our investigations involved a 10% cyclic uniaxial strain at 1 Hz being applied to hMSCs grown on collagen-coated silicon membranes with or without IGF-I (insulin-like growth factor-I) for 24 h. Results obtained from morphological studies confirmed the rearrangement of cells after loading. Comparison of MyoD and MyoG mRNA levels between test groups showed that mechanical loading alone can initiate myogenic differentiation. Furthermore, comparison of Myf5, MyoD, MyoG and Myf6 mRNA levels between test groups showed that a combination of mechanical loading and growth factor results in the highest expression of myogenic genes. These results indicate that cyclic strain may be useful in myogenic differentiation of stem cells, and can accelerate the differentiation of hMSCs into MSCs in the presence of growth factor.
Collapse
Affiliation(s)
- Nooshin Haghighipour
- National Cell Bank of Iran, Pasteur Institute of Iran, National Cell Bank of Iran, Tehran, Iran
| | | | | | | |
Collapse
|
147
|
Yang J, Wang X, Wang Y, Guo ZX, Luo DZ, Jia J, Wang XM. Dopaminergic neuronal conversion from adult rat skeletal muscle-derived stem cells in vitro. Neurochem Res 2012; 37:1982-92. [PMID: 22723079 DOI: 10.1007/s11064-012-0819-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/09/2012] [Accepted: 05/28/2012] [Indexed: 11/26/2022]
Abstract
Muscle-derived stem cells reside in the skeletal muscle tissues and are known for their multipotency to differentiate toward the mesodermal lineage. Recent studies have demonstrated their capacity of neuroectodermal differentiation, including neurons and astrocytes. In this study, we investigated the possibility of dopaminergic neuronal conversion from adult rat skeletal muscle-derived stem cells. Using a neurosphere protocol, muscle-derived stem cells form neurosphere-like cell clusters after cultivation as a suspension, displaying an obvious expression of nestin and a remarkable down-regulation of myogenic associated factors desmin, MyoD, Myf5 and myogenin. Subsequently, these neurosphere-like cell clusters were further directed to dopaminergic differentiation through two major induction steps, patterning to midbrain progenitors with sonic hedgehog and fibroblast growth factor 8, followed by the differentiation to dopaminergic neurons with neurotrophic factors (glial cell line-derived neurotrophic factor) and chemicals (ascorbic acid, forskolin). After the differentiation, these cells expressed tyrosine hydroxylase, dopamine transporter, dopamine D1 receptor and synapse-associated protein synapsin I. Several genes, Nurr1, Lmx1b, and En1, which are critically related with the development of dopaminergic neurons, were also significantly up-regulated. The present results indicate that adult skeletal muscle-derived stem cells could provide a promising cell source for autologous transplantation for neurodegenerative diseases in the future, especially the Parkinson's disease.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory for Neurodegenerative Disease of Education Ministry, Department of Physiology and Neurobiology, Capital Medical University, 10# Youanmen, Beijing 100069, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
148
|
Manzano R, Toivonen JM, Calvo AC, Oliván S, Zaragoza P, Muñoz MJ, Montarras D, Osta R. Quantity and activation of myofiber-associated satellite cells in a mouse model of amyotrophic lateral sclerosis. Stem Cell Rev Rep 2012; 8:279-87. [PMID: 21537993 DOI: 10.1007/s12015-011-9268-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Raquel Manzano
- LAGENBIO-I3A, Instituto Aragonés de Ciencias de la Salud (IACS), Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Berki S, Klára T, Szőke G, Németh T, Dunay M, Pap K. A rabbit model for studying degeneration and regeneration properties of young striated muscle at different distraction rates. Acta Vet Hung 2012; 60:223-32. [PMID: 22609993 DOI: 10.1556/avet.2012.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study evaluated the histological changes in the muscle tissue after limb lengthening in skeletally immature rabbits and assessed the effect of different lengthening rates on the regeneration and degeneration properties of striated muscle. Thirteen different lengthening protocols were applied on a total of 16 male domestic white rabbits divided into four groups. The histopathological changes were analysed by a semiquantitative method according to the scoring system of Lee et al. (1993). After evaluation of the five main degenerative parameters (muscle atrophy, internalisation of muscle nuclei, degeneration of the muscle fibre, perimysial and endomysial fibrosis, haematomas), it is evident that rabbits subjected to limb lengthening at a rate of 3.2 mm/day showed more degenerative changes than those limb-lengthened at 0.8 or 1.6 mm/day. Our study showed that the regenerative mechanisms were not endless. If the daily lengthening rate reached the 3.2 mm/day limit, the regenerating ability of the muscle decreased, and signs of degeneration increased significantly.
Collapse
Affiliation(s)
- Sándor Berki
- 1 Szentes University Teaching Hospital Department of Traumatology and Bone & Joint Reconstructive Surgery Szentes Hungary
| | - Tamás Klára
- 2 Erzsébet Hospital Department of Traumatology Sopron Hungary
| | - György Szőke
- 3 Semmelweis University Department of Orthopaedics Budapest Hungary
| | - Tibor Németh
- 4 Szent István University Department and Clinic of Surgery and Ophthalmology, Faculty of Veterinary Science Budapest Hungary
| | - Miklós Dunay
- 4 Szent István University Department and Clinic of Surgery and Ophthalmology, Faculty of Veterinary Science Budapest Hungary
| | - Károly Pap
- 5 Semmelweis University Department of Traumatology Uzsoki u. 29-41 H-1145 Budapest Hungary
| |
Collapse
|
150
|
Meech R, Gonzalez KN, Barro M, Gromova A, Zhuang L, Hulin JA, Makarenkova HP. Barx2 is expressed in satellite cells and is required for normal muscle growth and regeneration. Stem Cells 2012; 30:253-65. [PMID: 22076929 DOI: 10.1002/stem.777] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Muscle growth and regeneration are regulated through a series of spatiotemporally dependent signaling and transcriptional cascades. Although the transcriptional program controlling myogenesis has been extensively investigated, the full repertoire of transcriptional regulators involved in this process is far from defined. Various homeodomain transcription factors have been shown to play important roles in both muscle development and muscle satellite cell-dependent repair. Here, we show that the homeodomain factor Barx2 is a new marker for embryonic and adult myoblasts and is required for normal postnatal muscle growth and repair. Barx2 is coexpressed with Pax7, which is the canonical marker of satellite cells, and is upregulated in satellite cells after muscle injury. Mice lacking the Barx2 gene show reduced postnatal muscle growth, muscle atrophy, and defective muscle repair. Moreover, loss of Barx2 delays the expression of genes that control proliferation and differentiation in regenerating muscle. Consistent with the in vivo observations, satellite cell-derived myoblasts cultured from Barx2(-/-) mice show decreased proliferation and ability to differentiate relative to those from wild-type or Barx2(+/-) mice. Barx2(-/-) myoblasts show reduced expression of the differentiation-associated factor myogenin as well as cell adhesion and matrix molecules. Finally, we find that mice lacking both Barx2 and dystrophin gene expression have severe early onset myopathy. Together, these data indicate that Barx2 is an important regulator of muscle growth and repair that acts via the control of satellite cell proliferation and differentiation.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology, Flinders University, Bedford Park, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|