101
|
Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state. PLoS Biol 2011; 9:e1001082. [PMID: 21695110 PMCID: PMC3114758 DOI: 10.1371/journal.pbio.1001082] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 05/04/2011] [Indexed: 12/02/2022] Open
Abstract
Centromeres are differentiated chromatin domains, present once per chromosome, that direct segregation of the genome in mitosis and meiosis by specifying assembly of the kinetochore. They are distinct genetic loci in that their identity in most organisms is determined not by the DNA sequences they are associated with, but through specific chromatin composition and context. The core nucleosomal protein CENP-A/cenH3 plays a primary role in centromere determination in all species and directs assembly of a large complex of associated proteins in vertebrates. While CENP-A itself is stably transmitted from one generation to the next, the nature of the template for centromere replication and its relationship to kinetochore function are as yet poorly understood. Here, we investigate the assembly and inheritance of a histone fold complex of the centromere, the CENP-T/W complex, which is integrated with centromeric chromatin in association with canonical histone H3 nucleosomes. We have investigated the cell cycle regulation, timing of assembly, generational persistence, and requirement for function of CENPs -T and -W in the cell cycle in human cells. The CENP-T/W complex assembles through a dynamic exchange mechanism in late S-phase and G2, is required for mitosis in each cell cycle and does not persist across cell generations, properties reciprocal to those measured for CENP-A. We propose that the CENP-A and H3-CENP-T/W nucleosome components of the centromere are specialized for centromeric and kinetochore activities, respectively. Segregation of the assembly mechanisms for the two allows the cell to switch between chromatin configurations that reciprocally support the replication of the centromere and its conversion to a mitotic state on postreplicative chromatin. The centromere is a strange locus that derives its identity from the proteins that shape it rather than the DNA sequences it contains. It also functions in a remarkably singular way, providing a motor and command control center for the chromosome in conjunction with the kinetochore. Key to centromere identity is the chromatin that comprises it, which has a unique nucleosomal “bead on a string” including a special centromeric histone H3, called CENP-A. Found in alternating clusters of nucleosomes with “regular” histone H3, CENP-A is crucial for propagating centromere identity as well as for regulating kinetochore function. In this study, we have analysed the cell cycle dynamics of CENP-T and CENP-W, another two components of the constitutive centromere associated network. We show that, unlike CENP-A, CENP-T/W are not inherited stringently by daughter cells. Instead, these complexes - which are bound to the interstitial “regular” H3 nucleosome domains - assemble after DNA replication and are required for kinetochore formation. Thus, we propose that a stable CENP-A nucleosome population plays a role in centromere locus inheritance to daughter cells, while dynamic CENP-T/W and H3 nucleosomes provide a cycling function that triggers kinetochore assembly as cells enter mitosis in each new cell cycle.
Collapse
|
102
|
Burrack LS, Applen SE, Berman J. The requirement for the Dam1 complex is dependent upon the number of kinetochore proteins and microtubules. Curr Biol 2011; 21:889-96. [PMID: 21549601 PMCID: PMC3100407 DOI: 10.1016/j.cub.2011.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/05/2011] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
The Dam1 complex attaches the kinetochore to spindle microtubules and is a processivity factor in vitro. In Saccharomyces cerevisiae, which has point centromeres that attach to a single microtubule, deletion of any Dam1 complex member results in chromosome segregation failures and cell death. In Schizosaccharomyces pombe, which has epigenetically defined regional centromeres that each attach to 3-5 kinetochore microtubules, Dam1 complex homologs are not essential. To determine why the complex is essential in some organisms and not in others, we used Candida albicans, a multimorphic yeast with regional centromeres that attach to a single microtubule. Interestingly, the Dam1 complex was essential in C. albicans, suggesting that the number of microtubules per centromere is critical for its requirement. Importantly, by increasing CENP-A expression levels, more kinetochore proteins and microtubules were recruited to the centromeres, which remained fully functional. Furthermore, Dam1 complex members became less crucial for growth in cells with extra kinetochore proteins and microtubules. Thus, the requirement for the Dam1 complex is not due to the DNA-specific nature of point centromeres. Rather, the Dam1 complex is less critical when chromosomes have multiple kinetochore complexes and microtubules per centromere, implying that it functions as a processivity factor in vivo as well as in vitro.
Collapse
Affiliation(s)
- Laura S. Burrack
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Shelly E. Applen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
103
|
Verdaasdonk JS, Bloom K. Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol 2011; 12:320-32. [PMID: 21508988 PMCID: PMC3288958 DOI: 10.1038/nrm3107] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fidelity during chromosome segregation is essential to prevent aneuploidy. The proteins and chromatin at the centromere form a unique site for kinetochore attachment and allow the cell to sense and correct errors during chromosome segregation. Centromeric chromatin is characterized by distinct chromatin organization, epigenetics, centromere-associated proteins and histone variants. These include the histone H3 variant centromeric protein A (CENPA), the composition and deposition of which have been widely investigated. Studies have examined the structural and biophysical properties of the centromere and have suggested that the centromere is not simply a 'landing pad' for kinetochore formation, but has an essential role in mitosis by assembling and directing the organization of the kinetochore.
Collapse
Affiliation(s)
- Jolien S Verdaasdonk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
104
|
Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 2011; 145:410-22. [PMID: 21529714 PMCID: PMC3085131 DOI: 10.1016/j.cell.2011.03.031] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/31/2010] [Accepted: 03/17/2011] [Indexed: 12/31/2022]
Abstract
Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex at centromeres. Although prior work identified the centromeric histone H3-variant CENP-A as the important upstream factor necessary for centromere specification, in human cells CENP-A is not sufficient for kinetochore assembly. Here, we demonstrate that two constitutive DNA-binding kinetochore components, CENP-C and CENP-T, function to direct kinetochore formation. Replacing the DNA-binding regions of CENP-C and CENP-T with alternate chromosome-targeting domains recruits these proteins to ectopic loci, resulting in CENP-A-independent kinetochore assembly. These ectopic kinetochore-like foci are functional based on the stoichiometric assembly of multiple kinetochore components, including the microtubule-binding KMN network, the presence of microtubule attachments, the microtubule-sensitive recruitment of the spindle checkpoint protein Mad2, and the segregation behavior of foci-containing chromosomes. We additionally find that CENP-T phosphorylation regulates the mitotic assembly of both endogenous and ectopic kinetochores. Thus, CENP-C and CENP-T form a critical regulated platform for vertebrate kinetochore assembly.
Collapse
Affiliation(s)
- Karen E. Gascoigne
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology. Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Kozo Takeuchi
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Aussie Suzuki
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Tetsuya Hori
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology. Nine Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
105
|
Sullivan LL, Boivin CD, Mravinac B, Song IY, Sullivan BA. Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosome Res 2011; 19:457-70. [PMID: 21484447 DOI: 10.1007/s10577-011-9208-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/26/2011] [Accepted: 03/29/2011] [Indexed: 12/13/2022]
Abstract
Human centromeres contain multi-megabase-sized arrays of alpha satellite DNA, a family of satellite DNA repeats based on a tandemly arranged 171 bp monomer. The centromere-specific histone protein CENP-A is assembled on alpha satellite DNA within the primary constriction, but does not extend along its entire length. CENP-A domains have been estimated to extend over 2,500 kb of alpha satellite DNA. However, these estimates do not take into account inter-individual variation in alpha satellite array sizes on homologous chromosomes and among different chromosomes. We defined the genomic distance of CENP-A chromatin on human chromosomes X and Y from different individuals. CENP-A chromatin occupied different genomic intervals on different chromosomes, but despite inter-chromosomal and inter-individual array size variation, the ratio of CENP-A to total alpha satellite DNA size remained consistent. Changes in the ratio of alpha satellite array size to CENP-A domain size were observed when CENP-A was overexpressed and when primary cells were transformed by disrupting interactions between the tumor suppressor protein Rb and chromatin. Our data support a model for centromeric domain organization in which the genomic limits of CENP-A chromatin varies on different human chromosomes, and imply that alpha satellite array size may be a more prominent predictor of CENP-A incorporation than chromosome size. In addition, our results also suggest that cancer transformation and amounts of centromeric heterochromatin have notable effects on the amount of alpha satellite that is associated with CENP-A chromatin.
Collapse
Affiliation(s)
- Lori L Sullivan
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
106
|
Gascoigne KE, Cheeseman IM. Kinetochore assembly: if you build it, they will come. Curr Opin Cell Biol 2011; 23:102-8. [PMID: 20702077 PMCID: PMC2980799 DOI: 10.1016/j.ceb.2010.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 01/04/2023]
Abstract
Accurate chromosome segregation requires the interaction of chromosomes with the microtubules from the mitotic spindle. This interaction is mediated by the macro-molecular kinetochore complex, which assembles only at the centromeric region of each chromosome. However, how this site is specified and how assembly of the kinetochore structure is regulated in coordination with cell cycle progression remains unclear. Recent studies have begun to shed light on the mechanisms underlying assembly of this complex structure.
Collapse
|
107
|
Rosa JLD, Holik J, Green EM, Rando OJ, Kaufman PD. Overlapping regulation of CenH3 localization and histone H3 turnover by CAF-1 and HIR proteins in Saccharomyces cerevisiae. Genetics 2011; 187:9-19. [PMID: 20944015 PMCID: PMC3018296 DOI: 10.1534/genetics.110.123117] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 10/09/2010] [Indexed: 02/03/2023] Open
Abstract
Accurate chromosome segregation is dependent on the centromere-specific histone H3 isoform known generally as CenH3, or as Cse4 in budding yeast. Cytological experiments have shown that Cse4 appears at extracentromeric loci in yeast cells deficient for both the CAF-1 and HIR histone H3/H4 deposition complexes, consistent with increased nondisjunction in these double mutant cells. Here, we examined molecular aspects of this Cse4 mislocalization. Genome-scale chromatin immunoprecipitation analyses demonstrated broader distribution of Cse4 outside of centromeres in cac1Δ hir1Δ double mutant cells that lack both CAF-1 and HIR complexes than in either single mutant. However, cytological localization showed that the essential inner kinetochore component Mif2 (CENP-C) was not recruited to extracentromeric Cse4 in cac1Δ hir1Δ double mutant cells. We also observed that rpb1-1 mutants displayed a modestly increased Cse4 half-life at nonpermissive temperatures, suggesting that turnover of Cse4 is partially dependent on Pol II transcription. We used genome-scale assays to demonstrate that the CAF-1 and HIR complexes independently stimulate replication-independent histone H3 turnover rates. We discuss ways in which altered histone exchange kinetics may affect eviction of Cse4 from noncentromeric loci.
Collapse
Affiliation(s)
- Jessica Lopes da Rosa
- Program for Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and Department of Molecular and Cell Biology, University of California, Berkeley, California 947202
| | - John Holik
- Program for Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and Department of Molecular and Cell Biology, University of California, Berkeley, California 947202
| | - Erin M. Green
- Program for Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and Department of Molecular and Cell Biology, University of California, Berkeley, California 947202
| | - Oliver J. Rando
- Program for Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and Department of Molecular and Cell Biology, University of California, Berkeley, California 947202
| | - Paul D. Kaufman
- Program for Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and Department of Molecular and Cell Biology, University of California, Berkeley, California 947202
| |
Collapse
|
108
|
Driving chromosome segregation: lessons from the human and Drosophila centromere–kinetochore machinery. Biochem Soc Trans 2010; 38:1667-75. [DOI: 10.1042/bst0381667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The kinetochore is a complex molecular machine that serves as the interface between sister chromatids and the mitotic spindle. The kinetochore assembles at a particular chromosomal locus, the centromere, which is essential to maintain genomic stability during cell division. The kinetochore is a macromolecular puzzle of subcomplexes assembled in a hierarchical manner and fulfils three main functions: microtubule attachment, chromosome and sister chromatid movement, and regulation of mitotic progression though the spindle assembly checkpoint. In the present paper we compare recent results on the assembly, organization and function of the kinetochore in human and Drosophila cells and conclude that, although essential functions are highly conserved, there are important differences that might help define what is a minimal chromosome segregation machinery.
Collapse
|
109
|
Dimitriadis EK, Weber C, Gill RK, Diekmann S, Dalal Y. Tetrameric organization of vertebrate centromeric nucleosomes. Proc Natl Acad Sci U S A 2010; 107:20317-22. [PMID: 21059934 PMCID: PMC2996678 DOI: 10.1073/pnas.1009563107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitosis ensures equal genome segregation in the eukaryotic lineage. This process is facilitated by microtubule attachment to each chromosome via its centromere. In centromeres, canonical histone H3 is replaced in nucleosomes by a centromere-specific histone H3 variant (CENH3), providing the unique epigenetic signature required for microtubule binding. Due to recent findings of alternative CENH3 nucleosomal forms in invertebrate centromeres, it has been debated whether the classical octameric nucleosomal arrangement of two copies of CENH3, H4, H2A, and H2B forms the basis of the vertebrate centromere. To address this question directly, we examined CENH3 [centromere protein A (CENP-A)] nucleosomal organization in human cells, using a combination of nucleosome component analysis, atomic force microscopy (AFM), and immunoelectron microscopy (immuno-EM). We report that native CENP-A nucleosomes contain centromeric alpha satellite DNA, have equimolar amounts of H2A, H2B, CENP-A, and H4, and bind kinetochore proteins. These nucleosomes, when measured by AFM, yield one-half the dimensions of canonical octameric nucleosomes. Using immuno-EM, we find that one copy of CENP-A, H2A, H2B, and H4 coexist in CENP-A nucleosomes, in which internal C-terminal domains are accessible. Our observations indicate that CENP-A nucleosomes are organized as asymmetric heterotypic tetramers, rather than canonical octamers. Such altered nucleosomes form a chromatin fiber with distinct folding characteristics, which we utilize to discriminate tetramers directly within bulk chromatin. We discuss implications of our observations in the context of universal epigenetic and mechanical requirements for functional centromeres.
Collapse
Affiliation(s)
- Emilios K. Dimitriadis
- Scanning Probe Microscopy Unit, Biomedical Engineering and Physical Science Shared Resource, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Christian Weber
- Leibniz Institute for Age Research, Fritz-Lipmann Institute, D-07745 Jena, Germany; and
| | - Rajbir K. Gill
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephan Diekmann
- Leibniz Institute for Age Research, Fritz-Lipmann Institute, D-07745 Jena, Germany; and
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
110
|
Ranjitkar P, Press MO, Yi X, Baker R, MacCoss MJ, Biggins S. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol Cell 2010; 40:455-64. [PMID: 21070971 PMCID: PMC2995698 DOI: 10.1016/j.molcel.2010.09.025] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/24/2010] [Accepted: 09/24/2010] [Indexed: 11/24/2022]
Abstract
Proper centromere function is critical to maintain genomic stability and to prevent aneuploidy, a hallmark of tumors and birth defects. A conserved feature of all eukaryotic centromeres is an essential histone H3 variant called CENP-A that requires a centromere targeting domain (CATD) for its localization. Although proteolysis prevents CENP-A from mislocalizing to euchromatin, regulatory factors have not been identified. Here, we identify an E3 ubiquitin ligase called Psh1 that leads to the degradation of Cse4, the budding yeast CENP-A homolog. Cse4 overexpression is toxic to psh1Δ cells and results in euchromatic localization. Strikingly, the Cse4 CATD is a key regulator of its stability and helps Psh1 discriminate Cse4 from histone H3. Taken together, we propose that the CATD has a previously unknown role in maintaining the exclusive localization of Cse4 by preventing its mislocalization to euchromatin via Psh1-mediated degradation.
Collapse
Affiliation(s)
- Prerana Ranjitkar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., PO Box 19024, Seattle, WA 98109 USA
- MCB program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA 98195 USA
| | - Maximilian O. Press
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., PO Box 19024, Seattle, WA 98109 USA
| | - Xianhua Yi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA
| | - Richard Baker
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655 USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA
| | - Sue Biggins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., PO Box 19024, Seattle, WA 98109 USA
| |
Collapse
|
111
|
Hewawasam G, Shivaraju M, Mattingly M, Venkatesh S, Martin-Brown S, Florens L, Workman JL, Gerton JL. Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol Cell 2010; 40:444-54. [PMID: 21070970 PMCID: PMC2998187 DOI: 10.1016/j.molcel.2010.10.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/02/2010] [Accepted: 09/24/2010] [Indexed: 01/10/2023]
Abstract
Cse4 is a variant of histone H3 that is incorporated into a single nucleosome at each centromere in budding yeast. We have discovered an E3 ubiquitin ligase, called Psh1, which controls the cellular level of Cse4 via ubiquitylation and proteolysis. The activity of Psh1 is dependent on both its RING and zinc finger domains. We demonstrate the specificity of the ubiquitylation activity of Psh1 toward Cse4 in vitro and map the sites of ubiquitylation. Mutation of key lysines prevents ubiquitylation of Cse4 by Psh1 in vitro and stabilizes Cse4 in vivo. While deletion of Psh1 stabilizes Cse4, elimination of the Cse4-specific chaperone Scm3 destabilizes Cse4, and the addition of Scm3 to the Psh1-Cse4 ubiquitylation reaction prevents Cse4 ubiquitylation, together suggesting Scm3 may protect Cse4 from ubiquitylation. Without Psh1, Cse4 overexpression is toxic and Cse4 is found at ectopic locations. Our results suggest Psh1 functions to prevent the mislocalization of Cse4.
Collapse
Affiliation(s)
| | - Manjunatha Shivaraju
- Stowers Institute for Medical Research, Kansas City, MO 64110
- The Open University. P.O. Box 197 Milton Keynes MK7 6BJ, United Kingdom
| | - Mark Mattingly
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | | | | | | | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
112
|
Schittenhelm RB, Althoff F, Heidmann S, Lehner CF. Detrimental incorporation of excess Cenp-A/Cid and Cenp-C into Drosophila centromeres is prevented by limiting amounts of the bridging factor Cal1. J Cell Sci 2010; 123:3768-79. [PMID: 20940262 DOI: 10.1242/jcs.067934] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Propagation of centromere identity during cell cycle progression in higher eukaryotes depends critically on the faithful incorporation of a centromere-specific histone H3 variant encoded by CENPA in humans and cid in Drosophila. Cenp-A/Cid is required for the recruitment of Cenp-C, another conserved centromere protein. With yeast three-hybrid experiments, we demonstrate that the essential Drosophila centromere protein Cal1 can link Cenp-A/Cid and Cenp-C. Cenp-A/Cid and Cenp-C interact with the N- and C-terminal domains of Cal1, respectively. These Cal1 domains are sufficient for centromere localization and function, but only when linked together. Using quantitative in vivo imaging to determine protein copy numbers at centromeres and kinetochores, we demonstrate that centromeric Cal1 levels are far lower than those of Cenp-A/Cid, Cenp-C and other conserved kinetochore components, which scale well with the number of kinetochore microtubules when comparing Drosophila with budding yeast. Rather than providing a stoichiometric link within the mitotic kinetochore, Cal1 limits centromeric deposition of Cenp-A/Cid and Cenp-C during exit from mitosis. We demonstrate that the low amount of endogenous Cal1 prevents centromere expansion and mitotic kinetochore failure when Cenp-A/Cid and Cenp-C are present in excess.
Collapse
Affiliation(s)
- Ralf B Schittenhelm
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
113
|
Orr B, Sunkel CE. Drosophila CENP-C is essential for centromere identity. Chromosoma 2010; 120:83-96. [DOI: 10.1007/s00412-010-0293-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 11/28/2022]
|
114
|
Mehta GD, Agarwal MP, Ghosh SK. Centromere identity: a challenge to be faced. Mol Genet Genomics 2010; 284:75-94. [PMID: 20585957 DOI: 10.1007/s00438-010-0553-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/16/2010] [Indexed: 11/26/2022]
Abstract
The centromere is a genetic locus, required for faithful chromosome segregation, where spindle fibers attach to the chromosome through kinetochore. Loss of centromere or formation of multiple centromeres on a single chromosome leads to chromosome missegregation or chromosome breakage, respectively, which are detrimental for fitness and survival of a cell. Therefore, understanding the mechanism of centromere locus determination on the chromosome and perpetuation of such a locus in subsequent generation (known as centromere identity) is very fundamental to combat conditions like aneuploidy, spontaneous abortion, developmental defects, cell lethality and cancer. Recent studies have come up with different models to explain centromere identity. However, the exact mechanism still remains elusive. It has been observed that most eukaryotic centromeres are determined epigenetically rather than by a DNA sequence. The epigenetic marks that are instrumental in determining centromere identity are the histone H3 variant, CENP-A and the specialized posttranslational modification of the core histones. Here we will review the recent studies on the factors responsible for generating unique centromeric chromatin and how it perpetuates during cell division giving the present-day models. We will further focus on the probable mechanism of de novo centromere formation with an example of neocentromere. As a matter of similitude, this review will include marking extrachromosomal chromatin to be served as a partitioning locus by deposition of CENP-A homolog in budding yeast.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | |
Collapse
|
115
|
Kiyomitsu T, Iwasaki O, Obuse C, Yanagida M. Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. ACTA ACUST UNITED AC 2010; 188:791-807. [PMID: 20231385 PMCID: PMC2845078 DOI: 10.1083/jcb.200908096] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
hMis14 and HP1 depend on each other to localize to the kinetochore and inner centromere, respectively. Centromeric DNA forms two structures on the mitotic chromosome: the kinetochore, which interacts with kinetochore microtubules, and the inner centromere, which connects sister kinetochores. The assembly of the inner centromere is poorly understood. In this study, we show that the human Mis14 (hMis14; also called hNsl1 and DC8) subunit of the heterotetrameric hMis12 complex is involved in inner centromere architecture through a direct interaction with HP1 (heterochromatin protein 1), mediated via a PXVXL motif and a chromoshadow domain. We present evidence that the mitotic function of hMis14 and HP1 requires their functional association at interphase. Alterations in the hMis14 interaction with HP1 disrupt the inner centromere, characterized by the absence of hSgo1 (Shugoshin-like 1) and aurora B. The assembly of HP1 in the inner centromere and the localization of hMis14 at the kinetochore are mutually dependent in human chromosomes. hMis14, which contains a tripartite-binding domain for HP1 and two other kinetochore proteins, hMis13 and blinkin, is a cornerstone for the assembly of the inner centromere and kinetochore.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Core Research for Evolutional Science and Technology Research Program, Japan Science and Technology Corporation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
116
|
Buscaino A, Allshire R, Pidoux A. Building centromeres: home sweet home or a nomadic existence? Curr Opin Genet Dev 2010; 20:118-26. [PMID: 20206496 DOI: 10.1016/j.gde.2010.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/20/2010] [Accepted: 01/22/2010] [Indexed: 12/26/2022]
Abstract
Centromere assembly and propagation is governed by genetic and epigenetic mechanisms. A centromere-specific histone H3 variant, CENP-A is strongly favored as the epigenetic mark that specifies centromere identity. Despite the critical importance of centromere function, centromeric sequences are not conserved. This has prompted exploration of other genomic and chromatin features to gain an understanding of where CENP-A is deposited. In this review we highlight recent papers that advance our understanding of how the cell builds a centromere. We focus on what influences the choice of site for CENP-A deposition and therefore the site of centromere formation. We then briefly discuss how centromeres are propagated once the site of centromere assembly is chosen.
Collapse
Affiliation(s)
- Alessia Buscaino
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland, UK
| | | | | |
Collapse
|
117
|
Amato A, Schillaci T, Lentini L, Di Leonardo A. CENPA overexpression promotes genome instability in pRb-depleted human cells. Mol Cancer 2009; 8:119. [PMID: 20003272 PMCID: PMC2797498 DOI: 10.1186/1476-4598-8-119] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/10/2009] [Indexed: 12/21/2022] Open
Abstract
Background Aneuploidy is a hallmark of most human cancers that arises as a consequence of chromosomal instability and it is frequently associated with centrosome amplification. Functional inactivation of the Retinoblastoma protein (pRb) has been indicated as a cause promoting chromosomal instability as well centrosome amplification. However, the underlying molecular mechanism still remains to be clarified. Results Here we show that pRb depletion both in wild type and p53 knockout HCT116 cells was associated with the presence of multipolar spindles, anaphase bridges, lagging chromosomes and micronuclei harbouring whole chromosomes. In addition aneuploidy caused by pRb acute loss was not affected by p53 loss. Quantitative real-time RT-PCR showed that pRB depletion altered expression of genes involved in centrosome duplication, kinetochore assembly and in the Spindle Assembly Checkpoint (SAC). However, despite MAD2 up-regulation pRb-depleted cells seemed to have a functional SAC since they arrested in mitosis after treatments with mitotic poisons. Moreover pRb-depleted HCT116 cells showed BRCA1 overexpression that seemed responsible for MAD2 up-regulation. Post-transcriptional silencing of CENPA by RNA interference, resulting in CENP-A protein levels similar to those present in control cells greatly reduced aneuploid cell numbers in pRb-depleted cells. Conclusion Altogether our findings indicate a novel aspect of pRb acute loss that promotes aneuploidy mainly by inducing CENPA overexpression that in turn might induce micronuclei by affecting the correct attachment of spindle microtubules to kinetochores.
Collapse
Affiliation(s)
- Angela Amato
- Dipartimento di Biologia Cellulare e dello Sviluppo, Palermo, Italy.
| | | | | | | |
Collapse
|
118
|
Buchanan L, Durand-Dubief M, Roguev A, Sakalar C, Wilhelm B, Strålfors A, Shevchenko A, Aasland R, Shevchenko A, Ekwall K, Francis Stewart A. The Schizosaccharomyces pombe JmjC-protein, Msc1, prevents H2A.Z localization in centromeric and subtelomeric chromatin domains. PLoS Genet 2009; 5:e1000726. [PMID: 19911051 PMCID: PMC2770259 DOI: 10.1371/journal.pgen.1000726] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 10/15/2009] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes are repetitively packaged into chromatin by nucleosomes, however they are regulated by the differences between nucleosomes, which establish various chromatin states. Local chromatin cues direct the inheritance and propagation of chromatin status via self-reinforcing epigenetic mechanisms. Replication-independent histone exchange could potentially perturb chromatin status if histone exchange chaperones, such as Swr1C, loaded histone variants into wrong sites. Here we show that in Schizosaccharomyces pombe, like Saccharomyces cerevisiae, Swr1C is required for loading H2A.Z into specific sites, including the promoters of lowly expressed genes. However S. pombe Swr1C has an extra subunit, Msc1, which is a JumonjiC-domain protein of the Lid/Jarid1 family. Deletion of Msc1 did not disrupt the S. pombe Swr1C or its ability to bind and load H2A.Z into euchromatin, however H2A.Z was ectopically found in the inner centromere and in subtelomeric chromatin. Normally this subtelomeric region not only lacks H2A.Z but also shows uniformly lower levels of H3K4me2, H4K5, and K12 acetylation than euchromatin and disproportionately contains the most lowly expressed genes during vegetative growth, including many meiotic-specific genes. Genes within and adjacent to subtelomeric chromatin become overexpressed in the absence of either Msc1, Swr1, or paradoxically H2A.Z itself. We also show that H2A.Z is N-terminally acetylated before, and lysine acetylated after, loading into chromatin and that it physically associates with the Nap1 histone chaperone. However, we find a negative correlation between the genomic distributions of H2A.Z and Nap1/Hrp1/Hrp3, suggesting that the Nap1 chaperones remove H2A.Z from chromatin. These data describe H2A.Z action in S. pombe and identify a new mode of chromatin surveillance and maintenance based on negative regulation of histone variant misincorporation. Chromatin is based on a repetitive structural unit called the nucleosome. However, the regulatory properties of chromatin are mediated by the differences between nucleosomes, due to post-translational modifications or the inclusion of histone variants. These differences are maintained by inheritance through cis-acting epigenetic mechanisms. Here we describe a case where the local character of chromatin is not only determined by cis-acting mechanisms but also negatively regulated in trans. The case involves loading of the histone H2A variant, H2A.Z, into chromatin. We show that H2A.Z in the yeast Schizosaccharomyces pombe is mainly found in genes at the first transcribed nucleosome and is inserted into this nucleosome by the Swr1C remodeling machine. However, Swr1C has a regulatory subunit, Msc1, which is not required for H2A.Z promoter loading but prevents H2A.Z occupancy in the inner centromere and subtelomeric regions. These two specialized regions are neither eu- nor heterochromatin and share certain characteristics, which may predispose them to the aberrant inclusion of H2A.Z and the requirement for trans regulation by Msc1.
Collapse
Affiliation(s)
- Luke Buchanan
- Genomics, BioInnovationsZentrum, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mickaël Durand-Dubief
- Karolinska Institute, Department of Biosciences and Medical Nutrition, NOVUM, Huddinge, Sweden
| | - Assen Roguev
- Genomics, BioInnovationsZentrum, Technische Universität Dresden, Dresden, Germany
| | - Cagri Sakalar
- Genomics, BioInnovationsZentrum, Technische Universität Dresden, Dresden, Germany
| | - Brian Wilhelm
- Research Institute for Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Annelie Strålfors
- Karolinska Institute, Department of Biosciences and Medical Nutrition, NOVUM, Huddinge, Sweden
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Rein Aasland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karl Ekwall
- Karolinska Institute, Department of Biosciences and Medical Nutrition, NOVUM, Huddinge, Sweden
| | - A. Francis Stewart
- Genomics, BioInnovationsZentrum, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
119
|
Amato A, Lentini L, Schillaci T, Iovino F, Di Leonardo A. RNAi mediated acute depletion of retinoblastoma protein (pRb) promotes aneuploidy in human primary cells via micronuclei formation. BMC Cell Biol 2009; 10:79. [PMID: 19883508 PMCID: PMC2775725 DOI: 10.1186/1471-2121-10-79] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 11/02/2009] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Changes in chromosome number or structure as well as supernumerary centrosomes and multipolar mitoses are commonly observed in human tumors. Thus, centrosome amplification and mitotic checkpoint dysfunctions are believed possible causes of chromosomal instability. The Retinoblastoma tumor suppressor (RB) participates in the regulation of synchrony between DNA synthesis and centrosome duplication and it is involved in transcription regulation of some mitotic genes. Primary human fibroblasts were transfected transiently with short interfering RNA (siRNA) specific for human pRb to investigate the effects of pRb acute loss on chromosomal stability. RESULTS Acutely pRb-depleted fibroblasts showed altered expression of genes necessary for cell cycle progression, centrosome homeostasis, kinetochore and mitotic checkpoint proteins. Despite altered expression of genes involved in the Spindle Assembly Checkpoint (SAC) the checkpoint seemed to function properly in pRb-depleted fibroblasts. In particular AURORA-A and PLK1 overexpression suggested that these two genes might have a role in the observed genomic instability. However, when they were post-transcriptionally silenced in pRb-depleted fibroblasts we did not observe reduction in the number of aneuploid cells. This finding suggests that overexpression of these two genes did not contribute to genomic instability triggered by RB acute loss although it affected cell proliferation. Acutely pRb-depleted human fibroblasts showed the presence of micronuclei containing whole chromosomes besides the presence of supernumerary centrosomes and aneuploidy. CONCLUSION Here we show for the first time that RB acute loss triggers centrosome amplification and aneuploidy in human primary fibroblasts. Altogether, our results suggest that pRb-depleted primary human fibroblasts possess an intact spindle checkpoint and that micronuclei, likely caused by mis-attached kinetochores that in turn trigger chromosome segregation errors, are responsible for aneuploidy in primary human fibroblasts where pRb is acutely depleted.
Collapse
Affiliation(s)
- Angela Amato
- Dipartimento di Biologia Cellulare e dello Sviluppo "A. Monroy", Università di Palermo, viale delle Scienze, Palermo, Italy
| | - Laura Lentini
- Dipartimento di Biologia Cellulare e dello Sviluppo "A. Monroy", Università di Palermo, viale delle Scienze, Palermo, Italy
| | - Tiziana Schillaci
- Dipartimento di Biologia Cellulare e dello Sviluppo "A. Monroy", Università di Palermo, viale delle Scienze, Palermo, Italy
| | - Flora Iovino
- Dipartimento di Discipline Chirurgiche e Oncologiche, Laboratorio di Patofisiologia Cellulare e Molecolare Università di Palermo, Palermo, Italy
| | - Aldo Di Leonardo
- Dipartimento di Biologia Cellulare e dello Sviluppo "A. Monroy", Università di Palermo, viale delle Scienze, Palermo, Italy
| |
Collapse
|
120
|
Bernad R, Sánchez P, Losada A. Epigenetic specification of centromeres by CENP-A. Exp Cell Res 2009; 315:3233-41. [DOI: 10.1016/j.yexcr.2009.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
|
121
|
Camahort R, Shivaraju M, Mattingly M, Li B, Nakanishi S, Zhu D, Shilatifard A, Workman JL, Gerton JL. Cse4 is part of an octameric nucleosome in budding yeast. Mol Cell 2009; 35:794-805. [PMID: 19782029 DOI: 10.1016/j.molcel.2009.07.022] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/26/2009] [Accepted: 07/31/2009] [Indexed: 01/16/2023]
Abstract
The budding yeast CenH3 histone variant Cse4 localizes to centromeric nucleosomes and is required for kinetochore assembly and chromosome segregation. The exact composition of centromeric Cse4-containing nucleosomes is a subject of debate. Using unbiased biochemical, cell-biological, and genetic approaches, we have tested the composition of Cse4-containing nucleosomes. Using micrococcal nuclease-treated chromatin, we find that Cse4 is associated with the histones H2A, H2B, and H4, but not H3 or the nonhistone protein Scm3. Overexpression of Cse4 rescues the lethality of a scm3 deletion, indicating that Scm3 is not essential for the formation of functional centromeric chromatin. We also find that octameric Cse4 nucleosomes can be reconstituted in vitro. Furthermore, Cse4-Cse4 dimerization occurs in vivo at the centromeric nucleosome, and this requires the predicted Cse4-Cse4 dimerization interface. Taken together, our experimental evidence supports the model that the Cse4 nucleosome is an octamer, containing two copies each of Cse4, H2A, H2B, and H4.
Collapse
Affiliation(s)
- Raymond Camahort
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Centromeres are chromosomal elements that are both necessary and sufficient for chromosome segregation. However, the puzzlingly broad range in centromere complexity, from simple "point" centromeres to multi-megabase arrays of DNA satellites, has defied explanation. We posit that ancestral centromeres were epigenetically defined and that point centromeres, such as those of budding yeast, have derived from the partitioning elements of selfish plasmids. We further propose that the larger centromere sizes in plants and animals and the rapid evolution of their centromeric proteins is the result of an intense battle for evolutionary dominance due to the asymmetric retention of only one product of female meiosis.
Collapse
Affiliation(s)
- Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | |
Collapse
|
123
|
Zeitlin SG, Baker NM, Chapados BR, Soutoglou E, Wang JYJ, Berns MW, Cleveland DW. Double-strand DNA breaks recruit the centromeric histone CENP-A. Proc Natl Acad Sci U S A 2009; 106:15762-7. [PMID: 19717431 PMCID: PMC2747192 DOI: 10.1073/pnas.0908233106] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Indexed: 11/18/2022] Open
Abstract
The histone H3 variant CENP-A is required for epigenetic specification of centromere identity through a loading mechanism independent of DNA sequence. Using multiphoton absorption and DNA cleavage at unique sites by I-SceI endonuclease, we demonstrate that CENP-A is rapidly recruited to double-strand breaks in DNA, along with three components (CENP-N, CENP-T, and CENP-U) associated with CENP-A at centromeres. The centromere-targeting domain of CENP-A is both necessary and sufficient for recruitment to double-strand breaks. CENP-A accumulation at DNA breaks is enhanced by active non-homologous end-joining but does not require DNA-PKcs or Ligase IV, and is independent of H2AX. Thus, induction of a double-strand break is sufficient to recruit CENP-A in human and mouse cells. Finally, since cell survival after radiation-induced DNA damage correlates with CENP-A expression level, we propose that CENP-A may have a function in DNA repair.
Collapse
Affiliation(s)
- Samantha G. Zeitlin
- Ludwig Institute for Cancer Research
- Departments of Cellular and Molecular Medicine
| | | | - Brian R. Chapados
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037
| | | | | | - Michael W. Berns
- Bioengineering, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Engineering, University of California, Irvine, CA 92612
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research
- Departments of Cellular and Molecular Medicine
- Medicine and
| |
Collapse
|
124
|
Torras-Llort M, Moreno-Moreno O, Azorín F. Focus on the centre: the role of chromatin on the regulation of centromere identity and function. EMBO J 2009; 28:2337-48. [PMID: 19629040 PMCID: PMC2722248 DOI: 10.1038/emboj.2009.174] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 05/27/2009] [Indexed: 11/24/2022] Open
Abstract
The centromere is a specialised chromosomal structure that regulates faithful chromosome segregation during cell division, as it dictates the site of assembly of the kinetochore, a critical structure that mediates binding of chromosomes to the spindle, monitors bipolar attachment and pulls chromosomes to the poles during anaphase. Identified more than a century ago as the primary constriction of condensed metaphase chromosomes, the centromere remained elusive to molecular characterisation for many years owed to its unusual enrichment in highly repetitive satellite DNA sequences, except in budding yeast. In the last decade, our understanding of centromere structure, organisation and function has increased tremendously. Nowadays, we know that centromere identity is determined epigenetically by the formation of a unique type of chromatin, which is characterised by the presence of the centromere-specific histone H3 variant CenH3, originally called CENP-A, which replaces canonical histone H3 at centromeres. CenH3-chromatin constitutes the physical and functional foundation for kinetochore assembly. This review explores recent studies addressing the structural and functional characterisation of CenH3-chromatin, its assembly and propagation during mitosis, and its contribution to kinetochore assembly.
Collapse
Affiliation(s)
- Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, CSIC, and Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Olga Moreno-Moreno
- Institute of Molecular Biology of Barcelona, CSIC, and Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, and Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| |
Collapse
|
125
|
Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D, Nakamura Y, Daigo Y, Nakatani Y, Almouzni-Pettinotti G. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 2009; 137:485-97. [PMID: 19410545 DOI: 10.1016/j.cell.2009.02.040] [Citation(s) in RCA: 503] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 11/12/2008] [Accepted: 02/20/2009] [Indexed: 01/19/2023]
Abstract
The histone H3 variant CenH3, called CENP-A in humans, is central in centromeric chromatin to ensure proper chromosome segregation. In the absence of an underlying DNA sequence, it is still unclear how CENP-A deposition at centromeres is determined. Here, we purified non-nucleosomal CENP-A complexes to identify direct CENP-A partners involved in such a mechanism and identified HJURP. HJURP was not detected in H3.1- or H3.3-containing complexes, indicating its specificity for CENP-A. HJURP centromeric localization is cell cycle regulated, and its transient appearance at the centromere coincides precisely with the proposed time window for new CENP-A deposition. Furthermore, HJURP downregulation leads to a major reduction in CENP-A at centromeres and impairs deposition of newly synthesized CENP-A, causing mitotic defects. We conclude that HJURP is a key factor for CENP-A deposition and maintenance at centromeres.
Collapse
Affiliation(s)
- Elaine M Dunleavy
- Laboratory of Nuclear Dynamics and Genome Plasticity, UMR CNRS/Institut Curie, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Okada M, Okawa K, Isobe T, Fukagawa T. CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol Biol Cell 2009; 20:3986-95. [PMID: 19625449 DOI: 10.1091/mbc.e09-01-0065] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Centromere identity is thought to be determined by epigenetic mechanisms. The centromere-specific histone H3 variant CENP-A plays a central role in specifying the locus where the centromere is constructed. However, the precise mechanisms that target CENP-A to centromeric chromatin are poorly understood. Here, we show that facilitates chromatin transcription (FACT) localizes to centromeres in a CENP-H-containing complex-dependent manner. In conditional mutant cell lines for SSRP1, a subunit of FACT, centromere targeting of newly synthesized CENP-A is severely inhibited. The chromatin remodeling factor CHD1 binds to SSRP1 both in vivo and in vitro and associates with centromeres. The centromeric localization of CHD1 is lost in SSRP1-depleted cells. RNA interference knockdown of CHD1 leads to a decrease in the amount of centromere localized CENP-A. These findings indicate that the CENP-H-containing complex facilitates deposition of newly synthesized CENP-A into centromeric chromatin in cooperation with FACT and CHD1.
Collapse
Affiliation(s)
- Masahiro Okada
- *Center for Priority Areas, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; Innovative Drug Research Laboratories, Kyowa Hakko Kirin Co., Ltd., Takasaki, Gumma, 370-1295, Japan
| | | | | | | |
Collapse
|
127
|
Furuyama T, Henikoff S. Centromeric nucleosomes induce positive DNA supercoils. Cell 2009; 138:104-13. [PMID: 19596238 PMCID: PMC2725230 DOI: 10.1016/j.cell.2009.04.049] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 03/04/2009] [Accepted: 04/14/2009] [Indexed: 11/17/2022]
Abstract
Centromeres of higher eukaryotes are epigenetically maintained; however, the mechanism that underlies centromere inheritance is unknown. Centromere identity and inheritance require the assembly of nucleosomes containing the CenH3 histone variant in place of canonical H3. Although H3 nucleosomes wrap DNA in a left-handed manner and induce negative supercoils, we show here that CenH3 nucleosomes reconstituted from Drosophila histones induce positive supercoils. Furthermore, we show that CenH3 likewise induces positive supercoils in functional centromeres in vivo, using a budding yeast minichromosome system and temperature-sensitive mutations in kinetochore proteins. The right-handed wrapping of DNA around the histone core implied by positive supercoiling indicates that centromere nucleosomes are unlikely to be octameric and that the exposed surfaces holding the nucleosome together would be available for kinetochore protein recruitment. The mutual incompatibility of nucleosomes with opposite topologies could explain how centromeres are efficiently maintained as unique loci on chromosomes.
Collapse
Affiliation(s)
- Takehito Furuyama
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| |
Collapse
|
128
|
Orthaus S, Klement K, Happel N, Hoischen C, Diekmann S. Linker histone H1 is present in centromeric chromatin of living human cells next to inner kinetochore proteins. Nucleic Acids Res 2009; 37:3391-406. [PMID: 19336418 PMCID: PMC2691837 DOI: 10.1093/nar/gkp199] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 01/04/2023] Open
Abstract
The vertebrate kinetochore complex assembles at the centromere on alpha-satellite DNA. In humans, alpha-satellite DNA has a repeat length of 171 bp slightly longer than the DNA in the chromatosome containing the linker histone H1. The centromere-binding protein CENP-B binds specifically to alpha-satellite DNA with properties of a centromeric-linker histone. Here, we analysed if linker histone H1 is present at or excluded from centromeric chromatin by CENP-B. By immunostaining we detected the presence, but no enrichment or depletion of five different H1 subtypes at centromeric chromatin. The binding dynamics of H1 at centromeric sites were similar to that at other locations in the genome. These dynamics did not change in CENP-B depleted cells, suggesting that CENP-B and H1 co-exist in centromeric chromatin with no or little functional overlap. By bimolecular fluorescence complementation (BiFC) and Förster resonance energy transfer (FRET), we revealed that the linker histone H1 subtypes H1 degrees and H1.2 bind to centromeric chromatin in interphase nuclei in direct neighbourhood to inner kinetochore proteins.
Collapse
Affiliation(s)
- S. Orthaus
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - K. Klement
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - N. Happel
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - C. Hoischen
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - S. Diekmann
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| |
Collapse
|
129
|
Hori T, Amano M, Suzuki A, Backer CB, Welburn JP, Dong Y, McEwen BF, Shang WH, Suzuki E, Okawa K, Cheeseman IM, Fukagawa T. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 2008; 135:1039-52. [PMID: 19070575 DOI: 10.1016/j.cell.2008.10.019] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/27/2008] [Accepted: 10/07/2008] [Indexed: 01/25/2023]
Abstract
Kinetochore specification and assembly requires the targeted deposition of specialized nucleosomes containing the histone H3 variant CENP-A at centromeres. However, CENP-A is not sufficient to drive full-kinetochore assembly, and it is not clear how centromeric chromatin is established. Here, we identify CENP-W as a component of the DNA-proximal constitutive centromere-associated network (CCAN) of proteins. We demonstrate that CENP-W forms a DNA-binding complex together with the CCAN component CENP-T. This complex directly associates with nucleosomal DNA and with canonical histone H3, but not with CENP-A, in centromeric regions. CENP-T/CENP-W functions upstream of other CCAN components with the exception of CENP-C, an additional putative DNA-binding protein. Our analysis indicates that CENP-T/CENP-W and CENP-C provide distinct pathways to connect the centromere with outer kinetochore assembly. In total, our results suggest that the CENP-T/CENP-W complex is directly involved in establishment of centromere chromatin structure coordinately with CENP-A.
Collapse
Affiliation(s)
- Tetsuya Hori
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Birchler JA, Gao Z, Han F. A tale of two centromeres--diversity of structure but conservation of function in plants and animals. Funct Integr Genomics 2008; 9:7-13. [PMID: 19083033 DOI: 10.1007/s10142-008-0104-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 02/04/2023]
Abstract
The structural and functional aspects of two specific centromeres, one drawn from the animal kingdom (Drosophila) and the other from the plant kingdom (maize), are compared. Both cases illustrate an epigenetic component to centromere specification. The observations of neocentromeres in Drosophila and inactive centromeres in maize constitute one line of evidence for this hypothesis. Another common feature is the divisibility of centromere function with reduced stability as the size decreases. The systems differ in that Drosophila has no common sequence repeat at all centromeres, whereas maize has a 150-bp unit present in tandem arrays together with a centromere-specific transposon, centromere retrotransposon maize, present at all primary constrictions. Aspects of centromere structure known only from one or the other system might be common to both, namely, the presence of centromere RNAs in the kinetochore as found in maize and the organization of the centromeric histone 3 in tetrameric nucleosomes.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
131
|
Joglekar AP, Bouck D, Finley K, Liu X, Wan Y, Berman J, He X, Salmon ED, Bloom KS. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J Cell Biol 2008; 181:587-94. [PMID: 18474626 PMCID: PMC2386099 DOI: 10.1083/jcb.200803027] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/11/2008] [Indexed: 11/28/2022] Open
Abstract
Point and regional centromeres specify a unique site on each chromosome for kinetochore assembly. The point centromere in budding yeast is a unique 150-bp DNA sequence, which supports a kinetochore with only one microtubule attachment. In contrast, regional centromeres are complex in architecture, can be up to 5 Mb in length, and typically support many kinetochore-microtubule attachments. We used quantitative fluorescence microscopy to count the number of core structural kinetochore protein complexes at the regional centromeres in fission yeast and Candida albicans. We find that the number of CENP-A nucleosomes at these centromeres reflects the number of kinetochore-microtubule attachments instead of their length. The numbers of kinetochore protein complexes per microtubule attachment are nearly identical to the numbers in a budding yeast kinetochore. These findings reveal that kinetochores with multiple microtubule attachments are mainly built by repeating a conserved structural subunit that is equivalent to a single microtubule attachment site.
Collapse
Affiliation(s)
- Ajit P Joglekar
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Pezer Ž, Ugarković Đ. Role of non-coding RNA and heterochromatin in aneuploidy and cancer. Semin Cancer Biol 2008; 18:123-30. [DOI: 10.1016/j.semcancer.2008.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
133
|
Marshall OJ, Chueh AC, Wong LH, Choo KA. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 2008; 82:261-82. [PMID: 18252209 PMCID: PMC2427194 DOI: 10.1016/j.ajhg.2007.11.009] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 10/26/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of the first human neocentromere in 1993, these spontaneous, ectopic centromeres have been shown to be an astonishing example of epigenetic change within the genome. Recent research has focused on the role of neocentromeres in evolution and speciation, as well as in disease development and the understanding of the organization and epigenetic maintenance of the centromere. Here, we review recent progress in these areas of research and the significant insights gained.
Collapse
Affiliation(s)
- Owen J. Marshall
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anderly C. Chueh
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Lee H. Wong
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - K.H. Andy Choo
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
134
|
Cheeseman IM, Desai A. Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 2008; 9:33-46. [PMID: 18097444 DOI: 10.1038/nrm2310] [Citation(s) in RCA: 723] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Segregation of the replicated genome during cell division in eukaryotes requires the kinetochore to link centromeric DNA to spindle microtubules. The kinetochore is composed of a number of conserved protein complexes that direct its specification and assembly, bind to spindle microtubules and regulate chromosome segregation. Recent studies have identified more than 80 kinetochore components, and are revealing how these proteins are organized into the higher order kinetochore structure, as well as how they function to achieve proper chromosome segregation.
Collapse
Affiliation(s)
- Iain M Cheeseman
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
135
|
Orthaus S, Biskup C, Hoffmann B, Hoischen C, Ohndorf S, Benndorf K, Diekmann S. Assembly of the Inner Kinetochore Proteins CENP-A and CENP-B in Living Human Cells. Chembiochem 2008; 9:77-92. [DOI: 10.1002/cbic.200700358] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
136
|
Dalal Y, Furuyama T, Vermaak D, Henikoff S. Structure, dynamics, and evolution of centromeric nucleosomes. Proc Natl Acad Sci U S A 2007; 104:15974-81. [PMID: 17893333 PMCID: PMC1993840 DOI: 10.1073/pnas.0707648104] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Indexed: 12/18/2022] Open
Abstract
Centromeres are defining features of eukaryotic chromosomes, providing sites of attachment for segregation during mitosis and meiosis. The fundamental unit of centromere structure is the centromeric nucleosome, which differs from the conventional nucleosome by the presence of a centromere-specific histone variant (CenH3) in place of canonical H3. We have shown that the CenH3 nucleosome core found in interphase Drosophila cells is a heterotypic tetramer, a "hemisome" consisting of one molecule each of CenH3, H4, H2A, and H2B, rather than the octamer of canonical histones that is found in bulk nucleosomes. The surprising discovery of hemisomes at centromeres calls for a reevaluation of evidence that has long been interpreted in terms of a more conventional nucleosome. We describe how the hemisome structure of centromeric nucleosomes can account for enigmatic properties of centromeres, including kinetochore accessibility, epigenetic inheritance, rapid turnover of misincorporated CenH3, and transcriptional quiescence of pericentric heterochromatin. Structural differences mediated by loop 1 are proposed to account for the formation of stable tetramers containing CenH3 rather than stable octamers containing H3. Asymmetric CenH3 hemisomes might interrupt the global condensation of octameric H3 arrays and present an asymmetric surface for kinetochore formation. We suggest that this simple mechanism for differentiation between centromeric and packaging nucleosomes evolved from an archaea-like ancestor at the dawn of eukaryotic evolution.
Collapse
Affiliation(s)
| | - Takehito Furuyama
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
| | | | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
| |
Collapse
|
137
|
Abstract
"Mitosis: Spindle Assembly and Function," a conference in honor of Dr. Bill R. Brinkley, brought together many researchers to discuss progress in the field and celebrate the many contributions that Dr. Brinkley has made.
Collapse
Affiliation(s)
- Rebecca Heald
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
138
|
Lermontova I, Fuchs J, Schubert V, Schubert I. Loading time of the centromeric histone H3 variant differs between plants and animals. Chromosoma 2007; 116:507-10. [PMID: 17786463 DOI: 10.1007/s00412-007-0122-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 11/28/2022]
Affiliation(s)
- Inna Lermontova
- Leibniz-Institute of Plant Genetics & Crop Plant Research (IPK), 06466 Gatersleben, Germany.
| | | | | | | |
Collapse
|
139
|
Mizuguchi G, Xiao H, Wisniewski J, Smith MM, Wu C. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 2007; 129:1153-64. [PMID: 17574026 DOI: 10.1016/j.cell.2007.04.026] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/28/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
The budding yeast histone H3 variant, Cse4, replaces conventional histone H3 in centromeric chromatin and, together with centromere-specific DNA-binding factors, directs assembly of the kinetochore, a multiprotein complex mediating chromosome segregation. We have identified Scm3, a nonhistone protein that colocalizes with Cse4 and is required for its centromeric association. Bacterially expressed Scm3 binds directly to and reconstitutes a stoichiometric complex with Cse4 and histone H4 but not with conventional histone H3 and H4. A conserved acidic domain of Scm3 is responsible for directing the Cse4-specific interaction. Strikingly, binding of Scm3 can replace histones H2A-H2B from preassembled Cse4-containing histone octamers. This incompatibility between Scm3 and histones H2A-H2B is correlated with diminished in vivo occupancy of histone H2B, H2A, and H2AZ at centromeres. Our findings indicate that nonhistone Scm3 serves to assemble and maintain Cse4-H4 at centromeres and may replace histone H2A-H2B dimers in a centromere-specific nucleosome core.
Collapse
Affiliation(s)
- Gaku Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 6068, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
140
|
|
141
|
Scheidtmann KH. Dlk/ZIP kinase, a novel Ser/Thr-specific protein kinase with multiple functions. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
142
|
Black BE, Jansen LET, Maddox PS, Foltz DR, Desai AB, Shah JV, Cleveland DW. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell 2007; 25:309-22. [PMID: 17244537 DOI: 10.1016/j.molcel.2006.12.018] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 06/13/2006] [Accepted: 12/20/2006] [Indexed: 01/28/2023]
Abstract
Active centromeres are marked by nucleosomes assembled with CENP-A, a centromere-specific histone H3 variant. The CENP-A centromere targeting domain (CATD), comprised of loop 1 and the alpha2 helix within the histone fold, is sufficient to target histone H3 to centromeres and to generate the same conformational rigidity to the initial subnucleosomal heterotetramer with histone H4 as does CENP-A. We now show in human cells and in yeast that depletion of CENP-A is lethal, but recruitment of normal levels of kinetochore proteins, centromere-generated mitotic checkpoint signaling, chromosome segregation, and viability can be rescued by histone H3 carrying the CATD. These data offer direct support for centromere identity maintained by a unique nucleosome that serves to distinguish the centromere from the rest of the chromosome.
Collapse
Affiliation(s)
- Ben E Black
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
143
|
Okamoto Y, Nakano M, Ohzeki JI, Larionov V, Masumoto H. A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. EMBO J 2007; 26:1279-91. [PMID: 17318187 PMCID: PMC1817632 DOI: 10.1038/sj.emboj.7601584] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 01/09/2007] [Indexed: 12/14/2022] Open
Abstract
Chromatin clusters containing CENP-A, a histone H3 variant, are found in centromeres of multicellular eukaryotes. This study examines the ability of alpha-satellite (alphoid) DNA arrays in different lengths to nucleate CENP-A chromatin and form functional kinetochores de novo. Kinetochore assembly was followed by measuring human artificial chromosome formation in cultured human cells and by chromatin immunoprecipitation analysis. The results showed that both the length of alphoid DNA arrays and the density of CENP-B boxes had a strong impact on nucleation, spreading and/or maintenance of CENP-A chromatin, and formation of functional kinetochores. These effects are attributed to a change in the dynamic balance between assembly of chromatin containing trimethyl histone H3-K9 and chromatin containing CENP-A/C. The data presented here suggest that a functional minimum core stably maintained on 30-70 kb alphoid DNA arrays represents an epigenetic memory of centromeric chromatin.
Collapse
Affiliation(s)
- Yasuhide Okamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Megumi Nakano
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun-ichirou Ohzeki
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vladimir Larionov
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hiroshi Masumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan. Tel.: +81 52 789 2985; Fax: +81 52 789 5732; E-mail:
| |
Collapse
|
144
|
Eckert CA, Gravdahl DJ, Megee PC. The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. Genes Dev 2007; 21:278-91. [PMID: 17242156 PMCID: PMC1785119 DOI: 10.1101/gad.1498707] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 12/05/2006] [Indexed: 02/02/2023]
Abstract
Sister chromatid cohesion, conferred by the evolutionarily conserved cohesin complex, is essential for proper chromosome segregation. Cohesin binds to discrete sites along chromosome arms, and is especially enriched surrounding centromeres, but past studies have not clearly defined the roles of arm and pericentromeric cohesion in chromosome segregation. To address this issue, we developed a technique that specifically reduced pericentromeric cohesin association on a single chromosome without affecting arm cohesin binding. Under these conditions, we observed more extensive stretching of centromeric chromatin and elevated frequencies of chromosome loss, suggesting that pericentromeric cohesin enrichment is essential for high-fidelity chromosome transmission. The magnitude of pericentromeric cohesin association was negatively correlated with tension between sister kinetochores, with the highest levels of association in cells lacking kinetochore-microtubule attachments. Pericentromeric cohesin recruitment required evolutionarily conserved components of the inner and central kinetochore. Together, these observations suggest that pericentromeric cohesin levels reflect the balance of opposing forces: the kinetochore-mediated enhancement of cohesin binding and the disruption of binding by mechanical tension at kinetochores. The involvement of conserved kinetochore components suggests that this pathway for pericentromeric cohesin enrichment may have been retained in higher eukaryotes to promote chromosome biorientation and accurate sister chromatid segregation.
Collapse
Affiliation(s)
- Carrie A. Eckert
- Program in Molecular Biology, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | - Daniel J. Gravdahl
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | - Paul C. Megee
- Program in Molecular Biology, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| |
Collapse
|
145
|
Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L. Phosphorylation of histone H3 in plants--a dynamic affair. ACTA ACUST UNITED AC 2007; 1769:308-15. [PMID: 17320987 DOI: 10.1016/j.bbaexp.2007.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/08/2007] [Accepted: 01/11/2007] [Indexed: 01/15/2023]
Abstract
Histones are the main protein components of chromatin: they undergo extensive post-translational modifications, particularly acetylation, methylation, phosphorylation, ubiquitination and ADP-ribosylation which modify the structural/functional properties of chromatin. Post-translational modifications of the N-terminal tails of the core histones within the nucleosome particle are thought to act as signals from the chromatin to the cell, for various processes. Thus, in many ways histone tails can be viewed as complex protein-protein interaction surfaces that are regulated by numerous post-translational modifications. Histone phosphorylation has been linked to chromosome condensation/segregation, activation of transcription, apoptosis and DNA damage repair. In plants, the cell cycle dependent phosphorylation of histone H3 has been described; it is hyperphosphorylated at serines 10/28 and at threonines 3/11 during both mitosis and meiosis in patterns that are specifically coordinated in both space and time. Although this post-translational modification is highly conserved, data show that the chromosomal distribution of individual modifications can differ between groups of eukaryotes. Initial results indicate that members of the plant Aurora kinase family have the capacity to control cell cycle regulated histone H3 phosphorylation, and in addition we describe other potential H3 kinases and discuss their functions.
Collapse
Affiliation(s)
- Andreas Houben
- Leibniz-Institute of Plant Genetics and Crop Plant Research, Chromosome Structure and Function Group, Corrensstrasse 3, D-06466 Gatersleben, Germany.
| | | | | | | | | | | |
Collapse
|
146
|
Nakashima H, Nakano M, Ohnishi R, Hiraoka Y, Kaneda Y, Sugino A, Masumoto H. Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome. J Cell Sci 2007; 118:5885-98. [PMID: 16339970 DOI: 10.1242/jcs.02702] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha-satellite (alphoid) DNA is necessary for de novo formation of human artificial chromosomes (HACs) in human cultured cells. To investigate the relationship among centromeric, transcriptionally permissive and non-permissive chromatin assemblies on de novo HAC formation, we constructed bacterial artificial chromosome (BAC)-based linear HAC vectors whose left vector arms are occupied by beta geo coding genes with or without a functional promoter in addition to a common marker gene on the right arm. Although HACs were successfully generated from the vectors with promoter-less constructs on the left arm in HT1080 cells, we failed to generate a stable HAC from the vectors with a functional promoter on the left arm. Despite this failure in HAC formation, centromere components (CENP-A, CENP-B and CENP-C) assembled at the integration sites correlating with a transcriptionally active state of both marker genes on the vector arms. However, on the stable HAC, chromatin immunoprecipitation analysis showed that HP1alpha and trimethyl histone H3-K9 were enriched at the non-transcribing left vector arm. A transcriptionally active state on both vector arms is not compatible with heterochromatin formation on the introduced BAC DNA, suggesting that epigenetic assembly of heterochromatin is distinct from centromere chromatin assembly and is required for the establishment of a stable artificial chromosome.
Collapse
Affiliation(s)
- Hiroshi Nakashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
147
|
Vos LJ, Famulski JK, Chan GKT. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly. Biochem Cell Biol 2007; 84:619-39. [PMID: 16936833 DOI: 10.1139/o06-078] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The assembly of the centromere, a specialized region of DNA along with a constitutive protein complex which resides at the primary constriction and is the site of kinetochore formation, has been puzzling biologists for many years. Recent advances in the fields of chromatin, microscopy, and proteomics have shed a new light on this complex and essential process. Here we review recently discovered mechanisms and proteins involved in determining mammalian centromere location and assembly. The centromeric core protein CENP-A, a histone H3 variant, is hypothesized to designate centromere localization by incorporation into centromere-specific nucleosomes and is essential for the formation of a functional kinetochore. It has been found that centromere localization of centromere protein A (CENP-A), and therefore centromere determination, requires proteins involved in histone deacetylation, as well as base excision DNA repair pathways and proteolysis. In addition to the incorporation of CENP-A at the centromere, the formation of heterochromatin through histone methylation and RNA interference is also crucial for centromere formation. The assembly of the centromere and kinetochore is complex and interdependent, involving epigenetics and hierarchical protein-protein interactions.
Collapse
Affiliation(s)
- Larissa J Vos
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | | | | |
Collapse
|
148
|
Schuh M, Lehner CF, Heidmann S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol 2007; 17:237-43. [PMID: 17222555 DOI: 10.1016/j.cub.2006.11.051] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/08/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The centromere/kinetochore complex is indispensable for accurate segregation of chromosomes during cell divisions when it serves as the attachment site for spindle microtubules. Centromere identity in metazoans is believed to be governed by epigenetic mechanisms, because the highly repetitive centromeric DNA is neither sufficient nor required for specifying the assembly site of the kinetochore. A candidate for an epigenetic mark is the centromere-specific histone H3 variant CENP-A that replaces H3 in alternating blocks of chromatin exclusively in active centromeres. CENP-A acts as an initiator of kinetochore assembly, but the detailed dynamics of the deposition of metazoan CENP-A and of other constitutive kinetochore components are largely unknown. Here we show by quantitative fluorescence measurements in living early embryos that functional fluorescent fusion proteins of the Drosophila CENP-A and CENP-C homologs are rapidly incorporated into centromeres during anaphase. This incorporation is independent of ongoing DNA synthesis and pulling forces generated by the mitotic spindle, but strictly coupled to mitotic progression. Thus, our findings uncover a strikingly dynamic behavior of centromere components in anaphase.
Collapse
Affiliation(s)
- Melina Schuh
- Bayreuth Center for Molecular Biosciences (BZMB), Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
149
|
Dawson SC, Sagolla MS, Cande WZ. The cenH3 histone variant defines centromeres in Giardia intestinalis. Chromosoma 2006; 116:175-84. [PMID: 17180675 DOI: 10.1007/s00412-006-0091-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 10/20/2006] [Accepted: 11/09/2006] [Indexed: 11/26/2022]
Abstract
Histone H3 variants play critical roles in the functional specialization of chromatin by epigenetically marking centromeric chromatin and transcriptionally active or silent genes. Specifically, the cenH3 histone variant acts as the primary epigenetic determinant of the site of kinetochore assembly at centromeres. Although the function of histone variants is well studied in plants, animals, and fungi, there is little knowledge of the evolutionary conservation of histone variants and their function in most protists. We find that Giardia intestinalis--a diplomonad parasite with two equivalent nuclei--has two phylogenetically distinct histone H3 variants with N-terminal extensions and nonconserved promoters. To determine their role in chromatin dynamics, conventional H3 and the two H3 variants were GFP-tagged, and their subcellular location was monitored during interphase and mitosis. We demonstrate that one cenH3-like variant has a conserved function in epigenetically marking centromeres. The other H3 variant (H3B) has a punctate distribution on chromosomes, but does not colocalize with active transcriptional regions as indicated by H3K4 methylation. We suggest that H3B could instead mark noncentromeric heterochromatin. Giardia is a member of the Diplomonads and represents an ancient divergence from metazoans and fungi. We confirm the ancient role of histone H3 variants in modulating chromatin architecture, and suggest that monocentric chromosomes represent an ancestral chromosome morphology.
Collapse
Affiliation(s)
- S C Dawson
- Section of Microbiology, 255 Briggs Hall, One Shields Avenue, UC-Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
150
|
Dawe RK, Henikoff S. Centromeres put epigenetics in the driver's seat. Trends Biochem Sci 2006; 31:662-9. [PMID: 17074489 DOI: 10.1016/j.tibs.2006.10.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/19/2006] [Accepted: 10/20/2006] [Indexed: 01/01/2023]
Abstract
A defining feature of chromosomes is the centromere, the site for spindle attachment at mitosis and meiosis. Intriguingly, centromeres of plants and animals are maintained by both sequence-specific and sequence-independent (epigenetic) processes. Epigenetic inheritance might enable kinetochores (the structures that attach centromeres to spindles) to maintain an optimal size. However, centromeres are susceptible to the evolution of "selfish" DNA repeats that bind to kinetochore proteins. We argue that such sequence-specific interactions are evolutionarily unstable because they enable repeat arrays to influence kinetochore size. Changes in kinetochore size could affect the interaction of kinetochores with the spindle and, in principle, skew Mendelian segregation. We propose that key kinetochore proteins have adapted to disrupt such sequence-specific interactions and restore epigenetic inheritance.
Collapse
Affiliation(s)
- R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|