101
|
Hurd KA, Surges MP, Farrell JW. Use of Exercise Training to Enhance the Power-Duration Curve: A Systematic Review. J Strength Cond Res 2023; 37:733-744. [PMID: 35852374 DOI: 10.1519/jsc.0000000000004315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Hurd, KA, Surges, MP, and Farrell, JW. Use of exercise training to enhance the power-duration curve: a systematic review. J Strength Cond Res 37(3): 733-744, 2023-The power/velocity-duration curve consists of critical power (CP), the highest work rate at which a metabolic steady state can obtained, and W' (e.g., W prime), the finite amount of work that can be performed above CP. Significant associations between CP and performance during endurance sports have been reported resulting in CP becoming a primary outcome for enhancement following exercise training interventions. This review evaluated and summarized the effects of different exercise training methodologies for enhancing CP and respective analogs. A systematic review was conducted with the assistance of a university librarian and in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Ten studies met the criteria for inclusion and were reviewed. Four, 2, 2, 1, and 1 articles included swimming, cycling, resistance training, rowing, and running, respectively. Improvements in CP, and respective analogs, were reported in 3 swimming, 2 cycling, and 1 rowing intervention. In addition, only 2 cycling and 1 swimming intervention used CP, and respective analogs, as an index of intensity for prescribing exercise training, with one cycling and one swimming intervention reporting significant improvements in CP. Multiple exercise training modalities can be used to enhance the power/velocity-duration curve. Significant improvements in CP were often reported with no observed improvements in W' or with slight decreases. Training may need to be periodized in a manner that targets enhancements in either CP or W' but not simultaneously.
Collapse
Affiliation(s)
- Kweisi A Hurd
- Clinical Biomechanics and Exercise Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, Texas
| | | | | |
Collapse
|
102
|
Clinical Impacts of Interventions for Physical Activity and Sedentary Behavior on Patients with Chronic Obstructive Pulmonary Disease. J Clin Med 2023; 12:jcm12041631. [PMID: 36836165 PMCID: PMC9963889 DOI: 10.3390/jcm12041631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Recently, physical activity has increasingly become the focus in patients with chronic obstructive airway disease (COPD) because it is a strong predictor of COPD-related mortality. In addition, sedentary behavior, which is included as a category of physical inactivity including such behaviors as sitting or lying down, has an independent clinical impact on COPD patients. The present review examines clinical data related to physical activity, focusing on the definition, associated factors, beneficial effects, and biological mechanisms in patients with COPD and with respect to human health regardless of COPD. The data related to how sedentary behavior is associated with human health and COPD outcomes are also examined. Lastly, possible interventions to improve physical activity or sedentary behavior, such as bronchodilators and pulmonary rehabilitation with behavior modification, to ameliorate the pathophysiology of COPD patients are described. A better understanding of the clinical impact of physical activity or sedentary behavior may lead to the planning of a future intervention study to establish high-level evidence.
Collapse
|
103
|
Millour G, Lajoie C, Domingue F. Comparison of different models of Wʹ balance in high-level road cycling races. INT J PERF ANAL SPOR 2023. [DOI: 10.1080/24748668.2023.2176100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Geoffrey Millour
- Laboratoire de technologies & d’innovation pour la performance sportive, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Claude Lajoie
- Laboratoire de technologies & d’innovation pour la performance sportive, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Frédéric Domingue
- Laboratoire de technologies & d’innovation pour la performance sportive, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
104
|
Black MI, Skiba PF, Wylie LJ, Lewis J, Jones AM, Vanhatalo A. Accounting for Dynamic Changes in the Power-Duration Relationship Improves the Accuracy of W' Balance Modeling. Med Sci Sports Exerc 2023; 55:235-244. [PMID: 36094337 DOI: 10.1249/mss.0000000000003039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE This study aimed 1) to examine the accuracy with which W' reconstitution (W' REC ) is estimated by the W' balance (W' BAL ) models after a 3-min all-out cycling test (3MT), 2) to determine the effects of a 3MT on the power-duration relationship, and 3) to assess whether accounting for changes in the power-duration relationship during exercise improved estimates of W' REC . METHODS The power-duration relationship and the actual and estimated W' REC were determined for 12 data sets extracted from our laboratory database where participants had completed two 3MT separated by 1-min recovery (i.e., control [C-3MT] and fatigued [F-3MT]). RESULTS Actual W' REC (6.3 ± 1.4 kJ) was significantly overestimated by the W' BAL·ODE (9.8 ± 1.3 kJ; P < 0.001) and the W' BAL·MORTON (16.9 ± 2.6 kJ; P < 0.001) models but was not significantly different to the estimate provided by the W' BAL·INT (7.5 ± 1.5 kJ; P > 0.05) model. End power (EP) was 7% lower in the F-3MT (263 ± 40 W) compared with the C-3MT (282 ± 44 W; P < 0.001), and work done above EP (WEP) was 61% lower in the F-3MT (6.3 ± 1.4 kJ) compared with the C-3MT (16.9 ± 3.2 kJ). The size of the error in the estimated W' REC was correlated with the reduction in WEP for the W' BAL·INT and W' BAL·ODE models (both r > -0.74, P < 0.01) but not the W' BAL·MORTON model ( r = -0.18, P > 0.05). Accounting for the changes in the power-duration relationship improved the accuracy of the W' BAL·ODE and W' BAL·MORTON , but they remained significantly different to actual W' REC . CONCLUSIONS These findings demonstrate that the power-duration relationship is altered after a 3MT, and accounting for these changes improves the accuracy of the W' BAL·ODE and the W' BAL·MORTON , but not W' BAL·INT models. These results have important implications for the design and use of mathematical models describing the energetics of exercise performance.
Collapse
Affiliation(s)
- Matthew I Black
- School of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | | | - Lee J Wylie
- School of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - James Lewis
- School of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Andrew M Jones
- School of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Anni Vanhatalo
- School of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UNITED KINGDOM
| |
Collapse
|
105
|
James JJ, Leach OK, Young AM, Newman AN, Mpongo KL, Quirante JM, Wardell DB, Ahmadi M, Gifford JR. The exercise power-duration relationship is equally reproducible in eumenorrheic female and male humans. J Appl Physiol (1985) 2023; 134:230-241. [PMID: 36548510 DOI: 10.1152/japplphysiol.00416.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aims to investigate the effect of the menstrual cycle (MC) on exercise performance across the power-duration relationship (PDR). We hypothesized females would exhibit greater variability in the PDR across the MC than males across a similar timespan, with critical power (CP) and work-prime (W') being lower during the early follicular phase than the late follicular and midluteal phases. Seven eumenorrheic, endurance-trained female adults performed multiple constant-load-to-task-failure and maximum-power tests at three timepoints across the MC (early follicular, late follicular, and midluteal phases). Ten endurance-trained male adults performed the same tests approximately 10 days apart. No differences across the PDR were observed between MC phases (CP: 186.74 ± 31.00 W, P = 0.955, CV = 0.81 ± 0.65%) (W': 7,961.81 ± 2,537.68 J, P = 0.476, CV = 10.48 ± 3.06%). CP was similar for male and female subjects (11.82 ± 1.42 W·kg-1 vs. 11.56 ± 1.51 W·kg-1, respectively) when controlling for leg lean mass. However, W' was larger (P = 0.047) for male subjects (617.28 ± 130.10 J·kg-1) than female subjects (490.03 ± 136.70 J·kg-1) when controlling for leg lean mass. MC phase does not need to be controlled when conducting aerobic endurance performance research on eumenorrheic female subjects without menstrual dysfunction. Nevertheless, several sex differences in the power-duration relationship exist, even after normalizing for body composition. Therefore, previous studies describing the physiology of exercise performance in male subjects may not perfectly describe that of female subjects.NEW & NOTEWORTHY Females are often excluded from exercise performance research due to experimental challenges in controlling for the menstrual cycle (MC), causing uncertainty regarding how the MC impacts female performance. The present study examined the influences that biological sex and the MC have on the power-duration relationship (PDR) by comparing critical power (CP), Work-prime (W'), and maximum power output (PMAX) in males and females. Our data provide evidence that the MC does not influence the PDR and that females exhibit similar reproducibility as males. Thus, when conducting aerobic endurance exercise research on eumenorrheic females without menstrual dysfunction, the phase of the MC does not need to be controlled. Although differences in body composition account for some differences between the sexes, sex differences in W' and PMAX persisted even after normalizing for different metrics of body composition. These data highlight the necessity and feasibility of examining sex differences in performance, as previously generated male-only data within the literature may not apply to female subjects.
Collapse
Affiliation(s)
- Jessica J James
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Olivia K Leach
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Arianna M Young
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Audrey N Newman
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Kiese L Mpongo
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Jaron M Quirante
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Devon B Wardell
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Mohadeseh Ahmadi
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Jayson R Gifford
- Department of Exercise Sciences, Brigham Young University, Provo, Utah.,Program of Gerontology, Brigham Young University, Provo, Utah
| |
Collapse
|
106
|
Muscle oxygenation is associated with bilateral strength asymmetry during isokinetic testing in sport teams. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
107
|
Martins FM, Santagnello SB, de Oliveira Junior GN, de Sousa JDFR, Michelin MA, Nomelini RS, Murta EFC, Orsatti FL. Lower-Body Resistance Training Reduces Interleukin-1β and Transforming Growth Factor-β1 Levels and Fatigue and Increases Physical Performance in Breast Cancer Survivors. J Strength Cond Res 2023; 37:439-451. [PMID: 36696263 DOI: 10.1519/jsc.0000000000004270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ABSTRACT Martins, FM, Santagnello, SB, de Oliveira Junior, GN, de Sousa, JdFR, Michelin, MA, Nomelini, RS, Murta, EFC, and Orsatti, FL. Lower-body resistance training reduces interleukin-1β and transforming growth factor-β1 levels and fatigue and increases physical performance in breast cancer survivors. J Strength Cond Res 37(2): 439-451, 2023-This article ascertains whether resistance training (RT) improves inflammatory markers, fatigue (sensations and fatigability), and physical performance in breast cancer survivors (BCS) and investigates whether the changes in the inflammatory markers, fatigue, and physical performance are associated with each other. Volunteers were randomly divided into 2 groups: control group (n = 11) and RT group (n = 11). Resistance training (3 sets of 8-12 repetitions with 80% 1 repetition maximum (1RM) on 4 exercises-leg extension, leg curl, 45° leg press, and calf raise) was performed 3 times a week for 12 weeks. Self-reported fatigue (SRF), fatigability (critical torque [CT] and W prime [W']), muscle strength, and circulating inflammatory markers were assessed using the Brief Fatigue Inventory, iDXA, 1RM test, protocol of 60 maximal voluntary isometric contractions, and enzyme-linked immunosorbent assay, respectively. Resistance training reduced interleukin (IL)-1β, transforming growth factor (TGF)-β1, and SRF score and increased muscle strength, 6-minute walk test (6MWT), CT, and W'. In the RT group, the changes in SRF were positively associated with the changes in IL-1β. The changes in muscle strength were associated with the changes in CT and W', and the changes in the 6MWT were associated with the changes in CT, W', muscle strength, and SRF. Resistance training improved fatigue and physical performance and reduced IL-1β, and TGF-β1 in BCS. Although improvement in fatigability seems to be dependent on the increase in muscle strength, improvement in the sensation of fatigue seems to be dependent on the reduction in IL-1β after RT. Increase in physical performance seems to be dependent on improvement in muscle strength and fatigue.
Collapse
Affiliation(s)
- Fernanda Maria Martins
- Research Applied Physiology, Exercise Biology Research Group (BioEx), Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Samarita Beraldo Santagnello
- Research Applied Physiology, Exercise Biology Research Group (BioEx), Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Jairo de Freitas Rodrigues de Sousa
- Research Applied Physiology, Exercise Biology Research Group (BioEx), Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Márcia Antoniazi Michelin
- Research Institute of Oncology (IPON) and Gynecology and Obstetrics Course, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil ; and
| | - Rosekeila Simões Nomelini
- Research Institute of Oncology (IPON) and Gynecology and Obstetrics Course, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil ; and
| | - Eddie Fernando Candido Murta
- Research Institute of Oncology (IPON) and Gynecology and Obstetrics Course, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil ; and
| | - Fábio Lera Orsatti
- Research Applied Physiology, Exercise Biology Research Group (BioEx), Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
- Department of Sport Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
108
|
Rappelt L, Held S, Wiedenmann T, Deutsch JP, Hochstrate J, Wicker P, Donath L. Restricted nasal-only breathing during self-selected low intensity training does not affect training intensity distribution. Front Physiol 2023; 14:1134778. [PMID: 37153227 PMCID: PMC10156973 DOI: 10.3389/fphys.2023.1134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction: Low-intensity endurance training is frequently performed at gradually higher training intensities than intended, resulting in a shift towards threshold training. By restricting oral breathing and only allowing for nasal breathing this shift might be reduced. Methods: Nineteen physically healthy adults (3 females, age: 26.5 ± 5.1 years; height: 1.77 ± 0.08 m; body mass: 77.3 ± 11.4 kg; VO2peak: 53.4 ± 6.6 mL·kg-1 min-1) performed 60 min of self-selected, similar (144.7 ± 56.3 vs. 147.0 ± 54.2 W, p = 0.60) low-intensity cycling with breathing restriction (nasal-only breathing) and without restrictions (oro-nasal breathing). During these sessions heart rate, respiratory gas exchange data and power output data were recorded continuously. Results: Total ventilation (p < 0.001, ηp 2 = 0.45), carbon dioxide release (p = 0.02, ηp 2 = 0.28), oxygen uptake (p = 0.03, ηp 2 = 0.23), and breathing frequency (p = 0.01, ηp 2 = 0.35) were lower during nasal-only breathing. Furthermore, lower capillary blood lactate concentrations were found towards the end of the training session during nasal-only breathing (time x condition-interaction effect: p = 0.02, ηp 2 = 0.17). Even though discomfort was rated marginally higher during nasal-only breathing (p = 0.03, ηp 2 = 0.24), ratings of perceived effort did not differ between the two conditions (p ≥ 0.06, ηp 2 = 0.01). No significant "condition" differences were found for intensity distribution (time spent in training zone quantified by power output and heart rate) (p ≥ 0.24, ηp 2 ≤ 0.07). Conclusion: Nasal-only breathing seems to be associated with possible physiological changes that may help to maintain physical health in endurance athletes during low intensity endurance training. However, it did not prevent participants from performing low-intensity training at higher intensities than intended. Longitudinal studies are warranted to evaluate longitudinal responses of changes in breathing patterns.
Collapse
Affiliation(s)
- Ludwig Rappelt
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
- Department of Movement and Training Science, University of Wuppertal, Wuppertal, Germany
| | - Steffen Held
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
- Department of Sport and Management, IST University of Applied Sciences, Duesseldorf, Germany
| | - Tim Wiedenmann
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Jan-Philip Deutsch
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Jonas Hochstrate
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Pamela Wicker
- Department of Sports Science, Bielefeld University, Bielefeld, Germany
- *Correspondence: Pamela Wicker,
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
109
|
Gorostiaga EM, Garcia-Tabar I, Sánchez-Medina L. Critical power: Artifact-based weaknesses. Scand J Med Sci Sports 2023; 33:101-103. [PMID: 36465056 DOI: 10.1111/sms.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Esteban M Gorostiaga
- Studies, Research and Sports Medicine Centre (CEIMD), Government of Navarre, Pamplona, Spain
| | - Ibai Garcia-Tabar
- Society, Sports and Physical Exercise Research Group (GIKAFIT), Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Bioaraba GIKAFIT, Vitoria-Gasteiz, Spain
| | - Luis Sánchez-Medina
- Studies, Research and Sports Medicine Centre (CEIMD), Government of Navarre, Pamplona, Spain
| |
Collapse
|
110
|
Succi PJ, Dinyer TK, Byrd MT, Voskuil CC, Bergstrom HC. Application of V̇ o2 to the Critical Power Model to Derive the Critical V̇ o2. J Strength Cond Res 2022; 36:3374-3380. [PMID: 34474433 DOI: 10.1519/jsc.0000000000004134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Succi, PJ, Dinyer, TK, Byrd, MT, Voskuil, CC, and Bergstrom, HC. Application of V̇ o2 to the critical power model to derive the critical V̇ o2 . J Strength Cond Res 36(12): 3374-3380, 2022-The purposes of this study were to (a) determine whether the critical power (CP) model could be applied to V̇ o2 to estimate the critical V̇ o2 (CV̇ o2 ) and (b) to compare the CV̇ o2 with the V̇ o2 at CP (V̇ o2 CP), the ventilatory threshold (VT), respiratory compensation point (RCP), and the CV̇ o2 without the V̇ o2 slow component (CV̇ o2 slow). Nine subjects performed a graded exercise test to exhaustion to determine V̇ o2 peak, VT, and RCP. The subjects performed 4 randomized, constant power output work bouts to exhaustion. The time to exhaustion (T Lim ), the total work (W Lim ), and the total volume of oxygen consumed with (TV̇ o2 ) and without the slow component (TV̇ o2 slow) were recorded during each trial. The linear regressions of the TV̇ o2 vs. T Lim , TV̇ o2 slow vs. T Lim , and W Lim vs. T Lim relationship were performed to derive the CV̇ o2 , CV̇ o2 slow, and CP, respectively. A 1-way repeated-measures analysis of variance ( p ≤ 0.05) with follow-up Sidak-Bonferroni corrected pairwise comparisons indicated that CV̇ o2 (42.49 ± 3.22 ml·kg -1 ·min -1 ) was greater than VT (30.80 ± 4.66 ml·kg -1 ·min -1 ; p < 0.001), RCP (36.74 ± 4.49 ml·kg -1 ·min -1 ; p = 0.001), V̇ o2 CP (36.76 ± 4.31 ml·kg -1 ·min -1 ; p < 0.001), and CV̇ o2 slow (38.26 ± 2.43 ml·kg -1 ·min -1 ; p < 0.001). However, CV̇ o2 slow was not different than V̇ o2 CP ( p = 0.140) or RCP ( p = 0.235). Thus, the CP model can be applied to V̇ o2 to derive the CV̇ o2 and theoretically is the highest metabolic steady state that can be maintained for an extended period without fatigue. Furthermore, the ability of the CV̇ o2 to quantify the metabolic cost of exercise and the inefficiency associated with the V̇ o2 slow component may provide a valuable tool for researchers and coaches to examine endurance exercise.
Collapse
Affiliation(s)
- Pasquale J Succi
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| | - Taylor K Dinyer
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| | - M Travis Byrd
- Department of Cardiovascular Disease, Mayo Clinic, Scottsdale, Arizona
| | - Caleb C Voskuil
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
111
|
Richard NA, Koehle MS. Influence and Mechanisms of Action of Environmental Stimuli on Work Near and Above the Severe Domain Boundary (Critical Power). SPORTS MEDICINE - OPEN 2022; 8:42. [PMID: 35347469 PMCID: PMC8960528 DOI: 10.1186/s40798-022-00430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/26/2022] [Indexed: 11/10/2022]
Abstract
Abstract
The critical power (CP) concept represents the uppermost rate of steady state aerobic metabolism during work. Work above CP is limited by a fixed capacity (W′) with exercise intensity being an accelerant of its depletion rate. Exercise at CP is a considerable insult to homeostasis and any work done above it will rapidly become intolerable. Humans live and exercise in situations of hypoxia, heat, cold and air pollution all of which impose a new environmental stress in addition to that of exercise. Hypoxia disrupts the oxygen cascade and consequently aerobic energy production, whereas heat impacts the circulatory system’s ability to solely support exercise performance. Cold lowers efficiency and increases the metabolic cost of exercise, whereas air pollution negatively impacts the respiratory system. This review will examine the effects imposed by environmental conditions on CP and W′ and describe the key physiological mechanisms which are affected by the environment.
Graphical Abstract
Collapse
|
112
|
Cartón-Llorente A, Roche-Seruendo LE, Mainer-Pardos E, Nobari H, Rubio-Peirotén A, Jaén-Carrillo D, García-Pinillos F. Acute effects of a 60-min time trial on power-related parameters in trained endurance runners. BMC Sports Sci Med Rehabil 2022; 14:142. [PMID: 35871673 PMCID: PMC9310469 DOI: 10.1186/s13102-022-00538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background The advent of power meters for running has raised the interest of athletes and coaches in new ways of assessing changes in running performance. The aim of this study is to determine the changes in power-related variables during and after a strenuous endurance running time trial.
Methods Twenty-one healthy male endurance runners, with a personal record of 37.2 ± 1.2 min in a 10-km race, completed a 1-h run on a motorized treadmill trying to cover as much distance as they could. Before and after the time trial the athletes were asked to perform a 3-min run at 12 km h−1. Normalized mean power output, step frequency, form power and running effectiveness were calculated using the Stryd™ power meter. Heart rate (HR) and rating of perceived exertion (RPE) were monitored, and data averaged every 5 min. Results Despite high levels of exhaustion were reached during the time trial (HRpeak = 176.5 ± 9.8 bpm; RPE = 19.2 ± 0.8), the repeated measures ANOVA resulted in no significant differences (p ≥ 0.05), between each pair of periods for any of the power-related variables. The pairwise comparison (T test) between the non-fatigued and fatigued constant 3-min runs showed an increase in step frequency (p = 0.012) and a decrease in form power (p < 0.001) under fatigue conditions, with no meaningful changes in normalized mean power output and running effectiveness. Conclusions Trained athletes are able to maintain power output and running effectiveness during a high demanding extended run. However, they preferred to reduce the intensity of vertical impacts under fatigue conditions by increasing their step frequency.
Collapse
|
113
|
Plasma Amino Acids and Acylcarnitines Are Associated with the Female but Not Male Adolescent Swimmer's Performance: An Integration between Mass Spectrometry and Complex Network Approaches. BIOLOGY 2022; 11:biology11121734. [PMID: 36552244 PMCID: PMC9774704 DOI: 10.3390/biology11121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
The main aim of this study was to compare the performance over different distances, the critical velocity (CV), and plasma acylcarnitines/amino acids of male and female adolescent swimmers. Moreover, we applied the complex network approach to identify which molecules are associated with athletes' performances. On the first day under a controlled environment, blood samples were collected after 12 h of overnight fasting. Performance trials (100, 200, 400, and 800-m) were randomly performed in the subsequent four days in a swimming pool, and CV was determined by linear distance versus time mathematical function. Metabolomic analyses were carried out on a triple quadrupole mass spectrometer performing electrospray ionization in the positive ionization mode. No difference was observed between the performance of male and female swimmers. Except for 200-m distance (p = 0.08), plasma tyrosine was positively and significantly associated with the female times during the trials (100-m, p = 0.04; 400-m, p = 0.04; 800-m, p = 0.02), and inversely associated with the CV (p = 0.02). The complex network approach showed that glycine (0.406), glutamine (0.400), arginine (0.335), free carnitine (0.355), tryptophan (0.289), and histidine (0.271) were the most influential nodes to reach tyrosine. These results revealed a thread that must be explored in further randomized/controlled designs, improving the knowledge surrounding nutrition and the performance of adolescent swimmers.
Collapse
|
114
|
Raimundo JAG, De Aguiar RA, Lisbôa FD, Ribeiro G, Caputo F. Modeling the expenditure and reconstitution of distance above critical speed during two swimming interval training sessions. Front Physiol 2022; 13:952818. [PMID: 36225303 PMCID: PMC9549135 DOI: 10.3389/fphys.2022.952818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
In swimming, the speed-time relationship provides the critical speed (CS) and the maximum distance that can be performed above CS (D′). During intermittent severe intensity exercise, a complete D′ depletion coincides with task failure, while a sub-CS intensity is required for D′ reconstitution. Therefore, determining the balance D′ remaining at any time during intermittent exercise (D'BAL) could improve training prescription. This study aimed to 1) test the D'BAL model for swimming; 2) determine an equation to estimate the time constant of the reconstitution of D' (τD′); and 3) verify if τD′ is constant during two interval training sessions with the same work intensity and duration and recovery intensity, but different recovery duration. Thirteen swimmers determined CS and D′ and performed two high-intensity interval sessions at a constant speed, with repetitions fixed at 50 m. The duration of passive recovery was based on the work/relief ratio of 2:1 (T2:1) and 4:1 (T4:1). There was a high variability between sessions for τD' (coefficient of variation of 306%). When τD′ determined for T2:1 was applied in T4:1 and vice versa, the D'BAL model was inconsistent to predict the time to exhaustion (coefficient of variation of 29 and 28%). No linear or nonlinear relationships were found between τD′ and CS, possibly due to the high within-subject variability of τD'. These findings suggest that τD′ is not constant during two high-intensity interval sessions with the same recovery intensity. Therefore, the current D'BAL model was inconsistent to track D′ responses for swimming sessions tested herein.
Collapse
|
115
|
Kreis C, Aguirre A, Cifuentes CA, Munera M, Jiménez MF, Schneider S. Predicting Perceived Exhaustion in Rehabilitation Exercises Using Facial Action Units. SENSORS (BASEL, SWITZERLAND) 2022; 22:6524. [PMID: 36080983 PMCID: PMC9459962 DOI: 10.3390/s22176524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Physical exercise has become an essential tool for treating various non-communicable diseases (also known as chronic diseases). Due to this, physical exercise allows to counter different symptoms and reduce some risk of death factors without medication. A solution to support people in doing exercises is to use artificial systems that monitor their exercise progress. While one crucial aspect is to monitor the correct physical motions for rehabilitative exercise, another essential element is to give encouraging feedback during workouts. A coaching system can track a user's exhaustion and give motivating feedback accordingly to boost exercise adherence. For this purpose, this research investigates whether it is possible to predict the subjective exhaustion level based on non-invasive and non-wearable technology. A novel data set was recorded with the facial record as the primary predictor and individual exhaustion levels as the predicted variable. 60 participants (30 male, 30 female) took part in the data recording. 17 facial action units (AU) were extracted as predictor variables for the perceived subjective exhaustion measured using the BORG scale. Using the predictor and the target variables, several regression and classification methods were evaluated aiming to predict exhaustion. The results showed that the decision tree and support vector methods provide reasonable prediction results. The limitation of the results, depending on participants being in the training data set and subjective variables (e.g., participants smiling during the exercises) were further discussed.
Collapse
Affiliation(s)
- Christopher Kreis
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Andres Aguirre
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogotá 111166, Colombia
| | - Carlos A. Cifuentes
- Bristol Robotics Laboratory, University of the West of England, Bristol BS16 1QY, UK
- School of Engineering, Science and Technology, Universidad del Rosario, Bogotá 111711, Colombia
| | - Marcela Munera
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogotá 111166, Colombia
| | - Mario F. Jiménez
- School of Engineering, Science and Technology, Universidad del Rosario, Bogotá 111711, Colombia
| | - Sebastian Schneider
- Applied Informatics Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
116
|
Kraemer MB, Garbuio ALP, Kaneko LO, Gobatto CA, Manchado-Gobatto FB, dos Reis IGM, Messias LHD. Associations among sleep, hematologic profile, and aerobic and anerobic capacity of young swimmers: A complex network approach. Front Physiol 2022; 13:948422. [PMID: 36091363 PMCID: PMC9448919 DOI: 10.3389/fphys.2022.948422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Although the link between sleep and hematological parameters is well-described, it is unclear how this integration affects the swimmer’s performance. The parameters derived from the non-invasive critical velocity protocol have been extensively used to evaluate these athletes, especially the aerobic capacity (critical velocity—CV) and the anaerobic work capacity (AWC). Thus, this study applied the complex network model to verify the influence of sleep and hematological variables on the CV and AWC of young swimmers. Thirty-eight swimmers (male, n = 20; female, n = 18) completed five experimental evaluations. Initially, the athletes attended the laboratory facilities for venous blood collection, anthropometric measurements, and application of sleep questionnaires. Over the 4 subsequent days, athletes performed randomized maximal efforts on distances of 100, 200, 400, and 800-m. The aerobic and anerobic parameters were determined by linear function between distance vs. time, where CV relates to the slope of regression and AWC to y-intercept. Weighted but untargeted networks were generated based on significant (p < 0.05) correlations among variables regardless of the correlation coefficient. Betweenness and eigenvector metrics were used to highlight the more important nodes inside the complex network. Regardless of the centrality metric, basophils and red blood cells appeared as influential nodes in the networks with AWC or CV as targets. The role of other hematologic components was also revealed in these metrics, along with sleep total time. Overall, these results trigger new discussion on the influence of sleep and hematologic profile on the swimmer’s performance, and the relationships presented by this targeted complex network can be an important tool throughout the athlete’s development.
Collapse
Affiliation(s)
- Mauricio Beitia Kraemer
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Ana Luíza Paula Garbuio
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Luisa Oliveira Kaneko
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Ivan Gustavo Masseli dos Reis
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
- *Correspondence: Leonardo Henrique Dalcheco Messias,
| |
Collapse
|
117
|
Kramer M, Thomas EJ, Pretorius C. Application of the Force-velocity-power Concept to the 3-Min all-out Running Test. Int J Sports Med 2022; 43:1196-1205. [PMID: 35952680 DOI: 10.1055/a-1873-1829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Force-velocity-power (FVP) profiling offers insights related to key factors that may enhance or hinder sprinting performances. Whether the same FVP principles could be applied to the sprinting portion of the 3-minute all-out test for running (3MT) has not been previously investigated. Twenty moderately trained participants volunteered for the study (age: 24.75 ± 3.58 yrs; height: 1.69±0.11 m; mass: 73.74±12.26 kg). After familiarization of all testing procedures, participants completed: (i) a 40-m all-out sprint test, and (ii) a 3MT. Theoretical maximal force and power, but not velocity, were significantly higher for the 40-m sprint test. Most FVP variables from the two tests were weakly to moderately correlated, with the exception of maximal velocity. Finally, maximal velocity and relative peak power were predictive of D', explaining approximately 51% of the variance in D'. Although similar maximal velocities are attained during both the 40-m sprint and the 3MT, the underlying mechanisms are markedly different. The FVP parameters obtained from either test are likely not interchangeable but do provide valuable insights regarding the potential mechanisms by which D' may be improved.
Collapse
Affiliation(s)
- Mark Kramer
- Physical Activity, Sport, and Recreation, North-West University, Potchefstroom, South Africa
| | - Emma Jayne Thomas
- Human Movement Sciences, Nelson Mandela University, Gqeberha, South Africa
| | | |
Collapse
|
118
|
Performance prediction, pacing profile and running pattern of elite 1-h track running events. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Abstract
Purpose
This study aimed at comparing the predictive accuracy of the power law (PL), 2-parameter hyperbolic (HYP) and linear (LIN) models on elite 1-h track running performance, and evaluating pacing profile and running pattern of the men’s best two 1-h track running performances of all times.
Methods
The individual running speed–distance profile was obtained for nine male elite runners using the three models. Different combinations of personal bests times (3000 m-marathon) were used to predict performance. The level of absolute agreement between predicted and actual performance was evaluated using intraclass correlation coefficient (ICC), paired t test and Bland–Altman analysis. A video analysis was performed to assess pacing profile and running pattern.
Results
Regardless of the predictors used, no significant differences (p > 0.05) between predicted and actual performances were observed for the PL model. A good agreement was found for the HYP and LIN models only when the half-marathon was the longest event predictor used (ICC = 0.718–0.737, p < 0.05). Critical speed (CS) was highly dependent on the predictors used. Unlike CS, PLV20 (i.e., the running speed corresponding to a 20-min performance estimated using the PL model) was associated with 1-h track running performances (r = 0.722–0.807, p < 0.05). An even pacing profile with minimal changes of step length and frequency was observed.
Conclusions
The PL model may offer the more realistic 1-h track running performance prediction among the models investigated. An even pacing might be the best strategy for succeeding in such running events.
Collapse
|
119
|
Bar‐Yoseph R, Radom‐Aizik S, Coronato N, Moradinasab N, Barstow TJ, Stehli A, Brown D, Cooper DM. Heart rate and gas exchange dynamic responses to multiple brief exercise bouts (MBEB) in early- and late-pubertal boys and girls. Physiol Rep 2022; 10:e15397. [PMID: 35923083 PMCID: PMC9349595 DOI: 10.14814/phy2.15397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 07/02/2022] [Indexed: 04/28/2023] Open
Abstract
Natural patterns of physical activity in youth are characterized by brief periods of exercise of varying intensity interspersed with rest. To better understand systemic physiologic response mechanisms in children and adolescents, we examined five responses [heart rate (HR), respiratory rate (RR), oxygen uptake (V̇O2 ), carbon dioxide production (V̇CO2 ), and minute ventilation (V̇E), measured breath-by-breath] to multiple brief exercise bouts (MBEB). Two groups of healthy participants (early pubertal: 17 female, 20 male; late-pubertal: 23 female, 21 male) performed five consecutive 2-min bouts of constant work rate cycle-ergometer exercise interspersed with 1-min of rest during separate sessions of low- or high-intensity (~40% or 80% peak work, respectively). For each 2-min on-transient and 1-min off-transient we calculated the average value of each cardiopulmonary exercise testing (CPET) variable (Y̅). There were significant MBEB changes in 67 of 80 on- and off-transients. Y̅ increased bout-to-bout for all CPET variables, and the magnitude of increase was greater in the high-intensity exercise. We measured the metabolic cost of MBEB, scaled to work performed, for the entire 15 min and found significantly higher V̇O2 , V̇CO2 , and V̇E costs in the early-pubertal participants for both low- and high-intensity MBEB. To reduce breath-by-breath variability in estimation of CPET variable kinetics, we time-interpolated (second-by-second), superimposed, and averaged responses. Reasonable estimates of τ (<20% coefficient of variation) were found only for on-transients of HR and V̇O2 . There was a remarkable reduction in τHR following the first exercise bout in all groups. Natural patterns of physical activity shape cardiorespiratory responses in healthy children and adolescents. Protocols that measure the effect of a previous bout on the kinetics of subsequent bouts may aid in the clinical utility of CPET.
Collapse
Affiliation(s)
- Ronen Bar‐Yoseph
- Pediatric Exercise and Genomics Research CenterUniversity of California at IrvineIrvineCaliforniaUSA
- Pediatric Pulmonary DivisionRuth Children's Hospital, Rambam Health Care CenterHaifaIsrael
| | - Shlomit Radom‐Aizik
- Pediatric Exercise and Genomics Research CenterUniversity of California at IrvineIrvineCaliforniaUSA
| | - Nicholas Coronato
- University of VirginiaCharlottesvilleVirginiaUSA
- United States Military AcademyWest PointNew YorkUSA
| | | | | | - Annamarie Stehli
- Pediatric Exercise and Genomics Research CenterUniversity of California at IrvineIrvineCaliforniaUSA
| | - Don Brown
- University of VirginiaCharlottesvilleVirginiaUSA
| | - Dan M. Cooper
- Pediatric Exercise and Genomics Research CenterUniversity of California at IrvineIrvineCaliforniaUSA
- Department of Pediatrics, Institute for Clinical and Translational Science, and Pediatric Exercise and Genomics Research CenterUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
120
|
Skeletal Muscle Biochemical Origin of Exercise Intensity Domains and their Relation to Whole-Body V̇O2 Kinetics. Biosci Rep 2022; 42:231600. [PMID: 35880531 PMCID: PMC9366749 DOI: 10.1042/bsr20220798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
This article presents the biochemical intra-skeletal-muscle basis of exercise intensity domains: moderate (M), heavy (H), very heavy (VH) and severe (S). Threshold origins are mediated by a "Pi double-threshold" mechanism of muscle fatigue, which assumes: (1) additional ATP usage, underlying muscle V̇O2 and metabolite slow components, is initiated when inorganic phosphate (Pi) exceeds a critical value (Picrit); (2) exercise is terminated because of fatigue, when Pi reaches a peak value (Pipeak); (3) the Pi increase and additional ATP usage increase mutually stimulate each other forming a positive feedback. M/H and H/VH borders are defined by Pi on-kinetics in relation to Picrit and Pipeak. The values of the ATP usage activity, proportional to power output (PO), for the M/H, H/VH and VH/S borders are lowest in untrained muscle and highest in well-trained muscle. The metabolic range between the M/H and H/VH border (or "H space") decreases with muscle training, while the difference between the H/VH and VH/S border (or "VH space") is only weakly dependent on training status. The absolute magnitude of the muscle V̇O2 slow-component, absent in M exercise, rises gradually with PO to a maximal value in H exercise, and then decreases with PO in VH and S exercise. Simulations of untrained, physically-active and well-trained muscle demonstrate that the muscle M/H border need not be identical to the whole-body M/H border determined from pulmonary V̇O2 on-kinetics and blood lactate, while suggesting that the biochemical origins of the H/VH border reside within skeletal muscle and correspond to whole-body critical power.
Collapse
|
121
|
Hovorka M, Leo P, Simon D, Prinz B, Nimmerichter A. Effects of Flat and Uphill Cycling on the Power-duration Relationship. Int J Sports Med 2022; 43:701-707. [PMID: 35180799 DOI: 10.1055/a-1749-5884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The purpose of this study was to investigate the effects of flat and uphill cycling on critical power and the work available above critical power. Thirteen well-trained endurance athletes performed three prediction trials of 10-, 4- and 1-min in both flat (0.6%) and uphill (9.8%) cycling conditions on two separate days. Critical power and the work available above critical power were estimated using various mathematical models. The best individual fit was used for further statistical analyses. Paired t-tests and Bland-Altman plots with 95% limits of agreement were applied to compare power output and parameter estimates between cycling conditions. Power output during the 10- and 4-min prediction trial and power output at critical power were not significantly affected by test conditions (all at p>0.05), but the limits of agreement between flat and uphill cycling power output and critical power estimates are too large to consider both conditions as equivalent. However, power output during the 1-min prediction trial and the work available above critical power were significantly higher during uphill compared to flat cycling (p<0.05). The results of this investigation indicate that gradient affects cycling time-trial performance, power output at critical power, and the amount of work available above critical power.
Collapse
Affiliation(s)
- Matthias Hovorka
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt for Business and Engineering, Wiener Neustadt, Austria
| | - Peter Leo
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt for Business and Engineering, Wiener Neustadt, Austria.,Department of Sports Sciences, University of Innsbruck, Innsbruck, Austria
| | - Dieter Simon
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt for Business and Engineering, Wiener Neustadt, Austria
| | - Bernhard Prinz
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt for Business and Engineering, Wiener Neustadt, Austria
| | - Alfred Nimmerichter
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt for Business and Engineering, Wiener Neustadt, Austria
| |
Collapse
|
122
|
Valenzuela PL, Mateo-March M, Muriel X, Zabala M, Lucia A, Barranco-Gil D, Millet GP, Brocherie F, Burtscher J, Burtscher M, Ryan BJ, Gioscia-Ryan RA, Perrey S, Rodrigo-Carranza V, González-Mohíno F, González-Ravé JM, Santos-Concejero J, Denadai BS, Greco CC, Casado A, Foster C, Mazzolari R, Baldrighi GN, Pastorio E, Malatesta D, Patoz A, Borrani F, Ives SJ, DeBlauw JA, Dantas de Lucas R, Borszcz FK, Fernandes Nascimento EM, Antonacci Guglielmo LG, Turnes T, Jaspers RT, van der Zwaard S, Lepers R, Louis J, Meireles A, de Souza HLR, de Oliveira GT, dos Santos MP, Arriel RA, Marocolo M, Hunter B, Meyler S, Muniz-Pumares D, Ferreira RM, Sogard AS, Carter SJ, Mickleborough TD, Saborosa GP, de Oliveira Freitas RD, Alves dos Santos PS, de Souza Ferreira JP, de Assis Manoel F, da Silva SF, Triska C, Karsten B, Sanders D, Lipksi ES, Spindler DJ, Hesselink MKC, Zacca R, Goethel MF, Pyne DB, Wood BM, Allen PE, Gabelhausen JL, Keller AM, Lige MT, Oumsang AS, Smart GL, Paris HL, Dewolf AH, Toffoli G, Martinez-Gonzalez B, Marcora SM, Terson de Paleville D, Fernandes RJ, Soares SM, Abraldes JA, Matta G, Bossi AH, McCarthy DG, Bostad W, Gibala J, Vagula M. Commentaries on Viewpoint: Using V̇o 2max as a marker of training status in athletes - can we do better? J Appl Physiol (1985) 2022; 133:148-164. [PMID: 35819399 DOI: 10.1152/japplphysiol.00224.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Pedro L Valenzuela
- Grupo de Investigación en Actividad física y Salud (PaHerg), Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Manuel Mateo-March
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain,Sport Science Department. Universidad Miguel Hernández, Elche, Spain
| | - Xabier Muriel
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain
| | - Mikel Zabala
- Department of Physical Education & Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Alejandro Lucia
- Grupo de Investigación en Actividad física y Salud (PaHerg), Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain,Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Benjamin J Ryan
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | - Stephane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, Montpellier, France
| | | | - Fernando González-Mohíno
- Sport Training Lab, University of Castilla-La Mancha, Toledo, Spain,Facultad de Ciencias de la Vida y de la Naturaleza, Universidad Nebrija, Madrid, Spain
| | | | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Benedito S Denadai
- Human Performance Laboratory, São Paulo State University, Rio Claro, Brazil
| | - Camila C Greco
- Human Performance Laboratory, São Paulo State University, Rio Claro, Brazil
| | - Arturo Casado
- Center for Sport Studies, Rey Juan Carlos University, Madrid, Spain
| | - Carl Foster
- University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Raffaele Mazzolari
- Department of Physical Education and Sport, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giulia Nicole Baldrighi
- Department of Brain and Behavioural Sciences − Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Elisa Pastorio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Davide Malatesta
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Aurélien Patoz
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Fabio Borrani
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Stephen J Ives
- Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York
| | - Justin A DeBlauw
- Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York
| | | | | | | | | | - Tiago Turnes
- Physical Effort Laboratory, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Richard T Jaspers
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Romuald Lepers
- INSERM UMR1093 CAPS, Faculty of Sport Sciences, University of Bourgogne Franche-Comté, Dijon, France
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Anderson Meireles
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Hiago L. R. de Souza
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Géssyca T de Oliveira
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo P dos Santos
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rhaí A Arriel
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Moacir Marocolo
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - B Hunter
- Department of Psychology, Sport, and Geography, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - S Meyler
- Department of Psychology, Sport, and Geography, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - D Muniz-Pumares
- Department of Psychology, Sport, and Geography, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Renato M Ferreira
- Aquatic Activities Research Group, Department of Physical Education, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Abigail S Sogard
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Stephen J Carter
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Guilherme Pereira Saborosa
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - Raphael Dinalli de Oliveira Freitas
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - Paula Souza Alves dos Santos
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - João Pedro de Souza Ferreira
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | | | - Sandro Fernandes da Silva
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - Christoph Triska
- Institute of Sport Science, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria,Leistungssport Austria, Brunn am Gebirge, Austria
| | - Bettina Karsten
- European University of Applied Sciences (EUFH), Berlin, Germany
| | - Dajo Sanders
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Elliot S Lipksi
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - David J Spindler
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Matthijs K. C. Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Rodrigo Zacca
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal,Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Márcio Fagundes Goethel
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal,Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), Faculty of Sports, University of Porto, Porto, Portugal
| | - David Bruce Pyne
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, Australia
| | - Brayden M Wood
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Peyton E Allen
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Jaden L Gabelhausen
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Alexandra M Keller
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Mast T Lige
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Alicia S Oumsang
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Greg L Smart
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Hunter L Paris
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Arthur H Dewolf
- Laboratory of Physiology and Biomechanics of Human Locomotion, Institute of Neuroscience, Université catholique de Louvain-la-Neuve, Louvain-la-Neuve, Belgium
| | - Guillaume Toffoli
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| | | | - Samuele M Marcora
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Ricardo J Fernandes
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal,Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal
| | - Susana M Soares
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal,Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal
| | - J. Arturo Abraldes
- Research Group MS&SPORT, Faculty of Sports Sciences, University of Murcia, Murcia, Spain
| | - Guilherme Matta
- Faculty of Science, Engineering and Social Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Arthur Henrique Bossi
- MeFit Prehabilitation Service, Medway NHS Foundation Trust, Gillingham, United Kingdom
| | - D G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - W Bostad
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
123
|
Podlogar T, Leo P, Spragg J. Using V̇o 2max as a marker of training status in athletes-can we do better? J Appl Physiol (1985) 2022; 133:144-147. [PMID: 35175104 PMCID: PMC9306772 DOI: 10.1152/japplphysiol.00723.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tim Podlogar
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2Faculty of Health Sciences, University of Primorska, Izola, Slovenia,3Human Performance Centre, Ljubljana, Slovenia
| | - Peter Leo
- 4Division of Performance Physiology & Prevention, Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | - James Spragg
- 5Health through Physical Activity, Lifestyle and Sports (HPALS) Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
124
|
Takahashi K, Kitaoka Y, Hatta H. Effects of endurance training on metabolic enzyme activity and transporter protein levels in the skeletal muscles of orchiectomized mice. J Physiol Sci 2022; 72:14. [PMID: 35768774 PMCID: PMC10717707 DOI: 10.1186/s12576-022-00839-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/18/2022] [Indexed: 12/20/2022]
Abstract
This study investigated whether endurance training attenuates orchiectomy (ORX)-induced metabolic alterations. At 7 days of recovery after sham operation or ORX surgery, the mice were randomized to remain sedentary or undergo 5 weeks of treadmill running training (15-20 m/min, 60 min, 5 days/week). ORX decreased glycogen concentration in the gastrocnemius muscle, enhanced phosphofructokinase activity in the plantaris muscle, and decreased lactate dehydrogenase activity in the plantaris and soleus muscles. Mitochondrial enzyme activities and protein content in the plantaris and soleus muscles were also decreased after ORX, but preserved, in part, by endurance training. In the treadmill running test (15 m/min, 60 min) after 4 weeks of training, orchiectomized sedentary mice showed impaired exercise performance, which was restored by endurance training. Thus, endurance training could be a potential therapeutic strategy to prevent the hypoandrogenism-induced decline in muscle mitochondrial content and physical performance.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan
| | - Hideo Hatta
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
125
|
Lipková L, Kumstát M, Struhár I. Determination of Critical Power Using Different Possible Approaches among Endurance Athletes: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137589. [PMID: 35805242 PMCID: PMC9265641 DOI: 10.3390/ijerph19137589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Critical power represents an important parameter of aerobic function and is the highest average effort that can be sustained for a period of time without fatigue. Critical power is determined mainly in the laboratory. Many different approaches have been applied in testing methods, and it is a difficult task to determine which testing protocol it the most suitable. This review aims to evaluate all possible tests on bicycle ergometers or bicycles used to estimate critical power and to compare them. A literature search was conducted in four databases (PubMed, Scopus, SPORTDiscus, and Web of Science) published from 2012 to 2022 and followed the PRISMA guidelines to process the review. Twenty-one articles met the eligibility criteria: records with trained or experienced endurance athletes (adults > 18), bicycle ergometer, a description of the testing protocol, and comparison of the tests. We found that the most widely used tests were the 3-min all-out tests set in a linear mode and the traditional protocol time to exhaustion. Some other alternatives could have been used but were not as regular. To summarize, the testing methods offered two main approaches in the laboratory (time to exhaustion test andthe 3-min all-out test with different protocols) and approach in the field, which is not yet completely standardized.
Collapse
|
126
|
Marwood S, Goulding RP. Over 55 years of critical power: Fact. Scand J Med Sci Sports 2022; 32:1064-1065. [PMID: 35567403 DOI: 10.1111/sms.14153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Simon Marwood
- School of Health & Sport Sciences, Liverpool Hope University, Liverpool, UK
| | - Richie P Goulding
- Laboratory for Myology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
127
|
Rothschild JA, Islam H, Bishop DJ, Kilding AE, Stewart T, Plews DJ. Factors Influencing AMPK Activation During Cycling Exercise: A Pooled Analysis and Meta-Regression. Sports Med 2022; 52:1273-1294. [PMID: 34878641 DOI: 10.1007/s40279-021-01610-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND The 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cellular energy sensor that is activated by increases in the cellular AMP/adenosine diphosphate:adenosine triphosphate (ADP:ATP) ratios and plays a key role in metabolic adaptations to endurance training. The degree of AMPK activation during exercise can be influenced by many factors that impact on cellular energetics, including exercise intensity, exercise duration, muscle glycogen, fitness level, and nutrient availability. However, the relative importance of these factors for inducing AMPK activation remains unclear, and robust relationships between exercise-related variables and indices of AMPK activation have not been established. OBJECTIVES The purpose of this analysis was to (1) investigate correlations between factors influencing AMPK activation and the magnitude of change in AMPK activity during cycling exercise, (2) investigate correlations between commonly reported measures of AMPK activation (AMPK-α2 activity, phosphorylated (p)-AMPK, and p-acetyl coenzyme A carboxylase (p-ACC), and (3) formulate linear regression models to determine the most important factors for AMPK activation during exercise. METHODS Data were pooled from 89 studies, including 982 participants (93.8% male, maximal oxygen consumption [[Formula: see text]] 51.9 ± 7.8 mL kg-1 min-1). Pearson's correlation analysis was performed to determine relationships between effect sizes for each of the primary outcome markers (AMPK-α2 activity, p-AMPK, p-ACC) and factors purported to influence AMPK signaling (muscle glycogen, carbohydrate ingestion, exercise duration and intensity, fitness level, and muscle metabolites). General linear mixed-effect models were used to examine which factors influenced AMPK activation. RESULTS Significant correlations (r = 0.19-0.55, p < .05) with AMPK activity were found between end-exercise muscle glycogen, exercise intensity, and muscle metabolites phosphocreatine, creatine, and free ADP. All markers of AMPK activation were significantly correlated, with the strongest relationship between AMPK-α2 activity and p-AMPK (r = 0.56, p < 0.001). The most important predictors of AMPK activation were the muscle metabolites and exercise intensity. CONCLUSION Muscle glycogen, fitness level, exercise intensity, and exercise duration each influence AMPK activity during exercise when all other factors are held constant. However, disrupting cellular energy charge is the most influential factor for AMPK activation during endurance exercise.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
128
|
Triska C, Karsten B. Letter to the editor: "Over 55 years of critical power: Fact or artifact?". Scand J Med Sci Sports 2022; 32:1066-1067. [PMID: 35567402 DOI: 10.1111/sms.14151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 01/19/2023]
Affiliation(s)
- Christoph Triska
- Institute of Sport Science, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria.,Leistungssport Austria, High Performance Centre, Brunn am Gebirge, Austria
| | - Bettina Karsten
- European University of Applied Sciences (EUFH), Berlin, Germany
| |
Collapse
|
129
|
Niu X, Yang K, Li Y, Wang X, Wang T, Shi L. Meta-analysis of acupuncture intervening exercise-induced fatigue. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2022. [DOI: 10.1007/s11726-022-1318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
130
|
Ferretti G, Fagoni N, Taboni A, Vinetti G, di Prampero PE. A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise. Eur J Appl Physiol 2022; 122:1317-1365. [PMID: 35217911 PMCID: PMC9132876 DOI: 10.1007/s00421-022-04901-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022]
Abstract
After a short historical account, and a discussion of Hill and Meyerhof's theory of the energetics of muscular exercise, we analyse steady-state rest and exercise as the condition wherein coupling of respiration to metabolism is most perfect. The quantitative relationships show that the homeostatic equilibrium, centred around arterial pH of 7.4 and arterial carbon dioxide partial pressure of 40 mmHg, is attained when the ratio of alveolar ventilation to carbon dioxide flow ([Formula: see text]) is - 21.6. Several combinations, exploited during exercise, of pertinent respiratory variables are compatible with this equilibrium, allowing adjustment of oxygen flow to oxygen demand without its alteration. During exercise transients, the balance is broken, but the coupling of respiration to metabolism is preserved when, as during moderate exercise, the respiratory system responds faster than the metabolic pathways. At higher exercise intensities, early blood lactate accumulation suggests that the coupling of respiration to metabolism is transiently broken, to be re-established when, at steady state, blood lactate stabilizes at higher levels than resting. In the severe exercise domain, coupling cannot be re-established, so that anaerobic lactic metabolism also contributes to sustain energy demand, lactate concentration goes up and arterial pH falls continuously. The [Formula: see text] decreases below - 21.6, because of ensuing hyperventilation, while lactate keeps being accumulated, so that exercise is rapidly interrupted. The most extreme rupture of the homeostatic equilibrium occurs during breath-holding, because oxygen flow from ambient air to mitochondria is interrupted. No coupling at all is possible between respiration and metabolism in this case.
Collapse
Affiliation(s)
- Guido Ferretti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy.
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Université de Genève, Genève, Switzerland.
| | - Nazzareno Fagoni
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | - Anna Taboni
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Université de Genève, Genève, Switzerland
| | - Giovanni Vinetti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | | |
Collapse
|
131
|
Running in the wild: Energetics explain ecological running speeds. Curr Biol 2022; 32:2309-2315.e3. [PMID: 35487220 DOI: 10.1016/j.cub.2022.03.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/29/2021] [Accepted: 03/30/2022] [Indexed: 11/23/2022]
Abstract
Human runners have long been thought to have the ability to consume a near-constant amount of energy per distance traveled, regardless of speed, allowing speed to be adapted to particular task demands with minimal energetic consequence.1-3 However, recent and more precise laboratory measures indicate that humans may in fact have an energy-optimal running speed.4-6 Here, we characterize runners' speeds in a free-living environment and determine if preferred speed is consistent with task- or energy-dependent objectives. We analyzed a large-scale dataset of free-living runners, which was collected via a commercial fitness tracking device, and found that individual runners preferred a particular speed that did not change across commonly run distances. We compared the data from lab experiments that measured participants' energy-optimal running speeds with the free-living preferred speeds of age- and gender-matched runners in our dataset and found the speeds to be indistinguishable. Human runners prefer a particular running speed that is independent of task distance and is consistent with the objective of minimizing energy expenditure. Our findings offer an insight into the biological objectives that shape human running preferences in the real world-an important consideration when examining human ecology or creating training strategies to improve performance and prevent injury.
Collapse
|
132
|
Smyth B, Maunder E, Meyler S, Hunter B, Muniz-Pumares D. Decoupling of Internal and External Workload During a Marathon: An Analysis of Durability in 82,303 Recreational Runners. Sports Med 2022; 52:2283-2295. [PMID: 35511416 PMCID: PMC9388405 DOI: 10.1007/s40279-022-01680-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 11/20/2022]
Abstract
Aim This study characterised the decoupling of internal-to-external workload in marathon running and investigated whether decoupling magnitude and onset could improve predictions of marathon performance. Methods The decoupling of internal-to-external workload was calculated in 82,303 marathon runners (13,125 female). Internal workload was determined as a percentage of maximum heart rate, and external workload as speed relative to estimated critical speed (CS). Decoupling magnitude (i.e., decoupling in the 35–40 km segment relative to the 5–10 km segment) was classified as low (< 1.1), moderate (≥ 1.1 but < 1.2) or high (≥ 1.2). Decoupling onset was calculated when decoupling exceeded 1.025. Results The overall internal-to-external workload decoupling experienced was 1.16 ± 0.22, first detected 25.2 ± 9.9 km into marathon running. The low decoupling group (34.5% of runners) completed the marathon at a faster relative speed (88 ± 6% CS), had better marathon performance (217.3 ± 33.1 min), and first experienced decoupling later in the marathon (33.4 ± 9.0 km) compared to those in the moderate (32.7% of runners, 86 ± 6% CS, 224.9 ± 31.7 min, and 22.6 ± 7.7 km), and high decoupling groups (32.8% runners, 82 ± 7% CS, 238.5 ± 30.7 min, and 19.1 ± 6.8 km; all p < 0.01). Compared to females, males’ decoupling magnitude was greater (1.17 ± 0.22 vs. 1.12 ± 0.16; p < 0.01) and occurred earlier (25.0 ± 9.8 vs. 26.3 ± 10.6 km; p < 0.01). Marathon performance was associated with the magnitude and onset of decoupling, and when included in marathon performance models utilising CS and the curvature constant, prediction error was reduced from 6.45 to 5.16%. Conclusion Durability characteristics, assessed as internal-to-external workload ratio, show considerable inter-individual variability, and both its magnitude and onset are associated with marathon performance.
Collapse
Affiliation(s)
- Barry Smyth
- Insight Centre for Data Analytics, School of Computer Science, University College Dublin, Dublin, Ireland.
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University Technology, Auckland, New Zealand
| | - Samuel Meyler
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Ben Hunter
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Daniel Muniz-Pumares
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
133
|
Gorostiaga EM, Garcia-Tabar I, Sánchez-Medina L. Response to commentaries on: "Over 55 years of critical power: fact or artifact?". Scand J Med Sci Sports 2022; 32:935-936. [PMID: 35403304 DOI: 10.1111/sms.14152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Esteban M Gorostiaga
- Studies, Research and Sports Medicine Centre (CEIMD), Government of Navarre, Pamplona, Spain
| | - Ibai Garcia-Tabar
- Society, Sports and Physical Exercise Research Group (GIKAFIT), Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biobara, GIKAFIT, Vitoria-Gasteiz, Spain
| | - Luis Sánchez-Medina
- Studies, Research and Sports Medicine Centre (CEIMD), Government of Navarre, Pamplona, Spain
| |
Collapse
|
134
|
Broxterman RM, Craig JC, Kirby BS. Critical Power: Over 95 years of evidence and evolution. Scand J Med Sci Sports 2022; 32:933-934. [PMID: 35403303 DOI: 10.1111/sms.14154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Center on Aging, University of Utah, Salt Lake City, Utah, USA
| | - Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Brett S Kirby
- Nike Sport Research Lab, Nike, Inc., Beaverton, Oregon, USA
| |
Collapse
|
135
|
Drobnic F, Lizarraga MA, Caballero-García A, Cordova A. Coenzyme Q 10 Supplementation and Its Impact on Exercise and Sport Performance in Humans: A Recovery or a Performance-Enhancing Molecule? Nutrients 2022; 14:1811. [PMID: 35565783 PMCID: PMC9104583 DOI: 10.3390/nu14091811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Evidence exists to suggest that ROS induce muscular injury with a subsequent decrease in physical performance. Supplementation with certain antioxidants is important for physically active individuals to hasten recovery from fatigue and to prevent exercise damage. The use of nutritional supplements associated with exercise, with the aim of improving health, optimizing training or improving sports performance, is a scientific concern that not only drives many research projects but also generates great expectations in the field of their application in pathology. Since its discovery in the 1970s, coenzyme Q10 (CoQ10) has been one of the most controversial molecules. The interest in determining its true value as a bioenergetic supplement in muscle contraction, antioxidant or in the inflammatory process as a muscle protector in relation to exercise has been studied at different population levels of age, level of physical fitness or sporting aptitude, using different methodologies of effort and with the contribution of data corresponding to very diverse variables. Overall, in the papers reviewed, although the data are inconclusive, they suggest that CoQ10 supplementation may be an interesting molecule in health or disease in individuals without a pathological deficiency and when used for optimising exercise performance. Considering the results observed in the literature, and as a conclusion of this systematic review, we could say that it is an interesting molecule in sports performance. However, clear approaches should be considered when conducting future research.
Collapse
Affiliation(s)
| | | | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR: “Physical Exercise and Aging”, Campus Universitario “Los Pajaritos”, University of Valladolid, 42004 Soria, Spain;
| | - Alfredo Cordova
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR: “Physical Exercise and Aging”, Campus Universitario “Los Pajaritos”, University of Valladolid, 42004 Soria, Spain;
| |
Collapse
|
136
|
Trade-Off Between Maximal Power Output and Fatigue Resistance of the Knee Extensors for Older Men. J Aging Phys Act 2022; 30:1003-1013. [PMID: 35453123 DOI: 10.1123/japa.2021-0384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
This study investigated associations of fatigue resistance determined by an exercise-induced decrease in neuromuscular power with prefatigue neuromuscular strength and power of the knee extensors in 31 older men (65-88 years). A fatigue task consisted of 50 consecutive maximal effort isotonic knee extensions (resistance: 20% of prefatigue isometric maximal voluntary contraction torque) over a 70° range of motion. The average of the peak power values calculated from the 46th to 50th contractions during the fatigue task was normalized to the prefatigue peak power value, which was defined as neuromuscular fatigue resistance. Neuromuscular fatigue resistance was negatively associated with prefatigue maximal power output (r = -.530) but not with prefatigue maximal voluntary contraction torque (r = -.252). This result highlights a trade-off between prefatigue maximal power output and neuromuscular fatigue resistance, implying that an improvement in maximal power output might have a negative impact on neuromuscular fatigue resistance.
Collapse
|
137
|
Sex Differences in VO 2max and the Impact on Endurance-Exercise Performance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19094946. [PMID: 35564339 PMCID: PMC9105160 DOI: 10.3390/ijerph19094946] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
It was not until 1984 that women were permitted to compete in the Olympic marathon. Today, more women than men participate in road racing in all distances except the marathon where participation is near equal. From the period of 1985 to 2004, the women’s marathon record improved at a rate three times greater than men’s. This has led many to question whether women are capable of surpassing men despite the fact that there remains a 10–12% performance gap in all distance events. The progressive developments in sports performance research and training, beginning with A.V. Hill’s establishment of the concept of VO2max, have allowed endurance athletes to continue performance feats previously thought to be impossible. However, even today women are significantly underrepresented in sports performance research. By focusing more research on the female physiology and sex differences between men and women, we can better define how women differ from men in adapting to training and potentially use this information to improve endurance-exercise performance in women. The male advantage in endurance-exercise performance has commonly been attributed to their higher VO2max, even when expressed as mL/kg/min. It is widely known that oxygen delivery is the primary limiting factor in elite athletes when it comes to improving VO2max, but little research has explored the sex differences in oxygen delivery. Thus, the purpose of this review is to highlight what is known about the sex differences in the physiological factors contributing to VO2max, more specifically oxygen delivery, and the impacts on performance.
Collapse
|
138
|
Caen K, Bourgois JG, Stassijns E, Boone J. A longitudinal study on the interchangeable use of whole-body and local exercise thresholds in cycling. Eur J Appl Physiol 2022; 122:1657-1670. [PMID: 35435465 PMCID: PMC9014408 DOI: 10.1007/s00421-022-04942-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/23/2022] [Indexed: 12/03/2022]
Abstract
Purpose This study longitudinally examined the interchangeable use of critical power (CP), the maximal lactate steady state (MLSS) and the respiratory compensation point (RCP) (i.e., whole-body thresholds), and breakpoints in muscle deoxygenation (m[HHb]BP) and muscle activity (iEMGBP) (i.e., local thresholds). Methods Twenty-one participants were tested on two timepoints (T1 and T2) with a 4-week period (study 1: 10 women, age = 27 ± 3 years, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{{2{\text{peak}}}}$$\end{document}V˙O2peak = 43.2 ± 7.3 mL min−1kg−1) or a 12-week period (study 2: 11 men, age = 25 ± 4 years, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{{2{\text{peak}}}}$$\end{document}V˙O2peak = 47.7 ± 5.9 mL min−1 kg−1) in between. The test battery included one ramp incremental test (to determine RCP, m[HHb]BP and iEMGBP) and a series of (sub)maximal constant load tests (to determine CP and MLSS). All thresholds were expressed as oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{2}$$\end{document}V˙O2) and equivalent power output (PO) for comparison. Results None of the thresholds were significantly different in study 1 (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{2}$$\end{document}V˙O2: P = 0.143, PO: P = 0.281), but differences between whole-body and local thresholds were observed in study 2 (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{2}$$\end{document}V˙O2: P < 0.001, PO: P = 0.024). Whole-body thresholds showed better 4-week test–retest reliability (TEM = 88–125 mL min−1 or 6–10 W, ICC = 0.94–0.98) compared to local thresholds (TEM = 189–195 mL min−1 or 15–18 W, ICC = 0.58–0.89). All five thresholds were strongly associated at T1 and T2 (r = 0.75–0.99), but their changes from T1 to T2 were mostly uncorrelated (r = − 0.41–0.83). Conclusion Whole-body thresholds (CP/MLSS/RCP) showed a close and consistent coherence taking into account a 3–6%-bandwidth of typical variation. In contrast, local thresholds (m[HHb]BP/iEMGBP) were characterized by higher variability and did not consistently coincide with the whole-body thresholds. In addition, we found that most thresholds evolved independently of each other over time. Together, these results do not justify the interchangeable use of whole-body and local exercise thresholds in practice.
Collapse
Affiliation(s)
- Kevin Caen
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.,Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan G Bourgois
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.,Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Stassijns
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium. .,Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
139
|
Korzeniewski B. V˙O2 On-Kinetics-Critical Power Relationship: Correlation But Not Direct Causal Link. Exerc Sport Sci Rev 2022; 50:104. [PMID: 35275896 DOI: 10.1249/jes.0000000000000286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
140
|
Saif A, Khan Z, Parveen A. Critical power as a fatigue threshold in sports: A scoping review. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
141
|
Tschakert G, Handl T, Weiner L, Birnbaumer P, Mueller A, Groeschl W, Hofmann P. Exercise duration: Independent effects on acute physiologic responses and the need for an individualized prescription. Physiol Rep 2022; 10:e15168. [PMID: 35146958 PMCID: PMC8831952 DOI: 10.14814/phy2.15168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/30/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
An individualization of exercise prescription is implemented mainly in terms of intensity but not for duration. To survey the need for an individualized exercise duration prescription, we investigated acute physiologic responses during constant‐load exercise of maximal duration (tmax) and determined so‐called duration thresholds. Differences between absolute (min) and relative terms (% tmax) of exercise duration were analyzed. Healthy young and trained male and female participants (n = 11) performed an incremental exercise test and one tmax constant‐load exercise test at a target intensity of 10% of maximal power output below the second lactate turn point (LTP2). Blood lactate, heart rate, and spirometric data were measured during all tests. tmax was markedly different across subjects (69.6 ± 14.8 min; range: 40–90 min). However, distinct duration phases separated by duration thresholds (DTh) were found in most measured variables. These duration thresholds (except DTh1) were significantly related to tmax (DTh2: r2 = 0.90, p < 0.0001; DTh3: r2 = 0.98, p < 0.0001) and showed substantial interindividual differences if expressed in absolute terms (DTh2: 24.8 ± 6.0 min; DTh3: 47.4 ± 10.6 min) but not in relative terms (DTh2: 35.4 ± 2.7% tmax; DTh3: 67.9 ± 2.4% tmax). Our data showed that (1) maximal duration was individually different despite the same relative intensity, (2) duration thresholds that were related to tmax could be determined in most measured variables, and (3) duration thresholds were comparable between subjects if expressed in relative terms. We therefore conclude that duration needs to be concerned as an independent variable of exercise prescription.
Collapse
Affiliation(s)
- Gerhard Tschakert
- Institute of Human Movement Science, Sport & Health, University of Graz, Graz, Austria
| | - Tanja Handl
- Institute of Human Movement Science, Sport & Health, University of Graz, Graz, Austria
| | - Lena Weiner
- Institute of Human Movement Science, Sport & Health, University of Graz, Graz, Austria
| | - Philipp Birnbaumer
- Institute of Human Movement Science, Sport & Health, University of Graz, Graz, Austria
| | - Alexander Mueller
- Institute of Human Movement Science, Sport & Health, University of Graz, Graz, Austria
| | - Werner Groeschl
- Institute of Human Movement Science, Sport & Health, University of Graz, Graz, Austria
| | - Peter Hofmann
- Institute of Human Movement Science, Sport & Health, University of Graz, Graz, Austria
| |
Collapse
|
142
|
Petrigna L, Karsten B, Delextrat A, Pajaujiene S, Mani D, Paoli A, Palma A, Bianco A. An updated methodology to estimate critical velocity in front crawl swimming: A scoping review. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
143
|
Leo P, Spragg J, Podlogar T, Lawley JS, Mujika I. Power profiling and the power-duration relationship in cycling: a narrative review. Eur J Appl Physiol 2022; 122:301-316. [PMID: 34708276 PMCID: PMC8783871 DOI: 10.1007/s00421-021-04833-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022]
Abstract
Emerging trends in technological innovations, data analysis and practical applications have facilitated the measurement of cycling power output in the field, leading to improvements in training prescription, performance testing and race analysis. This review aimed to critically reflect on power profiling strategies in association with the power-duration relationship in cycling, to provide an updated view for applied researchers and practitioners. The authors elaborate on measuring power output followed by an outline of the methodological approaches to power profiling. Moreover, the deriving a power-duration relationship section presents existing concepts of power-duration models alongside exercise intensity domains. Combining laboratory and field testing discusses how traditional laboratory and field testing can be combined to inform and individualize the power profiling approach. Deriving the parameters of power-duration modelling suggests how these measures can be obtained from laboratory and field testing, including criteria for ensuring a high ecological validity (e.g. rider specialization, race demands). It is recommended that field testing should always be conducted in accordance with pre-established guidelines from the existing literature (e.g. set number of prediction trials, inter-trial recovery, road gradient and data analysis). It is also recommended to avoid single effort prediction trials, such as functional threshold power. Power-duration parameter estimates can be derived from the 2 parameter linear or non-linear critical power model: P(t) = W'/t + CP (W'-work capacity above CP; t-time). Structured field testing should be included to obtain an accurate fingerprint of a cyclist's power profile.
Collapse
Affiliation(s)
- Peter Leo
- Division of Performance Physiology & Prevention, Department of Sport Science, University Innsbruck, Innsbruck, Austria.
| | - James Spragg
- Health Physical Activity Lifestyle Sport Research Centre (HPALS), University of Cape Town, Cape Town, South Africa
| | - Tim Podlogar
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Justin S Lawley
- Division of Performance Physiology & Prevention, Department of Sport Science, University Innsbruck, Innsbruck, Austria
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country, Spain
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
144
|
Baláš J, Gajdošík J, Giles D, Fryer S. The Estimation of Critical Angle in Climbing as a Measure of Maximal Metabolic Steady State. Front Physiol 2022; 12:792376. [PMID: 35069253 PMCID: PMC8766676 DOI: 10.3389/fphys.2021.792376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose: Sport climbing is a technical, self-paced sport, and the workload is highly variable and mainly localized to the forearm flexors. It has not proved effective to control intensity using measures typical of other sports, such as gas exchange thresholds, heart rate, or blood lactate. Therefore, the purposes of the study were to (1) determine the possibility of applying the mathematical model of critical power to the estimation of a critical angle (CA) as a measure of maximal metabolic steady state in climbing and (2) to compare this intensity with the muscle oxygenation breakpoint (MOB) determined during an exhaustive climbing task. Materials and Methods: Twenty-seven sport climbers undertook three to five exhaustive ascents on a motorized treadwall at differing angles to estimate CA, and one exhaustive climbing test with a progressive increase in angle to determine MOB, assessed using near-infrared spectroscopy (NIRS). Results: Model fit for estimated CA was very high (R2 = 0.99; SEE = 1.1°). The mean peak angle during incremental test was −17 ± 5°, and CA from exhaustive trials was found at −2.5 ± 3.8°. Nine climbers performing the ascent 2° under CA were able to sustain the task for 20 min with perceived exertion at 12.1 ± 1.9 (RPE). However, climbing 2° above CA led to task failure after 15.9 ± 3.0 min with RPE = 16.4 ± 1.9. When MOB was plotted against estimated CA, good agreement was stated (ICC = 0.80, SEM = 1.5°). Conclusion: Climbers, coaches, and researchers may use a predefined route with three to five different wall angles to estimate CA as an analog of critical power to determine a maximal metabolic steady state in climbing. Moreover, a climbing test with progressive increases in wall angle using MOB also appears to provide a valid estimate of CA.
Collapse
Affiliation(s)
- Jiří Baláš
- Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Jan Gajdošík
- Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - David Giles
- Lattice Training Ltd., Chesterfield, United Kingdom
| | - Simon Fryer
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, United Kingdom
| |
Collapse
|
145
|
Salas-Montoro JA, Mateo March M, Sánchez-Muñoz C, Zabala M. Determination of second lactate threshold using near-infrared spectroscopy in elite cyclists. Int J Sports Med 2022; 43:721-728. [PMID: 35021246 DOI: 10.1055/a-1738-0252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The use of near-infrared spectroscopy could be an interesting alternative to other invasive or expensive methods to estimate the second lactate threshold. Our objective was to compare the intensities of the muscle oxygen saturation breakpoint obtained with the Humon Hex and the second lactate threshold in elite cyclists. Ninety cyclists performed a maximal graded exercise test. Blood capillary lactate was obtained at the end of steps and muscle oxygenation was continuously monitored. There were no differences (p>0.05) between muscle oxygen oxygenation breakpoint and second lactate threshold neither in power nor in heart rate, nor when these values were relativized as a percentage of maximal aerobic power or maximum heart rate. There were also no differences when men and women were studied separately. Both methods showed a highly correlation in power (r=0.914), percentage of maximal aerobic power (r=0.752), heart rate (r=0.955), and percentage of maximum heart rate (r=0.903). Bland-Altman resulted in a mean difference of 0.05±0.27 W·kg-1, 0.91±4.93%, 0.63±3.25 bpm, and 0.32±1.69% for power, percentage of maximal aerobic power, heart rate and percentage of maximum heart rate respectively. These findings suggest that Humon may be a non-invasive and low-cost alternative to estimate the second lactate threshold intensity in elite cyclists.
Collapse
Affiliation(s)
- José-Antonio Salas-Montoro
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Manuel Mateo March
- Health Psichology, Sport Research Centre, Miguel Hernandez University of Elche, Alicante, Spain.,BMX, Spanish Cycling Federation, Alicante, Spain
| | - Cristóbal Sánchez-Muñoz
- Department of Physical Activity and Sport, Faculty of Physical Activity and Sport Sciences (University of Granada), Granada, Spain
| | - Mikel Zabala
- Department of Physical Activity and Sport, Faculty of Physical Activity and Sport Sciences (University of Granada), Granada, Spain.,Department of Physical Education and Sport, Faculty of Physical Activity and Sport Sciences, Granada, Spain
| |
Collapse
|
146
|
Briand J, Tremblay J, Thibault G. Can Popular High-Intensity Interval Training (HIIT) Models Lead to Impossible Training Sessions? Sports (Basel) 2022; 10:sports10010010. [PMID: 35050975 PMCID: PMC8822890 DOI: 10.3390/sports10010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/25/2023] Open
Abstract
High-Intensity Interval Training (HIIT) is a time-efficient training method suggested to improve health and fitness for the clinical population, healthy subjects, and athletes. Many parameters can impact the difficulty of HIIT sessions. This study aims to highlight and explain, through logical deductions, some limitations of the Skiba and Coggan models, widely used to prescribe HIIT sessions in cycling. We simulated 6198 different HIIT training sessions leading to exhaustion, according to the Skiba and Coggan-Modified (modification of the Coggan model with the introduction of an exhaustion criterion) models, for three fictitious athlete profiles (Time-Trialist, All-Rounder, Sprinter). The simulation revealed impossible sessions (i.e., requiring athletes to surpass their maximal power output over the exercise interval duration), characterized by a few short exercise intervals, performed in the severe and extreme intensity domains, alternating with long recovery bouts. The fraction of impossible sessions depends on the athlete profile and ranges between 4.4 and 22.9% for the Skiba model and 0.6 and 3.2% for the Coggan-Modified model. For practitioners using these HIIT models, this study highlights the importance of understanding these models’ inherent limitations and mathematical assumptions to draw adequate conclusions from their use to prescribe HIIT sessions.
Collapse
Affiliation(s)
- Jérémy Briand
- Institut National du Sport du Québec, 4141 Avenue Pierre-De-Coubertin, Montreal, QC H1V 3N7, Canada; (J.B.); (G.T.)
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, 2100 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Jonathan Tremblay
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, 2100 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Correspondence:
| | - Guy Thibault
- Institut National du Sport du Québec, 4141 Avenue Pierre-De-Coubertin, Montreal, QC H1V 3N7, Canada; (J.B.); (G.T.)
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, 2100 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
147
|
Kim KJ, Rivas E, Prejean B, Frisco D, Young M, Downs M. Novel Computerized Method for Automated Determination of Ventilatory Threshold and Respiratory Compensation Point. Front Physiol 2022; 12:782167. [PMID: 34975535 PMCID: PMC8718913 DOI: 10.3389/fphys.2021.782167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction: The ventilatory threshold (named as VT1) and the respiratory compensation point (named as VT2) describe prominent changes of metabolic demand and exercise intensity domains during an incremental exercise test. Methods: A novel computerized method based on the optimization method was developed for automatically determining VT1 and VT2 from expired air during a progressive maximal exercise test. A total of 109 peak cycle tests were performed by members of the US astronaut corps (74 males and 35 females). We compared the automatically determined VT1 and VT2 values against the visual subjective and independent analyses of three trained evaluators. We also characterized VT1 and VT2 and the respective absolute and relative work rates and distinguished differences between sexes. Results: The automated compared to the visual subjective values were analyzed for differences with t test, for agreement with Bland–Altman plots, and for equivalence with a two one-sided test approach. The results showed that the automated and visual subjective methods were statistically equivalent, and the proposed approach reliably determined VT1 and VT2 values. Females had lower absolute O2 uptake, work rate, and ventilation, and relative O2 uptake at VT1 and VT2 compared to men (p ≤ 0.04). VT1 and VT2 occurred at a greater relative percentage of their peak VO2 for females (67 and 88%) compared to males (55 and 74%; main effect for sex: p < 0.001). Overall, VT1 occurred at 58% of peak VO2, and VT2 occurred at 79% of peak VO2 (p < 0.0001). Conclusion: Improvements in determining of VT1 and VT2 by automated analysis are time efficient, valid, and comparable to subjective visual analysis and may provide valuable information in research and clinical practice as well as identifying exercise intensity domains of crewmembers in space.
Collapse
Affiliation(s)
| | | | | | | | | | - Meghan Downs
- NASA Johnson Space Center, Houston, TX, United States
| |
Collapse
|
148
|
Ozkaya O, Balci GA, As H, Cabuk R, Norouzi M. Grey Zone: A Gap Between Heavy and Severe Exercise Domain. J Strength Cond Res 2022; 36:113-120. [PMID: 32149880 DOI: 10.1519/jsc.0000000000003427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
ABSTRACT Ozkaya, O, Balci, GA, As, H, Cabuk, R, and Norouzi, M. Grey zone: A gap between heavy and severe exercise domain. J Strength Cond Res 36(1): 113-120, 2022-The aim of this study was to determine a critical threshold (CT) interpreted as "the highest exercise intensity where V̇o2 can be stabilized before reaching 95% of V̇o2max (V̇o2peak)" and compare it with commonly used anaerobic threshold indices. Ten well-trained male cyclists volunteered for this study. Ventilatory threshold (VT) was determined from incremental tests. Multisession constant-load trials were performed to reveal V̇o2max. Mathematically modeled critical power (CP) was estimated through the best individual fit parameter method. Maximal lactate steady state (MLSS) was detected by 30-minute constant-load exercises. The individual CT load of each cyclist was tested by constant-load exercises to exhaustion with +15 W intervals until minimal power output to elicit V̇o2peak. The results showed that work rate corresponding to CT (329.5 ± 41.5 W) was significantly greater than that of the MLSS (269.5 ± 38.5 W; p = 0.000), VT (279.6 ± 33 W; p = 0.000), and CP (306.3 ± 39.4 W; p = 0.000), and CP overestimated both VT and MLSS (p = 0.000). There was no significant V̇o2 difference between the 10th and 30th minute of MLSS and MLSS + 15 W exercise (0.36-0.13 ml·min-1·kg-1; p = 0.621). Exercising V̇o2 response of MLSS + 15 W could not exceed the level of 95% V̇o2max (57.02 ± 3.87 ml·min-1·kg-1 and 87.2 ± 3.1% of V̇o2max; p = 0.000), whereas V̇o2 responses greater than 95% of V̇o2max were always attained during exercises performed at CT + 15 W (64.52 ± 4.37 ml·min-1·kg-1 and 98.6 ± 1% of V̇o2max; p > 0.05). In conclusion, this study indicates that there is a "grey zone" between heavy and severe exercise domain. This information may play a key role in enhancing athletic performance by improving the quality of training programs.
Collapse
Affiliation(s)
- Ozgur Ozkaya
- Coaching Education Department, Faculty of Sport Sciences, Ege University, Bornova, Turkey
| | - Gorkem Aybars Balci
- Coaching Education Department, Faculty of Sport Sciences, Ege University, Bornova, Turkey
| | - Hakan As
- Department of Sport and Health Sciences, Faculty of Sport Sciences, Ege University, Bornova, Turkey ; and
| | - Refik Cabuk
- School of Physical Education and Sports, Coaching Education Department, Bayburt University, Bayburt, Turkey
| | - Mahdi Norouzi
- Department of Sport and Health Sciences, Faculty of Sport Sciences, Ege University, Bornova, Turkey ; and
| |
Collapse
|
149
|
Hutchinson MJ, Goosey-Tolfrey VL. Rethinking aerobic exercise intensity prescription in adults with spinal cord injury: time to end the use of "moderate to vigorous" intensity? Spinal Cord 2022; 60:484-490. [PMID: 34880442 PMCID: PMC9209328 DOI: 10.1038/s41393-021-00733-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022]
Abstract
STUDY DESIGN Cohort study. OBJECTIVES To investigate and critique different methods for aerobic exercise intensity prescription in adults with spinal cord injury (SCI). SETTING University laboratory in Loughborough, UK. METHODS Trained athletes were split into those with paraplegia (PARA; n = 47), tetraplegia (TETRA; n = 20) or alternate health condition (NON-SCI; n = 67). Participants completed a submaximal step test with 3 min stages, followed by graded exercise test to exhaustion. Handcycling, arm crank ergometry or wheelchair propulsion were performed depending on the sport of the participant. Oxygen uptake (V̇O2), heart rate (HR), blood lactate concentration ([BLa]) and ratings of perceived exertion (RPE) on Borg's RPE scale were measured throughout. Lactate thresholds were identified according to log-V̇O2 plotted against log-[BLa] (LT1) and 1.5 mmol L-1 greater than LT1 (LT2). These were used to demarcate moderate (<LT1), heavy (>LT1, < LT2) and severe (>LT2) exercise intensity domains. RESULTS Associations between percentage of peak V̇O2 (%V̇O2peak) and HR (%HRpeak) with RPE differed between PARA and TETRA. At LT1 and LT2, %V̇O2peak and %HRpeak were significantly greater in TETRA compared to PARA and NON-SCI (P < 0.05). The variation in %V̇O2peak and %HRpeak at lactate thresholds resulted in large variability in the domain distribution at fixed %V̇O2peak and %HRpeak. CONCLUSIONS Fixed %V̇O2peak and %HRpeak should not be used for aerobic exercise intensity prescription in adults with SCI as the method does not lead to uniform exercise intensity domain distribution.
Collapse
Affiliation(s)
- Michael J. Hutchinson
- grid.6571.50000 0004 1936 8542Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Victoria L. Goosey-Tolfrey
- grid.6571.50000 0004 1936 8542Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
150
|
Teso M, Colosio AL, Pogliaghi S. An Intensity-dependent Slow Component of HR Interferes with Accurate Exercise Implementation in Postmenopausal Women. Med Sci Sports Exerc 2021; 54:655-664. [PMID: 34967799 PMCID: PMC8920010 DOI: 10.1249/mss.0000000000002835] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heart rate (HR) targets are commonly used to administer exercise intensity in sport and clinical practice. However, as exercise protracts, a time-dependent dissociation between HR and metabolism can lead to a misprescription of the intensity ingredient of the exercise dose.
Collapse
Affiliation(s)
- Massimo Teso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy Department of Movement and Sports Sciences, Ghent University, Watersportlaan2, Ghent, Belgium
| | | | | |
Collapse
|