101
|
Mancini FR, Laine JE, Tarallo S, Vlaanderen J, Vermeulen R, van Nunen E, Hoek G, Probst-Hensch N, Imboden M, Jeong A, Gulliver J, Chadeau-Hyam M, Nieuwenhuijsen M, de Kok TM, Piepers J, Krauskopf J, Kleinjans JCS, Vineis P, Naccarati A. microRNA expression profiles and personal monitoring of exposure to particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114392. [PMID: 32276129 DOI: 10.1016/j.envpol.2020.114392] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/10/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
An increasing number of findings from epidemiological studies support associations between exposure to air pollution and the onset of several diseases, including pulmonary, cardiovascular and neurodegenerative diseases, and malignancies. However, intermediate, and potentially mediating, biological mechanisms associated with exposure to air pollutants are largely unknown. Previous studies on the human exposome have shown that the expression of certain circulating microRNAs (miRNAs), regulators of gene expression, are altered upon exposure to traffic-related air pollutants. In the present study, we investigated the relationship between particulate matter (PM) smaller than 2.5 μm (PM2.5), PM2.5 absorbance (as a proxy of black carbon and soot), and ultrafine-particles (UFP, smaller than 0.1 μm), measured in healthy volunteers by 24 h personal monitoring (PEM) sessions and global expression levels of peripheral blood miRNAs. The PEM sessions were conducted in four European countries, namely Switzerland (Basel), United Kingdom (Norwich), Italy (Turin), and The Netherlands (Utrecht). miRNAs expression levels were analysed using microarray technology on blood samples from 143 participants. Seven miRNAs, hsa-miR-24-3p, hsa-miR-4454, hsa-miR-4763-3p, hsa-miR-425-5p, hsa-let-7d-5p, hsa-miR-502-5p, and hsa-miR-505-3p were significantly (FDR corrected) expressed in association with PM2.5 personal exposure, while no significant association was found between miRNA expression and the other pollutants. The results obtained from this investigation suggest that personal exposure to PM2.5 is associated with miRNA expression levels, showing the potential for these circulating miRNAs as novel biomarkers for air pollution health risk assessment.
Collapse
Affiliation(s)
- Francesca Romana Mancini
- CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, 94805, Villejuif, France; Gustave Roussy, F-94805, Villejuif, France
| | - Jessica E Laine
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, 10060 Candiolo, Turin, Italy
| | - Jelle Vlaanderen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Roel Vermeulen
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom; Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Erik van Nunen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Gerard Hoek
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health (TPH) Institute, Basel, Switzerland; University of Basel, Switzerland
| | - Medea Imboden
- Swiss Tropical and Public Health (TPH) Institute, Basel, Switzerland; University of Basel, Switzerland
| | - Ayoung Jeong
- Swiss Tropical and Public Health (TPH) Institute, Basel, Switzerland; University of Basel, Switzerland
| | - John Gulliver
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom; University of Leicester, Leicester, United Kingdom
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Mark Nieuwenhuijsen
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Jolanda Piepers
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Paolo Vineis
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, 10060 Candiolo, Turin, Italy; Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, 10060 Candiolo, Turin, Italy.
| |
Collapse
|
102
|
Farahani M, Rezaei-Tavirani M, Arjmand B. A systematic review of microRNA expression studies with exposure to bisphenol A. J Appl Toxicol 2020; 41:4-19. [PMID: 32662106 DOI: 10.1002/jat.4025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA), as a common industrial component, is generally consumed in the synthesis of polymeric materials. To gain a deeper understanding of the detrimental effects of BPA, BPA-induced microRNA (miRNA) alterations were investigated. A systematic search was performed in the PubMed, SCOPUS and Web of Science databases to evoke relevant published data up to August 10, 2019. We identified altered miRNAs that have been repeated in at least three studies. Moreover, miRNA homology analysis between human and nonhuman species was performed to determine the toxicity signatures of BPA in human exposure. In addition, to reflect the effects of environmental exposure levels of BPA, the study designs were categorized into two groups, including low and high doses according to the previous definitions. In total, 28 studies encountered our criteria and 17 miRNAs were identified that were differentially expressed in at least three independent studies. Upregulating miR-146a and downregulating miR-192, miR-134, miR-27b and miR-324 were found in three studies. MiR-122 and miR-29a were upregulated in four studies after BPA exposure, and miR-21 was upregulated in six studies. The results indicate that BPA at low-level exposures can also alter miRNA expression in response to toxicity. Finally, the miRNA-related pathways showed that BPA seriously can affect human health through various cell signaling pathways, which were predictable and consistent with existing studies. Overall, our findings suggest that further studies should be conducted to examine the role of miRNA level changes in human BPA exposure.
Collapse
Affiliation(s)
- Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
103
|
Paesano L, Marmiroli M, Bianchi MG, White JC, Bussolati O, Zappettini A, Villani M, Marmiroli N. Differences in toxicity, mitochondrial function and miRNome in human cells exposed in vitro to Cd as CdS quantum dots or ionic Cd. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122430. [PMID: 32155524 DOI: 10.1016/j.jhazmat.2020.122430] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Cadmium is toxic to humans, although Cd-based quantum dots exerts less toxicity. Human hepatocellular carcinoma cells (HepG2) and macrophages (THP-1) were exposed to ionic Cd, Cd(II), and cadmium sulfide quantum dots (CdS QDs), and cell viability, cell integrity, Cd accumulation, mitochondrial function and miRNome profile were evaluated. Cell-type and Cd form-specific responses were found: CdS QDs affected cell viability more in HepG2 than in THP-1; respective IC20 values were ∼3 and ∼50 μg ml-1. In both cell types, Cd(II) exerted greater effects on viability. Mitochondrial membrane function in HepG2 cells was reduced 70 % with 40 μg ml-1 CdS QDs but was totally inhibited by Cd(II) at corresponding amounts. In THP-1 cells, CdS QDs has less effect on mitochondrial function; 50 μg ml-1 CdS QDs or equivalent Cd(II) caused 30 % reduction or total inhibition, respectively. The different in vitro effects of CdS QDs were unrelated to Cd uptake, which was greater in THP-1 cells. For both cell types, changes in the expression of miRNAs (miR-222, miR-181a, miR-142-3p, miR-15) were found with CdS QDs, which may be used as biomarkers of hazard nanomaterial exposure. The cell-specific miRNome profiles were indicative of a more conservative autophagic response in THP-1 and as apoptosis as in HepG2.
Collapse
Affiliation(s)
- Laura Paesano
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Marta Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Massimiliano G Bianchi
- University of Parma, Department of Medicine and Surgery, Laboratory of General Pathology, Via Volturno 39, 43125 Parma, Italy
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06504, United States
| | - Ovidio Bussolati
- University of Parma, Department of Medicine and Surgery, Laboratory of General Pathology, Via Volturno 39, 43125 Parma, Italy
| | - Andrea Zappettini
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Marco Villani
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/A, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze 93/A, 43124 Parma, Italy.
| |
Collapse
|
104
|
Li H, Liu Y, Huang J, Liu Y, Zhu Y. Association of genetic variants in lncRNA GAS5/miR-21/mTOR axis with risk and prognosis of coronary artery disease among a Chinese population. J Clin Lab Anal 2020; 34:e23430. [PMID: 32557866 PMCID: PMC7595889 DOI: 10.1002/jcla.23430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
Background Allowing for the significance of single nucleotide polymorphisms (SNPs) in reflecting disease risk, this investigation attempted to uncover whether SNPs situated in lncRNA GAS5/miR‐21/mTOR axis were associated with risk and prognosis of coronary heart disease (CHD) among a Chinese Han population. Methods Altogether 436 patients with CHD were recruited as cases, and meanwhile, 471 healthy volunteers were included into the control group. Besides, SNPs of GAS5/MIR‐21/mTOR axis were genotyped utilizing mass spectrometry. Chi‐square test was applied to figure out SNPs that were strongly associated with CHD risk and prognosis, and combined effects of SNPs and environmental parameters on CHD risk were evaluated through multifactor dimensionality reduction (MDR) model. Results Single nucleotide polymorphisms of GAS5 (ie, rs2067079 and rs6790), MIR‐21 (ie, rs1292037), and mTOR (rs2295080, rs2536, and rs1034528) were associated with susceptibility to CHD, and also Gensini score change of patients with CHD (P < .05). MDR results further demonstrated that rs2067079 and rs2536 were strongly interactive in elevating CHD risk (P < .05), while smoking, rs6790 and rs2295080 showed powerful reciprocity in predicting Gensini score change of patients with CHD (P < .05). Conclusion Single nucleotide polymorphisms of lncRNA GAS5/miR‐21/mTOR axis might interact with smoking to regulate CHD risk, which was conducive to diagnosis and prognostic anticipation of CHD.
Collapse
Affiliation(s)
- Hu Li
- Department of Cardiology, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| | - Yingxue Liu
- Department of Outpatient, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| | - Jinyan Huang
- Department of Cardiology, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| | - Yu Liu
- Department of Cardiology, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| | - Yufeng Zhu
- Department of Cardiology, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| |
Collapse
|
105
|
Sisto R, Capone P, Cerini L, Paci E, Pigini D, Gherardi M, Gordiani A, L'Episcopo N, Tranfo G, Chiarella P. Occupational exposure to volatile organic compounds affects microRNA profiling: Towards the identification of novel biomarkers. Toxicol Rep 2020; 7:700-710. [PMID: 32551232 PMCID: PMC7287141 DOI: 10.1016/j.toxrep.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
Exposure to volatile organic compounds represents a threat for workers' health and safety, even using protective equipment. Spray-painting exposure is at higher risk than roller-painting. Exposure to organic solvents may induce DNA and RNA oxidation, urine metabolite excretion and miRNA up- or down-regulation. miR-589-5p and miR-941, miR-146b-3p and miR-27a-3p have been identified as potential biomarkers of effect in exposed workers. KEGG pathway analysis showed that miRNA-1, related to lung cancer, is significantly downregulated in exposed workers.
In the framework of a project aimed at finding novel predictive biomarkers of VOCs exposure-related diseases, the effect of exposure to ethylbenzene, toluene, and xylene has been analyzed in a group of painters (spray- and roller-painters) working in the shipyard industry. Airborne levels of solvents were higher in spray- than in roller-painters, and comparable to the Occupational Exposure Limits (OELs), particularly for toluene and xylene. The urinary concentration of each volatile organic compound (VOC) and of the corresponding metabolites were also concurrently measured. A set of oxidative stress biomarkers, i.e., the products of DNA and RNA oxidation, RNA methylation, and protein nitration, were measured, and found significantly higher at the end of the work shift. MicroRNA (MiRNA) expression was analyzed in the VOC-exposed workers and in a control group, finding 56 differentially expressed (DE) miRNAs at a statistically significant level (adjusted p ≤ 0.01). The Receiver-Operating Characteristic curves, computed for each identified miRNA, showed high sensitivity and specificity. A pathway analysis in the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that miRNA-1, which was found downregulated in exposed workers, is involved in the lung cancer oncogenesis. A subset of 10 miRNAs (out of the 56 DE) was selected, including those with the highest correlation to the urinary dose biomarkers measured at the end of work-shift. Multivariate ANOVA analysis showed a statistically significant correlation between the urinary dose biomarkers (both the VOCs urinary concentration and the VOCs’ metabolite concentration), and the identified miRNA subset, indicating that the exposure to low VOC doses may be sufficient to activate the miRNA response. Four miRNAs belonging to the subset strongly related to the VOCs and VOCs’ metabolites concentration were individuated, miR-589-5p, miR-941, miR-146b-3p and miR-27a-3p, with well-known implications in oxidative stress and inflammation processes.
Collapse
Affiliation(s)
- Renata Sisto
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Pasquale Capone
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Luigi Cerini
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Enrico Paci
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Daniela Pigini
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Monica Gherardi
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Andrea Gordiani
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Nunziata L'Episcopo
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Giovanna Tranfo
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Pieranna Chiarella
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| |
Collapse
|
106
|
Papoutsopoulou S, Satsangi J, Campbell BJ, Probert CS. Review article: impact of cigarette smoking on intestinal inflammation-direct and indirect mechanisms. Aliment Pharmacol Ther 2020; 51:1268-1285. [PMID: 32372449 DOI: 10.1111/apt.15774] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The inflammatory bowel diseases, Crohn's disease and ulcerative colitis are related multifactorial diseases. Their pathogenesis is influenced by each individual's immune system, the environmental factors within exposome and genetic predisposition. Smoking habit is the single best-established environmental factor that influences disease phenotype, behaviour and response to therapy. AIM To assess current epidemiological, experimental and clinical evidence that may explain how smoking impacts on the pathogenesis of inflammatory bowel disease. METHODS A Medline search for 'cigarette smoking', in combination with terms including 'passive', 'second-hand', 'intestinal inflammation', 'Crohn's disease', 'ulcerative colitis', 'colitis'; 'intestinal epithelium', 'immune system', 'intestinal microbiota', 'tight junctions', 'mucus', 'goblet cells', 'Paneth cells', 'autophagy'; 'epigenetics', 'genes', 'DNA methylation', 'histones', 'short noncoding/long noncoding RNAs'; 'carbon monoxide/CO' and 'nitric oxide/NO' was performed. RESULTS Studies found evidence of direct and indirect effects of smoking on various parameters, including oxidative damage, impairment of intestinal barrier and immune cell function, epigenetic and microbiota composition changes, that contribute to the pathogenesis of inflammatory bowel disease. CONCLUSIONS Cigarette smoking promotes intestinal inflammation by affecting the function and interactions among intestinal epithelium, immune system and microbiota/microbiome.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Chris S Probert
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
107
|
Srivastava AK, Yadav SS, Mishra S, Yadav SK, Parmar D, Yadav S. A combined microRNA and proteome profiling to investigate the effect of ZnO nanoparticles on neuronal cells. Nanotoxicology 2020; 14:757-773. [DOI: 10.1080/17435390.2020.1759726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ankur Kumar Srivastava
- Developmental Toxicology Laboratory, Systems Toxicology, and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Smriti Singh Yadav
- Developmental Toxicology Laboratory, Systems Toxicology, and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India
| | - Saumya Mishra
- Developmental Toxicology Laboratory, Systems Toxicology, and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjeev Kumar Yadav
- Developmental Toxicology Laboratory, Systems Toxicology, and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Devendra Parmar
- Developmental Toxicology Laboratory, Systems Toxicology, and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Yadav
- Developmental Toxicology Laboratory, Systems Toxicology, and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- All India Institute of Medical Sciences (AIIMS), Raebareli, Uttar Pradesh, India
| |
Collapse
|
108
|
Li J, Wang T, Wang Y, Xu M, Zhang L, Li X, Liu Z, Gao S, Jia Q, Fan Y, Wang Z, Wu N, Zhang X, Dai Y, Kong F, Wang W, Duan H. Particulate matter air pollution and the expression of microRNAs and pro-inflammatory genes: Association and mediation among children in Jinan, China. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121843. [PMID: 31843406 DOI: 10.1016/j.jhazmat.2019.121843] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 05/20/2023]
Abstract
Exposure to particulate matter (PM) has been associated with increased risk of various diseases, possibly through its effect on inflammatory response. MicroRNAs (miRNAs), an epigenetic mechanism regulating gene expression, can affect the expression of pro-inflammatory genes. However, few epidemiological studies have examined the impact of PM on inflammation-related miRNAs and their target mRNAs, especially among vulnerable population. We recruited 160 and 113 children from areas with different PM level in Jinan, China. We measured benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydotetrol-albumin (BPDE-Alb) adducts in serum and the expression of 5 candidate miRNAs involved in inflammation regulation and 7 pro-inflammatory genes predicted to be their targets in leukocytes. Generally, children in the polluted area had higher miRNAs and lower mRNAs expression than those in the control area. An interquartile increase of BPDE-Alb adducts was associated with 12.66 %, 14.13 %, and 12.76 % higher of let-7a, miR-146a-5p, and miR-155-5p, as well as 21.61 %, 20.16 %, and 12.49 % lower of IL-6, CXCL8, and TLR2 mRNAs at false discovery rate<0.05, respectively. Additionally, let-7a, miR-146a-5p, and miR-155-5p were found to mediate the associations of BPDE-Alb adducts with IL-6 and/or TLR2 expression. Our findings suggested that PM exposure might attenuate inflammatory response among children in China, which was partly mediated by miRNAs regulating pro-inflammatory genes.
Collapse
Affiliation(s)
- Jie Li
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengmeng Xu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liping Zhang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinwei Li
- Jinan Municipal Center for Disease Control and Prevention, Jinan, China
| | - Zhong Liu
- Jinan Municipal Center for Disease Control and Prevention, Jinan, China
| | - Sheng Gao
- Inner Mongolia Center for Disease Control and Prevention, Hohhot, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Yaochun Fan
- Inner Mongolia Center for Disease Control and Prevention, Hohhot, China
| | - Zhenjie Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Nan Wu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao Zhang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fanling Kong
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Wenrui Wang
- Inner Mongolia Center for Disease Control and Prevention, Hohhot, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
109
|
Cheng M, Wang B, Yang M, Ma J, Ye Z, Xie L, Zhou M, Chen W. microRNAs expression in relation to particulate matter exposure: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113961. [PMID: 32006883 DOI: 10.1016/j.envpol.2020.113961] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs with a post-transcriptional regulatory function on gene expression and cell processes, including proliferation, apoptosis and differentiation. In recent decades, miRNAs have attracted increasing interest to explore the role of epigenetics in response to air pollution. Air pollution, which always contains kinds of particulate matters, are able to reach respiratory tract and blood circulation and then causing epigenetics changes. In addition, extensive studies have illustrated that miRNAs serve as a bridge between particulate matter exposure and health-related effects, like inflammatory cytokines, blood pressure, vascular condition and lung function. The purpose of this review is to summarize the present knowledge about the expression of miRNAs in response to particulate matter exposure. Epidemiological and experimental studies were reviewed in two parts according to the size and source of particles. In this review, we also discussed various functions of the altered miRNAs and predicted potential biological mechanism participated in particulate matter-induced health effects. More rigorous studies are worth conducting to understand contribution of particulate matter on miRNAs alteration and the etiology between environmental exposure and disease development.
Collapse
Affiliation(s)
- Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
110
|
Wang C, Zhu J, Zhang Z, Chen H, Ji M, Chen C, Hu Y, Yu Y, Xia R, Shen J, Gong X, Wang SL. Rno-miR-224-5p contributes to 2,2',4,4'-tetrabromodiphenyl ether-induced low triiodothyronine in rats by targeting deiodinases. CHEMOSPHERE 2020; 246:125774. [PMID: 31901531 DOI: 10.1016/j.chemosphere.2019.125774] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Hypothyroidism is commonly associated with substantial adverse impacts on human health, and polybrominated diphenyl ether (PBDE), a kind of classic thyroid hormone disruptor, was speculated to be a potential environmental factor, but its effect on thyroxine metabolism has received little attention. In the present study, we investigated the role and mechanism of rno-miR-224-5p in deiodinase-mediated thyroxine metabolism in rats treated with 2,2',4,4'-tetrabromodiphenyl ether (BDE47), a predominant PBDE congener in humans. BDE47 decreased plasma triiodothyronine (T3) and thyroxine (T4) and increased reverse T3 (rT3) in the rats, and the expression of type 1 deiodinase (DIO1) and type 3 deiodinase (DIO3) increased in both the rats and H4-II-E cells. Rno-miR-224-5p was predicted to target dio1 instead of dio3, according to the TargetScan, miRmap.org and microRNA.org databases. Experiments showed that the rno-miR-224-5p level was decreased by BDE47 in a dose-dependent manner and confirmed that rno-miR-224-5p downregulated both DIO1 and DIO3 in the H4-II-E cells and in the rats, as determined using mimics and an inhibitor of rno-miR-224-5p. Furthermore, DIO1 was observed to be a direct functional target of rno-miR-224-5p, whereas DIO3 was indirectly regulated by rno-miR-224-5p via the phosphorylation of the MAPK/ERK (but not p38 or JNK) pathway. Reportedly, DIO1 and DIO3 act principally as inner-ring deiodinases and are responsible for the conversion of T4 to rT3, but not to T3, and the final clearance of thyroxine (mainly in the form of T2). Our results demonstrated that BDE47 induced low levels of T3 conversion through DIO1 and DIO3, which were regulated by rno-miR-224-5p. The findings suggest a novel additional mechanism of PBDE-induced thyroxine metabolism disorder that differs from that of PBDEs as environmental thyroid disruptors.
Collapse
Affiliation(s)
- Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Jiansheng Zhu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Hang Chen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Minghui Ji
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Chao Chen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yuhuan Hu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Jiemiao Shen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Xing Gong
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China.
| |
Collapse
|
111
|
Li D, Wu L, Knox B, Chen S, Tolleson WH, Liu F, Yu D, Guo L, Tong W, Ning B. Long noncoding RNA LINC00844-mediated molecular network regulates expression of drug metabolizing enzymes and nuclear receptors in human liver cells. Arch Toxicol 2020; 94:1637-1653. [PMID: 32222775 DOI: 10.1007/s00204-020-02706-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Noncoding RNAs, such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), regulate gene expression in many physiological and pathological processes, including drug metabolism. Drug metabolizing enzymes (DMEs) are critical components in drug-induced liver toxicity. In this study, we used human hepatic HepaRG cells treated with 5 or 10 mM acetaminophen (APAP) as a model system and identified LINC00844 as a toxicity-responsive lncRNA. We analyzed the expression profiles of LINC00844 in different human tissues. In addition, we examined the correlations between the levels of LINC00844 and those of key DMEs and nuclear receptors (NRs) for APAP metabolism in humans. Our results showed that lncRNA LINC00844 is enriched in the liver and its expression correlates positively with mRNA levels of CYP3A4, CYP2E1, SULT2A1, pregnane X receptor (PXR), and hepatocyte nuclear factor (HNF) 4α. We demonstrated that LINC00844 regulates the expression of these five genes in HepaRG cells using gain- and loss-of-function assays. Further, we discovered that LINC00844 is localized predominantly in the cytoplasm and acts as an hsa-miR-486-5p sponge, via direct binding, to protect SULT2A1 from miRNA-mediated gene silencing. Our data also demonstrated a functional interaction between LINC00844 and hsa-miR-486-5p in regulating DME and NR expression in HepaRG cells and primary human hepatocytes. We depicted a LINC00844-mediated regulatory network that involves miRNA and NRs and influences DME expression in response to APAP toxicity.
Collapse
Affiliation(s)
- Dongying Li
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, HFT100, Jefferson, AR, 72079, USA
| | - Leihong Wu
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, HFT100, Jefferson, AR, 72079, USA
| | - Bridgett Knox
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, HFT100, Jefferson, AR, 72079, USA
| | - Si Chen
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, HFT100, Jefferson, AR, 72079, USA
| | - William H Tolleson
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, HFT100, Jefferson, AR, 72079, USA
| | - Fang Liu
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, HFT100, Jefferson, AR, 72079, USA
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Lei Guo
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, HFT100, Jefferson, AR, 72079, USA
| | - Weida Tong
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, HFT100, Jefferson, AR, 72079, USA
| | - Baitang Ning
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, HFT100, Jefferson, AR, 72079, USA.
| |
Collapse
|
112
|
Abstract
Breathing air is a fundamental human need, yet its safety, when challenged by various harmful or lethal substances, is often not properly guarded. For example, air toxicity is currently monitored only for a single or a limited number of known toxicants, thus failing to warn against possible hazardous air fully. Here, we discovered that, within minutes, living rats emitted distinctive profiles of volatile organic compounds (VOCs) via breath when exposed to various airborne toxicants such as endotoxin, O3, ricin, and CO2. Compared to background indoor air, when exposed to ricin or endotoxin aerosols, breath-borne VOC levels, especially that of carbon disulfide, were shown to decrease, while their elevated levels were observed for exposure to O3 and CO2. A clear contrast in breath-borne VOC profiles of rats exposed to different toxicants was observed with a statistical significance. Differences in microRNA regulations such as miR-33, miR-146a, and miR-155 from rats' blood samples revealed different mechanisms used by rats in combating different air toxicant challenges. Similar to dogs, rats were found here to be able to sniff off toxic air by releasing a specific breath-borne VOC profile. The discovered science opens a new arena for online monitoring of air toxicity and health effects of pollutants.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
113
|
Xu Y, Jurkovic-Mlakar S, Li Y, Wahlberg K, Scott K, Pineda D, Lindh CH, Jakobsson K, Engström K. Association between serum concentrations of perfluoroalkyl substances (PFAS) and expression of serum microRNAs in a cohort highly exposed to PFAS from drinking water. ENVIRONMENT INTERNATIONAL 2020; 136:105446. [PMID: 31926437 DOI: 10.1016/j.envint.2019.105446] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are widespread synthetic substances with various adverse health effects. Not much is known about the modes of action of PFAS toxicity, but one likely mechanism is alteration of microRNA expression. OBJECTIVES To investigate whether PFAS exposure is associated with altered microRNA expression in serum. METHODS We selected women from the Ronneby cohort, with high exposure to perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS), emanating from drinking water contaminated by firefighting foam, and a control group of women from a neighbouring municipality without drinking water contamination. Serum levels of PFAS were analysed using LC/MS/MS. High coverage microRNA expression was analysed by next generation sequencing (NGS) in 53 individuals to screen for microRNAs associated with PFAS exposure. After verification by qPCR, associations between PFAS exposure and expression of 18 selected microRNAs were validated by qPCR in 232 individuals. In silico functional analyses were performed using Ingenuity pathway analysis (IPA). RESULTS Three microRNAs were consistently associated with PFAS exposure in the different steps of the study: miR-101-3p, miR-144-3p and miR-19a-3p (all downregulated with increasing exposure). In silico functional analyses suggested that these PFAS-associated microRNAs were annotated to e.g. cardiovascular function and disease, Alzheimer's disease, growth of cancer cell lines and cancer. Seven predicted target genes for the downregulated microRNAs were annotated to PFAS in IPA knowledge database: DNA methyltransferase 3 alpha (DNMT3a), epidermal growth factor receptor (EGFR), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), nuclear receptor subfamily 1, group H, member 3 (NR1H3), peroxisome proliferator-activated receptor alpha (PPARα), prostaglandin-endoperoxide synthase 2 (PTGS2), and tumour growth factor alpha (TGFα). DISCUSSION PFAS exposure was associated with downregulation of specific microRNAs. Further, in silico functional analyses suggest potential links between the specific PFAS-associated microRNAs, specific microRNA target genes and possibly also health effects.
Collapse
Affiliation(s)
- Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Simona Jurkovic-Mlakar
- CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ying Li
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Wahlberg
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristin Scott
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniela Pineda
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christian H Lindh
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Engström
- EPI@LUND, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
114
|
Li J, Shen Y, Zhu J, Liu S, Zeng N, Zhan X. miR398 is involved in the relief of phenanthrene-induced oxidative toxicity in wheat roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113701. [PMID: 31818619 DOI: 10.1016/j.envpol.2019.113701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/30/2019] [Accepted: 11/29/2019] [Indexed: 05/28/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and could produce oxidative toxicity to plants. Our previous study has shown that miR398 is involved in response to phenanthrene treatment by targeting CSD1 and CSD2. However, it is not clear which is essential for CSD1 and CSD2 and how miR398 changes. In this study, we performed discontinuous PAGE to separate superoxide dismutase (SOD) isozymes and found that two bands of the cytosolic Cu/Zn-SOD are induced by phenanthrene at day 5 and 7. Low expression of pri-miR398 and high expression of pre-miR398 indicate that the conversion process from pri-miR398 to pre-miR398 is impeded, which causes decrease in mature miR398. The relative expression of CSD1 is entirely up-regulated, further confirming the important role of CSD1 in response to phenanthrene exposure. Besides, the overexpression of WRKY implies its potential function in answering the call from phenanthrene stress. Therefore, it is concluded that the gene silencing of CSD1 recedes due to the biosynthesis inhibition of miR398, causing the increase of SOD activity in response to phenanthrene exposure in wheat roots. Our results are useful not only for better understanding miRNAs regulation in detoxication of reactive oxygen species, but also for alleviating the toxicity to crops caused by PAHs.
Collapse
Affiliation(s)
- Jinfeng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Yu Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Shiqi Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Nengde Zeng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
115
|
Ho H, Guo H, Means S, Tang J, Hunter P. Maternal Smoking Induced Cardiovascular Risks in Fetuses: How Can in silico Models Help? Front Bioeng Biotechnol 2020; 8:97. [PMID: 32140462 PMCID: PMC7042462 DOI: 10.3389/fbioe.2020.00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 02/03/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Hongchao Guo
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Shawn Means
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Jing Tang
- Chongqing Health Center for Women and Children, Chongqing, China
| | - Peter Hunter
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
116
|
Bushel PR, Caiment F, Wu H, O'Lone R, Day F, Calley J, Smith A, Li J, Harrill AH. RATEmiRs: the rat atlas of tissue-specific and enriched miRNAs for discerning baseline expression exclusivity of candidate biomarkers. RNA Biol 2020; 17:630-636. [PMID: 32009518 DOI: 10.1080/15476286.2020.1724715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that regulate mRNA expression and have been targeted as biomarkers of organ damage and disease. To explore the utility of miRNAs to assess injury to specific tissues, a tissue atlas of miRNA abundance was constructed. The Rat Atlas of Tissue-specific and Enriched miRNAs (RATEmiRs) catalogues miRNA sequencing data from 21 and 23 tissues in male and female Sprague-Dawley rats, respectively. RATEmiRs identifies tissue-enriched (TE), tissue-specific (TS), or organ-specific (OS) miRNAs via comparisons of one or more tissue or organ vs others. We provide a brief overview of RATEmiRs and present how to use it to detect miRNA expression abundance of candidate biomarkers as well as to compare the expression of miRNAs between rat and human. The database is available at https://www.niehs.nih.gov/ratemirs/.
Collapse
Affiliation(s)
- Pierre R Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA.,Microarray and Genome Informatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Florian Caiment
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Han Wu
- Department of Discovery and Development Statistics, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Raegan O'Lone
- eSTAR, Health and Environmental Sciences Institute, Washington, DC, USA
| | - Frank Day
- Office of Scientific Computing, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - John Calley
- Department of TTX Bioinformatics, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Aaron Smith
- Department of Investigative Toxicology, Non-Clinical Safety Assessment and Pathology, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Jianying Li
- Microarray and Genome Informatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA.,Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA.,Kelly Government Solutions, Research Triangle Park, Durham, NC, USA
| | - Alison H Harrill
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
117
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
118
|
Seelan RS, Greene RM, Pisano MM. MicroRNAs as Epigenetic Targets of Cigarette Smoke During Embryonic Development. Microrna 2020; 9:168-173. [PMID: 31556862 PMCID: PMC7365999 DOI: 10.2174/2211536608666190926114704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
The adverse developmental effects of exposure to Cigarette Smoke (CS) during pregnancy are documented in this paper. These include low birth weight, congenital anomalies, preterm birth, fetal mortality and morbidity. The current biological thought now recognizes that epigenetics represents a fundamental contributing process in embryogenesis, and that the environment can have a profound effect on shaping the epigenome. It has become increasingly recognized that genes encoding microRNAs (miRNAs) might be potential loci for congenital disabilities. One means by which CS can cause developmental anomalies may be through epigenetic mechanisms involving altered miRNA expression. While several studies have focused on genes affected by CS during embryonic/ fetal development, there is a paucity of knowledge on the involvement of miRNAs in this process. This brief review summarizes the current state of knowledge in this area.
Collapse
Affiliation(s)
- Ratnam S. Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies,
University of Louisville School of Dentistry, Louisville, KY40202, USA
| | - Robert M. Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies,
University of Louisville School of Dentistry, Louisville, KY40202, USA
| | - Michele M. Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies,
University of Louisville School of Dentistry, Louisville, KY40202, USA
| |
Collapse
|
119
|
Jia R, Zhao XF. MicroRNA-497 functions as an inflammatory suppressor via targeting DDX3Y and modulating toll-like receptor 4/NF-κB in cigarette smoke extract-stimulated human bronchial epithelial cells. J Gene Med 2019; 22:e3137. [PMID: 31696986 DOI: 10.1002/jgm.3137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND We aimed to investigate the biological effect of miR-497 in cigarette smoke extract (CSE)-damaged human bronchial epithelial (HBE) cells and the underlying molecular mechanism. METHODS MiR-497 mimic was transfected into HBE cells to up-regulate miR-497 expression. Cigarette smoke extract (CSE, 20 μg/mL) was utilized to treat HBE cells to form the injury model. Cell proliferation and apoptosis were detected by CCK8 and flow cytometry assays. DDX3Y mRNA expression was determined by a quantitative reverse transcriptase-polymerase chain reaction. The interaction between miR-497 and DDX3Y was verified by a luciferase reporter assay. Protein expression levels were tested by western blotting. RESULTS CSE treatment decreased miR-497 level in HBE cells. CSE exposure restrained cell proliferation, promoted cell apoptosis and enhanced the relative expression of TLR4 and p-NF-κB p65. DDX3Y was predicted as a target of miR-497. The mRNA and protein expression of DDX3Y was negatively modulated by miR-497 in CSE-injured HBE cells. Up-regulation of miR-497 by miR-497 mimic increased cell proliferation and reduced cell apoptosis in CSE-treated HBE cells, which were rescued by DDX3Y high expression in CSE-treated HBE cells. Consistently, Bcl-2 protein level was heightened, whereas Bax and actived caspase-3/9 protein levels were decreased by miR-497 mimic in CSE-stimulated HBE cells, which was reversed by DDX3Y over-expression in CSE-stimulated HBE cells. The relative expression of TLR4 and p-NF-κB p65 was decreased by miR-497 mimic, whereas they were rescued by DDX3Y over-expression in CSE-damaged HBE cells. CONCLUSIONS The results of the present study demonstrate that up-regulation of miR-497 exhibits a protective effect on CSE-damaged HBE cells, which might be achieved by targeting DDX3Y and regulating the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Rong Jia
- Department of Geriatrics, Lianyungang Second People's Hospital, Lianyungang, Jiangsu, China
| | - Xiao-Fei Zhao
- Department of Geriatrics, Lianyungang Second People's Hospital, Lianyungang, Jiangsu, China
| |
Collapse
|
120
|
Qiao J, Du Y, Yu J, Guo J. MicroRNAs as Potential Biomarkers of Insecticide Exposure: A Review. Chem Res Toxicol 2019; 32:2169-2181. [PMID: 31625722 DOI: 10.1021/acs.chemrestox.9b00236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Insecticides are key weapons for the control of pests. Large scale use of insecticides is harmful to the ecosystem, which is made up of a wide range of species and environments. MicroRNAs (miRNAs) are a class of endogenous single-stranded noncoding small RNAs in length of 20-24 nucleotides (nt), which extensively regulate expression of genes at transcriptional and post-transcriptional levels. The current research on miRNA-induced insecticide resistance reveals that dysregulated miRNAs cause significant changes in detoxification genes, particularly cytochrome P450s. Meanwhile, insecticide-induced changes in miRNAs are related to the decline of honeybees and threatened the development of zebrafish and other animals. Additionally, miRNAs are involved in insecticide-induced cytotoxicity, and dysregulated miRNAs are associated with human occupational and environmental exposure to insecticides. Therefore, miRNAs are valuable novel biomarkers of insecticide exposure, and they are potential factors to explain the toxicological effects of insecticides.
Collapse
Affiliation(s)
- Jiakai Qiao
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| | - Yuting Du
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| | - Junjie Yu
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| | - Jiangfeng Guo
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| |
Collapse
|
121
|
Beck R, Chandi M, Kanke M, Stýblo M, Sethupathy P. Arsenic is more potent than cadmium or manganese in disrupting the INS-1 beta cell microRNA landscape. Arch Toxicol 2019; 93:3099-3109. [PMID: 31555879 DOI: 10.1007/s00204-019-02574-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Diabetes is a metabolic disorder characterized by fasting hyperglycemia and impaired glucose tolerance. Laboratory and population studies have shown that inorganic arsenic (iAs) can impair these pathways. Other metals including cadmium (Cd) and manganese (Mn) have also been linked to diabetes phenotypes. MicroRNAs, short non-coding RNAs that regulate gene expression, have emerged as potential drivers of metabolic dysfunction. MicroRNAs responsive to metal exposures in vitro have also been reported in independent studies to regulate insulin secretion in vivo. We hypothesize that microRNA dysregulation may associate with and possibly contribute to insulin secretion impairment upon exposure to iAs, Cd, or Mn. We exposed insulin secreting rat insulinoma cells to non-cytotoxic concentrations of iAs (1 µM), Cd (5 µM), and Mn (25 µM) for 24 h followed by small RNA sequencing to identify dysregulated microRNAs. RNA sequencing was then performed to further investigate changes in gene expression caused by iAs exposure. While all three metals significantly inhibited glucose-stimulated insulin secretion, high-throughput sequencing revealed distinct microRNA profiles specific to each exposure. One of the most significantly upregulated microRNAs post-iAs treatment is miR-146a (~ + 2-fold), which is known to be activated by nuclear factor κB (NF-κB) signaling. Accordingly, we found by RNA-seq analysis that genes upregulated by iAs exposure are enriched in the NF-κB signaling pathway and genes down-regulated by iAs exposure are enriched in miR-146a binding sites and are involved in regulating beta cell function. Notably, iAs exposure caused a significant decrease in the expression of Camk2a, a calcium-dependent protein kinase that regulates insulin secretion, has been implicated in type 2 diabetes, and is a likely target of miR-146a. Further studies are needed to elucidate potential interactions among NF-kB, miR-146a, and Camk2a in the context of iAs exposure.
Collapse
Affiliation(s)
- Rowan Beck
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Mohit Chandi
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
122
|
Budani MC, D'Aurora M, Stuppia L, Gatta V, Tiboni GM. Whole‐body exposure to cigarette smoke alters oocyte miRNAs expression in C57BL/6 mice. Mol Reprod Dev 2019; 86:1741-1757. [DOI: 10.1002/mrd.23267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/09/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Maria Cristina Budani
- Department of Medicine and Aging SciencesUniversity “G. d'Annunzio” Chieti‐Pescara Chieti Italy
| | - Marco D'Aurora
- Department of Psychological, Health and Territorial Sciences (DISPUTer), Laboratory of Molecular Genetics, School of Medicine and Health SciencesUniversity “G. d'Annunzio” Chieti‐Pescara Chieti Italy
- Center of Excellence on Aging and Translational Medicine ‐ (CeSI‐MeT)University “G. d'Annunzio” Chieti‐Pescara Chieti Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences (DISPUTer), Laboratory of Molecular Genetics, School of Medicine and Health SciencesUniversity “G. d'Annunzio” Chieti‐Pescara Chieti Italy
- Center of Excellence on Aging and Translational Medicine ‐ (CeSI‐MeT)University “G. d'Annunzio” Chieti‐Pescara Chieti Italy
| | - Valentina Gatta
- Department of Psychological, Health and Territorial Sciences (DISPUTer), Laboratory of Molecular Genetics, School of Medicine and Health SciencesUniversity “G. d'Annunzio” Chieti‐Pescara Chieti Italy
- Center of Excellence on Aging and Translational Medicine ‐ (CeSI‐MeT)University “G. d'Annunzio” Chieti‐Pescara Chieti Italy
| | - Gian Mario Tiboni
- Department of Medical, Oral and Biotechnological SciencesUniversity “G. d'Annunzio” Chieti‐Pescara Chieti Italy
| |
Collapse
|
123
|
Sheervalilou R, Lotfi H, Shirvaliloo M, Sharifi A, Nazemiyeh M, Zarghami N. Circulating MiR-10b, MiR-1 and MiR-30a Expression Profiles in Lung Cancer: Possible Correlation with Clinico-pathologic Characteristics and Lung Cancer Detection. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:118-129. [PMID: 32215263 DOI: 10.22088/ijmcm.bums.8.2.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022]
Abstract
Circulating microRNAs have been recognized as promising biomarkers for the detection of lung cancer. The objective of this study was to evaluate miR-10b, miR-1 and, miR-30a in the plasma samples of lung cancer patients to confirm any possible relevance in the early detection of lung cancer. Plasma samples from 47 non-small-cell lung cancer patients and 41 cancer-free subjects were evaluated for selected microRNAs using the real-time PCR method. To evaluate the tobacco smoking effects on microRNAs expression, the studied groups were categorized into two subgroups: never-smokers and smokers. MiR-1/miR-30a expression levels were significantly reduced in lung cancer, while the miR-10b level was significantly elevated. We found that smoking had significant effects on the levels of circulating microRNAs in the smokers of the cancer-free group (a significant up-regulation of miR-10b and significant down-regulation of miR-1/miR-30a), and lung cancer patients (a significant elevation of miR-10b). Receiver operating characteristic curve analysis showed that miR-10b with an area under the curve of 0.861, and miR-1/miR-30a with values of0.905 and 0.889 for the same parameter, could distinguish non-small-cell lung cancer patients from cancer-free subjects. Our findings demonstrated significant differences in the expression of microRNAs in lung cancer and the considerable effects of smoking on microRNAs levels. Area under curve analysis showed that miR-10b with 78% sensitivity/78% specificity, miR-1 with 95% sensitivity/80% specificity and miR-30a with 87% sensitivity/83% specificity,might be good (miR-10b/miR-30a) and excellent (miR-1) markers for lung cancer detection.
Collapse
Affiliation(s)
- Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Sharifi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Nazemiyeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
124
|
Kotsyfakis M, Patelarou E. MicroRNAs as biomarkers of harmful environmental and occupational exposures: a systematic review. Biomarkers 2019; 24:623-630. [PMID: 31373233 DOI: 10.1080/1354750x.2019.1652348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Environmental exposure is a growing public health burden associated with several negative health effects. An estimated 4.2 million deaths occur each year from ambient air pollution alone. Biomarkers that reflect specific exposures have the potential to measure the real integrated internal dose from all routes of complex environmental exposure. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, have been studied as biomarkers in various diseases and have also shown potential as environmental exposure biomarkers. Here, we review the available human epidemiological and experimental evidence of miRNA expression changes in response to specific environmental exposures including airborne particulate matter. In doing so, we establish that miRNA exposure biomarker development remains in its infancy and future studies will need to carefully consider biological and analytical 'design rules' in order to facilitate clinical translation.
Collapse
Affiliation(s)
- Michail Kotsyfakis
- Biology Center of the Czech Academy of Sciences , Ceske Budejovice , Czechia.,Nursing Department, Hellenic Mediterranean University , Heraklion , Greece
| | - Evridiki Patelarou
- Nursing Department, Hellenic Mediterranean University , Heraklion , Greece
| |
Collapse
|
125
|
Ding J, Guo J, Wang L, Chen Y, Hu B, Li Y, Huang R, Cao J, Zhao Y, Geiser M, Miao Q, Liu Y, Chen C. Cellular Responses to Exposure to Outdoor Air from the Chinese Spring Festival at the Air-Liquid Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9128-9138. [PMID: 31268311 DOI: 10.1021/acs.est.9b00399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Spring Festival is the most important holiday in China. During this time, the levels of particulate matter (PM) as well as gaseous copollutants significantly increase because of the widespread enjoyment of fireworks. The expression patterns of microRNAs may serve as valuable signatures of exposure to environmental constituents. We exposed macrophages to the whole stream of outdoor air at the air-liquid interface aiming at closely approximating the physiological conditions and the inhalation situation in the lung. 58 miRNAs were up-regulated, and 68 miRNAs were down-regulated in the night of the New Year's Eve (exposure group E2N1) compared to filtered-air exposed control cells. The target genes of the up-regulated miRNAs were enriched in immunity- and inflammation-linked pathways, such as the TLR-NF-κB pathway. Compared to the E2N1 group, 29 miRNAs were up-regulated, and 23 miRNAs were down-regulated in the cells exposed to air from the daytime of the Chinese New Year with higher concentrations of particles, SO2, and nitrogen oxide. The target genes of the up-regulated miRNAs were mostly enriched in apoptosis, adhesion, and junction-related pathways. These results preliminarily unravel part of the toxic mechanisms of air constituents and provide clues for discovering the main drivers of air pollution-induced disorders.
Collapse
Affiliation(s)
- Jie Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Jincheng Guo
- CAS Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center , Institute of Computing Technology, Chinese Academy of Sciences , Beijing 100190 , China
| | - Liming Wang
- Division of Nuclear Technology and Applications , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Yandong Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Bin Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Rujin Huang
- Key Lab of Aerosol Chemistry & Physics , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Marianne Geiser
- Institute of Anatomy , University of Bern , 3012 Bern , Switzerland
| | - Qing Miao
- Divisions of Pediatric Surgery and Pediatric Pathology, Departments of Surgery and Pathology, Children's Research Institute , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
126
|
Fabris G, Dumortier O, Pisani DF, Gautier N, Van Obberghen E. Amino acid-induced regulation of hepatocyte growth: possible role of Drosha. Cell Death Dis 2019; 10:566. [PMID: 31332188 PMCID: PMC6646398 DOI: 10.1038/s41419-019-1779-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/23/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
In an adult healthy liver, hepatocytes are in a quiescent stage unless a physical injury, such as ablation, or a toxic attack occur. Indeed, to maintain their crucial organismal homeostatic role, the damaged or remaining hepatocytes will start proliferating to restore their functional mass. One of the limiting conditions for cell proliferation is amino-acid availability, necessary both for the synthesis of proteins important for cell growth and division, and for the activation of the mTOR pathway, known for its considerable role in the regulation of cell proliferation. The overarching aim of our present work was to investigate the role of amino acids in the regulation of the switch between quiescence and growth of adult hepatocytes. To do so we used non-confluent primary adult rat hepatocytes as a model of partially ablated liver. We discovered that the absence of amino acids induces in primary rat hepatocytes the entrance in a quiescence state together with an increase in Drosha protein, which does not involve the mTOR pathway. Conversely, Drosha knockdown allows the hepatocytes, quiescent after amino-acid deprivation, to proliferate again. Further, hepatocyte proliferation appears to be independent of miRNAs, the canonical downstream partners of Drosha. Taken together, our observations reveal an intriguing non-canonical action of Drosha in the control of growth regulation of adult hepatocytes responding to a nutritional strain, and they may help to design novel preventive and/or therapeutic approaches for hepatic failure.
Collapse
Affiliation(s)
- Gaia Fabris
- Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice, France.,Université Côte d'Azur, CNRS, LP2M, Nice, France
| | | | | | - Nadine Gautier
- Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice, France.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Emmanuel Van Obberghen
- Université Côte d'Azur, CHU, Inserm, CNRS, IRCAN, Nice, France. .,Université Côte d'Azur, CHU, CNRS, LP2M, Nice, France.
| |
Collapse
|
127
|
Martínez-Ibarra A, Martínez-Razo LD, Vázquez-Martínez ER, Martínez-Cruz N, Flores-Ramírez R, García-Gómez E, López-López M, Ortega-González C, Camacho-Arroyo I, Cerbón M. Unhealthy Levels of Phthalates and Bisphenol A in Mexican Pregnant Women with Gestational Diabetes and Its Association to Altered Expression of miRNAs Involved with Metabolic Disease. Int J Mol Sci 2019; 20:ijms20133343. [PMID: 31284700 PMCID: PMC6650872 DOI: 10.3390/ijms20133343] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Several studies indicate that bisphenol A (BPA) and phthalates may have a role in the development of metabolic diseases using different molecular pathways, including epigenetic regulatory mechanisms. However, it is unclear whether exposure to these chemicals modifies serum levels of miRNAs associated with gestational diabetes mellitus (GDM) risk. In the present study, we evaluated the serum levels of miRNAs associated with GDM (miR-9-5p, miR-16-5p, miR-29a-3p and miR-330-3p) and urinary levels of phthalate metabolites (mono-n-butyl phthalate (MBP), mono-isobutyl phthalate (MiBP), mono-benzyl phthalate (MBzP) and mono(2-ethyl hexyl) phthalate (MEHP)) and bisphenol A in GDM patients and women without GDM during the second trimester of gestation. We observed higher levels of miR-9-5p, miR-29a-3p and miR-330-3p in sera of patients with GDM compared to non-diabetic subjects. Phthalates were detected in 97–100% of urine samples, while BPA only in 40%. Urinary MEHP and BPA concentrations were remarkably higher in both study groups compared to previously reported data. Unadjusted MEHP levels and adjusted BPA levels were higher in non-diabetics than in GDM patients (p = 0.03, p = 0.02). We found positive correlations between adjusted urinary MBzP levels and miR-16-5p expression levels (p < 0.05), adjusted MEHP concentrations and miR-29a-3p expression levels (p < 0.05). We also found negative correlations between unadjusted and adjusted MBP concentrations and miR-29a-3p expression levels (p < 0.0001, p < 0.05), unadjusted MiBP concentrations and miR-29a-3p expression levels (p < 0.01). Urinary MEHP levels reflect a striking exposure to di(2-ethylhexyl) phthalate (DEHP) in pregnant Mexican women. This study highlights the need for a regulatory strategy in the manufacture of several items containing endocrine disruptors in order to avoid involuntary ingestion of these compounds in the Mexican population.
Collapse
Affiliation(s)
- Alejandra Martínez-Ibarra
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, México
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, México
| | - Luis Daniel Martínez-Razo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, México
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, México
| | - Nayeli Martínez-Cruz
- Coordinación del Servicio de Endocrinología, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Ciudad de México 11000, México
| | - Rogelio Flores-Ramírez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, México
| | - Elizabeth García-Gómez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, México
| | - Marisol López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México 04960, México
| | - Carlos Ortega-González
- Coordinación del Servicio de Endocrinología, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Ciudad de México 11000, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, México
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, México.
| |
Collapse
|
128
|
Krauskopf J, van Veldhoven K, Chadeau-Hyam M, Vermeulen R, Carrasco-Turigas G, Nieuwenhuijsen M, Vineis P, de Kok TM, Kleinjans JC. Short-term exposure to traffic-related air pollution reveals a compound-specific circulating miRNA profile indicating multiple disease risks. ENVIRONMENT INTERNATIONAL 2019; 128:193-200. [PMID: 31059914 DOI: 10.1016/j.envint.2019.04.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Traffic-related air pollution (TRAP) is a complex mixture of compounds that contributes to the pathogenesis of many diseases including several types of cancer, pulmonary, cardiovascular and neurodegenerative diseases, and more recently also diabetes mellitus. In search of an early diagnostic biomarker for improved environmental health risk assessment, recent human studies have shown that certain extracellular miRNAs are altered upon exposure to TRAP. Here, we present a global circulating miRNA analysis in a human population exposed to different levels of TRAP. The cross-over study, with sampling taking place during resting and physical activity in two different exposure scenarios, included for each subject personal exposure measurements of PM10,PM2.5, NO, NO2, CO, CO2, BC and UFP. Next-generation sequencing technology was used to identify global circulating miRNA levels across all subjects. We identified 8 miRNAs to be associated with the mixture of TRAP and 27 miRNAs that were associated with the individual pollutants NO, NO2, CO, CO2, BC and UFP. We did not find significant associations between miRNA levels and PM10 or PM2.5. Integrated network analysis revealed that these circulating miRNAs are potentially involved in processes that are implicated in the development of air pollution-induced diseases. Altogether, this study demonstrates that signatures consisting of circulating miRNAs present a potential novel biomarker to be used in health risk assessment.
Collapse
Affiliation(s)
- Julian Krauskopf
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| | - Karin van Veldhoven
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK; Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Marc Chadeau-Hyam
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Glòria Carrasco-Turigas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Theo M de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Jos C Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
129
|
Genetic polymorphisms as determinants of pesticide toxicity: Recent advances. Toxicol Rep 2019; 6:564-570. [PMID: 31293901 PMCID: PMC6595235 DOI: 10.1016/j.toxrep.2019.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
Genetic polymorphisms may influence pesticides-induced oxidative damage.Pesticides modulate immune-system cells functionality, leading to the onset of a dangerous pro-inflammatory microenvironment. DNA repair genes, Cytochrome P450 s, PON and GST genes have a key role in the metabolism of xenobiotics. Many workers are professionally exposed to pesticides with potential health consequences.
Occupational and environmental exposure to pesticides may induce harmful effects on human health by promoting the development of a wide range of disorders. Some of the most recently hypothesized mechanisms are oxidative stress and epigenetic modifications, however biological effects seem to be modulated mainly by the occurrence of genetic polymorphisms. The susceptibility to exposure can be evaluated by studying the most common polymorphisms of genes involved in the metabolism of organophosphorus compounds (cytochrome P450, glutathione transferase, acetyltransferases or paraoxonase 1). The aim of this article is to review recent literature data concerning the influence of genetic polymorphisms on pesticides-induced oxidative damage.
Collapse
|
130
|
Ding D, Ye G, Lin Y, Lu Y, Zhang H, Zhang X, Hong Z, Huang Q, Chi Y, Chen J, Dong S. MicroRNA-26a-CD36 signaling pathway: Pivotal role in lipid accumulation in hepatocytes induced by PM 2.5 liposoluble extracts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:269-278. [PMID: 30798028 DOI: 10.1016/j.envpol.2019.01.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Exposure to ambient particular matters (PM) has been associated with the development of non-alcoholic fatty liver disease (NAFLD), but the underlying mechanism remains unclear. Given that microRNA (miRNA) is recognized as a key regulator of lipid metabolism and a potential mediator of environmental cues, this study aimed to explore the role of miRNA-mRNA regulation underlying abnormal lipid metabolism triggered by PM2.5liposoluble extracts. We confirmed that 72-h exposure to liposoluble extracts of PM2.5 from Nanjing at 25 μg/cm2 induced lipid accumulation in HepG2 cells by promoting uptake of free fatty acids (FFAs). Notably, lipid accumulation induced by PM2.5 liposoluble extracts was associated with decreased expression of miR-26a and consequent upregulation of fatty acid translocase (FAT, also known as CD36). Using gain- and loss-of-function assays, we demonstrated that miR-26a negatively regulated CD36 to mediate lipid accumulation in HepG2 cells. We further confirmed that miR-26a directly acted on the 3' untranslated region (3'UTR) of CD36. Furthermore, overexpression of miR-26a abolished steatosis in HepG2 cells treated with PM2.5 liposoluble extracts by suppressing CD36. In addition, we demonstrated that PM2.5 liposoluble extracts caused inflammation in HepG2 cells by raising p65 phosphorylation, thereby fuelling the transition from simple non-alcoholic fatty liver to non-alcoholic steatohepatitis. In conclusion, this study demonstrated a novel mechanism by which miR-26a-CD36 pathway mediated lipid accumulation induced by PM2.5 liposoluble extracts in hepatocytes. Lipid accumulation and inflammation induced by PM2.5 liposoluble extracts implied the potential role of PM2.5 in developing NAFLD.
Collapse
Affiliation(s)
- Dongxiao Ding
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yi Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yanyang Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Han Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xu Zhang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenyu Hong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiansheng Huang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yulang Chi
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Sijun Dong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
131
|
Age-Related Differences in miRNA Expression in Mexican-American Newborns and Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040524. [PMID: 30781749 PMCID: PMC6406617 DOI: 10.3390/ijerph16040524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 11/16/2022]
Abstract
Epigenetic mechanisms have emerged as an important pathway through which environmental exposures can affect health through the regulation of gene expression without changes in DNA sequence: microRNAs (miRNAs) are short non-coding RNAs that target protein-coding mRNAs, leading to post-transcriptional repression. They are involved in important physiologic processes, but little is known about how miRNA expression may change with age in children. We used an nCounter miRNA assay to assess the expression of 43 miRNAs in buffy coat samples collected from newborns (n = 121) and 7-year-old (n = 142) children. We identified 36 miRNAs that were differentially expressed between newborns and 7-year-olds after controlling for blood cell composition. Using pathway analysis, we found that differentially expressed miRNAs targeted genes enriched for processes related to post-translational modifications, metabolism, and immune response. Our study found that unlike adults, where miRNA expression levels in peripheral blood may decrease with age, expression levels of most miRNAs increased from birth to mid-childhood. This may be reflective of the role miRNAs may play in the highly coordinated mechanisms regulating genes involved in children's development. Furthermore, it will be important to adjust for both age and blood cell composition in future pediatric studies of miRNA expression in blood.
Collapse
|
132
|
Zhi H, Wu JP, Lu LM, Zhang XM, Chen XY, Wu SK, Tao J, Mai BX. Decarbromodiphenyl ether (BDE-209) promotes monocyte-endothelial adhesion in cultured human aortic endothelial cells through upregulating intercellular adhesion molecule-1. ENVIRONMENTAL RESEARCH 2019; 169:62-71. [PMID: 30419430 DOI: 10.1016/j.envres.2018.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
There is growing evidence that exposure to persistent organic pollutants (POPs) is statistically associated with incidence of cardiovascular disease (CVD) or its risk factors. Decarbromodiphenyl ether (BDE-209) is a new POP which exists extensively in human tissues, but its potential effects on CVD have so far received less focus. The adhesion of circulating monocytes to endothelial cells is one of the critical underlying steps in the initiation and development of CVD. In the present study, we investigated the effect of BDE-209 on the adhesion of THP-1 monocytes to human aortic endothelial cells (HAECs) and identified the molecular mechanisms involved. Our results showed that 6.25, 12.5 and 25 µM of BDE-209 exposures caused significant increases in monocyte-endothelial cell adhesion, in a dose-dependent manner. Mechanistically, BDE-209 exposure increased the expression of intercellular adhesion molecule-1 (ICAM-1). Moreover, the up-regulation of ICAM-1 was accompanied by a decrease in the expression of microRNA-141 (miR-141). Furthermore, the up-regulation of ICAM-1 and the increased adhesion induced by BDE-209 could be reversed by miR-141 supplement. Taken together, our results show that BDE-209 potentiates monocyte-endothelial cell interaction via miR-141/ICAM-1 pathway in HAECs.
Collapse
Affiliation(s)
- Hui Zhi
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241003, China; Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiang-Ping Wu
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China.
| | - Lin-Ming Lu
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241003, China
| | - Xue-Mei Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Yun Chen
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Si-Kang Wu
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
133
|
Hong X, Chen R, Yuan L, Zha J. Global microRNA and isomiR expression associated with liver metabolism is induced by organophosphorus flame retardant exposure in male Chinese rare minnow (Gobiocypris rarus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:829-838. [PMID: 30176492 DOI: 10.1016/j.scitotenv.2018.08.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
To reveal the adverse effects of organophosphorus flame retardants (OPFRs) on aquatic organisms at the epigenetic level, male Chinese rare minnows were exposed to 0.24 mg/L tris(2‑butoxyethyl) phosphate (TBOEP), 0.04 mg/L tris(1,3‑dichloro‑2‑propyl) phosphate (TDCIPP), or 0.012 mg/L triphenyl phosphate (TPHP) for 14 days. The effects of sub-acute OPFR exposure on liver miRNA and the 3' isomiR expression profiles of Chinese rare minnows were investigated. Through small RNA sequencing and bioinformatics analysis, a total of 32, 84, and 19 differentially expressed miRNAs were detected for TBOEP, TDCIPP, and TPHP exposure, respectively (p < 0.05). Target prediction of the differentially expressed miRNAs and pathway enrichment analysis indicated that predicted altered mRNAs for all three OPFRs were associated with metabolic pathways, whereas base excision repair was only predicted to be perturbed by the TPHP treatment. In addition, 3' isomiR-Us were unexpectedly abundant in all groups (e.g., miR-143), and TDCIPP strongly increased the ratio of 3' isomiR-U expression. Finally, histological examination and metabolic enzyme activity analyses werein agreement with the predicted metabolic pathways. As such, our study indicates that the investigation of epigenetics changes in miRNA gene transcription is a considerable method for the assessment of aquatic toxicity.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
134
|
Li M, Huo X, Davuljigari CB, Dai Q, Xu X. MicroRNAs and their role in environmental chemical carcinogenesis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:225-247. [PMID: 30171477 DOI: 10.1007/s10653-018-0179-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/23/2018] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA species that play crucial roles across many biological processes and in the pathogenesis of major diseases, including cancer. Recent studies suggest that the expression of miRNA is altered by certain environmental chemicals, including metals, organic pollutants, cigarette smoke, pesticides and carcinogenic drugs. In addition, extensive studies have indicated the existence and importance of miRNA in different cancers, suggesting that cancer-related miRNAs could serve as potential markers for chemically induced cancers. The altered expression of miRNA was considered to be a vital pathogenic role in xenobiotic-induced cancer development. However, the significance of miRNA in the etiology of cancer and the exact mechanisms by which environmental factors alter miRNA expression remain relatively unexplored. Hence, understanding the interaction of miRNAs with environmental chemicals will provide important information on mechanisms underlying the pathogenesis of chemically induced cancers, and effectively diagnose and treat human cancers resulting from chronic or acute carcinogen exposure. This study presents the current evidence that the miRNA deregulation induced by various chemical carcinogens, different cancers caused by environmental carcinogens and the potentially related genes in the onset or progression of cancer. For each carcinogen, the specifically expressed miRNA may be considered as the early biomarkers of the cancer process. In this review, we also summarize various target genes of the altered miRNA, oncogenes or anti-oncogenes, and the existing evidence regarding the gene regulation mechanisms of cancer caused by environmentally induced miRNA alteration. The future perspective of miRNA may become attractive targets for the diagnosis and treatment of carcinogen-induced cancer.
Collapse
Affiliation(s)
- Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Chand Basha Davuljigari
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qingyuan Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
135
|
Sisto R, Capone P, Cerini L, Sanjust F, Paci E, Pigini D, Gatto MP, Gherardi M, Gordiani A, L'Episcopo N, Tranfo G, Chiarella P. Circulating microRNAs as potential biomarkers of occupational exposure to low dose organic solvents. Toxicol Rep 2019; 6:126-135. [PMID: 30671348 PMCID: PMC6330509 DOI: 10.1016/j.toxrep.2019.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
Circulating miRNAs can be used as sensitive biomarkers of low dose exposure to organic solvents at workplace. The miRNA response to organic chemicals elucidates molecular mechanisms occurring after specific occupational exposures. Associations between miRNAs, dose and oxidative stress biomarkers contribute to prevent and promote workers’ health.
Circulating microRNAs (miRNAs) have been recently acknowledged as novel and non-invasive biomarkers of exposure to environmental and occupational hazardous substances. This preliminary study investigates the potential role of blood miRNAs as molecular biomarkers of exposure to the most common organic solvents (ethylbenzene, toluene, xylene) used in the shipyard painting activity. Despite the low number of recruited workers, a two-tail standard Students’ test with Holm-Bonferroni adjusted p-value shows a significant up-regulation of two miRNAs (miR_6819_5p and miR_6778_5p) in exposed workers with respect to controls. A correlation analysis between miRNA, differentially expressed in exposed workers and in controls and urinary dose biomarkers i.e. methylhyppuric acid (xylenes metabolite), phenylglyoxylic and mandelic acid (ethylbenzene metabolites) S-benzyl mercapturic acid (toluene metabolite) and S-phenylmercapturic acid (benzene metabolite) measured at the end of the work-shift, allowed the identification of high correlation (0.80-0.99) of specific miRNAs with their respective urinary metabolites. MiRNA_671_5p correlated with methylhippuric, S-phenylmercapturic and S-benzyl mercapturic acid while the miRNA best correlating with the phenylglioxylic acid was miRNA_937_5p. These findings suggest miRNA as sensitive biomarkers of low dose exposure to organic chemicals used at workplace. Urinary DNA and RNA repair biomarkers coming from the oxidation product of guanine have been also associated to the different miRNAs. A significant negative association was found between 8-oxo-7,8-dihydroguanine (8-oxoGua) urinary concentration and miR_6778_5p. The findings of the present pilot study deserve to be tested on a larger population with the perspective of designing a miRNA based test of low dose exposure to organic solvents.
Collapse
Affiliation(s)
- Renata Sisto
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Pasquale Capone
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Luigi Cerini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Filippo Sanjust
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Enrico Paci
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Daniela Pigini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Maria Pia Gatto
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Monica Gherardi
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Andrea Gordiani
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Nunziata L'Episcopo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Giovanna Tranfo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Pieranna Chiarella
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via di Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| |
Collapse
|
136
|
Han S, Chen Y, Gao Y, Sun B, Kong Y. MicroRNA-218–5p inhibit the migration and proliferation of pterygium epithelial cells by targeting EGFR via PI3K/Akt/mTOR signaling pathway. Exp Eye Res 2019; 178:37-45. [DOI: 10.1016/j.exer.2018.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022]
|
137
|
Li D, Tolleson WH, Yu D, Chen S, Guo L, Xiao W, Tong W, Ning B. Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: Epigenetic mechanisms in environmental toxicology and carcinogenesis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:180-214. [PMID: 31305208 PMCID: PMC6737535 DOI: 10.1080/10590501.2019.1639481] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Environmental exposures to hazardous chemicals are associated with a variety of human diseases and disorders, including cancers. Phase I metabolic activation and detoxification reactions catalyzed by cytochrome P450 enzymes (CYPs) affect the toxicities of many xenobiotic compounds. Proper regulation of CYP expression influences their biological effects. Noncoding RNAs (ncRNAs) are involved in regulating CYP expression, and ncRNA expression is regulated in response to environmental chemicals. The mechanistic interactions between ncRNAs and CYPs associated with the toxicity and carcinogenicity of environmental chemicals are described in this review, focusing on microRNA-dependent CYP regulation. The role of long noncoding RNAs in regulating CYP expression is also presented and new avenues of research concerning this regulatory mechanism are described.
Collapse
Affiliation(s)
- Dongying Li
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - William H Tolleson
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - Dianke Yu
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - Si Chen
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - Lei Guo
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - Wenming Xiao
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - Weida Tong
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - Baitang Ning
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| |
Collapse
|
138
|
Rynning I, Arlt VM, Vrbova K, Neča J, Rossner Jr P, Klema J, Ulvestad B, Petersen E, Skare Ø, Haugen A, Phillips DH, Machala M, Topinka J, Mollerup S. Bulky DNA adducts, microRNA profiles, and lipid biomarkers in Norwegian tunnel finishing workers occupationally exposed to diesel exhaust. Occup Environ Med 2019; 76:10-16. [PMID: 30425118 PMCID: PMC6327869 DOI: 10.1136/oemed-2018-105445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/04/2018] [Accepted: 10/21/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVES This study aimed to assess the biological impact of occupational exposure to diesel exhaust (DE) including DE particles (DEP) from heavy-duty diesel-powered equipment in Norwegian tunnel finishing workers (TFW). METHODS TFW (n=69) and referents (n=69) were investigated for bulky DNA adducts (by 32P-postlabelling) and expression of microRNAs (miRNAs) (by small RNA sequencing) in peripheral blood mononuclear cells (PBMC), as well as circulating free arachidonic acid (AA) and eicosanoid profiles in plasma (by liquid chromatography-tandem mass spectrometry). RESULTS PBMC from TFW showed significantly higher levels of DNA adducts compared with referents. Levels of DNA adducts were also related to smoking habits. Seventeen miRNAs were significantly deregulated in TFW. Several of these miRNAs are related to carcinogenesis, apoptosis and antioxidant effects. Analysis of putative miRNA-gene targets revealed deregulation of pathways associated with cancer, alterations in lipid molecules, steroid biosynthesis and cell cycle. Plasma profiles showed higher levels of free AA and 15-hydroxyeicosatetraenoic acid, and lower levels of prostaglandin D2 and 9-hydroxyoctadecadienoic acid in TFW compared with referents. CONCLUSION Occupational exposure to DE/DEP is associated with biological alterations in TFW potentially affecting lung homoeostasis, carcinogenesis, inflammation status and the cardiovascular system. Of particular importance is the finding that tunnel finishing work is associated with an increased level of DNA adducts formation in PBMC.
Collapse
Affiliation(s)
- Iselin Rynning
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Neča
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Pavel Rossner Jr
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Prague, Czech Republic
| | - Bente Ulvestad
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Elisabeth Petersen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| | - Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Aage Haugen
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Steen Mollerup
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
139
|
Chen W, Fu W, Deng Q, Li Y, Wang K, Bai Y, Wu X, Li G, Wang G, Huang J, He M, Zhang X, Wu T, Wei S, Guo H. Multiple metals exposure and chromosome damage: Exploring the mediation effects of microRNAs and their potentials in lung carcinogenesis. ENVIRONMENT INTERNATIONAL 2019; 122:291-300. [PMID: 30455104 DOI: 10.1016/j.envint.2018.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE This study aimed to investigate the associations of multiple metals with chromosome damage, and further explore the mediation roles of microRNAs (miRNAs) and their potentials in lung cancer. METHODS We determined the urinary levels of 23 metals, lymphocytic micronucleus (MN) frequency, and ten candidate miRNAs in plasma among 365 healthy workers. Poisson and linear regression models were conducted to analyze the associations of urinary metals with MN frequency and miRNAs, respectively. The mediation effects of miRNAs on the metal-MN frequency associations were assessed by causal mediation analysis. Additionally, the levels of effective metal and miRNAs were measured in 43 pair-wised tumor and normal lung tissues. RESULTS The urinary level of titanium was inversely associated with MN frequency after Bonferroni correction [frequency ratio (FR) and 95% confidence interval (95%CI) = 0.88 (0.82, 0.94), p = 5.0 × 10-4]. A doubling in urinary titanium was associated with 14.72%-38.17% decrease in plasma miRNAs. After multiple comparison, miR-24-3p and miR-28-5p significantly mediated 24.8% (7.7%, 70.0%) and 20.4% (5.7%, 52.0%) of the association between titanium and MN frequency (pmediation = 0.002 and 0.004, respectively). Besides, a doubling in titanium was associated with a separate 53.4% and 47.2% decreased miR-24-3p and miR-28-5p expression in normal lung tissues. Lower titanium but higher levels of miR-24-3p and miR-28-5p were shown in tumor than normal tissues of lung squamous cell carcinoma patients (all p < 0.05). CONCLUSIONS Our study proposed the negative associations of titanium with chromosome damage and lung cancer, and highlighted the mediating roles of miR-24-3p and miR-28-5p. Further investigations are warranted to validate these associations and uncover the underlying mechanisms.
Collapse
Affiliation(s)
- Weilin Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenshan Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qifei Deng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiulong Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gege Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
140
|
Deng Q, Dai X, Feng W, Huang S, Yuan Y, Xiao Y, Zhang Z, Deng N, Deng H, Zhang X, Kuang D, Li X, Zhang W, Zhang X, Guo H, Wu T. Co-exposure to metals and polycyclic aromatic hydrocarbons, microRNA expression, and early health damage in coke oven workers. ENVIRONMENT INTERNATIONAL 2019; 122:369-380. [PMID: 30503314 DOI: 10.1016/j.envint.2018.11.056] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND All humans are now co-exposed to multiple toxic chemicals, among which metals and polycyclic aromatic hydrocarbons (PAHs) are of special concern as they are often present at high levels in various human environments. They can also induce similar early health damage, such as genetic damage, oxidative stress, and heart rate variability (HRV). Exposure to metals, PAHs, and their combined pollutants can alter microRNA (miRNA) expression patterns. OBJECTIVES To explore the associations of metal-PAH co-exposure with miRNA expression, and of the associated miRNAs with early health damage. METHODS We enrolled 360 healthy male coke oven workers and quantified their exposure levels of metals and PAHs by urinary metals, urinary monohydroxy-PAHs (OH-PAHs), and plasma benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydotetrol-albumin (BPDE-Alb) adducts, respectively. We selected and measured ten miRNAs: let-7b-5p, miR-126-3p, miR-142-5p, miR-150-5p, miR-16-5p, miR-24-3p, miR-27a-3p, miR-28-5p, miR-320b, and miR-451a. For miRNAs influenced by the effect modification of metals or PAHs and/or metal-PAH interactions, we further evaluated their associations with biomarkers for genetic damage, oxidative stress, and HRV. RESULTS After adjusting for PAHs and other metals, miRNA expression was found to be negatively associated with aluminum, antimony, lead, and titanium, and positively associated with molybdenum and tin (p < 0.05). Antimony showed modifying effects on the PAH-miRNA associations, while OH-PAHs and BPDE-Alb adducts modified the associations of metals with miRNAs (p for modifying effect < 0.05). Furthermore, miRNA expression was influenced by the antagonistic interactions between antimony and OH-PAHs, and by the synergistical interactions between metals and BPDE-Alb adducts (pinteraction < 0.05). Let-7b-5p, miR-126-3p, miR-16-5p, and miR-320b were additionally found to be associated with increased genetic damage in the present study [false discovery rate (FDR)-adjusted p < 0.05]. CONCLUSIONS Associations of metal-PAH co-exposure with miRNA expression, and of associated miRNAs with early health damage, suggested potential mechanistic connections between the complex metal-PAH interactions and their deleterious effects that are worthy of further investigation.
Collapse
Affiliation(s)
- Qifei Deng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiayun Dai
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, Hubei, China
| | - Wei Feng
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Suli Huang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Yuan
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongmei Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaorui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Na Deng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huaxin Deng
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao Zhang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Kuang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohai Li
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wangzhen Zhang
- Institute of Industrial Health, Wuhan Iron and Steel Corporation, Wuhan, Hubei, China
| | - Xiaomin Zhang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tangchun Wu
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
141
|
Koh EJ, Hwang SY. Multi-omics approaches for understanding environmental exposure and human health. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-019-0001-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
142
|
Zhi H, Yuan N, Wu JP, Lu LM, Chen XY, Wu SK, Mai BX. MicroRNA-21 attenuates BDE-209-induced lipid accumulation in THP-1 macrophages by downregulating Toll-like receptor 4 expression. Food Chem Toxicol 2018; 125:71-77. [PMID: 30597220 DOI: 10.1016/j.fct.2018.12.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 12/29/2022]
Abstract
Growing evidence demonstrates a possible response of specific microRNA (miRNA) to environmental pollutant stimuli in multiple biological processes. We previously reported that a persistent organic pollutant, decabromodiphenyl ether (BDE-209), can enhance Toll-like receptor 4 (TLR4)-dependent lipid uptake in THP-1 macrophages; whether miRNAs are involved in this process remains unclear. In the present study, we investigated the levels of several miRNAs related to TLR4 signaling, including miRs-9, -21, -27b, -125b, -132, -146a, -147, -155, and -let-7e, in THP-1 macrophages after stimulation by BDE-209 and oxidized low-density lipoprotein. The results showed that the levels of miR-21 were significantly suppressed by BDE-209 at concentrations of 6.25, 12.5 and 25 μM, in a dose-dependent manner; whereas there was no significant changes for the other miRNAs investigated. Moreover, the suppression of miR-21 was accompanied by an upregulated TLR4 expression, at both mRNA and protein levels. Further analysis showed that the up-regulated TLR4 induced by BDE-209 was inhibited in macrophages transfected with miR-21 mimic; meanwhile opposite results were exhibited when an anti-miR-21 inhibitor was transfected to the macrophages. Additionally, transfection with miR-21 mimic effectively attenuated BDE-209-induced lipid accumulation in macrophages. Together, these data illustrate that miR-21 inhibits BDE-209-triggered lipid accumulation in macrophages through down-regulating TLR4 expression.
Collapse
Affiliation(s)
- Hui Zhi
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China
| | - Na Yuan
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China
| | - Jiang-Ping Wu
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, China.
| | - Lin-Ming Lu
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China.
| | - Xiao-Yun Chen
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, China
| | - Si-Kang Wu
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
143
|
Chen X, Deng M, Zhou X, Wang X, Ye Y, Zhu J, Jiang H, Chen X, Zha W. Euxanthone Impairs the Metastatic Potential of Osteosarcoma by Reducing COX-2 Expression. Anat Rec (Hoboken) 2018; 302:1399-1408. [PMID: 30334373 DOI: 10.1002/ar.23992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/05/2018] [Accepted: 06/24/2018] [Indexed: 01/14/2023]
Abstract
Osteosarcoma (OS) is one of the most common malignancies of bone. This study was aimed to explore the anti-metastatic effect of euxanthone on OS. Adhesion assay and Transwell assay were used to examine the effect of euxanthone on adhesion, migration and invasion of OS cells. COX-2-over-expressing plasmid was applied to transfect OS cells to assess whether COX-2 affects the anti-metastatic function of euxanthone. PDCD4 knockdown and miR-21 mimic were applied to assess whether euxanthone suppresses the transactivation of c-jun via modulating miR-21-PDCD4 signaling. The effect of euxanthone in vivo was also examined by lung metastasis assay. Euxanthone, a xanthone derivative extracted from Polygala caudata, has been found to exhibit anti-neoplastic activities. In present study, our results showed that euxanthone suppressed cell adhesion, migration, and invasion in OS cells. Our experimental data also showed that repression of COX-2 by euxanthone mediated its anti-metastatic activities. Moreover, our findings revealed that euxanthone modulated the COX-2 expression through the miR-21/PDCD4/c-jun signaling pathway. The anti-metastatic activities of euxanthone were also validated in a pulmonary metastasis model. Taken together, our results highlighted the potential of euxanthone to be used in the treatment of OS. Anat Rec, 302:1399-1408, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Min Deng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Xinshe Zhou
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Xuyi Wang
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Yuchen Ye
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Jun Zhu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Huafeng Jiang
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Xiaotian Chen
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Wenju Zha
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| |
Collapse
|
144
|
Beck R, Bommarito P, Douillet C, Kanke M, Del Razo LM, García-Vargas G, Fry RC, Sethupathy P, Stýblo M. Circulating miRNAs Associated with Arsenic Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14487-14495. [PMID: 30457847 PMCID: PMC7036137 DOI: 10.1021/acs.est.8b06457] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Arsenic (As) is a toxic metalloid. Inorganic arsenic (iAs) is a form of As commonly found in drinking water and in some foods. Overwhelming evidence suggests that people chronically exposed to iAs are at risk of developing cancer or cardiovascular, neurological, and metabolic diseases. Although the mechanisms underlying iAs-associated illness remain poorly characterized, a growing body of literature raises the possibility that microRNAs (miRNAs), post-transcriptional gene suppressors, may serve as mediators and/or early indicators of the pathologies associated with iAs exposure. To characterize the circulating miRNA profiles of individuals chronically exposed to iAs, samples of plasma were collected from 109 healthy residents of the city of Zimapán and the Lagunera area in Mexico, the regions with historically high exposures to iAs in drinking water. These plasma samples were analyzed for small RNAs using high-throughput sequencing and for iAs and its methylated metabolites. Associations between plasma levels of arsenic species and miRNAs were evaluated. Six circulating miRNAs (miRs-423-5p, -142-5p -2, -423-5p +1, -320c-1, -320c-2, and -454-5p), two of which have been previously linked to cardiovascular disease and diabetes (miRs-423-5p, -454-5p), were found to be significantly correlated with plasma MAs. No miRNAs were associated with plasma iAs or DMAs after correction for multiple testing. These miRNAs may represent mechanistic links between iAs exposure and disease or serve as markers of disease risks associated with this exposure.
Collapse
Affiliation(s)
- Rowan Beck
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Paige Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Luz M Del Razo
- Department of Toxicology, Center of Investigation and of Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), México City, Mexico
| | | | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
- Corresponding Authors: Praveen Sethupathy, ; Miroslav Styblo,
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Corresponding Authors: Praveen Sethupathy, ; Miroslav Styblo,
| |
Collapse
|
145
|
Zhou T, Yu Q, Sun C, Wang Y, Zhong Y, Wang G. A pilot study of blood microRNAs and lung function in young healthy adults with fine particulate matter exposure. J Thorac Dis 2018; 10:7073-7080. [PMID: 30746254 DOI: 10.21037/jtd.2018.12.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fine particulate exposure (PM2.5) is a risk factor of pulmonary diseases such as chronic obstructive pulmonary disease (COPD), but the mechanism underlying was not clear. Recent studies found blood microRNAs (miRNAs) are potential indicators of either COPD or PM2.5 exposure, but these results had no unified conclusions. We suggested it was more targeted to find disease related miRNAs first and then observe them during PM2.5 exposure. Firstly, in order to screen COPD associated miRNAs, we identified differentially expressed blood miRNAs contrasting COPD participants (n=6) without diagnose of COPD or related treatment before and matched control (n=6). In total, 21 miRNAs were differentially expressed in COPD individuals and expression of miR-495-3p, miR-223-5p and miR-194-3p were further validated using qRT-PCR. The results showed miR-495-3p and miR-223-5p significantly increased whereas miR-194-3p decreased marginally (P=0.058) in COPD participants. Secondly, in order to recognize the relevance between these miRNAs and PM2.5 exposure, we designed an independent time-series study nested within "low-high-low" pollution levels. The expression of blood miR-495-3p, miR-223-5p and miR-194-3p were detected before and after exposure (n=8). The results showed expression of miR-223-5p increased significantly while expression of miR-194-3p decreased significantly after exposure. The Pearson analysis showed only miR-194-3p showed a positive statistically correlation with lag0-1 forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) during exposure of PM2.5. So miR-194-3p might be a potential regulator in the toxicological pathways of both PM2.5 exposure and COPD. As this was a pilot study, formal and large-scale studies should be planned in the future.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing100034, China
| | - Qing Yu
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing100034, China
| | - Chao Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing100034, China
| | - Yunxia Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing100034, China
| | - Yijue Zhong
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing100034, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing100034, China
| |
Collapse
|
146
|
Ruiz-Vera T, Ochoa-Martínez ÁC, Pruneda-Álvarez LG, Zarazúa S, Pérez-Maldonado IN. Exposure to biomass smoke is associated with an increased expression of circulating miRNA-126 and miRNA-155 in Mexican women: a pilot study. Drug Chem Toxicol 2018; 42:335-342. [PMID: 30486697 DOI: 10.1080/01480545.2018.1526181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Household air pollution has been associated as a risk factor for cardiovascular diseases (CVD). Therefore, the aim of this study was to assess the expression of vascular inflammation regulators miR-126 and miR-155 in plasma from women that cook with wood and women that cook with liquid petroleum gas (LPG). A cumulative index of exposure to smoke (CIES) was estimated, urinary 1-hydroxypyrene (1-OHP) levels were quantified and miRNAs expression levels were determined by quantitative real-time PCR (qRT-PCR). Biochemical clinical parameters were also evaluated. The average values for CIES and 1-OHP were 140 ± 86.8 hours-years (12.0-270 hours-years) and 0.52 ± 0.45 µmol/mol creatinine, respectively. miR-126 and miR-155 expression levels were significantly higher (p < 0.01) in the wood users compared to LPG users. Besides, we found a significant association (p < 0.01) between miR-126 and miR-155 expression levels and CIES and urinary 1-OHP concentrations. These results contribute to the current evidence about the cardiovascular risk related to biomass smoke exposure, from an epigenetic level.
Collapse
Affiliation(s)
- Tania Ruiz-Vera
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS) , Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Facultad de Medicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Ángeles C Ochoa-Martínez
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS) , Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Facultad de Medicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Lucía G Pruneda-Álvarez
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS) , Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Facultad de Medicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Sergio Zarazúa
- c Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Iván N Pérez-Maldonado
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS) , Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Facultad de Medicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,d Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí. Rio-verde , San Luis Potosí , México
| |
Collapse
|
147
|
Bushel PR, Caiment F, Wu H, O'Lone R, Day F, Calley J, Smith A, Li J. RATEmiRs: the rat atlas of tissue-specific and enriched miRNAs database. BMC Genomics 2018; 19:825. [PMID: 30453895 PMCID: PMC6245813 DOI: 10.1186/s12864-018-5220-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRNAs) regulate gene expression and have been targeted as indicators of environmental/toxicologic stressors. Using the data from our deep sequencing of miRNAs in an extensive sampling of rat tissues, we developed a database called RATEmiRs for the Rat Atlas of Tissue-specific and Enriched miRNAs to allow users to dynamically determine mature-, iso- and pre-miR expression abundance, enrichment and specificity in rat tissues and organs. Results Illumina sequencing count data from mapped reads and meta data from the miRNA body atlas consisting of 21 and 23 tissues (14 organs) of toxicologic interest from 12 to 13 week old male and female Sprague Dawley rats respectively, were managed in a relational database with a user-friendly query interface. Data-driven pipelines are available to tailor the identification of tissue-enriched (TE) and tissue-specific (TS) miRNAs. Data-driven organ-specific (OS) pipelines reveal miRNAs that are expressed predominately in a given organ. A user-driven approach is also available to assess the tissue expression of user-specified miRNAs. Using one tissue vs other tissues and tissue(s) of an organ vs other organs, we illustrate the utility of RATEmiRs to facilitate the identification of candidate miRNAs. As a use case example, RATEmiRs revealed two TS miRNAs in the liver: rno-miR-122-3p and rno-miR-122-5p. When liver is compared to just the brain tissues for example, rno-miR-192-5p, rno-miR-193-3p, rno-miR-203b-3p, rno-miR-3559-5p, rno-miR-802-3p and rno-miR-802-5p are also detected as abundantly expressed in liver. As another example, 55 miRNAs from the RATEmiRs query of ileum vs brain tissues overlapped with miRNAs identified from the same comparison of tissues in an independent, publicly available dataset of 10 week old male rat microarray data suggesting that these miRNAs are likely not age-specific, platform-specific nor pipeline-dependent. Lastly, we identified 10 miRNAs that have conserved tissue/organ-specific expression between the rat and human species. Conclusions RATEmiRs provides a new platform for identification of TE, TS and OS miRNAs in a broad array of rat tissues. RATEmiRs is available at: https://www.niehs.nih.gov/ratemirs
Collapse
Affiliation(s)
- Pierre R Bushel
- Biostatistics and Computational Biology Branch, Research Triangle Park, NC, USA. .,Microarray and Genome Informatics Group, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA.
| | - Florian Caiment
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Han Wu
- Department of Discovery and Development Statistics, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Raegan O'Lone
- Health and Environmental Sciences Institute, Washington, D.C., USA
| | - Frank Day
- Office of Scientific Computing, National Institute of Environmental Health Sciences,, Reaserch Triangle Park, NC, USA
| | - John Calley
- Department of TTX Bioinformatics, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Aaron Smith
- Department of Investigative Toxicology, Non-Clinical Safety Assessment and Pathology, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Jianying Li
- Microarray and Genome Informatics Group, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA.,Integrative Bioinformatics, National Institute of Environmental Health Sciences,, Research Triangle Park, NC, USA.,Kelly Government Solutions,, Research Triangle Park, NC, USA
| |
Collapse
|
148
|
Expression of the miR-190 family is increased under DDT exposure in vivo and in vitro. Mol Biol Rep 2018; 45:1937-1945. [DOI: 10.1007/s11033-018-4343-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
|
149
|
Yuan Y, Lin D, Feng L, Huang M, Yan H, Li Y, Chen Y, Lin B, Ma Y, Ye Z, Mei Y, Yu X, Zhou K, Zhang Q, Chen T, Zeng J. Upregulation of miR-196b-5p attenuates BCG uptake via targeting SOCS3 and activating STAT3 in macrophages from patients with long-term cigarette smoking-related active pulmonary tuberculosis. J Transl Med 2018; 16:284. [PMID: 30326918 PMCID: PMC6192289 DOI: 10.1186/s12967-018-1654-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
Background Cigarette smoking (CS) triggers an intense and harmful inflammatory response in lungs mediated by alveolar and blood macrophages, monocytes, and neutrophils and is closely associated with prevalence of tuberculosis (TB). The risk of death in patients with long-term cigarette smoking-related pulmonary tuberculosis (LCS-PTB) is approximately 4.5 times higher than those with nonsmoking pulmonary tuberculosis (N-PTB). However, the mechanisms underlying the harmful inflammatory responses in the setting of LCS-PTB have not been well documented. Methods 28 cases LCS-PTB patients, 22 cases N-PTB patients and 20 cases healthy volunteers were enrolled in this study. Monocytes were isolated from peripheral blood mononuclear cells. Differentiated human MDM and U937 cell were prepared with M-CSF and PMA stimulation, respectively. The miR-196b-5p, STAT1, STAT3, STAT4, STAT5A, STAT5B, STAT6, SOCS1 and SOCS3 mRNA expression were detected by qRT-PCR. Western blot was performed according to SOCS1, SOCS3, and pSTAT3 expression. The mycobacterial uptake by MDMs from different groups of patients after Bacillus Calmette–Guérin (BCG) infection and agomir-196b-5p or antagomir-196b-5p transfection were used by flow cytometry analysis. Human IL-6, IL-10 and TNF-α levels on the plasma and cell culture supernatant samples were measured using ELISA. For dual-luciferase reporter assay, the SOCS3 3′-UTR segments, containing the binding elements of miR-196b-5p or its mutant versions were synthesized as sense and antisense linkers. Results In this study, we found that IL-6, TNF-α production, SOCS3 mRNA expression were downregulated, while miR-196b-5p and STAT3 mRNA expression were upregulated in monocytes from LCS-PTB patients as compared to N-PTB patients. Meanwhile, we demonstrated that miR-196b-5p could target SOCS3 and activate STAT3 signaling pathway, which may possibly contribute to attenuation of BCG uptake and decrease in IL-6 and TNF-α production in macrophages. Conclusions Our findings revealed that CS exposure regulates inflammatory responses in monocyte/macrophages from LCS-PTB patients via upregulating miR-196b-5p, and further understanding of the specific role of miR-196b-5p in inflammatory responses mightfacilitate elucidating the pathogenesis of LCS-PTB, thus leading to the development of new therapeutic strategies for PTB patients with long-term cigarette smoking. Electronic supplementary material The online version of this article (10.1186/s12967-018-1654-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yaoqin Yuan
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Dongzi Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China.,Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Long Feng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huimin Yan
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China.,Provincial Tuberculosis Reference Laboratory of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630, China
| | - Yumei Li
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Yinwen Chen
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yan Ma
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuezhi Mei
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Xiaolin Yu
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Keyuan Zhou
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, 19104, USA
| | - Tao Chen
- Provincial Tuberculosis Reference Laboratory of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630, China.
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China. .,Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, 19104, USA.
| |
Collapse
|
150
|
Luyten LJ, Saenen ND, Janssen BG, Vrijens K, Plusquin M, Roels HA, Debacq-Chainiaux F, Nawrot TS. Air pollution and the fetal origin of disease: A systematic review of the molecular signatures of air pollution exposure in human placenta. ENVIRONMENTAL RESEARCH 2018; 166:310-323. [PMID: 29908461 DOI: 10.1016/j.envres.2018.03.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Fetal development is a crucial window of susceptibility in which exposure-related alterations can be induced on the molecular level, leading to potential changes in metabolism and development. The placenta serves as a gatekeeper between mother and fetus, and is in contact with environmental stressors throughout pregnancy. This makes the placenta as a temporary organ an informative non-invasive matrix suitable to investigate omics-related aberrations in association with in utero exposures such as ambient air pollution. OBJECTIVES To summarize and discuss the current evidence and define the gaps of knowledge concerning human placental -omics markers in association with prenatal exposure to ambient air pollution. METHODS Two investigators independently searched the PubMed, ScienceDirect, and Scopus databases to identify all studies published until January 2017 with an emphasis on epidemiological research on prenatal exposure to ambient air pollution and the effect on placental -omics signatures. RESULTS From the initial 386 articles, 25 were retained following an a priori set inclusion and exclusion criteria. We identified eleven studies on the genome, two on the transcriptome, five on the epigenome, five on the proteome category, one study with both genomic and proteomic topics, and one study with both genomic and transcriptomic topics. Six studies discussed the triple relationship between exposure to air pollution during pregnancy, the associated placental -omics marker(s), and the potential effect on disease development later in life. So far, no metabolomic or exposomic data discussing associations between the placenta and prenatal exposure to air pollution have been published. CONCLUSIONS Integration of placental biomarkers in an environmental epidemiological context enables researchers to address fundamental questions essential in unraveling the fetal origin of disease and helps to better define the pregnancy exposome of air pollution.
Collapse
Affiliation(s)
- Leen J Luyten
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
| | - Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | - Florence Debacq-Chainiaux
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Occupational and Environmental Medicine, Leuven University (KULeuven), Leuven, Belgium.
| |
Collapse
|