101
|
Cuajungco MP, Kiselyov K. The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 2017; 22:1330-1343. [PMID: 28199205 DOI: 10.2741/4546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysosomes are emerging as important players in cellular zinc ion (Zn2+) homeostasis. The series of work on Zn2+ accumulation in the neuronal lysosomes and the mounting evidence on the role of lysosomal Zn2+ in cell death during mammary gland involution set a biological precedent for the central role of the lysosomes in cellular Zn2+ handling. Such a role appears to involve cytoprotection on the one hand, and cell death on the other. The recent series of work began to identify the molecular determinants of the lysosomal Zn2+ handling. In addition to zinc transporters (ZnT) of the solute-carrier family type 30A (SLC30A), the lysosomal ion channel TRPML1 and the poorly understood novel transporter TMEM163 have been shown to play a role in the Zn2+ uptake by the lysosomes. In this review, we summarize the current knowledge on molecular determinants of the lysosomal Zn2+ handling, uptake, and release pathways, as well as discuss their possible roles in health and disease.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science, and Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA
| | - Kirill Kiselyov
- Dept. of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA,
| |
Collapse
|
102
|
Traffic Through the Trans-Golgi Network and the Endosomal System Requires Collaboration Between Exomer and Clathrin Adaptors in Fission Yeast. Genetics 2016; 205:673-690. [PMID: 27974503 DOI: 10.1534/genetics.116.193458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/09/2016] [Indexed: 11/18/2022] Open
Abstract
Despite its biological and medical relevance, traffic from the Golgi to the plasma membrane (PM) is one of the least understood steps of secretion. Exomer is a protein complex that mediates the trafficking of certain cargoes from the trans-Golgi network/early endosomes to the PM in budding yeast. Here, we show that in Schizosaccharomyces pombe the Cfr1 and Bch1 proteins constitute the simplest form of an exomer. Cfr1 co-immunoprecipitates with Assembly Polypeptide adaptor 1 (AP-1), AP-2, and Golgi-localized, gamma-adaptin ear domain homology, ARF-binding (GGA) subunits, and cfr1+ interacts genetically with AP-1 and GGA genes. Exomer-defective cells exhibit multiple mild defects, including alterations in the morphology of Golgi stacks and the distribution of the synaptobrevin-like Syb1 protein, carboxypeptidase missorting, and stress sensitivity. S. pombe apm1Δ cells exhibit a defect in trafficking through the early endosomes that is severely aggravated in the absence of exomer. apm1Δ cfr1Δ cells exhibit a dramatic disorganization of intracellular compartments, including massive accumulation of electron-dense tubulovesicular structures. While the trans-Golgi network/early endosomes are severely disorganized in the apm1Δ cfr1Δ strain, gga21Δ gga22Δ cfr1Δ cells exhibit a significant disturbance of the prevacuolar/vacuolar compartments. Our findings show that exomer collaborates with clathrin adaptors in trafficking through diverse cellular compartments, and that this collaboration is important to maintain their integrity. These results indicate that the effect of eliminating exomer is more pervasive than that described to date, and suggest that exomer complexes might participate in diverse steps of vesicle transport in other organisms.
Collapse
|
103
|
Honkanen S, Jones VAS, Morieri G, Champion C, Hetherington AJ, Kelly S, Proust H, Saint-Marcoux D, Prescott H, Dolan L. The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants. Curr Biol 2016; 26:3238-3244. [PMID: 27866889 PMCID: PMC5154754 DOI: 10.1016/j.cub.2016.09.062] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/01/2022]
Abstract
To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. 336,000 T-DNA lines and a genome assembly were generated in Marchantia polymorpha 33 genes required for rhizoid growth were identified Six of the 33 genes were functionally characterized in plants for the first time Genes belonging to these orthogroups were active in the first land plant roots
Collapse
Affiliation(s)
- Suvi Honkanen
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Victor A S Jones
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Giulia Morieri
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Clement Champion
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Steve Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Hélène Proust
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Denis Saint-Marcoux
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Helen Prescott
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
104
|
Richardson E, Zerr K, Tsaousis A, Dorrell RG, Dacks JB. Evolutionary cell biology: functional insight from "endless forms most beautiful". Mol Biol Cell 2016; 26:4532-8. [PMID: 26668171 PMCID: PMC4678011 DOI: 10.1091/mbc.e14-10-1433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking.
Collapse
Affiliation(s)
| | - Kelly Zerr
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Anastasios Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| |
Collapse
|
105
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
106
|
Gershlick DC, Schindler C, Chen Y, Bonifacino JS. TSSC1 is novel component of the endosomal retrieval machinery. Mol Biol Cell 2016; 27:2867-78. [PMID: 27440922 PMCID: PMC5025273 DOI: 10.1091/mbc.e16-04-0209] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022] Open
Abstract
A previously uncharacterized WD40 domain–containing protein named TSSC1 is shown to interact with the GARP and EARP tethering complexes, promoting retrograde transport of Shiga toxin from endosomes to the TGN, as well as recycling internalized transferrin from endosomes to the plasma membrane. Endosomes function as a hub for multiple protein-sorting events, including retrograde transport to the trans-Golgi network (TGN) and recycling to the plasma membrane. These processes are mediated by tubular-vesicular carriers that bud from early endosomes and fuse with a corresponding acceptor compartment. Two tethering complexes named GARP (composed of ANG2, VPS52, VPS53, and VPS54 subunits) and EARP (composed of ANG2, VPS52, VPS53, and Syndetin subunits) were previously shown to participate in SNARE-dependent fusion of endosome-derived carriers with the TGN and recycling endosomes, respectively. Little is known, however, about other proteins that function with GARP and EARP in these processes. Here we identify a protein named TSSC1 as a specific interactor of both GARP and EARP and as a novel component of the endosomal retrieval machinery. TSSC1 is a predicted WD40/β-propeller protein that coisolates with both GARP and EARP in affinity purification, immunoprecipitation, and gel filtration analyses. Confocal fluorescence microscopy shows colocalization of TSSC1 with both GARP and EARP. Silencing of TSSC1 impairs transport of internalized Shiga toxin B subunit to the TGN, as well as recycling of internalized transferrin to the plasma membrane. Fluorescence recovery after photobleaching shows that TSSC1 is required for efficient recruitment of GARP to the TGN. These studies thus demonstrate that TSSC1 plays a critical role in endosomal retrieval pathways as a regulator of both GARP and EARP function.
Collapse
Affiliation(s)
- David C Gershlick
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Christina Schindler
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Yu Chen
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
107
|
Human Immunodeficiency Virus Type 2 (HIV-2) Gag Is Trafficked in an AP-3 and AP-5 Dependent Manner. PLoS One 2016; 11:e0158941. [PMID: 27392064 PMCID: PMC4938559 DOI: 10.1371/journal.pone.0158941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/24/2016] [Indexed: 02/03/2023] Open
Abstract
Although human immunodeficiency virus (HIV) types 1 and 2 are closely related lentiviruses with similar replication cycles, HIV-2 infection is associated with slower progression to AIDS, a higher proportion of long term non-progressors, and lower rates of transmission than HIV-1, likely as a consequence of a lower viral load during HIV-2 infection. A mechanistic explanation for the differential viral load remains unclear but knowledge of differences in particle production between HIV-1 and HIV-2 may help to shed light on this issue. In contrast to HIV-1, little is known about the assembly of HIV-2 particles, and the trafficking of HIV-2 Gag, the structural component of the virus, within cells. We have established that HIV-2 Gag accumulates in intracellular CD63 positive compartments, from which it may be delivered or recycled to the cell surface, or degraded. HIV-2 particle release was dependent on the adaptor protein complex AP-3 and the newly identified AP-5 complex, but much less so on AP-1. In contrast, HIV-1 particle release required AP-1 and AP-3, but not AP-5. AP-2, an essential component of clathrin-mediated endocytosis, which was previously shown to be inhibitory to HIV-1 particle release, had no effect on HIV-2. The differential requirement for adaptor protein complexes confirmed that HIV-1 and HIV-2 Gag have distinct cellular trafficking pathways, and that HIV-2 particles may be more susceptible to degradation prior to release.
Collapse
|
108
|
O'Malley MA, Wideman JG, Ruiz-Trillo I. Losing Complexity: The Role of Simplification in Macroevolution. Trends Ecol Evol 2016; 31:608-621. [PMID: 27212432 DOI: 10.1016/j.tree.2016.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Abstract
Macroevolutionary patterns can be produced by combinations of diverse and even oppositional dynamics. A growing body of data indicates that secondary simplifications of molecular and cellular structures are common. Some major diversifications in eukaryotes have occurred because of loss and minimalisation; numerous episodes in prokaryote evolution have likewise been driven by the reduction of structure. After examining a range of examples of secondary simplification and its consequences across the tree of life, we address how macroevolutionary explanations might incorporate simplification as well as complexification, and adaptive as well as nonadaptive dynamics.
Collapse
Affiliation(s)
- Maureen A O'Malley
- UMR5164, University of Bordeaux, 146 Rue Léo Saignat, Bordeaux 33076, France.
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain; Departament de Genètica, Universitat de Barcelona, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Pg Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
109
|
Topalidou I, Cattin-Ortolá J, Pappas AL, Cooper K, Merrihew GE, MacCoss MJ, Ailion M. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet 2016; 12:e1006074. [PMID: 27191843 PMCID: PMC4871572 DOI: 10.1371/journal.pgen.1006074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. Animal cells package and store many important signaling molecules in specialized compartments called dense-core vesicles. Molecules stored in dense-core vesicles include peptide hormones like insulin and small molecule neurotransmitters like dopamine. Defects in the release of these compounds can lead to a wide range of metabolic and mental disorders in humans, including diabetes, depression, and drug addiction. However, it is not well understood how dense-core vesicles are formed in cells and package the appropriate molecules. Here we use a genetic screen in the microscopic worm C. elegans to identify proteins that are important for early steps in the generation of dense-core vesicles, such as packaging the correct molecular cargos in the vesicles. We identify several factors that are conserved between worms and humans and point to a new role for a protein complex that had previously been shown to be important for controlling trafficking in other cellular compartments. The identification of this complex suggests new cellular trafficking events that may be important for the generation of dense-core vesicles.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jérôme Cattin-Ortolá
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Andrea L. Pappas
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
110
|
Characterization of MUDENG, a novel anti-apoptotic protein. Oncogenesis 2016; 5:e221. [PMID: 27136675 PMCID: PMC4945747 DOI: 10.1038/oncsis.2016.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 02/23/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022] Open
Abstract
MUDENG (Mu-2-related death-inducing gene, MuD) is revealed to be involved in cell death signaling. Astrocytes, the major glial cell type in the central nervous system, are a source of brain tumors. In this study, we examined MuD expression and function in human astroglioma cells. Stimulation of U251-MG cells with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resulted in a 40% decrease in cell viability and a 33% decrease in MuD protein levels, although not in MuD mRNA levels. To study the functional relevance of MuD expression, stable transfectants expressing high levels of MuD were generated. Stimulation of these transfectants with TRAIL resulted in enhanced cell survival (77% for stable and 46% for control transfectants). Depletion of MuD led to a marked reduction upon TRAIL stimulation in cell viability (22% in MuD-depleted cells and 54% in control cells). In addition, we observed that MuD depletion increased the susceptibility of the cells to TRAIL by enhancing the cleavage of caspase-3/-9 and BH3-interacting domain death agonist (Bid). A unique 25-kDa fragment of B-cell lymphoma 2 (Bcl-2) lacking BH4 was observed 60-180 min post TRAIL treatment in MuD-depleted cells, suggesting that Bcl-2 is converted from its anti-apoptotic form to the truncated pro-apoptotic form. Importantly, the TRAIL-mediated decrease in cell viability in MuD-depleted cells was abrogated upon Bid depletion, indicating that the role of MuD in apoptotic signaling takes place at the Bid and Bcl-2 junction. MuD localizes predominantly in the endoplasmic reticulum and partly in the mitochondria and its amounts are reduced 6 h post TRAIL stimulation, presumably via caspase-3-mediated MuD cleavage. Collectively, these results suggest that MuD, a novel signaling protein, not only possesses an anti-apoptotic function but may also constitute an important target for the design of ideal candidates for combinatorial treatment strategies for glioma cells.
Collapse
|
111
|
Gadila SKG, Kim K. Cargo trafficking from the trans-Golgi network towards the endosome. Biol Cell 2016; 108:205-18. [DOI: 10.1111/boc.201600001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kyoungtae Kim
- Department of Biology; Missouri State University; Springfield MO 65807 USA
| |
Collapse
|
112
|
Li X, Niu Y, Cheng M, Chi X, Liu X, Yang W. AP1S3 is required for hepatitis C virus infection by stabilizing E2 protein. Antiviral Res 2016; 131:26-34. [PMID: 27079945 DOI: 10.1016/j.antiviral.2016.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 10/22/2022]
Abstract
Hepatitis C virus (HCV) infects 130 million people worldwide and is a leading cause of liver cirrhosis, end-stage liver disease and hepatocellular carcinoma. The interactions between viral elements and host factors play critical role on HCV invade, replication and release. Here, we identified adaptor protein complex 1 sigma 3 subunit (AP1S3) as a dependency factor for the efficient HCV infection in hepatoma cells. AP1S3 silencing in cultivated Huh7.5.1 cells significantly reduced the production of HCV progeny particles. Immunoprecipitation analysis revealed that AP1S3 interacted with the HCV E2 protein. With this interaction, AP1S3 could protect HCV E2 from ubiquitin-mediated proteasomal degradation. Using in vivo ubiquitylation assay, we identified that E6-Associated Protein (E6AP) was associated with HCV E2. In addition, treatment with synthetic peptide that contains the AP1S3-recognized motif inhibited HCV infection in Huh7.5.1 cells. Our data reveal AP1 as a novel host network that is required by viruses during infection and provides a potential target for developing broad-spectrum anti-virus strategies.
Collapse
Affiliation(s)
- Xiang Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Yuqiang Niu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Min Cheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Xiaojing Chi
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Xiuying Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Wei Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China.
| |
Collapse
|
113
|
Schreij AMA, Fon EA, McPherson PS. Endocytic membrane trafficking and neurodegenerative disease. Cell Mol Life Sci 2016; 73:1529-45. [PMID: 26721251 PMCID: PMC11108351 DOI: 10.1007/s00018-015-2105-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are amongst the most devastating of human disorders. New technologies have led to a rapid increase in the identification of disease-related genes with an enhanced appreciation of the key roles played by genetics in the etiology of these disorders. Importantly, pinpointing the normal function of disease gene proteins leads to new understanding of the cellular machineries and pathways that are altered in the disease process. One such emerging pathway is membrane trafficking in the endosomal system. This key cellular process controls the localization and levels of a myriad of proteins and is thus critical for normal cell function. In this review we will focus on three neurodegenerative diseases; Parkinson disease, amyotrophic lateral sclerosis, and hereditary spastic paraplegias, for which a large number of newly discovered disease genes encode proteins that function in endosomal membrane trafficking. We will describe how alterations in these proteins affect endosomal function and speculate on the contributions of these disruptions to disease pathophysiology.
Collapse
Affiliation(s)
- Andrea M A Schreij
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
114
|
de León N, Hoya M, Curto MA, Moro S, Yanguas F, Doncel C, Valdivieso MH. The AP-2 complex is required for proper temporal and spatial dynamics of endocytic patches in fission yeast. Mol Microbiol 2016; 100:409-24. [PMID: 26749213 DOI: 10.1111/mmi.13327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/27/2022]
Abstract
In metazoans the AP-2 complex has a well-defined role in clathrin-mediated endocytosis. By contrast, its direct role in endocytosis in unicellular eukaryotes has been questioned. Here, we report co- immunoprecipitation between the fission yeast AP-2 component Apl3p and clathrin, as well as the genetic interactions between apl3Δ and clc1 and sla2Δ/end4Δ mutants. Furthermore, a double clc1 apl3Δ mutant was found to be defective in FM4-64 uptake. In an otherwise wild-type strain, apl3Δ cells exhibit altered dynamics of the endocytic sites, with a heterogeneous and extended lifetime of early and late markers at the patches. Additionally, around 50% of the endocytic patches exhibit abnormal spatial dynamics, with immobile patches and patches that bounce backwards to the cell surface, showing a pervasive effect of the absence of AP-2. These alterations in the endocytic machinery result in abnormal cell wall synthesis and morphogenesis. Our results complement those found in budding yeast and confirm that a direct role of AP-2 in endocytosis has been conserved throughout evolution.
Collapse
Affiliation(s)
- Nagore de León
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Marta Hoya
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| | - M-Angeles Curto
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Sandra Moro
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Francisco Yanguas
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Cristina Doncel
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| | - M-Henar Valdivieso
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| |
Collapse
|
115
|
Wideman JG, Muñoz-Gómez SA. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:900-912. [PMID: 26825688 DOI: 10.1016/j.bbalip.2016.01.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
Abstract
The ER-mitochondria organizing network (ERMIONE) in Saccharomyces cerevisiae is involved in maintaining mitochondrial morphology and lipid homeostasis. ERMES and MICOS are two scaffolding complexes of ERMIONE that contribute to these processes. ERMES is ancient but has been lost in several lineages including animals, plants, and SAR (stramenopiles, alveolates and rhizaria). On the other hand, MICOS is ancient and has remained present in all organisms bearing mitochondrial cristae. The ERMIONE precursor evolved in the α-proteobacterial ancestor of mitochondria which had the central subunit of MICOS, Mic60. The subsequent evolution of ERMIONE and its interactors in eukaryotes reflects the integrative co-evolution of mitochondria and their hosts and the adaptive paths that some lineages have followed in their specialization to certain environments. By approaching the ERMIONE from a perspective of comparative evolutionary cell biology, we hope to shed light on not only its evolutionary history, but also how ERMIONE components may function in organisms other than S. cerevisiae. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
| | - Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
116
|
Nishimura K, Matsunami E, Yoshida S, Kohata S, Yamauchi J, Jisaka M, Nagaya T, Yokota K, Nakagawa T. The tyrosine-sorting motif of the vacuolar sorting receptor VSR4 from Arabidopsis thaliana, which is involved in the interaction between VSR4 and AP1M2, μ1-adaptin type 2 of clathrin adaptor complex 1 subunits, participates in the post-Golgi sorting of VSR4. Biosci Biotechnol Biochem 2016; 80:694-705. [PMID: 26745465 DOI: 10.1080/09168451.2015.1116925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
μ1-Adaptin of adaptor protein (AP) 1 complex, AP1M, is generally accepted to load cargo proteins into clathrin-coated vesicles (CCVs) at the trans-Golgi network through its binding to cargo-recognition sequences (CRSs). Plant vacuolar-sorting receptors (VSRs) function in sorting vacuolar proteins, which are reportedly mediated by CCV. We herein investigated the involvement of CRSs of Arabidopsis thaliana VSR4 in the sorting of VSR4. The results obtained showed the increased localization of VSR4 at the plasma membrane or vacuoles by mutations in CRSs including the tyrosine-sorting motif YMPL or acidic dileucine-like motif EIRAIM, respectively. Interaction analysis using the bimolecular fluorescence complementation (BiFC) system, V10-BiFC, which we developed, indicated an interaction between VSR4 and AP1M2, AP1M type 2, which was attenuated by a YMPL mutation, but not influenced by an EIRAIM mutation. These results demonstrated the significance of the recognition of YMPL in VSR4 by AP1M2 for the post-Golgi sorting of VSR4.
Collapse
Affiliation(s)
- Kohji Nishimura
- a Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization of Research , Shimane University , Matsue , Japan
| | - Erika Matsunami
- b Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Shohei Yoshida
- b Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Shuhei Kohata
- b Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Junji Yamauchi
- c Department of Pharmacology , National Research Institute for Child Health and Development , Tokyo , Japan.,d Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University , Tokyo , Japan
| | - Mitsuo Jisaka
- b Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Tsutomu Nagaya
- b Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Kazushige Yokota
- b Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Tsuyoshi Nakagawa
- a Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization of Research , Shimane University , Matsue , Japan
| |
Collapse
|
117
|
Fuji K, Shirakawa M, Shimono Y, Kunieda T, Fukao Y, Koumoto Y, Takahashi H, Hara-Nishimura I, Shimada T. The Adaptor Complex AP-4 Regulates Vacuolar Protein Sorting at the trans-Golgi Network by Interacting with VACUOLAR SORTING RECEPTOR1. PLANT PHYSIOLOGY 2016; 170:211-9. [PMID: 26546666 PMCID: PMC4704568 DOI: 10.1104/pp.15.00869] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/05/2015] [Indexed: 05/18/2023]
Abstract
Adaptor protein (AP) complexes play critical roles in protein sorting among different post-Golgi pathways by recognizing specific cargo protein motifs. Among the five AP complexes (AP-1-AP-5) in plants, AP-4 is one of the most poorly understood; the AP-4 components, AP-4 cargo motifs, and AP-4 functional mechanism are not known. Here, we identify the AP-4 components and show that the AP-4 complex regulates receptor-mediated vacuolar protein sorting by recognizing VACUOLAR SORTING RECEPTOR1 (VSR1), which was originally identified as a sorting receptor for seed storage proteins to target protein storage vacuoles in Arabidopsis (Arabidopsis thaliana). From the vacuolar sorting mutant library GREEN FLUORESCENT SEED (GFS), we isolated three gfs mutants that accumulate abnormally high levels of VSR1 in seeds and designated them as gfs4, gfs5, and gfs6. Their responsible genes encode three (AP4B, AP4M, and AP4S) of the four subunits of the AP-4 complex, respectively, and an Arabidopsis mutant (ap4e) lacking the fourth subunit, AP4E, also had the same phenotype. Mass spectrometry demonstrated that these four proteins form a complex in vivo. The four mutants showed defects in the vacuolar sorting of the major storage protein 12S globulins, indicating a role for the AP-4 complex in vacuolar protein transport. AP4M bound to the tyrosine-based motif of VSR1. AP4M localized at the trans-Golgi network (TGN) subdomain that is distinct from the AP-1-localized TGN subdomain. This study provides a novel function for the AP-4 complex in VSR1-mediated vacuolar protein sorting at the specialized domain of the TGN.
Collapse
Affiliation(s)
- Kentaro Fuji
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.F., M.S., Y.S., T.K., Y.K., H.T., I.H.-N., T.S.); andPlant Global Educational Project, Nara Institute of Science and Technology, Ikoma 630-0192, Japan (Y.F.)
| | - Makoto Shirakawa
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.F., M.S., Y.S., T.K., Y.K., H.T., I.H.-N., T.S.); andPlant Global Educational Project, Nara Institute of Science and Technology, Ikoma 630-0192, Japan (Y.F.)
| | - Yuki Shimono
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.F., M.S., Y.S., T.K., Y.K., H.T., I.H.-N., T.S.); andPlant Global Educational Project, Nara Institute of Science and Technology, Ikoma 630-0192, Japan (Y.F.)
| | - Tadashi Kunieda
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.F., M.S., Y.S., T.K., Y.K., H.T., I.H.-N., T.S.); andPlant Global Educational Project, Nara Institute of Science and Technology, Ikoma 630-0192, Japan (Y.F.)
| | - Yoichiro Fukao
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.F., M.S., Y.S., T.K., Y.K., H.T., I.H.-N., T.S.); andPlant Global Educational Project, Nara Institute of Science and Technology, Ikoma 630-0192, Japan (Y.F.)
| | - Yasuko Koumoto
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.F., M.S., Y.S., T.K., Y.K., H.T., I.H.-N., T.S.); andPlant Global Educational Project, Nara Institute of Science and Technology, Ikoma 630-0192, Japan (Y.F.)
| | - Hideyuki Takahashi
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.F., M.S., Y.S., T.K., Y.K., H.T., I.H.-N., T.S.); andPlant Global Educational Project, Nara Institute of Science and Technology, Ikoma 630-0192, Japan (Y.F.)
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.F., M.S., Y.S., T.K., Y.K., H.T., I.H.-N., T.S.); andPlant Global Educational Project, Nara Institute of Science and Technology, Ikoma 630-0192, Japan (Y.F.)
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.F., M.S., Y.S., T.K., Y.K., H.T., I.H.-N., T.S.); andPlant Global Educational Project, Nara Institute of Science and Technology, Ikoma 630-0192, Japan (Y.F.)
| |
Collapse
|
118
|
Rodriguez-Fernandez IA, Dell’Angelica EC. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster. PLoS One 2015; 10:e0143026. [PMID: 26565960 PMCID: PMC4643998 DOI: 10.1371/journal.pone.0143026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions–which together covered most of the autosomal chromosomes–to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in autophagy and small GTPase regulation.
Collapse
Affiliation(s)
- Imilce A. Rodriguez-Fernandez
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Esteban C. Dell’Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
119
|
Robinson MS. Forty Years of Clathrin-coated Vesicles. Traffic 2015; 16:1210-38. [PMID: 26403691 DOI: 10.1111/tra.12335] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The purification of coated vesicles and the discovery of clathrin by Barbara Pearse in 1975 was a landmark in cell biology. Over the past 40 years, work from many labs has uncovered the molecular details of clathrin and its associated proteins, including how they assemble into a coated vesicle and how they select cargo. Unexpected connections have been found with signalling, development, neuronal transmission, infection, immunity and genetic disorders. But there are still a number of unanswered questions, including how clathrin-mediated trafficking is regulated and how the machinery evolved.
Collapse
Affiliation(s)
- Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
120
|
Hong SH, Cortesio CL, Drubin DG. Machine-Learning-Based Analysis in Genome-Edited Cells Reveals the Efficiency of Clathrin-Mediated Endocytosis. Cell Rep 2015; 12:2121-30. [PMID: 26387943 DOI: 10.1016/j.celrep.2015.08.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/05/2015] [Accepted: 08/17/2015] [Indexed: 12/30/2022] Open
Abstract
Cells internalize various molecules through clathrin-mediated endocytosis (CME). Previous live-cell imaging studies suggested that CME is inefficient, with about half of the events terminated. These CME efficiency estimates may have been confounded by overexpression of fluorescently tagged proteins and inability to filter out false CME sites. Here, we employed genome editing and machine learning to identify and analyze authentic CME sites. We examined CME dynamics in cells that express fluorescent fusions of two defining CME proteins, AP2 and clathrin. Support vector machine classifiers were built to identify and analyze authentic CME sites. From inception until disappearance, authentic CME sites contain both AP2 and clathrin, have the same degree of limited mobility, continue to accumulate AP2 and clathrin over lifetimes >∼20 s, and almost always form vesicles as assessed by dynamin2 recruitment. Sites that contain only clathrin or AP2 show distinct dynamics, suggesting they are not part of the CME pathway.
Collapse
Affiliation(s)
- Sun Hae Hong
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Christa L Cortesio
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
121
|
Pei X, Fan F, Lin L, Chen Y, Sun W, Zhang S, Tian C. Involvement of the adaptor protein 3 complex in lignocellulase secretion in Neurospora crassa revealed by comparative genomic screening. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:124. [PMID: 26300971 PMCID: PMC4545925 DOI: 10.1186/s13068-015-0302-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/30/2015] [Indexed: 06/02/2023]
Abstract
BACKGROUND Lignocellulase hypersecretion has been achieved in industrial fungal workhorses such as Trichoderma reesei, but the underlying mechanism associated with this process is not well understood. Although previous comparative genomic studies have revealed that the mutagenic T. reesei strain RUT-C30 harbors hundreds of mutations compared with its parental strain QM6a, how these mutations actually contribute to the hypersecretion phenotype remains to be elucidated. RESULTS In this study, we systematically screened gene knockout (KO) mutants in the cellulolytic fungus Neurospora crassa, which contains orthologs of potentially defective T. reesei RUT-C30 mutated genes. Of the 86 deletion mutants screened in N. crassa, 12 exhibited lignocellulase production more than 25% higher than in the wild-type (WT) strain and 4 showed nearly 25% lower secretion. We observed that the deletion of Ncap3m (NCU03998), which encodes the μ subunit of the adaptor protein 3 (AP-3) complex in N. crassa, led to the most significant increase in lignocellulase secretion under both Avicel and xylan culture conditions. Moreover, strains lacking the β subunit of the AP-3 complex, encoded by Ncap3b (NCU06569), had a similar phenotype to ΔNcap3m, suggesting that the AP-3 complex is involved in lignocellulase secretion in N. crassa. We also found that the transcriptional abundance of major lignocellulase genes in ΔNcap3m was maintained at a relatively higher level during the late stage of fermentation compared with the WT, which might add to the hypersecretion phenotype. Finally, we found that importation of the T. reesei ap3m ortholog Trap3m into ΔNcap3m can genetically restore secretion of lignocellulases to normal levels, which suggests that the effect of the AP-3 complex on lignocellulase secretion is conserved in cellulolytic ascomycetes. CONCLUSIONS Using the model cellulolytic fungus N. crassa, we explored potential hypersecretion-related mutations in T. reesei strain RUT-C30. Through systematic genetic screening of 86 corresponding orthologous KO mutants in N. crassa, we identified several genes, particularly those encoding the AP-3 complex that contribute to lignocellulase secretion. These findings will be useful for strain improvement in future lignocellulase and biomass-based chemical production.
Collapse
Affiliation(s)
- Xue Pei
- />College of Plant Sciences, Jilin University, Changchun, 130062 China
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Feiyu Fan
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Liangcai Lin
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yong Chen
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Wenliang Sun
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Shihong Zhang
- />College of Plant Sciences, Jilin University, Changchun, 130062 China
| | - Chaoguang Tian
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
122
|
Varga RE, Khundadze M, Damme M, Nietzsche S, Hoffmann B, Stauber T, Koch N, Hennings JC, Franzka P, Huebner AK, Kessels MM, Biskup C, Jentsch TJ, Qualmann B, Braulke T, Kurth I, Beetz C, Hübner CA. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11. PLoS Genet 2015; 11:e1005454. [PMID: 26284655 PMCID: PMC4540459 DOI: 10.1371/journal.pgen.1005454] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/20/2015] [Indexed: 12/04/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice. Autophagy is a degradative pathway for the removal and subsequent recycling of dysfunctional intracellular components. The material destined for degradation is initially enclosed by a double membrane, the autophagosome. In autolysosomes, which result from fusion of autophagosomes with lysosomes, the material is finally broken down. Recent in vitro data suggested that the protein Spatacsin plays a pivotal role in the regeneration of lysosomes from autolysosomes. Spatacsin is encoded by SPG11, the most common gene mutated in autosomal recessive hereditary spastic paraplegia. Here we show that mice devoid of Spatacsin develop symptoms consistent with spastic paraplegia and progressively loose cortical motoneurons and Purkinje cells. In these mice degenerating neurons have a reduced number of lysosomes available for fusion with autophagosomes and consequently accumulate autolysosome-derived material over time. In the long term this causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells.
Collapse
Affiliation(s)
- Rita-Eva Varga
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Clinical Chemistry, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Markus Damme
- Biochemical Institute, University of Kiel, Kiel, Germany
| | - Sandor Nietzsche
- Electron Microscopy Center, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Birgit Hoffmann
- Biomolecular Photonics Group, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie (FMP) und Max-Delbrück Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Nicole Koch
- Institute of Biochemistry I, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - J. Christopher Hennings
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Patricia Franzka
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Antje K. Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christoph Biskup
- Biomolecular Photonics Group, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Thomas J. Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) und Max-Delbrück Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Thomas Braulke
- Department of Biochemistry, Children’s Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian Beetz
- Institute of Clinical Chemistry, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
123
|
Lee LJY, Klute MJ, Herman EK, Read B, Dacks JB. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae. Protist 2015; 166:585-97. [PMID: 26519625 DOI: 10.1016/j.protis.2015.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/09/2015] [Accepted: 07/20/2015] [Indexed: 11/19/2022]
Abstract
The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion.
Collapse
Affiliation(s)
- Laura J Y Lee
- Department of Cell Biology, 5-31 Medical Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Mary J Klute
- Department of Cell Biology, 5-31 Medical Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Emily K Herman
- Department of Cell Biology, 5-31 Medical Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2H7.
| | - Betsy Read
- Department of Biological Sciences, California State University, San Marcos, California 92096, United States
| | - Joel B Dacks
- Department of Cell Biology, 5-31 Medical Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2H7
| |
Collapse
|
124
|
Schroeder B, McNiven MA. Importance of endocytic pathways in liver function and disease. Compr Physiol 2015; 4:1403-17. [PMID: 25428849 DOI: 10.1002/cphy.c140001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatocellular endocytosis is a highly dynamic process responsible for the internalization of a variety of different receptor ligand complexes, trophic factors, lipids, and, unfortunately, many different pathogens. The uptake of these external agents has profound effects on seminal cellular processes including signaling cascades, migration, growth, and proliferation. The hepatocyte, like other well-polarized epithelial cells, possesses a host of different endocytic mechanisms and entry routes to ensure the selective internalization of cargo molecules. These pathways include receptor-mediated endocytosis, lipid raft associated endocytosis, caveolae, or fluid-phase uptake, although there are likely many others. Understanding and defining the regulatory mechanisms underlying these distinct entry routes, sorting and vesicle formation, as well as the postendocytic trafficking pathways is of high importance especially in the liver, as their mis-regulation can contribute to aberrant liver pathology and liver diseases. Further, these processes can be "hijacked" by a variety of different infectious agents and viruses. This review provides an overview of common components of the endocytic and postendocytic trafficking pathways utilized by hepatocytes. It will also discuss in more detail how these general themes apply to liver-specific processes including iron homeostasis, HBV infection, and even hepatic steatosis.
Collapse
Affiliation(s)
- Barbara Schroeder
- Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, Minnesota
| | | |
Collapse
|
125
|
Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M, Michálek J, Saxena A, Shanmugam D, Tayyrov A, Veluchamy A, Ali S, Bernal A, del Campo J, Cihlář J, Flegontov P, Gornik SG, Hajdušková E, Horák A, Janouškovec J, Katris NJ, Mast FD, Miranda-Saavedra D, Mourier T, Naeem R, Nair M, Panigrahi AK, Rawlings ND, Padron-Regalado E, Ramaprasad A, Samad N, Tomčala A, Wilkes J, Neafsey DE, Doerig C, Bowler C, Keeling PJ, Roos DS, Dacks JB, Templeton TJ, Waller RF, Lukeš J, Oborník M, Pain A. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife 2015; 4:e06974. [PMID: 26175406 PMCID: PMC4501334 DOI: 10.7554/elife.06974] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/16/2015] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. DOI:http://dx.doi.org/10.7554/eLife.06974.001 Single-celled parasites cause many severe diseases in humans and animals. The apicomplexans form probably the most successful group of these parasites and include the parasites that cause malaria. Apicomplexans infect a broad range of hosts, including humans, reptiles, birds, and insects, and often have complicated life cycles. For example, the malaria-causing parasites spread by moving from humans to female mosquitoes and then back to humans. Despite significant differences amongst apicomplexans, these single-celled parasites also share a number of features that are not seen in other living species. How and when these features arose remains unclear. It is known from previous work that apicomplexans are closely related to single-celled algae. But unlike apicomplexans, which depend on a host animal to survive, these algae live freely in their environment, often in close association with corals. Woo et al. have now sequenced the genomes of two photosynthetic algae that are thought to be close living relatives of the apicomplexans. These genomes were then compared to each other and to the genomes of other algae and apicomplexans. These comparisons reconfirmed that the two algae that were studied were close relatives of the apicomplexans. Further analyses suggested that thousands of genes were lost as an ancient free-living algae evolved into the apicomplexan ancestor, and further losses occurred as these early parasites evolved into modern species. The lost genes were typically those that are important for free-living organisms, but are either a hindrance to, or not needed in, a parasitic lifestyle. Some of the ancestor's genes, especially those that coded for the building blocks of flagella (structures which free-living algae use to move around), were repurposed in ways that helped the apicomplexans to invade their hosts. Understanding this repurposing process in greater detail will help to identify key molecules in these deadly parasites that could be targeted by drug treatments. It will also offer answers to one of the most fascinating questions in evolutionary biology: how parasites have evolved from free-living organisms. DOI:http://dx.doi.org/10.7554/eLife.06974.002
Collapse
Affiliation(s)
- Yong H Woo
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hifzur Ansari
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas D Otto
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | | | - Martin Kolisko
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jan Michálek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Alka Saxena
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Annageldi Tayyrov
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alaguraj Veluchamy
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197 INSERM U1024, Paris, France
| | - Shahjahan Ali
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Axel Bernal
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Javier del Campo
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jaromír Cihlář
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Eva Hajdušková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jan Janouškovec
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Fred D Mast
- Seattle Biomedical Research Institute, Seattle, United States
| | - Diego Miranda-Saavedra
- Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, Madrid, Spain
| | - Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Raeece Naeem
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mridul Nair
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aswini K Panigrahi
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Neil D Rawlings
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Eriko Padron-Regalado
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abhinay Ramaprasad
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nadira Samad
- School of Botany, University of Melbourne, Parkville, Australia
| | - Aleš Tomčala
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jon Wilkes
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel E Neafsey
- Broad Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Christian Doerig
- Department of Microbiology, Monash University, Clayton, Australia
| | - Chris Bowler
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197 INSERM U1024, Paris, France
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Thomas J Templeton
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, United States
| | - Ross F Waller
- School of Botany, University of Melbourne, Parkville, Australia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
126
|
Hierro A, Gershlick DC, Rojas AL, Bonifacino JS. Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:159-202. [PMID: 26315886 DOI: 10.1016/bs.ircmb.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endosomes undergo extensive spatiotemporal rearrangements as proteins and lipids flux through them in a series of fusion and fission events. These controlled changes enable the concentration of cargo for eventual degradation while ensuring the proper recycling of other components. A growing body of studies has now defined multiple recycling pathways from endosomes to the trans-Golgi network (TGN) which differ in their molecular machineries. The recycling process requires specific sets of lipids, coats, adaptors, and accessory proteins that coordinate cargo selection with membrane deformation and its association with the cytoskeleton. Specific tethering factors and SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) complexes are then required for the docking and fusion with the acceptor membrane. Herein, we summarize some of the current knowledge of the machineries that govern the retrograde transport from endosomes to the TGN.
Collapse
Affiliation(s)
- Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - David C Gershlick
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
127
|
Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs. MEMBRANES 2015; 5:253-87. [PMID: 26151885 PMCID: PMC4584282 DOI: 10.3390/membranes5030253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 12/19/2022]
Abstract
The targeted endocytosis and redistribution of transmembrane receptors among membrane-bound subcellular organelles are vital for their correct signaling and physiological functions. Membrane receptors committed for internalization and trafficking pathways are sorted into coated vesicles. Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and elicit the generation of intracellular second messenger cyclic guanosine 3',5'-monophosphate (cGMP), which lowers blood pressure and incidence of heart failure. After ligand binding, the receptor is rapidly internalized, sequestrated, and redistributed into intracellular locations. Thus, NPRA is considered a dynamic cellular macromolecule that traverses different subcellular locations through its lifetime. The utilization of pharmacologic and molecular perturbants has helped in delineating the pathways of endocytosis, trafficking, down-regulation, and degradation of membrane receptors in intact cells. This review describes the investigation of the mechanisms of internalization, trafficking, and redistribution of NPRA compared with other cell surface receptors from the plasma membrane into the cell interior. The roles of different short-signal peptide sequence motifs in the internalization and trafficking of other membrane receptors have been briefly reviewed and their potential significance in the internalization and trafficking of NPRA is discussed.
Collapse
|
128
|
Hirst J, Edgar JR, Esteves T, Darios F, Madeo M, Chang J, Roda RH, Dürr A, Anheim M, Gellera C, Li J, Züchner S, Mariotti C, Stevanin G, Blackstone C, Kruer MC, Robinson MS. Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Hum Mol Genet 2015; 24:4984-96. [PMID: 26085577 PMCID: PMC4527494 DOI: 10.1093/hmg/ddv220] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/09/2015] [Indexed: 01/09/2023] Open
Abstract
Adaptor proteins (AP 1-5) are heterotetrameric complexes that facilitate specialized cargo sorting in vesicular-mediated trafficking. Mutations in AP5Z1, encoding a subunit of the AP-5 complex, have been reported to cause hereditary spastic paraplegia (HSP), although their impact at the cellular level has not been assessed. Here we characterize three independent fibroblast lines derived from skin biopsies of patients harbouring nonsense mutations in AP5Z1 and presenting with spastic paraplegia accompanied by neuropathy, parkinsonism and/or cognitive impairment. In all three patient-derived lines, we show that there is complete loss of AP-5 ζ protein and a reduction in the associated AP-5 µ5 protein. Using ultrastructural analysis, we show that these patient-derived lines consistently exhibit abundant multilamellar structures that are positive for markers of endolysosomes and are filled with aberrant storage material organized as exaggerated multilamellar whorls, striated belts and 'fingerprint bodies'. This phenotype can be replicated in a HeLa cell culture model by siRNA knockdown of AP-5 ζ. The cellular phenotype bears striking resemblance to features described in a number of lysosomal storage diseases (LSDs). Collectively, these findings reveal an emerging picture of the role of AP-5 in endosomal and lysosomal homeostasis, illuminates a potential pathomechanism that is relevant to the role of AP-5 in neurons and expands the understanding of recessive HSPs. Moreover, the resulting accumulation of storage material in endolysosomes leads us to propose that AP-5 deficiency represents a new type of LSDs.
Collapse
Affiliation(s)
- Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK,
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Typhaine Esteves
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S_1127, Institut du Cerveau et de la Moelle épinière, Paris F-75013, France, Ecole Pratique des Hautes Etudes, Paris F-75014, France
| | - Frédéric Darios
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S_1127, Institut du Cerveau et de la Moelle épinière, Paris F-75013, France
| | - Marianna Madeo
- Sanford Children's Health Research Center, Barrow Neurological Institute and Ronald A. Matricaria Institute of Molecular Medicine, Phoenix Children's Hospital, Sioux Falls, SD, USA
| | - Jaerak Chang
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ricardo H Roda
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Dürr
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S_1127, Institut du Cerveau et de la Moelle épinière, Paris F-75013, France, APHP, Department of Genetics, Pitié-Salpêtrière Hospital, Paris F-75013, France
| | - Mathieu Anheim
- Département de Neurologie, Hôpital de Hautepierre, Strasbourg, France
| | - Cinzia Gellera
- Genetics of Neurodegenerative and Metabolic Diseases Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Jun Li
- Department of Neurology, Vanderbilt Brain Institute and Centre for Human Genetics Research, Vanderbilt University School of Medicine, 1161 21th Avenue South, Nashville, TN, USA
| | - Stephan Züchner
- Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Caterina Mariotti
- Genetics of Neurodegenerative and Metabolic Diseases Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Giovanni Stevanin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S_1127, Institut du Cerveau et de la Moelle épinière, Paris F-75013, France, Ecole Pratique des Hautes Etudes, Paris F-75014, France, APHP, Department of Genetics, Pitié-Salpêtrière Hospital, Paris F-75013, France
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael C Kruer
- Sanford Children's Health Research Center, Barrow Neurological Institute and Ronald A. Matricaria Institute of Molecular Medicine, Phoenix Children's Hospital, Sioux Falls, SD, USA, Barrow Neurological Institute & Ronald A. Matricaria Institute for Molecular Medicine, Phoenix Children's Hospital, Phoenix, AZ and Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
129
|
Hedrich R, Sauer N, Neuhaus HE. Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:63-70. [PMID: 26000864 DOI: 10.1016/j.pbi.2015.04.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/16/2015] [Accepted: 04/30/2015] [Indexed: 05/06/2023]
Abstract
The ability of higher plants to store sugars is of crucial importance for plant development, adaption to endogenous or environmental cues and for the economic value of crop species. Sugar storage and accumulation, and its homeostasis in plant cells are managed by the vacuole. Although transport of sugars across the vacuolar membrane has been monitored for about four decades, the molecular entities of the transporters involved have been identified in the last 10 years only. Thus, it is just recently that our pictures of the transporters that channel the sugar load across the tonoplast have gained real shape. Here we describe the molecular nature and regulation of an important group of tonoplast sugar transporter (TST) allowing accumulation of sugars against large concentration gradients. In addition, we report on proton-driven tonoplast sugar exporters and on facilitators, which are also involved in balancing cytosolic and vacuolar sugar levels.
Collapse
Affiliation(s)
- Rainer Hedrich
- Molecular Plant Physiology and Biophysics, University of Würzburg, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University of Erlangen-Nuremberg, Germany
| | | |
Collapse
|
130
|
Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 2015; 171:505-30. [PMID: 26008818 DOI: 10.1016/j.neurol.2015.02.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically determined neurodegenerative disorders characterized by progressive weakness and spasticity of lower limbs, and are among the most clinically and genetically heterogeneous human diseases. All modes of inheritance have been described, and the recent technological revolution in molecular genetics has led to the identification of 76 different spastic gait disease-loci with 59 corresponding spastic paraplegia genes. Autosomal recessive HSP are usually associated with diverse additional features (referred to as complicated forms), contrary to autosomal dominant HSP, which are mostly pure. However, the identification of additional mutations and families has considerably enlarged the clinical spectra, and has revealed a huge clinical variability for almost all HSP; complicated forms have also been described for primary pure HSP subtypes, adding further complexity to the genotype-phenotype correlations. In addition, the introduction of next generation sequencing in clinical practice has revealed a genetic and phenotypic overlap with other neurodegenerative disorders (amyotrophic lateral sclerosis, neuropathies, cerebellar ataxias, etc.) and neurodevelopmental disorders, including intellectual disability. This review aims to describe the most recent advances in the field and to provide genotype-phenotype correlations that could help clinical diagnoses of this heterogeneous group of disorders.
Collapse
Affiliation(s)
- S Klebe
- Department of neurology, university hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - G Stevanin
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; École pratique des hautes études, 4-14, rue Ferrus, 75014 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - C Depienne
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
131
|
Richards S. It's more than stamp collecting: how genome sequencing can unify biological research. Trends Genet 2015; 31:411-21. [PMID: 26003218 DOI: 10.1016/j.tig.2015.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, while the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to 'big science' survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need.
Collapse
Affiliation(s)
- Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
132
|
Yap CC, Winckler B. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development. Front Cell Neurosci 2015; 9:119. [PMID: 25904845 PMCID: PMC4389405 DOI: 10.3389/fncel.2015.00119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2).
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
133
|
Andrzejewska Z, Névo N, Thomas L, Bailleux A, Chauvet V, Benmerah A, Antignac C. Lysosomal Targeting of Cystinosin Requires AP-3. Traffic 2015; 16:712-26. [PMID: 25753619 DOI: 10.1111/tra.12277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 01/28/2023]
Abstract
Cystinosin is a lysosomal cystine transporter defective in cystinosis, an autosomal recessive lysosomal storage disorder. It is composed of seven transmembrane (TM) domains and contains two lysosomal targeting motifs: a tyrosine-based signal (GYDQL) in its C-terminal tail and a non-classical motif in its fifth inter-TM loop. Using the yeast two-hybrid system, we showed that the GYDQL motif specifically interacted with the μ subunit of the adaptor protein complex 3 (AP-3). Moreover, cell surface biotinylation and total internal reflection fluorescence microscopy revealed that cystinosin was partially mislocalized to the plasma membrane (PM) in AP-3-depleted cells. We generated a chimeric CD63 protein to specifically analyze the function of the GYDQL motif. This chimeric protein was targeted to lysosomes in a manner similar to cystinosin and was partially mislocalized to the PM in AP-3 knockdown cells where it also accumulated in the trans-Golgi network and early endosomes. Together with the fact that the surface levels of cystinosin and of the CD63-GYDQL chimeric protein were not increased when clathrin-mediated endocytosis was impaired, our data show that the tyrosine-based motif of cystinosin is a 'strong' AP-3 interacting motif responsible for lysosomal targeting of cystinosin by a direct intracellular pathway.
Collapse
Affiliation(s)
- Zuzanna Andrzejewska
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Nathalie Névo
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Lucie Thomas
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Anne Bailleux
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Véronique Chauvet
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Alexandre Benmerah
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Corinne Antignac
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Genetics, Necker Hospital, Paris,, France
| |
Collapse
|
134
|
Garafalo SD, Luth ES, Moss BJ, Monteiro MI, Malkin E, Juo P. The AP2 clathrin adaptor protein complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans. Mol Biol Cell 2015; 26:1887-900. [PMID: 25788288 PMCID: PMC4436833 DOI: 10.1091/mbc.e14-06-1048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/06/2015] [Indexed: 01/23/2023] Open
Abstract
Regulation of glutamate receptor trafficking controls synaptic strength and plasticity. This study takes advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to reveal a novel and unexpected AP2-dependent trafficking step for glutamate receptors early in the secretory pathway. Regulation of glutamate receptor (GluR) abundance at synapses by clathrin-mediated endocytosis can control synaptic strength and plasticity. We take advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to characterize the in vivo role of AP2 in GluR trafficking. In contrast to our predictions for an endocytic adaptor, we found that levels of the GluR GLR-1 are decreased at synapses in the ventral nerve cord (VNC) of animals with mutations in the AP2 subunits APM-2/μ2, APA-2/α, or APS-2/σ2. Rescue experiments indicate that APM-2/μ2 functions in glr-1–expressing interneurons and the mature nervous system to promote GLR-1 levels in the VNC. Genetic analyses suggest that APM-2/μ2 acts upstream of GLR-1 endocytosis in the VNC. Consistent with this, GLR-1 accumulates in cell bodies of apm-2 mutants. However, GLR-1 does not appear to accumulate at the plasma membrane of the cell body as expected, but instead accumulates in intracellular compartments including Syntaxin-13– and RAB-14–labeled endosomes. This study reveals a novel role for the AP2 clathrin adaptor in promoting the abundance of GluRs at synapses in vivo, and implicates AP2 in the regulation of GluR trafficking at an early step in the secretory pathway.
Collapse
Affiliation(s)
- Steven D Garafalo
- Department of Developmental, Molecular & Chemical Biology Graduate Program in Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, MA 02111
| | - Eric S Luth
- Department of Developmental, Molecular & Chemical Biology
| | - Benjamin J Moss
- Department of Developmental, Molecular & Chemical Biology Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Michael I Monteiro
- Department of Developmental, Molecular & Chemical Biology Graduate Program in Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, MA 02111
| | - Emily Malkin
- Department of Developmental, Molecular & Chemical Biology
| | - Peter Juo
- Department of Developmental, Molecular & Chemical Biology
| |
Collapse
|
135
|
Schlacht A, Dacks JB. Unexpected ancient paralogs and an evolutionary model for the COPII coat complex. Genome Biol Evol 2015; 7:1098-109. [PMID: 25747251 PMCID: PMC4419792 DOI: 10.1093/gbe/evv045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The coat protein complex II (COPII) is responsible for the transport of protein cargoes from the Endoplasmic Reticulum (ER) to the Golgi apparatus. COPII has been functionally characterized extensively in vivo in humans and yeast. This complex shares components with the nuclear pore complex and the Seh1-Associated (SEA) complex, inextricably linking its evolution with that of the nuclear pore and other protocoatomer domain-containing complexes. Importantly, this is one of the last coat complexes to be examined from a comparative genomic and phylogenetic perspective. We use homology searching of eight components across 74 eukaryotic genomes, followed by phylogenetic analyses, to assess both the distribution of the COPII components across eukaryote diversity and to assess its evolutionary history. We report that Sec12, but not Sed4 was present in the Last Eukaryotic Common Ancestor along with Sec16, Sar1, Sec13, Sec31, Sec23, and Sec24. We identify a previously undetected paralog of Sec23 that, at least, predates the archaeplastid clade. We also describe three Sec24 paralogs likely present in the Last Eukaryotic Common Ancestor, including one newly detected that was anciently present but lost from both opisthokonts and excavates. Altogether, we report previously undescribed complexity of the COPII coat in the ancient eukaryotic ancestor and speculate on models for the evolution, not only of the complex, but its relationship to other protocoatomer-derived complexes.
Collapse
Affiliation(s)
- Alexander Schlacht
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
136
|
Muthusamy N, Chen YJ, Yin DM, Mei L, Bergson C. Complementary roles of the neuron-enriched endosomal proteins NEEP21 and calcyon in neuronal vesicle trafficking. J Neurochem 2015; 132:20-31. [PMID: 25376768 DOI: 10.1111/jnc.12989] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023]
Abstract
Understanding mechanisms governing the trafficking of transmembrane (TM) cargoes to synapses and other specialized membranes in neurons represents a long-standing challenge in cell biology. Investigation of the neuron-enriched endosomal protein of 21 kDa (NEEP21, or NSG1or P21) and Calcyon (Caly, or NSG3) indicates that the emergence of the NEEP21/Caly/P19 gene family could play a vital role in the success of these mechanisms in vertebrates. The upshot of a sizeable body of work is that the NEEP21 and Caly perform distinct endocytic and recycling functions, which impact (i) α amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor trafficking at excitatory synapses; (ii) transport to/in neuronal axons; as well as (iii) proteolytic processing of amyloid precursor protein and neuregulin 1, suggesting roles in neuron development, synaptic function, and neurodegeneration. We argue that their distinct effects on cargo endocytosis and recycling depend on interactions with vesicle trafficking and synaptic scaffolding proteins. As they play complementary, but opposing roles in cargo endocytosis, recycling, and degradation, balancing NEEP21 and Caly expression levels or activity could be important for homeostasis in a variety of signaling pathways, and also lead to a novel therapeutic strategy for disorders like Alzheimer's disease and schizophrenia. This review focuses on two closely related, neuron-enriched endosomal proteins: NEEP21 and Calcyon which perform distinct roles in regulating receptor endocytosis, recycling, and degradation. Based on an in-depth examination of the literature, we argue that these two proteins carry out complementary yet sometimes opposing vesicle trafficking functions that impact excitatory transmission, transcytosis, axonal transport, and also proteolytic processing by beta-secretase I (BACE1). Finally, we propose that balancing NEEP21 and Calcyon expression and/or activity could be important for homeostasis in a variety of signaling pathways, and also lead to a novel therapeutic strategy for disorders like Alzheimer's disease and schizophrenia. AMPA = α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; NMDA = N-Methyl-D-aspartate.
Collapse
Affiliation(s)
- Nagendran Muthusamy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | | | | | | | | |
Collapse
|
137
|
Kaderi Kibria KM, Rawat K, Klinger CM, Datta G, Panchal M, Singh S, Iyer GR, Kaur I, Sharma V, Dacks JB, Mohmmed A, Malhotra P. A role for adaptor protein complex 1 in protein targeting to rhoptry organelles in Plasmodium falciparum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:699-710. [PMID: 25573429 DOI: 10.1016/j.bbamcr.2014.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/12/2014] [Accepted: 12/25/2014] [Indexed: 12/20/2022]
Abstract
The human malaria parasite Plasmodium falciparum possesses sophisticated systems of protein secretion to modulate host cell invasion and remodeling. In the present study, we provide insights into the function of the AP-1 complex in P. falciparum. We utilized GFP fusion constructs for live cell imaging, as well as fixed parasites in immunofluorescence analysis, to study adaptor protein mu1 (Pfμ1) mediated protein trafficking in P. falciparum. In trophozoites Pfμ1 showed similar dynamic localization to that of several Golgi/ER markers, indicating Golgi/ER localization. Treatment of transgenic parasites with Brefeldin A altered the localization of Golgi-associated Pfμ1, supporting the localization studies. Co-localization studies showed considerable overlap of Pfμ1 with the resident rhoptry proteins, rhoptry associated protein 1 (RAP1) and Cytoadherence linked asexual gene 3.1 (Clag3.1) in schizont stage. Immunoprecipitation experiments with Pfμ1 and PfRAP1 revealed an interaction, which may be mediated through an intermediate transmembrane cargo receptor. A specific role for Pfμ1 in trafficking was suggested by treatment with AlF4, which resulted in a shift to a predominantly ER-associated compartment and consequent decrease in co-localization with the Golgi marker GRASP. Together, these results suggest a role for the AP-1 complex in rhoptry protein trafficking in P. falciparum.
Collapse
Affiliation(s)
- K M Kaderi Kibria
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Khushboo Rawat
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Gaurav Datta
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Manoj Panchal
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Shailja Singh
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Gayatri R Iyer
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Inderjeet Kaur
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Veena Sharma
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali-304022, Rajasthan, India
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| | - Asif Mohmmed
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Pawan Malhotra
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|
138
|
Zhang Y, Persson S, Hirst J, Robinson MS, van Damme D, Sánchez-Rodríguez C. Change your TPLATE, change your fate: plant CME and beyond. TRENDS IN PLANT SCIENCE 2015; 20:41-8. [PMID: 25278268 DOI: 10.1016/j.tplants.2014.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 05/05/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the predominant and evolutionarily conserved pathway by which eukaryotes internalize cargoes (i.e., plasma membrane proteins, lipids, and extracellular material) that are engaged in a variety of processes. Initiation of CME relies on adaptor proteins, which precisely select the cargoes for internalization, recruit the clathrin cage, and start membrane curvature. The recently identified CME early adaptor complex, the TPLATE complex (TPC), is essential for CME in plants. Phylogenetic analyses suggest that the TPC evolved from an ancient protein complex involved in vesicle trafficking in early eukaryotes, which raises questions about CME evolution and adaptation within the eukaryotic Kingdoms. In this review, we focus on the early events of plant CME and explore evolutionary aspects related to CME in other eukaryotes.
Collapse
Affiliation(s)
- Yi Zhang
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Staffan Persson
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville 3010, VIC, Australia
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Daniel van Damme
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Gent University, B-9052 Gent, Belgium
| | - Clara Sánchez-Rodríguez
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
139
|
Li K, Jia R, Li M, Zheng YM, Miao C, Yao Y, Ji HL, Geng Y, Qiao W, Albritton LM, Liang C, Liu SL. A sorting signal suppresses IFITM1 restriction of viral entry. J Biol Chem 2014; 290:4248-59. [PMID: 25527505 DOI: 10.1074/jbc.m114.630780] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon-induced transmembrane proteins (IFITMs) broadly inhibit virus infections, particularly at the viral entry level. However, despite this shared ability to inhibit fusion, IFITMs differ in the potency and breadth of viruses restricted, an anomaly that is not fully understood. Here, we show that differences in the range of viruses restricted by IFITM1 are regulated by a C-terminal non-canonical dibasic sorting signal KRXX that suppresses restriction of some viruses by governing its intracellular distribution. Replacing the two basic residues with alanine (KR/AA) increased restriction of jaagsiekte sheep retrovirus and 10A1 amphotropic murine leukemia virus. Deconvolution microscopy revealed an altered subcellular distribution for KR/AA, with fewer molecules in LAMP1-positive lysosomes balanced by increased levels in CD63-positive multivesicular bodies, where jaagsiekte sheep retrovirus pseudovirions are colocalized. IFITM1 binds to cellular adaptor protein complex 3 (AP-3), an association that is lost when the dibasic motif is altered. Although knockdown of AP-3 itself decreases some virus entry, expression of parental IFITM1, but not its KR/AA mutant, potentiates inhibition of viral infections in AP-3 knockdown cells. By using the substituted cysteine accessibility method, we provide evidence that IFITM1 adopts more than one membrane topology co-existing in cellular membranes. Because the C-terminal dibasic sorting signal is unique to human IFITM1, our results provide novel insight into understanding the species- and virus-specific antiviral effect of IFITMs.
Collapse
Affiliation(s)
- Kun Li
- From the Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Rui Jia
- the Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Minghua Li
- From the Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yi-Min Zheng
- From the Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Chunhui Miao
- From the Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yunfang Yao
- the Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hong-Long Ji
- the Department of Cellular and Molecular Biology, Texas Lung Injury Institute, University of Texas Health Science Center, Tyler, Texas 75708
| | - Yunqi Geng
- the Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wentao Qiao
- the Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lorraine M Albritton
- the Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Chen Liang
- the McGill AIDS Centre, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada, and the Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Shan-Lu Liu
- From the Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211,
| |
Collapse
|
140
|
Hensiek A, Kirker S, Reid E. Diagnosis, investigation and management of hereditary spastic paraplegias in the era of next-generation sequencing. J Neurol 2014; 262:1601-12. [PMID: 25480570 PMCID: PMC4503825 DOI: 10.1007/s00415-014-7598-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022]
Abstract
The hereditary spastic paraplegias (HSPs) are a group of genetic conditions in which spastic paralysis of the legs is the principal clinical feature. This is caused by a relatively selective distal axonal degeneration involving the longest axons of the corticospinal tracts. Consequently, these conditions provide an opportunity to identify genes, proteins and cellular pathways that are critical for axonal health. In this review, we will provide a brief overview of the classification, clinical features and genetics of HSP, highlighting selected HSP subtypes (i.e. those associated with thin corpus callosum or cerebellar ataxia) that are of particular clinical interest. We will then discuss appropriate investigation strategies for HSPs, suggesting how these might evolve with the introduction of next-generation sequencing technology. Finally, we will discuss the management of HSP, an area somewhat neglected by HSP research.
Collapse
Affiliation(s)
- Anke Hensiek
- Department of Neurology, Cambridge University Hospitals NHS Trust, Addenbrooke’s Biomedical Campus, Cambridge, UK
| | - Stephen Kirker
- Addenbrooke’s Rehabilitation Clinic, Cambridge University Hospitals NHS Trust, Addenbrooke’s Biomedical Campus, Cambridge, UK
| | - Evan Reid
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke’s Biomedical Campus, Cambridge, CB2 0XY UK
- Department of Medical Genetics, University of Cambridge, Addenbrooke’s Biomedical Campus, Cambridge, UK
| |
Collapse
|
141
|
Abstract
All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.
Collapse
|
142
|
Chang J, Lee S, Blackstone C. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J Clin Invest 2014; 124:5249-62. [PMID: 25365221 DOI: 10.1172/jci77598] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/02/2014] [Indexed: 12/22/2022] Open
Abstract
Autophagy allows cells to adapt to changes in their environment by coordinating the degradation and recycling of cellular components and organelles to maintain homeostasis. Lysosomes are organelles critical for terminating autophagy via their fusion with mature autophagosomes to generate autolysosomes that degrade autophagic materials; therefore, maintenance of the lysosomal population is essential for autophagy-dependent cellular clearance. Here, we have demonstrated that the two most common autosomal recessive hereditary spastic paraplegia gene products, the SPG15 protein spastizin and the SPG11 protein spatacsin, are pivotal for autophagic lysosome reformation (ALR), a pathway that generates new lysosomes. Lysosomal targeting of spastizin required an intact FYVE domain, which binds phosphatidylinositol 3-phosphate. Loss of spastizin or spatacsin resulted in depletion of free lysosomes, which are competent to fuse with autophagosomes, and an accumulation of autolysosomes, reflecting a failure in ALR. Moreover, spastizin and spatacsin were essential components for the initiation of lysosomal tubulation. Together, these results link dysfunction of the autophagy/lysosomal biogenesis machinery to neurodegeneration.
Collapse
|
143
|
Allison H, O'Reilly AJ, Sternberg J, Field MC. An extensive endoplasmic reticulum-localised glycoprotein family in trypanosomatids. MICROBIAL CELL 2014; 1:325-345. [PMID: 26167471 PMCID: PMC4497807 DOI: 10.15698/mic2014.10.170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
African trypanosomes are evolutionarily highly divergent parasitic protozoa, and
as a consequence the vast majority of trypanosome membrane proteins remain
uncharacterised in terms of location, trafficking or function. Here we describe
a novel family of type I membrane proteins which we designate ‘invariant
glycoproteins’ (IGPs). IGPs are trypanosome-restricted, with extensive,
lineage-specific paralogous expansions in related taxa. In T.
brucei three IGP subfamilies, IGP34, IGP40 and IGP48 are
recognised; all possess a putative C-type lectin ectodomain and are
ER-localised, despite lacking a classical ER-retention motif. IGPs exhibit
highest expression in stumpy stage cells, suggesting roles in developmental
progression, but gene silencing in mammalian infective forms suggests that each
IGP subfamily is also required for normal proliferation. Detailed analysis of
the IGP48 subfamily indicates a role in maintaining ER morphology, while the ER
lumenal domain is necessary and sufficient for formation of both oligomeric
complexes and ER retention. IGP48 is detected by antibodies from T. b.
rhodesiense infected humans. We propose that the IGPs represent a
trypanosomatid-specific family of ER-localised glycoproteins, with potential
contributions to life cycle progression and immunity, and utilise
oligomerisation as an ER retention mechanism.
Collapse
Affiliation(s)
- Harriet Allison
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, Scotland, DD1 5EH
| | - Amanda J O'Reilly
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, Scotland, DD1 5EH
| | - Jeremy Sternberg
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, Scotland, DD1 5EH
| |
Collapse
|
144
|
Wang X, Cai Y, Wang H, Zeng Y, Zhuang X, Li B, Jiang L. Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis. THE PLANT CELL 2014; 26:4102-18. [PMID: 25351491 PMCID: PMC4247576 DOI: 10.1105/tpc.114.129759] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/17/2014] [Accepted: 09/29/2014] [Indexed: 05/18/2023]
Abstract
Membrane proteins on the tonoplast are indispensible for vacuolar functions in plants. However, how these proteins are transported to the vacuole and how they become separated from plasma membrane proteins remain largely unknown. In this study, we used Arabidopsis thaliana vacuolar ion transporter1 (VIT1) as a reporter to study the mechanisms of tonoplast targeting. We showed that VIT1 reached the tonoplast through a pathway involving the endoplasmic reticulum (ER), Golgi, trans-Golgi network (TGN), prevacuolar compartment, and tonoplast. VIT1 contains a putative N-terminal dihydrophobic type ER export signal, and its N terminus has a conserved dileucine motif (EKQTLL), which is responsible for tonoplast targeting. In vitro peptide binding assays with synthetic VIT1 N terminus identified adaptor protein complex-1 (AP1) subunits that interacted with the dileucine motif. A deficiency of AP1 gamma adaptins in Arabidopsis cells caused relocation of tonoplast proteins containing the dileucine motif, such as VIT1 and inositol transporter1, to the plasma membrane. The dileucine motif also effectively rerouted the plasma membrane protein SCAMP1 to the tonoplast. Together with subcellular localization studies showing that AP1 gamma adaptins localize to the TGN, we propose that the AP1 complex on the TGN mediates tonoplast targeting of membrane proteins with the dileucine motif.
Collapse
Affiliation(s)
- Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
145
|
Schlacht A, Herman EK, Klute MJ, Field MC, Dacks JB. Missing pieces of an ancient puzzle: evolution of the eukaryotic membrane-trafficking system. Cold Spring Harb Perspect Biol 2014; 6:a016048. [PMID: 25274701 PMCID: PMC4176009 DOI: 10.1101/cshperspect.a016048] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The membrane-trafficking system underpins cellular trafficking of material in eukaryotes and its evolution would have been a watershed in eukaryogenesis. Evolutionary cell biological studies have been unraveling the history of proteins responsible for vesicle transport and organelle identity revealing both highly conserved components and lineage-specific innovations. Recently, endomembrane components with a broad, but patchy, distribution have been observed as well, pieces that are missing from our cell biological and evolutionary models of membrane trafficking. These data together allow for new insights into the history and forces that shape the evolution of this critical cell biological system.
Collapse
Affiliation(s)
- Alexander Schlacht
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Emily K Herman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mary J Klute
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, Scotland DD1 5EH, United Kingdom
| | - Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
146
|
Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule protein processing and regulated secretion in neutrophils. Front Immunol 2014; 5:448. [PMID: 25285096 PMCID: PMC4168738 DOI: 10.3389/fimmu.2014.00448] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines, and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First, we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking, and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection.
Collapse
Affiliation(s)
| | - Nutan Srivastava
- Pulmonary Research Group, University of Alberta , Edmonton, AB , Canada ; Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Troy Mitchell
- Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Paige Lacy
- Pulmonary Research Group, University of Alberta , Edmonton, AB , Canada ; Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
147
|
Abstract
Robinson studies the function and evolution of coated vesicle adaptor proteins.
Collapse
|
148
|
Lindquist E, Alezzawi M, Aronsson H. Bioinformatic indications that COPI- and clathrin-based transport systems are not present in chloroplasts: an Arabidopsis model. PLoS One 2014; 9:e104423. [PMID: 25137124 PMCID: PMC4138088 DOI: 10.1371/journal.pone.0104423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/11/2014] [Indexed: 02/07/2023] Open
Abstract
Coated vesicle transport occurs in the cytosol of yeast, mammals and plants. It consists of three different transport systems, the COPI, COPII and clathrin coated vesicles (CCV), all of which participate in the transfer of proteins and lipids between different cytosolic compartments. There are also indications that chloroplasts have a vesicle transport system. Several putative chloroplast-localized proteins, including CPSAR1 and CPRabA5e with similarities to cytosolic COPII transport-related proteins, were detected in previous experimental and bioinformatics studies. These indications raised the hypothesis that a COPI- and/or CCV-related system may be present in chloroplasts, in addition to a COPII-related system. To test this hypothesis we bioinformatically searched for chloroplast proteins that may have similar functions to known cytosolic COPI and CCV components in the model plants Arabidopsis thaliana and Oryza sativa (subsp. japonica) (rice). We found 29 such proteins, based on domain similarity, in Arabidopsis, and 14 in rice. However, many components could not be identified and among the identified most have assigned roles that are not related to either COPI or CCV transport. We conclude that COPII is probably the only active vesicle system in chloroplasts, at least in the model plants. The evolutionary implications of the findings are discussed.
Collapse
Affiliation(s)
- Emelie Lindquist
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mohamed Alezzawi
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
149
|
Bonnemaison M, Bäck N, Lin Y, Bonifacino JS, Mains R, Eipper B. AP-1A controls secretory granule biogenesis and trafficking of membrane secretory granule proteins. Traffic 2014; 15:1099-121. [PMID: 25040637 DOI: 10.1111/tra.12194] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
The adaptor protein 1A complex (AP-1A) transports cargo between the trans-Golgi network (TGN) and endosomes. In professional secretory cells, AP-1A also retrieves material from immature secretory granules (SGs). The role of AP-1A in SG biogenesis was explored using AtT-20 corticotrope tumor cells expressing reduced levels of the AP-1A μ1A subunit. A twofold reduction in μ1A resulted in a decrease in TGN cisternae and immature SGs and the appearance of regulated secretory pathway components in non-condensing SGs. Although basal secretion of endogenous SG proteins was unaffected, secretagogue-stimulated release was halved. The reduced μ1A levels interfered with the normal trafficking of carboxypeptidase D (CPD) and peptidylglycine α-amidating monooxygenase-1 (PAM-1), integral membrane enzymes that enter immature SGs. The non-condensing SGs contained POMC products and PAM-1, but not CPD. Based on metabolic labeling and secretion experiments, the cleavage of newly synthesized PAM-1 into PHM was unaltered, but PHM basal secretion was increased in sh-μ1A PAM-1 cells. Despite lacking a canonical AP-1A binding motif, yeast two-hybrid studies demonstrated an interaction between the PAM-1 cytosolic domain and AP-1A. Coimmunoprecipitation experiments with PAM-1 mutants revealed an influence of the luminal domains of PAM-1 on this interaction. Thus, AP-1A is crucial for normal SG biogenesis, function and composition.
Collapse
Affiliation(s)
- Mathilde Bonnemaison
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | | | | | | | |
Collapse
|
150
|
Abstract
The AP (adaptor protein) complexes are heterotetrameric protein complexes that mediate intracellular membrane trafficking along endocytic and secretory transport pathways. There are five different AP complexes: AP-1, AP-2 and AP-3 are clathrin-associated complexes; whereas AP-4 and AP-5 are not. These five AP complexes localize to different intracellular compartments and mediate membrane trafficking in distinct pathways. They recognize and concentrate cargo proteins into vesicular carriers that mediate transport from a donor membrane to a target organellar membrane. AP complexes play important roles in maintaining the normal physiological function of eukaryotic cells. Dysfunction of AP complexes has been implicated in a variety of inherited disorders, including: MEDNIK (mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis and keratodermia) syndrome, Fried syndrome, HPS (Hermansky-Pudlak syndrome) and HSP (hereditary spastic paraplegia).
Collapse
Key Words
- adaptor protein complex
- arf1
- membrane trafficking
- polarized sorting
- signal recognition
- ampa, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid
- ap, adaptor protein
- app, amyloid precursor protein
- arf, adp-ribosylation factors
- bfa, brefeldin a
- casr, calcium-sensing receptor
- copi, coatamer protein i
- egfr, epidermal growth factor receptor
- fhh3, familial hypocalciuric hypercalcaemia type 3
- hps, hermansky–pudlak syndrome
- hsp, hereditary spastic paraplegia
- lro, lysosome-related organelle
- mednik, mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis and keratodermia
- pi4p, phosphatidylinositol 4 phosphate
- pip2, phosphatidylinositol (4,5)-bisphosphate
- re, recycling endosome
- spg, spastic paraplegia
- tgn, trans-golgi network
- vps41, vacuolar protein sorting 41
Collapse
Affiliation(s)
- Sang Yoon Park
- *Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, U.S.A
| | - Xiaoli Guo
- *Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, U.S.A
- 1To whom correspondence should be addressed (email )
| |
Collapse
|