101
|
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. NATURE REVIEWS. GENETICS 2016. [PMID: 27990019 DOI: 10.1038/nrg.2016.150]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.
Collapse
Affiliation(s)
- Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, NA4.118, Dallas, Texas 75390-9111, USA
| |
Collapse
|
102
|
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2016; 18:164-179. [PMID: 27990019 DOI: 10.1038/nrg.2016.150] [Citation(s) in RCA: 1680] [Impact Index Per Article: 186.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.
Collapse
Affiliation(s)
- Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, NA4.118, Dallas, Texas 75390-9111, USA
| |
Collapse
|
103
|
Matsumoto Y, Hannigan B, Crews D. Temperature Shift Alters DNA Methylation and Histone Modification Patterns in Gonadal Aromatase (cyp19a1) Gene in Species with Temperature-Dependent Sex Determination. PLoS One 2016; 11:e0167362. [PMID: 27902763 PMCID: PMC5130277 DOI: 10.1371/journal.pone.0167362] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/13/2016] [Indexed: 12/17/2022] Open
Abstract
The environment surrounding the embryos has a profound impact on the developmental process and phenotypic outcomes of the organism. In species with temperature-dependent sex determination, gonadal sex is determined by the incubation temperature of the eggs. A mechanistic link between temperature and transcriptional regulation of developmental genes, however, remains elusive. In this study, we examine the changes in DNA methylation and histone modification patterns of the aromatase (cyp19a1) gene in embryonic gonads of red-eared slider turtles (Trachemys scripta) subjected to a temperature shift during development. Shifting embryos from a male-producing temperature (MPT) to a female-producing temperature (FPT) at the beginning of the temperature-sensitive period (TSP) resulted in an increase in aromatase mRNA expression while a shift from FPT to MPT resulted in decreased expression. DNA methylation levels at CpG sites in the promoter of the aromatase gene were high (70–90%) at the beginning of TSP, but decreased in embryos that were incubated at constant FPT and those shifted from MPT to the FPT. This decrease in methylation in the promoter inversely correlated with the expected increase in aromatase expression at the FPT. The active demethylation under the FPT was especially prominent at the CpG site upstream of the gonad-specific TATA box at the beginning of TSP and spread downstream of the gene including exon1 as the gonad development progressed. In embryos incubated at FPT, the promoter region was also labeled by canonical transcriptional activation markers, H3K4me3 and RNA polymerase II. A transcriptional repression marker, H3K27me3, was observed in temperature-shifted gonads of both temperature groups, but was not maintained throughout the development in either group. Our findings suggest that DNA hypomethylation and H3K4me3 modification at the aromatase promoter may be a primary mechanism that releases a transcriptional block of aromatase to initiate a cascade of ovarian differentiation.
Collapse
Affiliation(s)
- Yuiko Matsumoto
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| | - Brette Hannigan
- Department of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - David Crews
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
104
|
|
105
|
Abstract
There is a dynamic interplay between metabolic processes and gene regulation via the remodeling of chromatin. Most chromatin-modifying enzymes use cofactors, which are products of metabolic processes. This article explores the biosynthetic pathways of the cofactors nicotinamide adenine dinucleotide (NAD), acetyl coenzyme A (acetyl-CoA), S-adenosyl methionine (SAM), α-ketoglutarate, and flavin adenine dinucleotide (FAD), and their role in metabolically regulating chromatin processes. A more detailed look at the interaction between chromatin and the metabolic processes of circadian rhythms and aging is described as a paradigm for this emerging interdisciplinary field.
Collapse
Affiliation(s)
- Shelley L Berger
- Department of Cell & Developmental Biology, Department of Biology, and Department of Genetics, Epigenetics Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6508
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697-4049
| |
Collapse
|
106
|
Gotic I, Omidi S, Fleury-Olela F, Molina N, Naef F, Schibler U. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp. Genes Dev 2016; 30:2005-17. [PMID: 27633015 PMCID: PMC5066242 DOI: 10.1101/gad.287094.116] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/19/2016] [Indexed: 12/28/2022]
Abstract
Gotic et al. show that the temperature-dependent accumulation of cold-inducible RNA-binding protein (Cirbp) mRNA is controlled primarily by the regulation of splicing efficiency. As revealed by genome-wide “approach-to-steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression.
Collapse
Affiliation(s)
- Ivana Gotic
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Saeed Omidi
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Fabienne Fleury-Olela
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Nacho Molina
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Ueli Schibler
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
107
|
Westermark PO. Linking Core Promoter Classes to Circadian Transcription. PLoS Genet 2016; 12:e1006231. [PMID: 27504829 PMCID: PMC4978467 DOI: 10.1371/journal.pgen.1006231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/08/2016] [Indexed: 01/09/2023] Open
Abstract
Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs), is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription.
Collapse
Affiliation(s)
- Pål O. Westermark
- Institute for Theoretical Biology, Charité –Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
108
|
Lück S, Westermark PO. Circadian mRNA expression: insights from modeling and transcriptomics. Cell Mol Life Sci 2016; 73:497-521. [PMID: 26496725 PMCID: PMC11108398 DOI: 10.1007/s00018-015-2072-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/08/2023]
Abstract
Circadian clocks synchronize organisms to the 24 h rhythms of the environment. These clocks persist under constant conditions, have their origin at the cellular level, and produce an output of rhythmic mRNA expression affecting thousands of transcripts in many mammalian cell types. Here, we review the charting of circadian output rhythms in mRNA expression, focusing on mammals. We emphasize the challenges in statistics, interpretation, and quantitative descriptions that such investigations have faced and continue to face, and outline remaining outstanding questions.
Collapse
Affiliation(s)
- Sarah Lück
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Invalidenstrasse 43, 10115, Berlin, Germany
| | - Pål O Westermark
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Invalidenstrasse 43, 10115, Berlin, Germany.
| |
Collapse
|
109
|
Identifying Novel Transcriptional Regulators with Circadian Expression. Mol Cell Biol 2015; 36:545-58. [PMID: 26644408 DOI: 10.1128/mcb.00701-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/19/2015] [Indexed: 01/06/2023] Open
Abstract
Organisms adapt their physiology and behavior to the 24-h day-night cycle to which they are exposed. On a cellular level, this is regulated by intrinsic transcriptional-translational feedback loops that are important for maintaining the circadian rhythm. These loops are organized by members of the core clock network, which further regulate transcription of downstream genes, resulting in their circadian expression. Despite progress in understanding circadian gene expression, only a few players involved in circadian transcriptional regulation, including transcription factors, epigenetic regulators, and long noncoding RNAs, are known. Aiming to discover such genes, we performed a high-coverage transcriptome analysis of a circadian time course in murine fibroblast cells. In combination with a newly developed algorithm, we identified many transcription factors, epigenetic regulators, and long intergenic noncoding RNAs that are cyclically expressed. In addition, a number of these genes also showed circadian expression in mouse tissues. Furthermore, the knockdown of one such factor, Zfp28, influenced the core clock network. Mathematical modeling was able to predict putative regulator-effector interactions between the identified circadian genes and may help for investigations into the gene regulatory networks underlying circadian rhythms.
Collapse
|
110
|
Atger F, Gobet C, Marquis J, Martin E, Wang J, Weger B, Lefebvre G, Descombes P, Naef F, Gachon F. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proc Natl Acad Sci U S A 2015; 112:E6579-88. [PMID: 26554015 PMCID: PMC4664316 DOI: 10.1073/pnas.1515308112] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light-dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5'-Terminal Oligo Pyrimidine tract (5'-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5'-UTR (TISU) motif. The increased translation efficiency of 5'-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation.
Collapse
Affiliation(s)
- Florian Atger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Julien Marquis
- Functional Genomic, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Eva Martin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Jingkui Wang
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Benjamin Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Grégory Lefebvre
- Functional Genomic, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Patrick Descombes
- Functional Genomic, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland;
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
111
|
Circadian Control of Global Transcription. BIOMED RESEARCH INTERNATIONAL 2015; 2015:187809. [PMID: 26682214 PMCID: PMC4670846 DOI: 10.1155/2015/187809] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/04/2015] [Indexed: 01/10/2023]
Abstract
Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions.
Collapse
|
112
|
Jo YS, Ryu D, Maida A, Wang X, Evans RM, Schoonjans K, Auwerx J. Phosphorylation of the nuclear receptor corepressor 1 by protein kinase B switches its corepressor targets in the liver in mice. Hepatology 2015; 62:1606-18. [PMID: 25998209 PMCID: PMC4618256 DOI: 10.1002/hep.27907] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/17/2015] [Indexed: 01/22/2023]
Abstract
UNLABELLED Nuclear receptor corepressor 1 (NCoR1) is a transcriptional coregulator that has wide-ranging effects on gene expression patterns. In the liver, NCoR1 represses lipid synthesis in the fasting state, whereas it inhibits activation of peroxisome proliferator-activated receptor alpha (PPARα) upon feeding, thereby blunting ketogenesis. Here, we show that insulin by activation of protein kinase B induces phosphorylation of NCoR1 on serine 1460, which selectively favors its interaction with PPARα and estrogen-related receptor alpha (ERRα) over liver X receptor alpha (LXRα). Phosphorylation of NCoR1 on S1460 selectively derepresses LXRα target genes, resulting in increased lipogenesis, whereas, at the same time, it inhibits PPARα and ERRα targets, thereby attenuating oxidative metabolism in the liver. Phosphorylation-gated differential recruitment of NCoR1 to different nuclear receptors explains the apparent paradox that liver-specific deletion of NCoR1 concurrently induces both lipogenesis and oxidative metabolism owing to a global derepression of LXRα, PPARα, and ERRα activity. CONCLUSION Phosphorylation-mediated recruitment switch of NCoR1 between nuclear receptor subsets provides a mechanism by which corepressors can selectively modulate liver energy metabolism during the fasting-feeding transition.
Collapse
Affiliation(s)
- Young Suk Jo
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752, South Korea
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Adriano Maida
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xu Wang
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ronald M. Evans
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kristina Schoonjans
- Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
113
|
Arimbasseri AG, Rijal K, Maraia RJ. Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 2015; 5:e27639. [PMID: 25764110 DOI: 10.4161/trns.27369] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, RNA polymerase (RNAP) III transcribes hundreds of genes for tRNAs and 5S rRNA, among others, which share similar promoters and stable transcription initiation complexes (TIC), which support rapid RNAP III recycling. In contrast, RNAP II transcribes a large number of genes with highly variable promoters and interacting factors, which exert fine regulatory control over TIC lability and modifications of RNAP II at different transitional points in the transcription cycle. We review data that illustrate a relatively smooth continuity of RNAP III initiation-elongation-termination and reinitiation toward its function to produce high levels of tRNAs and other RNAs that support growth and development.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- a Intramural Research Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | | | | |
Collapse
|
114
|
Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res 2015; 25:1848-59. [PMID: 26486724 PMCID: PMC4665006 DOI: 10.1101/gr.195404.115] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/14/2015] [Indexed: 11/25/2022]
Abstract
Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ.
Collapse
|
115
|
Montenegro-Montero A, Larrondo LF. In the Driver's Seat: The Case for Transcriptional Regulation and Coupling as Relevant Determinants of the Circadian Transcriptome and Proteome in Eukaryotes. J Biol Rhythms 2015; 31:37-47. [PMID: 26446874 DOI: 10.1177/0748730415607321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian clocks drive daily oscillations in a variety of biological processes through the coordinate orchestration of precise gene expression programs. Global expression profiling experiments have suggested that a significant fraction of the transcriptome and proteome is under circadian control, and such output rhythms have historically been assumed to rely on the rhythmic transcription of these genes. Recent genome-wide studies, however, have challenged this long-held view and pointed to a major contribution of posttranscriptional regulation in driving oscillations at the messenger RNA (mRNA) level, while others have highlighted extensive clock translational regulation, regardless of mRNA rhythms. There are various examples of genes that are uniformly transcribed throughout the day but that exhibit rhythmic mRNA levels, and of flat mRNAs, with oscillating protein levels, and such observations have largely been considered to result from independent regulation at each step. These studies have thereby obviated any connections, or coupling, that might exist between the different steps of gene expression and the impact that any of them could have on subsequent ones. Here, we argue that due to both biological and technical reasons, the jury is still out on the determination of the relative contributions of each of the different stages of gene expression in regulating output molecular rhythms. In addition, we propose that through a variety of coupling mechanisms, gene transcription (even when apparently arrhythmic) might play a much relevant role in determining oscillations in gene expression than currently estimated, regulating rhythms at downstream steps. Furthermore, we posit that eukaryotic genomes regulate daily RNA polymerase II (RNAPII) recruitment and histone modifications genome-wide, setting the stage for global nascent transcription, but that tissue-specific mechanisms locally specify the different processes under clock control.
Collapse
Affiliation(s)
- Alejandro Montenegro-Montero
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
116
|
Genome-wide modeling of transcription kinetics reveals patterns of RNA production delays. Proc Natl Acad Sci U S A 2015; 112:13115-20. [PMID: 26438844 DOI: 10.1073/pnas.1420404112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genes with similar transcriptional activation kinetics can display very different temporal mRNA profiles because of differences in transcription time, degradation rate, and RNA-processing kinetics. Recent studies have shown that a splicing-associated RNA production delay can be significant. To investigate this issue more generally, it is useful to develop methods applicable to genome-wide datasets. We introduce a joint model of transcriptional activation and mRNA accumulation that can be used for inference of transcription rate, RNA production delay, and degradation rate given data from high-throughput sequencing time course experiments. We combine a mechanistic differential equation model with a nonparametric statistical modeling approach allowing us to capture a broad range of activation kinetics, and we use Bayesian parameter estimation to quantify the uncertainty in estimates of the kinetic parameters. We apply the model to data from estrogen receptor α activation in the MCF-7 breast cancer cell line. We use RNA polymerase II ChIP-Seq time course data to characterize transcriptional activation and mRNA-Seq time course data to quantify mature transcripts. We find that 11% of genes with a good signal in the data display a delay of more than 20 min between completing transcription and mature mRNA production. The genes displaying these long delays are significantly more likely to be short. We also find a statistical association between high delay and late intron retention in pre-mRNA data, indicating significant splicing-associated production delays in many genes.
Collapse
|
117
|
Choudhary MK, Nomura Y, Wang L, Nakagami H, Somers DE. Quantitative Circadian Phosphoproteomic Analysis of Arabidopsis Reveals Extensive Clock Control of Key Components in Physiological, Metabolic, and Signaling Pathways. Mol Cell Proteomics 2015; 14:2243-60. [PMID: 26091701 DOI: 10.1074/mcp.m114.047183] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 01/01/2023] Open
Abstract
The circadian clock provides adaptive advantages to an organism, resulting in increased fitness and survival. The phosphorylation events that regulate circadian-dependent signaling and the processes which post-translationally respond to clock-gated signals are largely unknown. To better elucidate post-translational events tied to the circadian system we carried out a survey of circadian-regulated protein phosphorylation events in Arabidopsis seedlings. A large-scale mass spectrometry-based quantitative phosphoproteomics approach employing TiO2-based phosphopeptide enrichment techniques identified and quantified 1586 phosphopeptides on 1080 protein groups. A total of 102 phosphopeptides displayed significant changes in abundance, enabling the identification of specific patterns of response to circadian rhythms. Our approach was sensitive enough to quantitate oscillations in the phosphorylation of low abundance clock proteins (early flowering4; ELF4 and pseudoresponse regulator3; PRR3) as well as other transcription factors and kinases. During constant light, extensive cyclic changes in phosphorylation status occurred in critical regulators, implicating direct or indirect regulation by the circadian system. These included proteins influencing transcriptional regulation, translation, metabolism, stress and phytohormones-mediated responses. We validated our analysis using the elf4-211 allele, in which an S45L transition removes the phosphorylation herein identified. We show that removal of this phosphorylatable site diminishes interaction with early flowering3 (ELF3), a key partner in a tripartite evening complex required for circadian cycling. elf4-211 lengthens period, which increases with increasing temperature, relative to the wild type, resulting in a more stable temperature compensation of circadian period over a wider temperature range.
Collapse
Affiliation(s)
- Mani Kant Choudhary
- From the ‡Division of Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790-784, Republic of Korea
| | - Yuko Nomura
- ¶Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - Lei Wang
- From the ‡Division of Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790-784, Republic of Korea §Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210; ‖Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hirofumi Nakagami
- ¶Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - David E Somers
- From the ‡Division of Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790-784, Republic of Korea §Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
118
|
Ferrari P, Strubin M. Uncoupling histone turnover from transcription-associated histone H3 modifications. Nucleic Acids Res 2015; 43:3972-85. [PMID: 25845593 PMCID: PMC4417181 DOI: 10.1093/nar/gkv282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/21/2015] [Indexed: 11/14/2022] Open
Abstract
Transcription in eukaryotes is associated with two major changes in chromatin organization. Firstly, nucleosomal histones are continuously replaced by new histones, an event that in yeast occurs predominantly at transcriptionally active promoters. Secondly, histones become modified post-translationally at specific lysine residues. Some modifications, including histone H3 trimethylation at lysine 4 (H3K4me3) and acetylation at lysines 9 (H3K9ac) and 14 (H3K14ac), are specifically enriched at active promoters where histones exchange, suggesting a possible causal relationship. Other modifications accumulate within transcribed regions and one of them, H3K36me3, is thought to prevent histone exchange. Here we explored the relationship between these four H3 modifications and histone turnover at a few selected genes. Using lysine-to-arginine mutants and a histone exchange assay, we found that none of these modifications plays a major role in either promoting or preventing histone turnover. Unexpectedly, mutation of H3K56, whose acetylation occurs prior to chromatin incorporation, had an effect only when introduced into the nucleosomal histone. Furthermore, we used various genetic approaches to show that histone turnover can be experimentally altered with no major consequence on the H3 modifications tested. Together, these results suggest that transcription-associated histone turnover and H3 modification are two correlating but largely independent events.
Collapse
Affiliation(s)
- Paolo Ferrari
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Michel Strubin
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
119
|
Sancar C, Sancar G, Ha N, Cesbron F, Brunner M. Dawn- and dusk-phased circadian transcription rhythms coordinate anabolic and catabolic functions in Neurospora. BMC Biol 2015; 13:17. [PMID: 25762222 PMCID: PMC4381671 DOI: 10.1186/s12915-015-0126-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/03/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circadian clocks control rhythmic expression of a large number of genes in coordination with the 24 hour day-night cycle. The mechanisms generating circadian rhythms, their amplitude and circadian phase are dependent on a transcriptional network of immense complexity. Moreover, the contribution of post-transcriptional mechanisms in generating rhythms in RNA abundance is not known. RESULTS Here, we analyzed the clock-controlled transcriptome of Neurospora crassa together with temporal profiles of elongating RNA polymerase II. Our data indicate that transcription contributes to the rhythmic expression of the vast majority of clock-controlled genes (ccgs) in Neurospora. The ccgs accumulate in two main clusters with peak transcription and expression levels either at dawn or dusk. Dawn-phased genes are predominantly involved in catabolic and dusk-phased genes in anabolic processes, indicating a clock-controlled temporal separation of the physiology of Neurospora. Genes whose expression is strongly dependent on the core circadian activator WCC fall mainly into the dawn-phased cluster while rhythmic genes regulated by the glucose-dependent repressor CSP1 fall predominantly into the dusk-phased cluster. Surprisingly, the number of rhythmic transcripts increases about twofold in the absence of CSP1, indicating that rhythmic expression of many genes is attenuated by the activity of CSP1. CONCLUSIONS The data indicate that the vast majority of transcript rhythms in Neurospora are generated by dawn and dusk specific transcription. Our observations suggest a substantial plasticity of the circadian transcriptome with respect to the number of rhythmic genes as well as amplitude and phase of the expression rhythms and emphasize a major role of the circadian clock in the temporal organization of metabolism and physiology.
Collapse
Affiliation(s)
- Cigdem Sancar
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| | - Gencer Sancar
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| | - Nati Ha
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| | | | - Michael Brunner
- Heidelberg University Biochemistry Center, Heidelberg, Germany. .,University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, Heidelberg, D-69120, Germany.
| |
Collapse
|
120
|
Abstract
The molecular circadian clock orchestrates the daily cyclical expression of thousands of genes. Disruption of this transcriptional program leads to a variety of pathologies, including insomnia, depression and metabolic disorders. Circadian rhythms in gene expression rely on specific chromatin transitions which are ultimately coordinated by the molecular clock. As a consequence, a highly plastic and dynamic circadian epigenome can be delineated across different tissues and cell types. Intriguingly, genome topology appears to coordinate cyclic transcription at circadian interactomes, in which circadian genes are in physical contact within the cell nucleus in a time-specific manner. Moreover, the clock machinery shows functional interplays with key metabolic regulators, thereby connecting the circadian epigenome to cellular metabolism. Unraveling the molecular aspects of such interplays is likely to reveal new therapeutic strategies towards the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Lorena Aguilar-Arnal
- Center for Epigenetics and Metabolism, Unit 904 of INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Unit 904 of INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
121
|
Kojima S, Green CB. Circadian genomics reveal a role for post-transcriptional regulation in mammals. Biochemistry 2015; 54:124-33. [PMID: 25303020 PMCID: PMC4302021 DOI: 10.1021/bi500707c] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/21/2014] [Indexed: 12/28/2022]
Abstract
To maintain daily cycles, the circadian clock must tightly regulate the rhythms of thousands of mRNAs and proteins with the correct period, phase, and amplitude to ultimately drive the wide range of rhythmic biological processes. Recent genomic approaches have revolutionized our view of circadian gene expression and highlighted the importance of post-transcriptional regulation in driving mRNA rhythmicity. Even after transcripts are made from DNA, subsequent processing and regulatory steps determine when, where, and how much protein will be generated. These post-transcriptional regulatory mechanisms can add flexibility to overall gene expression and alter protein levels rapidly without requiring transcript synthesis and are therefore beneficial for cells; however, the extent to which circadian post-transcriptional mechanisms contribute to rhythmic profiles throughout the genome and the mechanisms involved have not been fully elucidated. In this review, we will summarize how circadian genomics have revealed new insights into rhythmic post-transcriptional regulation in mammals and discuss potential implications of such regulation in controlling many circadian-driven physiologies.
Collapse
Affiliation(s)
- Shihoko Kojima
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, United States
| | - Carla B. Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, United States
| |
Collapse
|
122
|
Gustafson CL, Partch CL. Emerging models for the molecular basis of mammalian circadian timing. Biochemistry 2014; 54:134-49. [PMID: 25303119 PMCID: PMC4303291 DOI: 10.1021/bi500731f] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mammalian circadian timekeeping arises from a transcription-based feedback loop driven by a set of dedicated clock proteins. At its core, the heterodimeric transcription factor CLOCK:BMAL1 activates expression of Period, Cryptochrome, and Rev-Erb genes, which feed back to repress transcription and create oscillations in gene expression that confer circadian timing cues to cellular processes. The formation of different clock protein complexes throughout this transcriptional cycle helps to establish the intrinsic ∼24 h periodicity of the clock; however, current models of circadian timekeeping lack the explanatory power to fully describe this process. Recent studies confirm the presence of at least three distinct regulatory complexes: a transcriptionally active state comprising the CLOCK:BMAL1 heterodimer with its coactivator CBP/p300, an early repressive state containing PER:CRY complexes, and a late repressive state marked by a poised but inactive, DNA-bound CLOCK:BMAL1:CRY1 complex. In this review, we analyze high-resolution structures of core circadian transcriptional regulators and integrate biochemical data to suggest how remodeling of clock protein complexes may be achieved throughout the 24 h cycle. Defining these detailed mechanisms will provide a foundation for understanding the molecular basis of circadian timing and help to establish new platforms for the discovery of therapeutics to manipulate the clock.
Collapse
Affiliation(s)
- Chelsea L Gustafson
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | | |
Collapse
|
123
|
Takahashi JS, Kumar V, Nakashe P, Koike N, Huang HC, Green CB, Kim TK. ChIP-seq and RNA-seq methods to study circadian control of transcription in mammals. Methods Enzymol 2014; 551:285-321. [PMID: 25662462 DOI: 10.1016/bs.mie.2014.10.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genome-wide analyses have revolutionized our ability to study the transcriptional regulation of circadian rhythms. The advent of next-generation sequencing methods has facilitated the use of two such technologies, ChIP-seq and RNA-seq. In this chapter, we describe detailed methods and protocols for these two techniques, with emphasis on their usage in circadian rhythm experiments in the mouse liver, a major target organ of the circadian clock system. Critical factors for these methods are highlighted and issues arising with time series samples for ChIP-seq and RNA-seq are discussed. Finally, detailed protocols for library preparation suitable for Illumina sequencing platforms are presented.
Collapse
Affiliation(s)
- Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Vivek Kumar
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prachi Nakashe
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nobuya Koike
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hung-Chung Huang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tae-Kyung Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
124
|
Analysis of methylation microarray for tissue specific detection. Gene 2014; 553:31-41. [DOI: 10.1016/j.gene.2014.09.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
|
125
|
Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription. Proc Natl Acad Sci U S A 2014; 112:6863-70. [PMID: 25378702 DOI: 10.1073/pnas.1411264111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms drive the temporal organization of a wide variety of physiological and behavioral functions in ∼24-h cycles. This control is achieved through a complex program of gene expression. In mammals, the molecular clock machinery consists of interconnected transcriptional-translational feedback loops that ultimately ensure the proper oscillation of thousands of genes in a tissue-specific manner. To achieve circadian transcriptional control, chromatin remodelers serve the clock machinery by providing appropriate oscillations to the epigenome. Recent findings have revealed the presence of circadian interactomes, nuclear "hubs" of genome topology where coordinately expressed circadian genes physically interact in a spatial and temporal-specific manner. Thus, a circadian nuclear landscape seems to exist, whose interplay with metabolic pathways and clock regulators translates into specific transcriptional programs. Deciphering the molecular mechanisms that connect the circadian clock machinery with the nuclear landscape will reveal yet unexplored pathways that link cellular metabolism to epigenetic control.
Collapse
|
126
|
Cole HA, Ocampo J, Iben JR, Chereji RV, Clark DJ. Heavy transcription of yeast genes correlates with differential loss of histone H2B relative to H4 and queued RNA polymerases. Nucleic Acids Res 2014; 42:12512-22. [PMID: 25348398 PMCID: PMC4227747 DOI: 10.1093/nar/gku1013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic chromatin is composed of nucleosomes, which contain nearly two coils of DNA wrapped around a central histone octamer. The octamer contains an H3-H4 tetramer and two H2A-H2B dimers. Gene activation is associated with chromatin disruption: a wider nucleosome-depleted region (NDR) at the promoter and reduced nucleosome occupancy over the coding region. Here, we examine the nature of disrupted chromatin after induction, using MNase-seq to map nucleosomes and subnucleosomes, and a refined high-resolution ChIP-seq method to map H4, H2B and RNA polymerase II (Pol II) genome-wide. Over coding regions, induced genes show a differential loss of H2B relative to H4, which correlates with Pol II density and the appearance of subnucleosomes. After induction, Pol II is surprisingly low at the promoter, but accumulates on the gene and downstream of the termination site, implying that dissociation is very slow. Thus, induction-dependent chromatin disruption reflects both eviction of H2A-H2B dimers and the presence of queued Pol II elongation complexes. We propose that slow Pol II dissociation after transcription is a major factor in chromatin disruption and that it may be of critical importance in gene regulation.
Collapse
Affiliation(s)
- Hope A Cole
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, USA
| | - Josefina Ocampo
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, USA
| | - James R Iben
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, USA
| | - Răzvan V Chereji
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, USA
| | - David J Clark
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, USA
| |
Collapse
|
127
|
Lück S, Thurley K, Thaben PF, Westermark PO. Rhythmic degradation explains and unifies circadian transcriptome and proteome data. Cell Rep 2014; 9:741-51. [PMID: 25373909 DOI: 10.1016/j.celrep.2014.09.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/04/2014] [Accepted: 09/11/2014] [Indexed: 12/28/2022] Open
Abstract
The rich mammalian cellular circadian output affects thousands of genes in many cell types and has been the subject of genome-wide transcriptome and proteome studies. The results have been enigmatic because transcript peak abundances do not always follow the peaks of gene-expression activity in time. We posited that circadian degradation of mRNAs and proteins plays a pivotal role in setting their peak times. To establish guiding principles, we derived a theoretical framework that fully describes the amplitudes and phases of biomolecules with circadian half-lives. We were able to explain the circadian transcriptome and proteome studies with the same unifying theory, including cases in which transcripts or proteins appeared before the onset of increased production rates. Furthermore, we estimate that 30% of the circadian transcripts in mouse liver and Drosophila heads are affected by rhythmic posttranscriptional regulation.
Collapse
Affiliation(s)
- Sarah Lück
- Institute for Theoretical Biology, Charité-Universitätsmedizin, 10115 Berlin, Germany
| | - Kevin Thurley
- Institute for Theoretical Biology, Charité-Universitätsmedizin, 10115 Berlin, Germany
| | - Paul F Thaben
- Institute for Theoretical Biology, Charité-Universitätsmedizin, 10115 Berlin, Germany
| | - Pål O Westermark
- Institute for Theoretical Biology, Charité-Universitätsmedizin, 10115 Berlin, Germany.
| |
Collapse
|
128
|
Yang H, Howard M, Dean C. Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC. Curr Biol 2014; 24:1793-7. [PMID: 25065750 PMCID: PMC4123163 DOI: 10.1016/j.cub.2014.06.047] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/02/2014] [Accepted: 06/17/2014] [Indexed: 12/14/2022]
Abstract
Posttranslational modifications of histone tails are an important factor regulating chromatin structure and gene expression. Epigenetic memory systems have been predicted to involve mutually exclusive histone modifications that, through positive feedback mechanisms, generate bistable states [1, 2]. How the states are interconverted is not understood, and whether the histone modifications are sufficient for epigenetic memory is still greatly debated [3]. We have exploited the process of vernalization, the slow quantitative epigenetic silencing of Arabidopsis FLC induced by cold, to detail with fine temporal and spatial resolution the dynamics of histone modifications during an epigenetic switch. The profiles of H3K36me3, H3K4me3, and H3K4me2 at FLC throughout the vernalization process were compared to H3K27me3, which accumulates at a local nucleation region during the cold and spreads across the locus on return to the warm [2]. We find for many phases of the vernalization process that H3K36me3 and H3K27me3 show opposing profiles in the FLC nucleation region and gene body, that H3K36me3 and H3K27me3 rarely coexist on the same histone tail, and that this antagonism is functionally important. A lack of H3K36me3 results in a fully silenced state at FLC even in the absence of cold. We therefore propose that H3K36me3 is the opposing modification to H3K27me3 in the Polycomb-mediated silencing of FLC. However, the lack of an absolute mirror profile predicted from modeling suggests that their antagonistic roles contribute a necessary, but not sufficient, component of the mechanism enabling switching between and inheritance of epigenetic states. Modeling suggests that epigenetic systems involve bistable states These bistable states involve mutually exclusive histone modifications H3K36me3 and H3K27me3 appear to be opposing modifications at FLC H3K36me3/H3K27me3 balance at FLC “registers” cold exposure
Collapse
Affiliation(s)
- Hongchun Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
129
|
Fuchs G, Hollander D, Voichek Y, Ast G, Oren M. Cotranscriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate. Genome Res 2014; 24:1572-83. [PMID: 25049226 PMCID: PMC4199367 DOI: 10.1101/gr.176487.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various histone modifications decorate nucleosomes within transcribed genes. Among these, monoubiquitylation of histone H2B (H2Bub1) and methylation of histone H3 on lysines 36 (H3K36me2/3) and 79 (H3K79me2/3) correlate positively with gene expression. By measuring the progression of the transcriptional machinery along genes within live cells, we now report that H2B monoubiquitylation occurs cotranscriptionally and accurately reflects the advance of RNA polymerase II (Pol II). In contrast, H3K36me3 and H3K79me2 are less dynamic and represent Pol II movement less faithfully. High-resolution ChIP-seq reveals that H2Bub1 levels are selectively reduced at exons and decrease in an exon-dependent stepwise manner toward the 3' end of genes. Exonic depletion of H2Bub1 in gene bodies is highly correlated with Pol II pausing at exons, suggesting elongation rate changes associated with intron-exon structure. In support of this notion, H2Bub1 levels were found to be significantly correlated with transcription elongation rates measured in various cell lines. Overall, our data shed light on the organization of H2Bub1 within transcribed genes and single out H2Bub1 as a reliable marker for ongoing transcription elongation.
Collapse
Affiliation(s)
- Gilad Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
130
|
Mosesson Y, Voichek Y, Barkai N. Divergence and selectivity of expression-coupled histone modifications in budding yeasts. PLoS One 2014; 9:e101538. [PMID: 25007273 PMCID: PMC4090005 DOI: 10.1371/journal.pone.0101538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
Various histone modifications are widely associated with gene expression, but their functional selectivity at individual genes remains to be characterized. Here, we identify widespread differences between genome-wide patterns of two prominent marks, H3K9ac and H3K4me3, in budding yeasts. As well as characteristic gene profiles, relative modification levels vary significantly amongst genes, irrespective of expression. Interestingly, we show that these differences couple to contrasting features: higher methylation to essential, periodically expressed, 'DPN' (Depleted Proximal Nucleosome) genes, and higher acetylation to non-essential, responsive, 'OPN' (Occupied Proximal Nucleosome) genes. Thus, H3K4me3 may generally associate with expression stability, and H3K9ac, with variability. To evaluate this notion, we examine their association with expression divergence between the closely related species, S. cerevisiae and S. paradoxus. Although individually well conserved at orthologous genes, changes between modifications are mostly uncorrelated, indicating largely non-overlapping regulatory mechanisms. Notably, we find that inter-species differences in methylation, but not acetylation, are well correlated with expression changes, thereby proposing H3K4me3 as a candidate regulator of expression divergence. Taken together, our results suggest distinct evolutionary roles for expression-linked modifications, wherein H3K4me3 may contribute to stabilize average expression, whilst H3K9ac associates with more indirect aspects such as responsiveness.
Collapse
Affiliation(s)
- Yaron Mosesson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
131
|
Hoffmann J, Symul L, Shostak A, Fischer T, Naef F, Brunner M. Non-circadian expression masking clock-driven weak transcription rhythms in U2OS cells. PLoS One 2014; 9:e102238. [PMID: 25007071 PMCID: PMC4090172 DOI: 10.1371/journal.pone.0102238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022] Open
Abstract
U2OS cells harbor a circadian clock but express only a few rhythmic genes in constant conditions. We identified 3040 binding sites of the circadian regulators BMAL1, CLOCK and CRY1 in the U2OS genome. Most binding sites even in promoters do not correlate with detectable rhythmic transcript levels. Luciferase fusions reveal that the circadian clock supports robust but low amplitude transcription rhythms of representative promoters. However, rhythmic transcription of these potentially clock-controlled genes is masked by non-circadian transcription that overwrites the weaker contribution of the clock in constant conditions. Our data suggest that U2OS cells harbor an intrinsically rather weak circadian oscillator. The oscillator has the potential to regulate a large number of genes. The contribution of circadian versus non-circadian transcription is dependent on the metabolic state of the cell and may determine the apparent complexity of the circadian transcriptome.
Collapse
Affiliation(s)
- Julia Hoffmann
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Laura Symul
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anton Shostak
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Tamás Fischer
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Felix Naef
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michael Brunner
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
132
|
Sancar G, Brunner M. Circadian clocks and energy metabolism. Cell Mol Life Sci 2014; 71:2667-80. [PMID: 24515123 PMCID: PMC11113245 DOI: 10.1007/s00018-014-1574-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/08/2014] [Accepted: 01/23/2014] [Indexed: 12/25/2022]
Abstract
Circadian clocks orchestrate behavioral and physiological processes in a time-of-day dependent manner. The network of clock-controlled genes is intimately interconnected with metabolic regulatory circuits. Circadian clocks rhythmically regulate the expression and activity of key metabolic players, which in turn feed back on the circadian machinery on the transcriptional and post-transcriptional level. Mutations of clock genes are often associated with metabolic defects, especially in lipid and glucose metabolism. Accumulating data suggest that the reciprocal coordination of circadian and metabolic pathways is crucial for cellular homeostasis and the health of the organism.
Collapse
Affiliation(s)
- Gencer Sancar
- University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany,
| | | |
Collapse
|
133
|
O'Neill JS, Feeney KA. Circadian redox and metabolic oscillations in mammalian systems. Antioxid Redox Signal 2014; 20:2966-81. [PMID: 24063592 PMCID: PMC4038991 DOI: 10.1089/ars.2013.5582] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/25/2013] [Indexed: 01/06/2023]
Abstract
SIGNIFICANCE A substantial proportion of mammalian physiology is organized around the day/night cycle, being regulated by the co-ordinated action of numerous cell-autonomous circadian oscillators throughout the body. Disruption of internal timekeeping, by genetic or environmental perturbation, leads to metabolic dysregulation, whereas changes in metabolism affect timekeeping. RECENT ADVANCES While gene expression cycles are essential for the temporal coordination of normal physiology, it has become clear that rhythms in metabolism and redox balance are cell-intrinsic phenomena, which may regulate gene expression cycles reciprocally, but persist in their absence. For example, a circadian rhythm in peroxiredoxin oxidation was recently observed in isolated human erythrocytes, fibroblast cell lines in vitro, and mouse liver in vivo. CRITICAL ISSUES Mammalian timekeeping is a cellular phenomenon. While we understand many of the cellular systems that contribute to this biological oscillation's fidelity and robustness, a comprehensive mechanistic understanding remains elusive. Moreover, the formerly clear distinction between "core clock components" and rhythmic cellular outputs is blurred since several outputs, for example, redox balance, can feed back to regulate timekeeping. As with any cyclical system, establishing causality becomes problematic. FUTURE DIRECTIONS A detailed molecular understanding of the temporal crosstalk between cellular systems, and the coincidence detection mechanisms that allow a cell to discriminate clock-relevant from irrelevant stimuli, will be essential as we move toward an integrated model of how this daily biological oscillation works. Such knowledge will highlight new avenues by which the functional consequences of circadian timekeeping can be explored in the context of human health and disease.
Collapse
Affiliation(s)
- John S O'Neill
- MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | | |
Collapse
|
134
|
Quinodoz M, Gobet C, Naef F, Gustafson KB. Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters. Genome Biol 2014; 15:R85. [PMID: 24972996 PMCID: PMC4197824 DOI: 10.1186/gb-2014-15-6-r85] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 06/12/2014] [Indexed: 01/15/2023] Open
Abstract
Background In mammals, ChIP-seq studies of RNA polymerase II (PolII) occupancy have been performed to reveal how recruitment, initiation and pausing of PolII may control transcription rates, but the focus is rarely on obtaining finely resolved profiles that can portray the progression of PolII through sequential promoter states. Results Here, we analyze PolII binding profiles from high-coverage ChIP-seq on promoters of actively transcribed genes in mouse and humans. We show that the enrichment of PolII near transcription start sites exhibits a stereotypical bimodal structure, with one peak near active transcription start sites and a second peak 110 base pairs downstream from the first. Using an empirical model that reliably quantifies the spatial PolII signal, gene by gene, we show that the first PolII peak allows for refined positioning of transcription start sites, which is corroborated by mRNA sequencing. This bimodal signature is found both in mouse and humans. Analysis of the pausing-related factors NELF and DSIF suggests that the downstream peak reflects widespread pausing at the +1 nucleosome barrier. Several features of the bimodal pattern are correlated with sequence features such as CpG content and TATA boxes, as well as the histone mark H3K4me3. Conclusions We thus show how high coverage DNA sequencing experiments can reveal as-yet unnoticed bimodal spatial features of PolII accumulation that are frequent at individual mammalian genes and reminiscent of transcription initiation and pausing. The initiation-pausing hypothesis is corroborated by evidence from run-on sequencing and immunoprecipitation in other cell types and species.
Collapse
|
135
|
DeWoskin D, Geng W, Stinchcombe AR, Forger DB. It is not the parts, but how they interact that determines the behaviour of circadian rhythms across scales and organisms. Interface Focus 2014; 4:20130076. [PMID: 24904739 PMCID: PMC3996588 DOI: 10.1098/rsfs.2013.0076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biological rhythms, generated by feedback loops containing interacting genes, proteins and/or cells, time physiological processes in many organisms. While many of the components of the systems that generate biological rhythms have been identified, much less is known about the details of their interactions. Using examples from the circadian (daily) clock in three organisms, Neurospora, Drosophila and mouse, we show, with mathematical models of varying complexity, how interactions among (i) promoter sites, (ii) proteins forming complexes, and (iii) cells can have a drastic effect on timekeeping. Inspired by the identification of many transcription factors, for example as involved in the Neurospora circadian clock, that can both activate and repress, we show how these multiple actions can cause complex oscillatory patterns in a transcription–translation feedback loop (TTFL). Inspired by the timekeeping complex formed by the NMO–PER–TIM–SGG complex that regulates the negative TTFL in the Drosophila circadian clock, we show how the mechanism of complex formation can determine the prevalence of oscillations in a TTFL. Finally, we note that most mathematical models of intracellular clocks model a single cell, but compare with experimental data from collections of cells. We find that refitting the most detailed model of the mammalian circadian clock, so that the coupling between cells matches experimental data, yields different dynamics and makes an interesting prediction that also matches experimental data: individual cells are bistable, and network coupling removes this bistability and causes the network to be more robust to external perturbations. Taken together, we propose that the interactions between components in biological timekeeping systems are carefully tuned towards proper function. We also show how timekeeping can be controlled by novel mechanisms at different levels of organization.
Collapse
Affiliation(s)
- Daniel DeWoskin
- Department of Mathematics , University of Michigan , 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109 , USA
| | - Weihua Geng
- Department of Mathematics , Southern Methodist University , 135 Clements Hall, Dallas, TX 75275 , USA
| | - Adam R Stinchcombe
- Department of Mathematics , University of Michigan , 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109 , USA
| | - Daniel B Forger
- Department of Mathematics , University of Michigan , 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109 , USA ; Center for Computational Medicine and Bioinformatics , University of Michigan , 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109 , USA
| |
Collapse
|
136
|
Wang F, Fischhaber PL, Guo C, Tang TS. Epigenetic modifications as novel therapeutic targets for Huntington’s disease. Epigenomics 2014; 6:287-97. [DOI: 10.2217/epi.14.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Huntington’s disease is a late-onset, autosomal dominant neurodegenerative disorder characterized by motor, cognitive and psychiatric symptomatology. The earliest stage of Huntington’s disease is marked by alterations in gene expression, which partially results from dysregulated epigenetic modifications. In past decades, altered epigenetic markers including histone modifications (acetylation, methylation, ubiquitylation and phosphorylation) and DNA modifications (cytosine methylation and hydroxymethylation) have been reported as important epigenetic features in patients and multiple animal models of Huntington’s disease. Drugs aimed to correct some of those alterations have shown promise in treating Huntington’s disease. This article discusses the field of epigenetics for potential Huntington’s disease interventions and presents the most recent findings in this area.
Collapse
Affiliation(s)
- Fengli Wang
- State Key Laboratory of Biomembrane & Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paula L Fischhaber
- Department of Chemistry & Biochemistry, California State University Northridge, Northridge, CA 91330–8262, USA
| | - Caixia Guo
- Center for Genome Variations & Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China
| | - Tie-Shan Tang
- State Key Laboratory of Biomembrane & Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
137
|
Du NH, Arpat AB, De Matos M, Gatfield D. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. eLife 2014; 3:e02510. [PMID: 24867642 PMCID: PMC4032493 DOI: 10.7554/elife.02510] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI:http://dx.doi.org/10.7554/eLife.02510.001 The rising and setting of the sun have long driven the schedules of humans and other mammals. This 24-hr cycle influences many behavioural and physiological changes, including alertness, body temperature, and sleep. A region in the brain acts as a master clock that regulates these daily cycles, which are called circadian rhythms. Signals from the brain's master clock turn on and off ‘core clock genes’ in cells, which trigger cycles that cause some proteins to be produced in a circadian rhythm. The rhythm is specialized to a particular tissue or organ, and may help them to carry out their designated daily tasks. However, circadian rhythms might also be produced in other ways that do not involve these genes. Messenger RNA (mRNA) molecules have a central role in the production of proteins, and in the mouse liver, up to 15% of mRNA molecules are produced in circadian cycles. The liver performs essential tasks that control metabolism–including that of carbohydrates, fats, and cholesterol. Precisely timing when certain mRNAs and proteins reach peaks and troughs in their activities to coincide with mealtimes is important for nutrients to be properly processed. Other RNA molecules called microRNAs influence how mRNA molecules are translated into proteins. Now Du, Arpat et al. have looked at the influence of microRNAs on circadian rhythms in the mouse liver in greater detail. These experiments, which involved ‘knocking out’ a gene that is essential for the production of microRNAs, show that rather than setting the mRNA rhythms, the microRNAs appear to adjust them to meet the specific needs of the liver. Targeting specific microRNA molecules may reveal new strategies to tweak these rhythms, which could help to improve conditions when metabolic functions go wrong. DOI:http://dx.doi.org/10.7554/eLife.02510.002
Collapse
Affiliation(s)
- Ngoc-Hien Du
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alaaddin Bulak Arpat
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mara De Matos
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
138
|
Beckwith EJ, Yanovsky MJ. Circadian regulation of gene expression: at the crossroads of transcriptional and post-transcriptional regulatory networks. Curr Opin Genet Dev 2014; 27:35-42. [PMID: 24846841 DOI: 10.1016/j.gde.2014.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/15/2014] [Indexed: 11/28/2022]
Abstract
Gene expression programs activated in response to, or in anticipation of, environmental changes involve sequential steps, from transcription and RNA processing to nuclear export and translation. Here we review recent advances in our understanding of the multiple regulatory layers that control the oscillations in gene expression associated with daily rhythms in metabolism and physiology across eukaryotic organisms. Whereas many genes show coordinated oscillations in transcription, RNA processing and translation, others show significant temporal disconnections between these processes. Thus, circadian oscillations constitute an ideal system for examining how multiple transcriptional and post-transcriptional regulatory steps are integrated to maximize organismal adjustments to environmental conditions.
Collapse
Affiliation(s)
- Esteban J Beckwith
- Laboratorio de Genómica Comparada del Desarrollo Vegetal, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Marcelo J Yanovsky
- Laboratorio de Genómica Comparada del Desarrollo Vegetal, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
139
|
Bonhoure N, Bounova G, Bernasconi D, Praz V, Lammers F, Canella D, Willis IM, Herr W, Hernandez N, Delorenzi M. Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 2014; 24:1157-68. [PMID: 24709819 PMCID: PMC4079971 DOI: 10.1101/gr.168260.113] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments are widely used to determine, within entire genomes, the occupancy sites of any protein of interest, including, for example, transcription factors, RNA polymerases, or histones with or without various modifications. In addition to allowing the determination of occupancy sites within one cell type and under one condition, this method allows, in principle, the establishment and comparison of occupancy maps in various cell types, tissues, and conditions. Such comparisons require, however, that samples be normalized. Widely used normalization methods that include a quantile normalization step perform well when factor occupancy varies at a subset of sites, but may miss uniform genome-wide increases or decreases in site occupancy. We describe a spike adjustment procedure (SAP) that, unlike commonly used normalization methods intervening at the analysis stage, entails an experimental step prior to immunoprecipitation. A constant, low amount from a single batch of chromatin of a foreign genome is added to the experimental chromatin. This "spike" chromatin then serves as an internal control to which the experimental signals can be adjusted. We show that the method improves similarity between replicates and reveals biological differences including global and largely uniform changes.
Collapse
Affiliation(s)
- Nicolas Bonhoure
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gergana Bounova
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - David Bernasconi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Fabienne Lammers
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Donatella Canella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Winship Herr
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Department of Oncology and the Ludwig Center for Cancer Research, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | | |
Collapse
|
140
|
Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals. PLoS Genet 2014; 10:e1004155. [PMID: 24603613 PMCID: PMC3945117 DOI: 10.1371/journal.pgen.1004155] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 12/13/2013] [Indexed: 01/24/2023] Open
Abstract
In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1) is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4) were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1−/− mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1 target genes, thus helping to temporally separate the different physiological processes in which these genes are involved. Circadian rhythmicity is part of our innate behavior and controls many physiological processes, such as sleeping and waking, activity, neurotransmitter production and a number of metabolic pathways. In mammals, the central circadian pacemaker in the hypothalamus is entrained on a daily basis by environmental cues (i.e. light), thus setting the period length and synchronizing the rhythms of all cells in the body. In the last decades, numerous investigations have highlighted the importance of the internal timekeeping mechanism for maintenance of organism health and longevity. Indeed, the reciprocal regulation of circadian clock and metabolism is now commonly accepted, although still poorly understood at the molecular level. Our global analysis of DNA binding along the day of Sterol Regulatory Element Binding Protein 1 (SREBP1), a key regulator of lipid biosynthesis, represents the first tool to comprehensively explore how its activity is connected to circadian-driven regulatory events. We show that the regulation of SREBP1 action by nutrients relies mainly on the control of its subcellular localization, while the circadian clock influences the promoter specific activity of SREBP1 within the nucleus. Furthermore, we identify the Hepatocyte Nuclear Factor 4 (HNF4) as a putative player in the cross-talk between molecular clock and metabolic regulation.
Collapse
|
141
|
CLOCK-controlled polyphonic regulation of circadian rhythms through canonical and noncanonical E-boxes. Mol Cell Biol 2014; 34:1776-87. [PMID: 24591654 DOI: 10.1128/mcb.01465-13] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In mammalian circadian clockwork, the CLOCK-BMAL1 complex binds to DNA enhancers of target genes and drives circadian oscillation of transcription. Here we identified 7,978 CLOCK-binding sites in mouse liver by chromatin immunoprecipitation-sequencing (ChIP-Seq), and a newly developed bioinformatics method, motif centrality analysis of ChIP-Seq (MOCCS), revealed a genome-wide distribution of previously unappreciated noncanonical E-boxes targeted by CLOCK. In vitro promoter assays showed that CACGNG, CACGTT, and CATG(T/C)G are functional CLOCK-binding motifs. Furthermore, we extensively revealed rhythmically expressed genes by poly(A)-tailed RNA-Seq and identified 1,629 CLOCK target genes within 11,926 genes expressed in the liver. Our analysis also revealed rhythmically expressed genes that have no apparent CLOCK-binding site, indicating the importance of indirect transcriptional and posttranscriptional regulations. Indirect transcriptional regulation is represented by rhythmic expression of CLOCK-regulated transcription factors, such as Krüppel-like factors (KLFs). Indirect posttranscriptional regulation involves rhythmic microRNAs that were identified by small-RNA-Seq. Collectively, CLOCK-dependent direct transactivation through multiple E-boxes and indirect regulations polyphonically orchestrate dynamic circadian outputs.
Collapse
|
142
|
Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. Psychoneuroendocrinology 2014; 40:96-107. [PMID: 24485481 PMCID: PMC4039194 DOI: 10.1016/j.psyneuen.2013.11.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND A growing body of research shows that mindfulness meditation can alter neural, behavioral and biochemical processes. However, the mechanisms responsible for such clinically relevant effects remain elusive. METHODS Here we explored the impact of a day of intensive practice of mindfulness meditation in experienced subjects (n=19) on the expression of circadian, chromatin modulatory and inflammatory genes in peripheral blood mononuclear cells (PBMC). In parallel, we analyzed a control group of subjects with no meditation experience who engaged in leisure activities in the same environment (n=21). PBMC from all participants were obtained before (t1) and after (t2) the intervention (t2-t1=8h) and gene expression was analyzed using custom pathway focused quantitative-real time PCR assays. Both groups were also presented with the Trier Social Stress Test (TSST). RESULTS Core clock gene expression at baseline (t1) was similar between groups and their rhythmicity was not influenced in meditators by the intensive day of practice. Similarly, we found that all the epigenetic regulatory enzymes and inflammatory genes analyzed exhibited similar basal expression levels in the two groups. In contrast, after the brief intervention we detected reduced expression of histone deacetylase genes (HDAC 2, 3 and 9), alterations in global modification of histones (H4ac; H3K4me3) and decreased expression of pro-inflammatory genes (RIPK2 and COX2) in meditators compared with controls. We found that the expression of RIPK2 and HDAC2 genes was associated with a faster cortisol recovery to the TSST in both groups. CONCLUSIONS The regulation of HDACs and inflammatory pathways may represent some of the mechanisms underlying the therapeutic potential of mindfulness-based interventions. Our findings set the foundation for future studies to further assess meditation strategies for the treatment of chronic inflammatory conditions.
Collapse
|
143
|
David FPA, Delafontaine J, Carat S, Ross FJ, Lefebvre G, Jarosz Y, Sinclair L, Noordermeer D, Rougemont J, Leleu M. HTSstation: a web application and open-access libraries for high-throughput sequencing data analysis. PLoS One 2014; 9:e85879. [PMID: 24475057 PMCID: PMC3903476 DOI: 10.1371/journal.pone.0085879] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/03/2013] [Indexed: 01/25/2023] Open
Abstract
The HTSstation analysis portal is a suite of simple web forms coupled to modular analysis pipelines for various applications of High-Throughput Sequencing including ChIP-seq, RNA-seq, 4C-seq and re-sequencing. HTSstation offers biologists the possibility to rapidly investigate their HTS data using an intuitive web application with heuristically pre-defined parameters. A number of open-source software components have been implemented and can be used to build, configure and run HTS analysis pipelines reactively. Besides, our programming framework empowers developers with the possibility to design their own workflows and integrate additional third-party software. The HTSstation web application is accessible at http://htsstation.epfl.ch.
Collapse
Affiliation(s)
- Fabrice P. A. David
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Julien Delafontaine
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Solenne Carat
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Frederick J. Ross
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gregory Lefebvre
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yohan Jarosz
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Lucas Sinclair
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Daan Noordermeer
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Jacques Rougemont
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- * E-mail: (JR); (ML)
| | - Marion Leleu
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- * E-mail: (JR); (ML)
| |
Collapse
|
144
|
Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A 2014; 111:E682-91. [PMID: 24449876 DOI: 10.1073/pnas.1316335111] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circadian organization of the mammalian transcriptome is achieved by rhythmic recruitment of key modifiers of chromatin structure and transcriptional and translational processes. These rhythmic processes, together with posttranslational modification, constitute circadian oscillators in the brain and peripheral tissues, which drive rhythms in physiology and behavior, including the sleep-wake cycle. In humans, sleep is normally timed to occur during the biological night, when body temperature is low and melatonin is synthesized. Desynchrony of sleep-wake timing and other circadian rhythms, such as occurs in shift work and jet lag, is associated with disruption of rhythmicity in physiology and endocrinology. However, to what extent mistimed sleep affects the molecular regulators of circadian rhythmicity remains to be established. Here, we show that mistimed sleep leads to a reduction of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 1.0% during forced desynchrony of sleep and centrally driven circadian rhythms. Transcripts affected are key regulators of gene expression, including those associated with chromatin modification (methylases and acetylases), transcription (RNA polymerase II), translation (ribosomal proteins, initiation, and elongation factors), temperature-regulated transcription (cold inducible RNA-binding proteins), and core clock genes including CLOCK and ARNTL (BMAL1). We also estimated the separate contribution of sleep and circadian rhythmicity and found that the sleep-wake cycle coordinates the timing of transcription and translation in particular. The data show that mistimed sleep affects molecular processes at the core of circadian rhythm generation and imply that appropriate timing of sleep contributes significantly to the overall temporal organization of the human transcriptome.
Collapse
|
145
|
Sahar S, Masubuchi S, Eckel-Mahan K, Vollmer S, Galla L, Ceglia N, Masri S, Barth TK, Grimaldi B, Oluyemi O, Astarita G, Hallows WC, Piomelli D, Imhof A, Baldi P, Denu JM, Sassone-Corsi P. Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1. J Biol Chem 2014; 289:6091-7. [PMID: 24425865 DOI: 10.1074/jbc.m113.537191] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The circadian clock regulates a wide range of physiological and metabolic processes, and its disruption leads to metabolic disorders such as diabetes and obesity. Accumulating evidence reveals that the circadian clock regulates levels of metabolites that, in turn, may regulate the clock. Here we demonstrate that the circadian clock regulates the intracellular levels of acetyl-CoA by modulating the enzymatic activity of acetyl-CoA Synthetase 1 (AceCS1). Acetylation of AceCS1 controls the activity of the enzyme. We show that acetylation of AceCS1 is cyclic and that its rhythmicity requires a functional circadian clock and the NAD(+)-dependent deacetylase SIRT1. Cyclic acetylation of AceCS1 contributes to the rhythmicity of acetyl-CoA levels both in vivo and in cultured cells. Down-regulation of AceCS1 causes a significant decrease in the cellular acetyl-CoA pool, leading to reduction in circadian changes in fatty acid elongation. Thus, a nontranscriptional, enzymatic loop is governed by the circadian clock to control acetyl-CoA levels and fatty acid synthesis.
Collapse
Affiliation(s)
- Saurabh Sahar
- From the Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, California 92697
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Robles MS, Cox J, Mann M. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet 2014; 10:e1004047. [PMID: 24391516 PMCID: PMC3879213 DOI: 10.1371/journal.pgen.1004047] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/04/2013] [Indexed: 01/24/2023] Open
Abstract
Circadian clocks are endogenous oscillators that drive the rhythmic expression of a broad array of genes, orchestrating metabolism and physiology. Recent evidence indicates that post-transcriptional and post-translational mechanisms play essential roles in modulating temporal gene expression for proper circadian function, particularly for the molecular mechanism of the clock. Due to technical limitations in large-scale, quantitative protein measurements, it remains unresolved to what extent the circadian clock regulates metabolism by driving rhythms of protein abundance. Therefore, we aimed to identify global circadian oscillations of the proteome in the mouse liver by applying in vivo SILAC mouse technology in combination with state of the art mass spectrometry. Among the 3000 proteins accurately quantified across two consecutive cycles, 6% showed circadian oscillations with a defined phase of expression. Interestingly, daily rhythms of one fifth of the liver proteins were not accompanied by changes at the transcript level. The oscillations of almost half of the cycling proteome were delayed by more than six hours with respect to the corresponding, rhythmic mRNA. Strikingly we observed that the length of the time lag between mRNA and protein cycles varies across the day. Our analysis revealed a high temporal coordination in the abundance of proteins involved in the same metabolic process, such as xenobiotic detoxification. Apart from liver specific metabolic pathways, we identified many other essential cellular processes in which protein levels are under circadian control, for instance vesicle trafficking and protein folding. Our large-scale proteomic analysis reveals thus that circadian post-transcriptional and post-translational mechanisms play a key role in the temporal orchestration of liver metabolism and physiology. The circadian clock is an evolutionary system that allows organisms to anticipate and thus adapt to daily changes in the environment. In mammals, the circadian clock is found in virtually every tissue regulating rhythms of metabolism and physiology. While a lot of studies have focused in how circadian clocks regulate gene expression little is known about daily control of protein abundance. Here we applied state of the art mass spectrometry in combination with quantitative proteomics to investigate global circadian oscillations of the proteome in the mouse liver. We found that approximately 6% of the liver proteins are cycling daily and interestingly the majority of these oscillations diverge from the behavior of their transcripts. Our data indicates that post-transcriptional mechanisms play an essential role in shaping the phase of rhythmic proteins downstream of transcription regulation to ultimately drive rhythms of metabolism. Moreover, the contribution of post-transcriptional regulation seems to differ among distinct metabolic pathways. Overall we not only found circadian oscillations in the abundance of proteins involved in liver specific metabolic pathways but also in essential cellular processes.
Collapse
Affiliation(s)
- Maria S. Robles
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail:
| |
Collapse
|
147
|
Menet JS, Pescatore S, Rosbash M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev 2014; 28:8-13. [PMID: 24395244 PMCID: PMC3894415 DOI: 10.1101/gad.228536.113] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 11/27/2013] [Indexed: 11/28/2022]
Abstract
The mammalian circadian clock relies on the master genes CLOCK and BMAL1 to drive rhythmic gene expression and regulate biological functions under circadian control. Here we show that rhythmic CLOCK:BMAL1 DNA binding promotes rhythmic chromatin opening. Mechanisms include CLOCK:BMAL1 binding to nucleosomes and rhythmic chromatin modification; e.g., incorporation of the histone variant H2A.Z. This rhythmic chromatin remodeling mediates the rhythmic binding of other transcription factors adjacent to CLOCK:BMAL1, suggesting that the activity of these other transcription factors contributes to the genome-wide CLOCK:BMAL1 heterogeneous transcriptional output. These data therefore indicate that the clock regulation of transcription relies on the rhythmic regulation of chromatin accessibility and suggest that the concept of pioneer function extends to acute gene regulation.
Collapse
Affiliation(s)
| | - Stefan Pescatore
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
148
|
Abstract
Circadian clocks are cellular timekeeping mechanisms that coordinate behavior and physiology around the 24-h day in most living organisms. Misalignment of an organism's clock with its environment is associated with long-term adverse fitness consequences, as exemplified by the link between circadian disruption and various age-related diseases in humans. Current eukaryotic models of the circadian oscillator rely on transcription/translation feedback loop mechanisms, supplemented with accessory cytosolic loops that connect them to cellular physiology. However, mounting evidence is questioning the absolute necessity of transcription-based oscillators for circadian rhythmicity, supported by the recent discovery of oxidation-reduction cycles of peroxiredoxin proteins, which persist even in the absence of transcription. A more fundamental mechanism based on metabolic cycles could thus underlie circadian transcriptional and cytosolic rhythms, thereby promoting circadian oscillations to integral properties of cellular metabolism.
Collapse
Affiliation(s)
- Akhilesh B. Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Center, and Wellcome Trust–Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Guillaume Rey
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Center, and Wellcome Trust–Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
149
|
Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A 2013; 111:167-72. [PMID: 24344304 DOI: 10.1073/pnas.1314066111] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.
Collapse
|
150
|
Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock. Proc Natl Acad Sci U S A 2013; 110:E4867-74. [PMID: 24277852 DOI: 10.1073/pnas.1315133110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rhythmic activation and repression of clock gene transcription is essential for the functions of eukaryotic circadian clocks. In the Neurospora circadian oscillator, frequency (frq) transcription requires the WHITE COLLAR (WC) complex. Here, we show that the transcriptional corepressor regulation of conidiation-1 (RCO-1) is essential for clock function by regulating frq transcription. In rco-1 mutants, both overt and molecular rhythms are abolished, frq mRNA levels are constantly high, and WC binding to the frq promoter is dramatically reduced. Surprisingly, frq mRNA levels were constantly high in the rco-1 wc double mutants, indicating that RCO-1 suppresses WC-independent transcription and promotes WC complex binding to the frq promoter. Furthermore, RCO-1 is required for maintaining normal chromatin structure at the frq locus. Deletion of H3K36 methyltransferase su(var)3-9-enhancer-of-zeste-trithorax-2 (SET-2) or the chromatin remodeling factor CHD-1 leads to WC-independent frq transcription and loss of overt rhythms. Together, our results uncover a previously unexpected regulatory mechanism for clock gene transcription.
Collapse
|