101
|
Abstract
Cellular signaling pathways are often interconnected. They accurately and efficiently regulate essential cell functions such as protein synthesis, cell growth, and survival. The target of rapamycin (TOR) signaling pathway and the endoplasmic reticulum (ER) stress response pathway regulate similar cellular processes. However, the crosstalk between them has not been appreciated until recently and the detailed mechanisms remain unclear. Here, we show that ER stress-inducing drugs activate the TOR signaling pathway in S2R+ Drosophila cells. Activating transcription factor 6 (Atf6), a major stress-responsive ER transmembrane protein, is responsible for ER stress-induced TOR activation. Supporting the finding, we further show that knocking down of both site-1/2 proteases (S1P/S2P), Atf6 processing enzymes, are necessary to connect the two pathways.
Collapse
|
102
|
Tsuchiya Y, Saito M, Kadokura H, Miyazaki JI, Tashiro F, Imagawa Y, Iwawaki T, Kohno K. IRE1-XBP1 pathway regulates oxidative proinsulin folding in pancreatic β cells. J Cell Biol 2018; 217:1287-1301. [PMID: 29507125 PMCID: PMC5881499 DOI: 10.1083/jcb.201707143] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/06/2017] [Accepted: 01/22/2018] [Indexed: 11/22/2022] Open
Abstract
In mammalian pancreatic β cells, the IRE1α-XBP1 pathway is constitutively and highly activated under physiological conditions. To elucidate the precise role of this pathway, we constructed β cell-specific Ire1α conditional knockout (CKO) mice and established insulinoma cell lines in which Ire1α was deleted using the Cre-loxP system. Ire1α CKO mice showed the typical diabetic phenotype including impaired glycemic control and defects in insulin biosynthesis postnatally at 4-20 weeks. Ire1α deletion in pancreatic β cells in mice and insulinoma cells resulted in decreased insulin secretion, decreased insulin and proinsulin contents in cells, and decreased oxidative folding of proinsulin along with decreased expression of five protein disulfide isomerases (PDIs): PDI, PDIR, P5, ERp44, and ERp46. Reconstitution of the IRE1α-XBP1 pathway restored the proinsulin and insulin contents, insulin secretion, and expression of the five PDIs, indicating that IRE1α functions as a key regulator of the induction of catalysts for the oxidative folding of proinsulin in pancreatic β cells.
Collapse
Affiliation(s)
- Yuichi Tsuchiya
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michiko Saito
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Japan.,Bio-science Research Center, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroshi Kadokura
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Japan.,Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Jun-Ichi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Fumi Tashiro
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Imagawa
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Japan.,Department of Molecular and Cellular Biology, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Kenji Kohno
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
103
|
Smith JA. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity. Front Immunol 2018; 9:422. [PMID: 29556237 PMCID: PMC5844972 DOI: 10.3389/fimmu.2018.00422] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defense against pathogens, but when aberrantly produced, may also drive pathologic inflammation. The UPR influences cytokine production on multiple levels, from stimulation of pattern recognition receptors, to modulation of inflammatory signaling pathways, and the regulation of cytokine transcription factors. This review will focus on the mechanisms underlying cytokine regulation by the UPR, and the repercussions of this relationship for infection and autoimmune/autoinflammatory diseases. Interrogation of viral and bacterial infections has revealed increasing numbers of examples where pathogens induce or modulate the UPR and implicated UPR-modulated cytokines in host response. The flip side of this coin, the UPR/ER stress responses have been increasingly recognized in a variety of autoimmune and inflammatory diseases. Examples include monogenic disorders of ER function, diseases linked to misfolding protein (HLA-B27 and spondyloarthritis), diseases directly implicating UPR and autophagy genes (inflammatory bowel disease), and autoimmune diseases targeting highly secretory cells (e.g., diabetes). Given the burgeoning interest in pharmacologically targeting the UPR, greater discernment is needed regarding how the UPR regulates cytokine production during specific infections and autoimmune processes, and the relative place of this interaction in pathogenesis.
Collapse
Affiliation(s)
- Judith A Smith
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
104
|
Gornick MC, Cobain E, Le LQ, Bartnik N, Stoffel E, Schuetze S, Talpaz M, Chinnaiyan A, Roberts JS, for the Michigan Oncology Sequencing Study. Oncologists' Use of Genomic Sequencing Data to Inform Clinical Management. JCO Precis Oncol 2018; 2:PO.17.00122. [PMID: 32914003 PMCID: PMC7446532 DOI: 10.1200/po.17.00122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE To determine whether oncologists intended to change treatment as a result of tumor sequencing, and subsequently, whether patients experienced an alteration of clinical management or derived clinical benefit. PATIENTS AND METHODS A prospective survey of oncologists referring adult patients with rare, advanced, or refractory cancer to the Michigan Oncology Sequencing program was conducted from June 2014 to March 2015 to assess the use of and intent to disclose sequencing findings. Oncologists' responses were compared with the referred patients' self-reported survey responses, and a content analysis of disclosure documented in the medical record was performed. Medical records were reviewed retrospectively to determine if clinical management was informed or changed by sequencing results. RESULTS Oncologists (response rate, 93%) referring 112 consecutive patients were surveyed. Medical records of patients were reviewed for changes in clinical management on the basis of sequencing findings. Oncologists intended to change the treatment of 22% of patients (n = 24) on the basis of sequencing findings. Of these patients, 37.5% (n = 9) had an actual change in clinical management. Thirty-four patients with postsequencing survey data reported that a results disclosure discussion did not occur, despite documentation of disclosure by the physician in the medical record. CONCLUSIONS Findings demonstrate that many oncologists view next-generation sequencing results to be potentially valuable in directing subsequent therapy for their patients; however, barriers in communicating results to patients and implementing them in clinical management remain.
Collapse
Affiliation(s)
| | - Erin Cobain
- All authors: University of Michigan, Ann Arbor, MI
| | - Lan Q. Le
- All authors: University of Michigan, Ann Arbor, MI
| | | | | | | | - Moshe Talpaz
- All authors: University of Michigan, Ann Arbor, MI
| | | | | | | |
Collapse
|
105
|
Corridoni D, Chapman T, Ambrose T, Simmons A. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease. Front Med (Lausanne) 2018. [PMID: 29515999 PMCID: PMC5825991 DOI: 10.3389/fmed.2018.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation.
Collapse
Affiliation(s)
- Daniele Corridoni
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Thomas Chapman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tim Ambrose
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
106
|
Zhang W, Xu J. Adaptive unfolded protein response promotes cell survival in rifampicin-treated L02 cells. Int J Mol Med 2018; 41:2233-2242. [PMID: 29393386 DOI: 10.3892/ijmm.2018.3438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/23/2018] [Indexed: 11/05/2022] Open
Abstract
An important concept in drug-induced liver injury (DILI) is adaptation, which means the injury reverses with the continuation of the drug. The mechanism of adaption of drugs remains enigmatic, adaptive unfolded protein response (UPR) is possibly involved. We once observed adaptation phenomenon of rifampicin (RFP) in animal models, in this study, we investigate the effects of RFP on adaptive UPR in L02 cells, and after inhibiting UPR by using 4-phenylbutyrate (4-PBA), the change of cell viability and cell apoptosis in RFP-treated cells. We found that with the concentration of RFP increased and the treatment time was prolonged, the glucose-regulated protein 78 (GRP78), a hallmark of the UPR, was upregulated, and was dose- and time-dependent. RFP also activates the p-eukaryotic initiation factor 2α (eIF2α) protein expression. 4-PBA decreased GRP78 and p-eIF2α protein expression levels. Moreover, FCA showed that cell apoptosis rate obviously increased, and MTT assay showed that cell survival rate obviously decreased, this indicates that after inhibiting the UPR, the cell damage increased, which shows that the UPR is an adaptation mechanism to protect cells against injury induced by RFP. This also proves that when the degree of UPR induced by RFP is relatively mild, adaptive UPR is helpful for cell survival.
Collapse
Affiliation(s)
- Weiping Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Gastroenterology of Anhui Province, Hefei, Anhui 230022, P.R. China
| | - Jianming Xu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Gastroenterology of Anhui Province, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
107
|
Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2018; 236:R109-R143. [PMID: 29203573 DOI: 10.1530/joe-17-0516] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of Foxo1, Myc and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- St Vincent's Clinical SchoolUNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
108
|
Arunagiri A, Haataja L, Cunningham CN, Shrestha N, Tsai B, Qi L, Liu M, Arvan P. Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes. Ann N Y Acad Sci 2018; 1418:5-19. [PMID: 29377149 DOI: 10.1111/nyas.13531] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is broadly distributed throughout the cytoplasm of pancreatic beta cells, and this is where all proinsulin is initially made. Healthy beta cells can synthesize 6000 proinsulin molecules per second. Ordinarily, nascent proinsulin entering the ER rapidly folds via the formation of three evolutionarily conserved disulfide bonds (B7-A7, B19-A20, and A6-A11). A modest amount of proinsulin misfolding, including both intramolecular disulfide mispairing and intermolecular disulfide-linked protein complexes, is a natural by-product of proinsulin biosynthesis, as is the case for many proteins. The steady-state level of misfolded proinsulin-a potential ER stressor-is linked to (1) production rate, (2) ER environment, (3) presence or absence of naturally occurring (mutational) defects in proinsulin, and (4) clearance of misfolded proinsulin molecules. Accumulation of misfolded proinsulin beyond a certain threshold begins to interfere with the normal intracellular transport of bystander proinsulin, leading to diminished insulin production and hyperglycemia, as well as exacerbating ER stress. This is most obvious in mutant INS gene-induced Diabetes of Youth (MIDY; an autosomal dominant disease) but also likely to occur in type 2 diabetes owing to dysregulation in proinsulin synthesis, ER folding environment, or clearance.
Collapse
Affiliation(s)
- Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Corey N Cunningham
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Neha Shrestha
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan.,Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
109
|
Yoo YS, Han HG, Jeon YJ. Unfolded Protein Response of the Endoplasmic Reticulum in Tumor Progression and Immunogenicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2969271. [PMID: 29430279 PMCID: PMC5752989 DOI: 10.1155/2017/2969271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a pivotal regulator of folding, quality control, trafficking, and targeting of secreted and transmembrane proteins, and accordingly, eukaryotic cells have evolved specialized machinery to ensure that the ER enables these proteins to acquire adequate folding and maturation in the presence of intrinsic and extrinsic insults. This adaptive capacity of the ER to intrinsic and extrinsic perturbations is important for maintaining protein homeostasis, which is termed proteostasis. Failure in adaptation to these perturbations leads to accumulation of misfolded or unassembled proteins in the ER, which is termed ER stress, resulting in the activation of unfolded protein response (UPR) of the ER and the execution of ER-associated degradation (ERAD) to restore homeostasis. Furthermore, both of the two axes play key roles in the control of tumor progression, inflammation, immunity, and aging. Therefore, understanding UPR of the ER and subsequent ERAD will provide new insights into the pathogenesis of many human diseases and contribute to therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Yoon Seon Yoo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| |
Collapse
|
110
|
mTOR inhibitors activate PERK signaling and favor viability of gastrointestinal neuroendocrine cell lines. Oncotarget 2017; 8:20974-20987. [PMID: 28423496 PMCID: PMC5400559 DOI: 10.18632/oncotarget.15469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
mTOR and Unfolded Protein Response (UPR) are two signaling pathways frequently activated in cancer cells. The mTOR pathway has been shown to be up-regulated in most gastroenteropancreatic neuroendocrine tumors. In contrast, little is known about the UPR status in neoplastic neuroendocrine cells. However, these hormone-producing cells are likely to present distinctive adaptations of this pathway, as other secretory cells. We therefore analyzed the status of the three axes of UPR and their relation to mTOR pathway in two gastrointestinal neuroendocrine tumors (GI-NET) cell lines STC-1 and GluTag. At baseline, pharmacological inducers activate the three arms of UPR: PERK, ATF6 and IRE1. Although hypoxia stimulates the PERK, ATF6 and IRE-1 pathways in both cell lines, glucose depletion activates UPR only in STC-1 cell line. Strikingly, P-p70S6K1 increases concomitantly to P-PERK and BiP in response to thapsigargin treatment, glucose depletion or hypoxia. We found that different mTOR inhibitors activate the PERK signaling pathway. To confirm that mTOR inhibition modulates PERK activation, we inhibited PERK and showed that it decreased cell viability when associated to mTOR inhibition, indicating that mTOR drives a PERK-dependent survival pathway. In conclusion, in GI-NET cell lines, UPR signaling is functional and PERK arm is induced by mTOR inhibition. These observations open up new perspectives for therapeutic strategies: the crosstalk between mTOR and UPR might contribute to the resistance to mTOR inhibitors and could be targeted by mTOR and PERK inhibitors in combination therapy.
Collapse
|
111
|
Abstract
Numerous environmental, physiological, and pathological insults disrupt protein-folding homeostasis in the endoplasmic reticulum (ER), referred to as ER stress. Eukaryotic cells evolved a set of intracellular signaling pathways, collectively termed the unfolded protein response (UPR), to maintain a productive ER protein-folding environment through reprogramming gene transcription and mRNA translation. The UPR is largely dependent on transcription factors (TFs) that modulate expression of genes involved in many physiological and pathological conditions, including development, metabolism, inflammation, neurodegenerative diseases, and cancer. Here we summarize the current knowledge about these mechanisms, their impact on physiological/pathological processes, and potential therapeutic applications.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92307 USA
| |
Collapse
|
112
|
Garfinkel BP, Hotamisligil GS. ER Stress Promotes Inflammation through Re-wIREd Macrophages in Obesity. Mol Cell 2017. [DOI: 10.1016/j.molcel.2017.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
113
|
Endoplasmic reticulum stress and unfolded protein response in infection by intracellular parasites. Future Sci OA 2017; 3:FSO198. [PMID: 28883998 PMCID: PMC5583660 DOI: 10.4155/fsoa-2017-0020] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
Perturbations of the physiological status of the endoplasmic reticulum (ER) trigger a specific response known as the ER stress response or unfolded protein response (UPR). In mammalian cells, the UPR is mediated by three ER transmembrane proteins (IRE1, PERK and ATF6) which activate three signaling cascades to restore ER homeostasis. In recent years, a cross-talk between UPR, inflammatory and microbial sensing pathways has been elucidated. Pathogen infection can lead to UPR activation; moreover, several pathogens subvert the UPR to promote their survival and replication. While the UPR in viral and bacterial infection has been characterized, little is known about the role of UPR in intracellular parasite infection. Here, we review recent findings on UPR induction/modulation by intracellular parasites in host cells.
Collapse
|
114
|
Schaeffer C, Merella S, Pasqualetto E, Lazarevic D, Rampoldi L. Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLoS One 2017; 12:e0175970. [PMID: 28437467 PMCID: PMC5402980 DOI: 10.1371/journal.pone.0175970] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022] Open
Abstract
Uromodulin is the most abundant urinary protein in physiological conditions. It is exclusively produced by renal epithelial cells lining the thick ascending limb of Henle's loop (TAL) and it plays key roles in kidney function and disease. Mutations in UMOD, the gene encoding uromodulin, cause autosomal dominant tubulointerstitial kidney disease uromodulin-related (ADTKD-UMOD), characterised by hyperuricemia, gout and progressive loss of renal function. While the primary effect of UMOD mutations, retention in the endoplasmic reticulum (ER), is well established, its downstream effects are still largely unknown. To gain insight into ADTKD-UMOD pathogenesis, we performed transcriptional profiling and biochemical characterisation of cellular models (immortalised mouse TAL cells) of robust expression of wild type or mutant GFP-tagged uromodulin. In this model mutant uromodulin accumulation in the ER does not impact on cell viability and proliferation. Transcriptional profiling identified 109 genes that are differentially expressed in mutant cells relative to wild type ones. Up-regulated genes include several ER resident chaperones and protein disulphide isomerases. Consistently, pathway enrichment analysis indicates that mutant uromodulin expression affects ER function and protein homeostasis. Interestingly, mutant uromodulin expression induces the Unfolded Protein Response (UPR), and specifically the IRE1 branch, as shown by an increased splicing of XBP1. Consistent with UPR induction, we show increased interaction of mutant uromodulin with ER chaperones Bip, calnexin and PDI. Using metabolic labelling, we also demonstrate that while autophagy plays no role, mutant protein is partially degraded by the proteasome through ER-associated degradation. Our work demonstrates that ER stress could play a central role in ADTKD-UMOD pathogenesis. This sets the bases for future work to develop novel therapeutic strategies through modulation of ER homeostasis and associated protein degradation pathways.
Collapse
Affiliation(s)
- Céline Schaeffer
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Merella
- Center of Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Pasqualetto
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center of Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
115
|
Morita S, Villalta SA, Feldman HC, Register AC, Rosenthal W, Hoffmann-Petersen IT, Mehdizadeh M, Ghosh R, Wang L, Colon-Negron K, Meza-Acevedo R, Backes BJ, Maly DJ, Bluestone JA, Papa FR. Targeting ABL-IRE1α Signaling Spares ER-Stressed Pancreatic β Cells to Reverse Autoimmune Diabetes. Cell Metab 2017; 25:883-897.e8. [PMID: 28380378 PMCID: PMC5497784 DOI: 10.1016/j.cmet.2017.03.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/10/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
In cells experiencing unrelieved endoplasmic reticulum (ER) stress, the ER transmembrane kinase/endoribonuclease (RNase)-IRE1α-endonucleolytically degrades ER-localized mRNAs to promote apoptosis. Here we find that the ABL family of tyrosine kinases rheostatically enhances IRE1α's enzymatic activities, thereby potentiating ER stress-induced apoptosis. During ER stress, cytosolic ABL kinases localize to the ER membrane, where they bind, scaffold, and hyperactivate IRE1α's RNase. Imatinib-an anti-cancer tyrosine kinase inhibitor-antagonizes the ABL-IRE1α interaction, blunts IRE1α RNase hyperactivity, reduces pancreatic β cell apoptosis, and reverses type 1 diabetes (T1D) in the non-obese diabetic (NOD) mouse model. A mono-selective kinase inhibitor that allosterically attenuates IRE1α's RNase-KIRA8-also efficaciously reverses established diabetes in NOD mice by sparing β cells and preserving their physiological function. Our data support a model wherein ER-stressed β cells contribute to their own demise during T1D pathogenesis and implicate the ABL-IRE1α axis as a drug target for the treatment of an autoimmune disease.
Collapse
Affiliation(s)
- Shuhei Morita
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - S Armando Villalta
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA
| | - Hannah C Feldman
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Ames C Register
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Wendy Rosenthal
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ingeborg T Hoffmann-Petersen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Morvarid Mehdizadeh
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rajarshi Ghosh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Likun Wang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin Colon-Negron
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rosa Meza-Acevedo
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bradley J Backes
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Jeffrey A Bluestone
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Feroz R Papa
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
116
|
Sato H, Shiba Y, Tsuchiya Y, Saito M, Kohno K. 4μ8C Inhibits Insulin Secretion Independent of IRE1α RNase Activity. Cell Struct Funct 2017; 42:61-70. [PMID: 28321016 DOI: 10.1247/csf.17002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
IRE1α plays an important role in the unfolded protein response (UPR), which is activated by the accumulation of unfolded proteins in the endoplasmic reticulum. 4μ8C, a well-known inhibitor of IRE1α RNase activity, is commonly used to analyze IRE1α function during ER stress in cultured mammalian cells. However, the off-target effects of 4μ8C remain elusive. Pancreatic β-cells synthesize a large amount of insulin in response to high glucose stimulation, and IRE1α plays an important role in insulin secretion from pancreatic β-cells. Here, to analyze the role of IRE1α in pancreatic β-cells, we examined insulin secretion after 4μ8C treatment. Although 4μ8C inhibited insulin secretion within 2 hr, neither insulin synthesis nor maturation was inhibited by 4μ8C under the same conditions. This result prompted us to examine the precise effects of 4μ8C on insulin secretion in pancreatic β-cells. Unexpectedly, with just 5 min of treatment, 4μ8C blocked insulin secretion in cultured pancreatic β-cells as well as in pancreatic islets. Furthermore, insulin secretion was prevented by 4μ8C, even in pancreatic β-cells lacking the IRE1α RNase domain, suggesting that 4μ8C blocked the late stage of the insulin secretory process, independent of the IRE1α-XBP1 pathway. Our results indicate that 4μ8C has an off-target effect on insulin secretion in pancreatic β-cells. These findings inform the researchers in the field that the use of 4μ8C requires the special consideration for the future studies.Key words: 4μ8C, XBP1, insulin, IRE1α, pancreatic β-cells.
Collapse
Affiliation(s)
- Hitomi Sato
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Yoko Shiba
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology.,Faculty of Science and Engineering, Iwate University
| | - Yuichi Tsuchiya
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Michiko Saito
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Kenji Kohno
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology
| |
Collapse
|
117
|
Vella V, Nicolosi ML, Giuliano S, Bellomo M, Belfiore A, Malaguarnera R. PPAR-γ Agonists As Antineoplastic Agents in Cancers with Dysregulated IGF Axis. Front Endocrinol (Lausanne) 2017; 8:31. [PMID: 28275367 PMCID: PMC5319972 DOI: 10.3389/fendo.2017.00031] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
It is now widely accepted that insulin resistance and compensatory hyperinsulinemia are associated to increased cancer incidence and mortality. Moreover, cancer development and progression as well as cancer resistance to traditional anticancer therapies are often linked to a deregulation/overactivation of the insulin-like growth factor (IGF) axis, which involves the autocrine/paracrine production of IGFs (IGF-I and IGF-II) and overexpression of their cognate receptors [IGF-I receptor, IGF-insulin receptor (IR), and IR]. Recently, new drugs targeting various IGF axis components have been developed. However, these drugs have several limitations including the occurrence of insulin resistance and compensatory hyperinsulinemia, which, in turn, may affect cancer cell growth and survival. Therefore, new therapeutic approaches are needed. In this regard, the pleiotropic effects of peroxisome proliferator activated receptor (PPAR)-γ agonists may have promising applications in cancer prevention and therapy. Indeed, activation of PPAR-γ by thiazolidinediones (TZDs) or other agonists may inhibit cell growth and proliferation by lowering circulating insulin and affecting key pathways of the Insulin/IGF axis, such as PI3K/mTOR, MAPK, and GSK3-β/Wnt/β-catenin cascades, which regulate cancer cell survival, cell reprogramming, and differentiation. In light of these evidences, TZDs and other PPAR-γ agonists may be exploited as potential preventive and therapeutic agents in tumors addicted to the activation of IGF axis or occurring in hyperinsulinemic patients. Unfortunately, clinical trials using PPAR-γ agonists as antineoplastic agents have reached conflicting results, possibly because they have not selected tumors with overactivated insulin/IGF-I axis or occurring in hyperinsulinemic patients. In conclusion, the use of PPAR-γ agonists in combined therapies of IGF-driven malignancies looks promising but requires future developments.
Collapse
Affiliation(s)
- Veronica Vella
- Scienze delle Attività Motorie e Sportive, University Kore, Enna, Italy
| | - Maria Luisa Nicolosi
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Stefania Giuliano
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria Bellomo
- Scienze delle Attività Motorie e Sportive, University Kore, Enna, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonino Belfiore,
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
118
|
Abstract
Achromatopsia is an autosomal recessive disorder characterized by cone photoreceptor dysfunction. We recently identified activating transcription factor 6 (ATF6) as a genetic cause of achromatopsia. ATF6 is a key regulator of the unfolded protein response. In response to endoplasmic reticulum (ER) stress, ATF6 migrates from the ER to Golgi to undergo regulated intramembrane proteolysis to release a cytosolic domain containing a basic leucine zipper (bZIP) transcriptional activator. The cleaved ATF6 fragment migrates to the nucleus to transcriptionally up-regulate protein-folding enzymes and chaperones. ATF6 mutations in patients with achromatopsia include missense, nonsense, splice site, and single-nucleotide deletion or duplication changes found across the entire gene. Here, we comprehensively tested the function of achromatopsia-associated ATF6 mutations and found that they group into three distinct molecular pathomechanisms: class 1 ATF6 mutants show impaired ER-to-Golgi trafficking and diminished regulated intramembrane proteolysis and transcriptional activity; class 2 ATF6 mutants bear the entire ATF6 cytosolic domain with fully intact transcriptional activity and constitutive induction of downstream target genes, even in the absence of ER stress; and class 3 ATF6 mutants have complete loss of transcriptional activity because of absent or defective bZIP domains. Primary fibroblasts from patients with class 1 or class 3 ATF6 mutations show increased cell death in response to ER stress. Our findings reveal that human ATF6 mutations interrupt distinct sequential steps of the ATF6 activation mechanism. We suggest that increased susceptibility to ER stress-induced damage during retinal development underlies the pathology of achromatopsia in patients with ATF6 mutations.
Collapse
|
119
|
Meyerovich K, Ortis F, Allagnat F, Cardozo AK. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J Mol Endocrinol 2016; 57:R1-R17. [PMID: 27067637 DOI: 10.1530/jme-15-0306] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
Insulin-secreting pancreatic β-cells are extremely dependent on their endoplasmic reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain normoglycemia. Insulin translation and folding rely greatly on the unfolded protein response (UPR), an array of three main signaling pathways designed to maintain ER homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers alternative molecular pathways that can lead to β-cell dysfunction and apoptosis. An increasing number of studies suggest a role of these pro-apoptotic UPR pathways in the downfall of β-cells observed in diabetic patients. Particularly, the past few years highlighted a cross talk between the UPR and inflammation in the context of both type 1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in research regarding the interplay between ER stress, the UPR, and inflammation in the context of β-cell apoptosis leading to diabetes.
Collapse
Affiliation(s)
- Kira Meyerovich
- ULB Center for Diabetes ResearchUniversité Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fernanda Ortis
- Department of Cell and Developmental BiologyUniversidade de São Paulo, São Paulo, Brazil
| | - Florent Allagnat
- Department of Vascular SurgeryCentre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Alessandra K Cardozo
- ULB Center for Diabetes ResearchUniversité Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
120
|
Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat Rev Immunol 2016; 16:469-84. [PMID: 27346803 DOI: 10.1038/nri.2016.62] [Citation(s) in RCA: 577] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses.
Collapse
Affiliation(s)
- Joep Grootjans
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| |
Collapse
|
121
|
Herbert TP, Laybutt DR. A Reevaluation of the Role of the Unfolded Protein Response in Islet Dysfunction: Maladaptation or a Failure to Adapt? Diabetes 2016; 65:1472-80. [PMID: 27222391 DOI: 10.2337/db15-1633] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/29/2016] [Indexed: 11/13/2022]
Abstract
Endoplasmic reticulum (ER) stress caused by perturbations in ER homeostasis activates an adaptive response termed the unfolded protein response (UPR) whose function is to resolve ER stress. If unsuccessful, the UPR initiates a proapoptotic program to eliminate the malfunctioning cells from the organism. It is the activation of this proapoptotic UPR in pancreatic β-cells that has been implicated in the onset of type 2 diabetes and thus, in this context, is considered a maladaptive response. However, there is growing evidence that β-cell death in type 2 diabetes may not be caused by a maladaptive UPR but by the inhibition of the adaptive UPR. In this review, we discuss the evidence for a role of the UPR in β-cell dysfunction and death in the development of type 2 diabetes and ask the following question: Is β-cell dysfunction the result of a maladaptive UPR or a failure of the UPR to adequately adapt? The answer to this question is critically important in defining potential therapeutic strategies for the treatment and prevention of type 2 diabetes. In addition, we discuss the potential role of the adaptive UPR in staving off type 2 diabetes by enhancing β-cell mass and function in response to insulin resistance.
Collapse
Affiliation(s)
- Terence P Herbert
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Hospital, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
122
|
Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 2016; 57:1329-38. [PMID: 27146479 DOI: 10.1194/jlr.r067595] [Citation(s) in RCA: 452] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a cellular organelle important for regulating calcium homeostasis, lipid metabolism, protein synthesis, and posttranslational modification and trafficking. Numerous environmental, physiological, and pathological insults disturb ER homeostasis, referred to as ER stress, in which a collection of conserved intracellular signaling pathways, termed the unfolded protein response (UPR), are activated to maintain ER function for cell survival. However, excessive and/or prolonged UPR activation leads to initiation of self-destruction through apoptosis. Excessive accumulation of lipids and their intermediate products causes metabolic abnormalities and cell death, called lipotoxicity, in peripheral organs, including the pancreatic islets, liver, muscle, and heart. Because accumulating evidence links chronic ER stress and defects in UPR signaling to lipotoxicity in peripheral tissues, understanding the role of ER stress in cell physiology is a topic under intense investigation. In this review, we highlight recent findings that link ER stress and UPR signaling to the pathogenesis of peripheral organs due to lipotoxicity.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do, 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307
| |
Collapse
|
123
|
Abstract
Components of the unfolded protein response (UPR) modulate beta cell inflammation and death in early type 1 diabetes (T1D). The UPR is a mechanism by which cells react to the accumulation of misfolded proteins in the endoplasmic reticulum (ER). It aims to restore cellular homeostasis, but in case of chronic or overwhelming ER stress the persistent activation of the UPR triggers apoptosis, contributing to the loss of beta cells in both T1D and type 2 diabetes. It remains to be determined how and why the transition from 'physiological' to 'pathological' UPR takes place. A key component of the UPR is the ER transmembrane protein IRE1α (inositol-requiring enzyme 1α). IRE1α activity is modulated by both intra-ER signals and by the formation of protein complexes at its cytosolic domain. The amplitude and duration of IRE1α signaling is critical for the transition between the adaptive and cell death programs, with particular relevance for the activation of the pro-apoptotic c-Jun N-terminal kinase (JNK) in beta cells. In the present review we discuss the available information on IRE1α-regulating proteins in beta cells and their downstream targets, and the important differences observed between cytokine-induced UPR in human and rodent beta cells.
Collapse
Affiliation(s)
| | - Décio L. Eizirik
- CONTACT Decio L. Eizirik, MD, PhD ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), Route de Lennik, 808–CP618, 1070 Brussels, Belgium
| |
Collapse
|
124
|
Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 2016; 529:326-35. [PMID: 26791723 DOI: 10.1038/nature17041] [Citation(s) in RCA: 1161] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/11/2015] [Indexed: 12/18/2022]
Abstract
In eukaryotic cells, the endoplasmic reticulum is essential for the folding and trafficking of proteins that enter the secretory pathway. Environmental insults or increased protein synthesis often lead to protein misfolding in the organelle, the accumulation of misfolded or unfolded proteins - known as endoplasmic reticulum stress - and the activation of the adaptive unfolded protein response to restore homeostasis. If protein misfolding is not resolved, cells die. Endoplasmic reticulum stress and activation of the unfolded protein response help to determine cell fate and function. Furthermore, endoplasmic reticulum stress contributes to the aetiology of many human diseases.
Collapse
Affiliation(s)
- Miao Wang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
125
|
Diabetes and cancer, common threads and missing links. Cancer Lett 2016; 374:54-61. [PMID: 26879686 DOI: 10.1016/j.canlet.2016.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a serious and growing health problem worldwide and is associated with severe acute and chronic complications. Accruing epidemiological and clinical evidence have suggested that an increased cancer incidence is associated with diabetes as well as certain diabetes risk factors and diabetes medications. Several pathophysiological mechanisms for this relationship have been postulated, including insulin resistance and hyperinsulinemia, enhanced inflammation, aberrant metabolic state, endoplasmic reticulum stress, and deregulation of autophagy. In addition to these potential mechanisms, a number of common risk factors, including obesity, may be behind the association between diabetes and cancer. Furthermore, different anti-diabetic medications may modify cancer risk and mortality in patients with diabetes. This Review discusses evidence to support the relationship between diabetes and cancer development as well as the underlying mechanisms. We also discuss the relationship of current diabetes treatments and cancer risk or prognosis. Understanding the mechanisms that connect type 2 diabetes or diabetes treatments to cancer are crucial for establishing the fundamental strategies concerning about primary prevention, early detection and effective therapy against these diseases.
Collapse
|
126
|
Yong J, Itkin-Ansari P, Kaufman RJ. When Less Is Better: ER Stress and Beta Cell Proliferation. Dev Cell 2016; 36:4-6. [DOI: 10.1016/j.devcel.2015.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
127
|
Sedwick C. IRE1α Stands astride Many Paths to Insulin Production. PLoS Biol 2015; 13:e1002278. [PMID: 26469794 PMCID: PMC4607496 DOI: 10.1371/journal.pbio.1002278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A new study shows that components of the unfolded protein pathway are needed to help manage the production of vast amounts of insulin by pancreatic β cells in response to glucose stimulation. Read the Research Article.
Collapse
Affiliation(s)
- Caitlin Sedwick
- Freelance Science Writer, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|