101
|
Farahpour F, Saeedghalati M, Brauer VS, Hoffmann D. Trade-off shapes diversity in eco-evolutionary dynamics. eLife 2018; 7:e36273. [PMID: 30117415 PMCID: PMC6126925 DOI: 10.7554/elife.36273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022] Open
Abstract
We introduce an Interaction- and Trade-off-based Eco-Evolutionary Model (ITEEM), in which species are competing in a well-mixed system, and their evolution in interaction trait space is subject to a life-history trade-off between replication rate and competitive ability. We demonstrate that the shape of the trade-off has a fundamental impact on eco-evolutionary dynamics, as it imposes four phases of diversity, including a sharp phase transition. Despite its minimalism, ITEEM produces a remarkable range of patterns of eco-evolutionary dynamics that are observed in experimental and natural systems. Most notably we find self-organization towards structured communities with high and sustained diversity, in which competing species form interaction cycles similar to rock-paper-scissors games.
Collapse
Affiliation(s)
- Farnoush Farahpour
- Bioinformatics and Computational BiophysicsUniversity of Duisburg-EssenEssenGermany
| | | | | | - Daniel Hoffmann
- Bioinformatics and Computational BiophysicsUniversity of Duisburg-EssenEssenGermany
- Center for Computational Sciences and SimulationUniversity of Duisburg-EssenEssenGermany
- Center for Medical BiotechnologyUniversity of Duisburg-EssenEssenGermany
- Center for Water and Environmental ResearchUniversity of Duisburg-EssenEssenGermany
| |
Collapse
|
102
|
Turner CB, Marshall CW, Cooper VS. Parallel genetic adaptation across environments differing in mode of growth or resource availability. Evol Lett 2018; 2:355-367. [PMID: 30283687 PMCID: PMC6121802 DOI: 10.1002/evl3.75] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/18/2018] [Accepted: 07/06/2018] [Indexed: 01/13/2023] Open
Abstract
Evolution experiments have demonstrated high levels of genetic parallelism between populations evolving in identical environments. However, natural populations evolve in complex environments that can vary in many ways, likely sharing some characteristics but not others. Here, we ask whether shared selection pressures drive parallel evolution across distinct environments. We addressed this question in experimentally evolved populations founded from a clone of the bacterium Burkholderia cenocepacia. These populations evolved for 90 days (approximately 600 generations) under all combinations of high or low carbon availability and selection for either planktonic or biofilm modes of growth. Populations that evolved in environments with shared selection pressures (either level of carbon availability or mode of growth) were more genetically similar to each other than populations from environments that shared neither characteristic. However, not all shared selection pressures led to parallel evolution. Genetic parallelism between low-carbon biofilm and low-carbon planktonic populations was very low despite shared selection for growth under low-carbon conditions, suggesting that evolution in low-carbon environments may generate stronger trade-offs between biofilm and planktonic modes of growth. For all environments, a population's fitness in a particular environment was positively correlated with the genetic similarity between that population and the populations that evolved in that particular environment. Although genetic similarity was low between low-carbon environments, overall, evolution in similar environments led to higher levels of genetic parallelism and that genetic parallelism, in turn, was correlated with fitness in a particular environment.
Collapse
Affiliation(s)
- Caroline B. Turner
- Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghPennsylvania
| | | | - Vaughn S. Cooper
- Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghPennsylvania
| |
Collapse
|
103
|
Bellon JR, Ford CM, Borneman AR, Chambers PJ. A Novel Approach to Isolating Improved Industrial Interspecific Wine Yeasts Using Chromosomal Mutations as Potential Markers for Increased Fitness. Front Microbiol 2018; 9:1442. [PMID: 30034376 PMCID: PMC6043810 DOI: 10.3389/fmicb.2018.01442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
Wine yeast breeding programs utilizing interspecific hybridization deliver cost-effective tools to winemakers looking to differentiate their wines through the development of new wine styles. The addition of a non-Saccharomyces cerevisiae genome to a commercial wine yeast can generate novel phenotypes ranging from wine flavor and aroma diversity to improvements in targeted fermentation traits. In the current study we utilized a novel approach to screen isolates from an evolving population for increased fitness in a S. cerevisiae × S. uvarum interspecific hybrid previously generated to incorporate the targeted phenotype of lower volatile acidity production. Sequential grape-juice fermentations provided a selective environment from which to screen isolates. Chromosomal markers were used in a novel approach to identify isolates with potential increased fitness. A strain with increased fitness relative to its parents was isolated from an early timepoint in the evolving population, thereby minimizing the risk of introducing collateral mutations and potentially undesirable phenotypes. The evolved strain retained the desirable fermentation trait of reduced volatile acidity production, along with other winemaking traits of importance while exhibiting improved fermentation kinetics.
Collapse
Affiliation(s)
- Jennifer R Bellon
- The Australian Wine Research Institute, Adelaide, SA, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Christopher M Ford
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Paul J Chambers
- The Australian Wine Research Institute, Adelaide, SA, Australia
| |
Collapse
|
104
|
Border collies of the genome: domestication of an autonomous retrovirus-like transposon. Curr Genet 2018; 65:71-78. [PMID: 29931377 DOI: 10.1007/s00294-018-0857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Retrotransposons often spread rapidly through eukaryotic genomes until they are neutralized by host-mediated silencing mechanisms, reduced by recombination and mutation, and lost or transformed into benevolent entities. But the Ty1 retrotransposon appears to have been domesticated to guard the genome of Saccharomyces cerevisiae.
Collapse
|
105
|
Sharp NP, Sandell L, James CG, Otto SP. The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast. Proc Natl Acad Sci U S A 2018; 115:E5046-E5055. [PMID: 29760081 PMCID: PMC5984525 DOI: 10.1073/pnas.1801040115] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
By altering the dynamics of DNA replication and repair, alternative ploidy states may experience different rates and types of new mutations, leading to divergent evolutionary outcomes. We report a direct comparison of the genome-wide spectrum of spontaneous mutations arising in haploids and diploids following a mutation-accumulation experiment in the budding yeast Saccharomyces cerevisiae Characterizing the number, types, locations, and effects of thousands of mutations revealed that haploids were more prone to single-nucleotide mutations (SNMs) and mitochondrial mutations, while larger structural changes were more common in diploids. Mutations were more likely to be detrimental in diploids, even after accounting for the large impact of structural changes, contrary to the prediction that mutations would have weaker effects, due to masking, in diploids. Haploidy is expected to reduce the opportunity for conservative DNA repair involving homologous chromosomes, increasing the insertion-deletion rate, but we found little support for this idea. Instead, haploids were more susceptible to SNMs in late-replicating genomic regions, resulting in a ploidy difference in the spectrum of substitutions. In diploids, we detect mutation rate variation among chromosomes in association with centromere location, a finding that is supported by published polymorphism data. Diploids are not simply doubled haploids; instead, our results predict that the spectrum of spontaneous mutations will substantially shape the dynamics of genome evolution in haploid and diploid populations.
Collapse
Affiliation(s)
- Nathaniel P Sharp
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Linnea Sandell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Christopher G James
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Sarah P Otto
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
106
|
Fisher KJ, Buskirk SW, Vignogna RC, Marad DA, Lang GI. Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae. PLoS Genet 2018; 14:e1007396. [PMID: 29799840 PMCID: PMC5991770 DOI: 10.1371/journal.pgen.1007396] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/07/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022] Open
Abstract
Genome duplications are important evolutionary events that impact the rate and spectrum of beneficial mutations and thus the rate of adaptation. Laboratory evolution experiments initiated with haploid Saccharomyces cerevisiae cultures repeatedly experience whole-genome duplication (WGD). We report recurrent genome duplication in 46 haploid yeast populations evolved for 4,000 generations. We find that WGD confers a fitness advantage, and this immediate fitness gain is accompanied by a shift in genomic and phenotypic evolution. The presence of ploidy-enriched targets of selection and structural variants reveals that autodiploids utilize adaptive paths inaccessible to haploids. We find that autodiploids accumulate recessive deleterious mutations, indicating an increased susceptibility for nonadaptive evolution. Finally, we report that WGD results in a reduced adaptation rate, indicating a trade-off between immediate fitness gains and long-term adaptability. Whole genome duplications—the simultaneous doubling of each chromosome—can have a profound influence on evolution. Evidence of ancient whole genome duplications can be seen in most modern genomes. Experimental evolution, the long-term propagation of organisms under well-controlled laboratory conditions, yields valuable insight into the processes of adaptation and genome evolution. One interesting, and common, outcome of laboratory evolution experiments that start with haploid yeast populations is the emergence of diploid lineages via whole genome duplication. We show that, under our laboratory conditions, whole genome duplication provides a direct fitness benefit, and we identify several consequences of whole genome duplication on adaptation. Following whole-genome duplication, the rate of adaptation slows, the biological targets of selection change, and aneuploidies, copy-number variants and recessive lethal mutations accumulate. By studying the effect of whole genome duplication on adaptation, we can better understand how selection acts on ploidy, a fundamental biological parameter that varies considerably across life.
Collapse
Affiliation(s)
- Kaitlin J. Fisher
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Sean W. Buskirk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Ryan C. Vignogna
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Daniel A. Marad
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Gregory I. Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
- * E-mail:
| |
Collapse
|
107
|
Morrison-Whittle P, Lee SA, Fedrizzi B, Goddard MR. Co-evolution as Tool for Diversifying Flavor and Aroma Profiles of Wines. Front Microbiol 2018; 9:910. [PMID: 29867821 PMCID: PMC5949342 DOI: 10.3389/fmicb.2018.00910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/19/2018] [Indexed: 11/30/2022] Open
Abstract
The products of microbial metabolism form an integral part of human industry and have been shaped by evolutionary processes, accidentally and deliberately, for thousands of years. In the production of wine, a great many flavor and aroma compounds are produced by yeast species and are the targets of research for commercial breeding programs. Here we demonstrate how co-evolution with multiple species can generate novel interactions through serial co-culture in grape juice. We find that after ~65 generations, co-evolved strains and strains evolved independently show significantly different growth aspects and exhibit significantly different metabolite profiles. We show significant impact of co-evolution of Candida glabrata and Pichia kudriavzevii on the production of metabolites that affect the flavor and aroma of experimental wines. While co-evolved strains do exhibit novel interactions that affect the reproductive success of interacting species, we found no evidence of cross-feeding behavior. Our findings yield promising avenues for developing commercial yeast strains by using co-evolution to diversify the metabolic output of target species without relying on genetic modification or breeding technologies. Such approaches open up exciting new possibilities for harnessing microbial co-evolution in areas of agriculture and food related research generally.
Collapse
Affiliation(s)
| | - Soon A Lee
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Matthew R Goddard
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,The School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
108
|
Hong J, Brandt N, Abdul-Rahman F, Yang A, Hughes T, Gresham D. An incoherent feedforward loop facilitates adaptive tuning of gene expression. eLife 2018; 7:e32323. [PMID: 29620523 PMCID: PMC5903863 DOI: 10.7554/elife.32323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
We studied adaptive evolution of gene expression using long-term experimental evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated selection for non-synonymous variation in the DNA binding domain of the transcriptional activator, GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL) to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence. However, we show experimentally, and using mathematical modeling, that decreases in GAT1 binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional networks, can facilitate adaptive tuning of gene expression through modulation of transcription factor binding affinities. Our findings highlight the importance of gene regulatory architectures in the evolution of gene expression.
Collapse
Affiliation(s)
- Jungeui Hong
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUnited States
- Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Nathan Brandt
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUnited States
| | - Farah Abdul-Rahman
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUnited States
| | - Ally Yang
- Banting and Best Department of Medical Research, Donnelly CentreUniversity of TorontoTorontoCanada
| | - Tim Hughes
- Banting and Best Department of Medical Research, Donnelly CentreUniversity of TorontoTorontoCanada
| | - David Gresham
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUnited States
| |
Collapse
|
109
|
Abstract
Changes in genome copy number have occurred numerous times throughout the history of life, with profound evolutionary consequences. New experiments with budding yeast shed light on how frequently spontaneous genome doubling occurs within populations and the environmental conditions that favour cells with doubled genomes.
Collapse
Affiliation(s)
| | - Sarah P Otto
- Department of Zoology, University of British Columbia.
| |
Collapse
|
110
|
Rowley PA, Patterson K, Sandmeyer SB, Sawyer SL. Control of yeast retrotransposons mediated through nucleoporin evolution. PLoS Genet 2018; 14:e1007325. [PMID: 29694349 PMCID: PMC5918913 DOI: 10.1371/journal.pgen.1007325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Yeasts serve as hosts to several types of genetic parasites. Few studies have addressed the evolutionary trajectory of yeast genes that control the stable co-existence of these parasites with their host cell. In Saccharomyces yeasts, the retrovirus-like Ty retrotransposons must access the nucleus. We show that several genes encoding components of the yeast nuclear pore complex have experienced natural selection for substitutions that change the encoded protein sequence. By replacing these S. cerevisiae genes with orthologs from other Saccharomyces species, we discovered that natural sequence changes have affected the mobility of Ty retrotransposons. Specifically, changing the genetic sequence of NUP84 or NUP82 to match that of other Saccharomyces species alters the mobility of S. cerevisiae Ty1 and Ty3. Importantly, all tested housekeeping functions of NUP84 and NUP82 remained equivalent across species. Signatures of natural selection, resulting in altered interactions with viruses and parasitic genetic elements, are common in host defense proteins. Yet, few instances have been documented in essential housekeeping proteins. The nuclear pore complex is the gatekeeper of the nucleus. This study shows how the evolution of this large, ubiquitous eukaryotic complex can alter the replication of a molecular parasite, but concurrently maintain essential host functionalities regarding nucleocytoplasmic trafficking.
Collapse
Affiliation(s)
- Paul A. Rowley
- BioFrontiers Institute, Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
| | - Kurt Patterson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Suzanne B. Sandmeyer
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
111
|
Abstract
The ability of an organism to replicate and segregate its genome with high fidelity is vital to its survival and for the production of future generations. Errors in either of these steps (replication or segregation) can lead to a change in ploidy or chromosome number. While these drastic genome changes can be detrimental to the organism, resulting in decreased fitness, they can also provide increased fitness during periods of stress. A change in ploidy or chromosome number can fundamentally change how a cell senses and responds to its environment. Here, we discuss current ideas in fungal biology that illuminate how eukaryotic genome size variation can impact the organism at a cellular and evolutionary level. One of the most fascinating observations from the past 2 decades of research is that some fungi have evolved the ability to tolerate large genome size changes and generate vast genomic heterogeneity without undergoing canonical meiosis.
Collapse
|
112
|
Steenwyk JL, Rokas A. Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation. Front Microbiol 2018; 9:288. [PMID: 29520259 PMCID: PMC5826948 DOI: 10.3389/fmicb.2018.00288] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
In recent years, copy number (CN) variation has emerged as a new and significant source of genetic polymorphisms contributing to the phenotypic diversity of populations. CN variants are defined as genetic loci that, due to duplication and deletion, vary in their number of copies across individuals in a population. CN variants range in size from 50 base pairs to whole chromosomes, can influence gene activity, and are associated with a wide range of phenotypes in diverse organisms, including the budding yeast Saccharomyces cerevisiae. In this review, we introduce CN variation, discuss the genetic and molecular mechanisms implicated in its generation, how they can contribute to genetic and phenotypic diversity in fungal populations, and consider how CN variants may influence wine yeast adaptation in fermentation-related processes. In particular, we focus on reviewing recent work investigating the contribution of changes in CN of fermentation-related genes in yeast wine strains and offer notable illustrations of such changes, including the high levels of CN variation among the CUP genes, which confer resistance to copper, a metal with fungicidal properties, and the preferential deletion and duplication of the MAL1 and MAL3 loci, respectively, which are responsible for metabolizing maltose and sucrose. Based on the available data, we propose that CN variation is a substantial dimension of yeast genetic diversity that occurs largely independent of single nucleotide polymorphisms. As such, CN variation harbors considerable potential for understanding and manipulating yeast strains in the wine fermentation environment and beyond.
Collapse
Affiliation(s)
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
113
|
Li Y, Venkataram S, Agarwala A, Dunn B, Petrov DA, Sherlock G, Fisher DS. Hidden Complexity of Yeast Adaptation under Simple Evolutionary Conditions. Curr Biol 2018; 28:515-525.e6. [PMID: 29429618 PMCID: PMC5823527 DOI: 10.1016/j.cub.2018.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/30/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
Abstract
Few studies have "quantitatively" probed how adaptive mutations result in increased fitness. Even in simple microbial evolution experiments, with full knowledge of the underlying mutations and specific growth conditions, it is challenging to determine where within a growth-saturation cycle those fitness gains occur. A common implicit assumption is that most benefits derive from an increased exponential growth rate. Here, we instead show that, in batch serial transfer experiments, adaptive mutants' fitness gains can be dominated by benefits that are accrued in one growth cycle, but not realized until the next growth cycle. For thousands of evolved clones (most with only a single mutation), we systematically varied the lengths of fermentation, respiration, and stationary phases to assess how their fitness, as measured by barcode sequencing, depends on these phases of the growth-saturation-dilution cycles. These data revealed that, whereas all adaptive lineages gained similar and modest benefits from fermentation, most of the benefits for the highest fitness mutants came instead from the time spent in respiration. From monoculture and high-resolution pairwise fitness competition experiments for a dozen of these clones, we determined that the benefits "accrued" during respiration are only largely "realized" later as a shorter duration of lag phase in the following growth cycle. These results reveal hidden complexities of the adaptive process even under ostensibly simple evolutionary conditions, in which fitness gains can accrue during time spent in a growth phase with little cell division, and reveal that the memory of those gains can be realized in the subsequent growth cycle.
Collapse
Affiliation(s)
- Yuping Li
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Atish Agarwala
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Barbara Dunn
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Daniel S Fisher
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
114
|
Lamb AM, Gan HM, Greening C, Joseph L, Lee Y, Morán‐Ordóñez A, Sunnucks P, Pavlova A. Climate‐driven mitochondrial selection: A test in Australian songbirds. Mol Ecol 2018; 27:898-918. [DOI: 10.1111/mec.14488] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Annika Mae Lamb
- School of Biological Sciences Monash University Melbourne Vic. Australia
| | - Han Ming Gan
- School of Science Monash University Malaysia Bandar Sunway Selangor Malaysia
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Vic. Australia
| | - Chris Greening
- School of Biological Sciences Monash University Melbourne Vic. Australia
| | - Leo Joseph
- Australian National Wildlife Collection CSIRO National Research Collections Canberra ACT Australia
| | - Yin Peng Lee
- School of Science Monash University Malaysia Bandar Sunway Selangor Malaysia
| | - Alejandra Morán‐Ordóñez
- InForest Joint Research Unit (CTFC‐CREAF) Forest Science Centre of Catalonia Solsona Catalonia Spain
| | - Paul Sunnucks
- School of Biological Sciences Monash University Melbourne Vic. Australia
| | - Alexandra Pavlova
- School of Biological Sciences Monash University Melbourne Vic. Australia
| |
Collapse
|
115
|
Frada MJ, Rosenwasser S, Ben-Dor S, Shemi A, Sabanay H, Vardi A. Morphological switch to a resistant subpopulation in response to viral infection in the bloom-forming coccolithophore Emiliania huxleyi. PLoS Pathog 2017; 13:e1006775. [PMID: 29244854 PMCID: PMC5756048 DOI: 10.1371/journal.ppat.1006775] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/05/2018] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Recognizing the life cycle of an organism is key to understanding its biology and ecological impact. Emiliania huxleyi is a cosmopolitan marine microalga, which displays a poorly understood biphasic sexual life cycle comprised of a calcified diploid phase and a morphologically distinct biflagellate haploid phase. Diploid cells (2N) form large-scale blooms in the oceans, which are routinely terminated by specific lytic viruses (EhV). In contrast, haploid cells (1N) are resistant to EhV. Further evidence indicates that 1N cells may be produced during viral infection. A shift in morphology, driven by meiosis, could therefore constitute a mechanism for E. huxleyi cells to escape from EhV during blooms. This process has been metaphorically coined the 'Cheshire Cat' (CC) strategy. We tested this model in two E. huxleyi strains using a detailed assessment of morphological and ploidy-level variations as well as expression of gene markers for meiosis and the flagellate phenotype. We showed that following the CC model, production of resistant cells was triggered during infection. This led to the rise of a new subpopulation of cells in the two strains that morphologically resembled haploid cells and were resistant to EhV. However, ploidy-level analyses indicated that the new resistant cells were diploid or aneuploid. Thus, the CC strategy in E. huxleyi appears to be a life-phase switch mechanism involving morphological remodeling that is decoupled from meiosis. Our results highlight the adaptive significance of morphological plasticity mediating complex host-virus interactions in marine phytoplankton.
Collapse
Affiliation(s)
- Miguel José Frada
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shilo Rosenwasser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit–Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Helena Sabanay
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
116
|
Scott AL, Richmond PA, Dowell RD, Selmecki AM. The Influence of Polyploidy on the Evolution of Yeast Grown in a Sub-Optimal Carbon Source. Mol Biol Evol 2017; 34:2690-2703. [PMID: 28957510 PMCID: PMC5850772 DOI: 10.1093/molbev/msx205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polyploidization events have occurred during the evolution of many fungi, plant, and animal species and are thought to contribute to speciation and tumorigenesis, however little is known about how ploidy level contributes to adaptation at the molecular level. Here we integrate whole genome sequencing, RNA expression analysis, and relative fitness of ∼100 evolved clones at three ploidy levels. Independent haploid, diploid, and tetraploid populations were grown in a low carbon environment for 250 generations. We demonstrate that the key adaptive mutation in the evolved clones is predicted by a gene expression signature of just five genes. All of the adaptive mutations identified encompass a narrow set of genes, however the tetraploid clones gain a broader spectrum of adaptive mutations than haploid or diploid clones. While many of the adaptive mutations occur in genes that encode proteins with known roles in glucose sensing and transport, we discover mutations in genes with no canonical role in carbon utilization (IPT1 and MOT3), as well as identify novel dominant mutations in glucose signal transducers thought to only accumulate recessive mutations in carbon limited environments (MTH1 and RGT1). We conclude that polyploid cells explore more genotypic and phenotypic space than lower ploidy cells. Our study provides strong evidence for the beneficial role of polyploidization events that occur during the evolution of many species and during tumorigenesis.
Collapse
Affiliation(s)
- Amber L Scott
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO
| | | | - Robin D Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO.,BioFrontiers Institute, University of Colorado, Boulder, CO
| | - Anna M Selmecki
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, NE
| |
Collapse
|
117
|
Smukowski Heil CS, DeSevo CG, Pai DA, Tucker CM, Hoang ML, Dunham MJ. Loss of Heterozygosity Drives Adaptation in Hybrid Yeast. Mol Biol Evol 2017; 34:1596-1612. [PMID: 28369610 PMCID: PMC5455960 DOI: 10.1093/molbev/msx098] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hybridization is often considered maladaptive, but sometimes hybrids can invade new ecological niches and adapt to novel or stressful environments better than their parents. The genomic changes that occur following hybridization that facilitate genome resolution and/or adaptation are not well understood. Here, we examine hybrid genome evolution using experimental evolution of de novo interspecific hybrid yeast Saccharomyces cerevisiae × Saccharomyces uvarum and their parentals. We evolved these strains in nutrient-limited conditions for hundreds of generations and sequenced the resulting cultures identifying numerous point mutations, copy number changes, and loss of heterozygosity (LOH) events, including species-biased amplification of nutrient transporters. We focused on a particularly interesting example, in which we saw repeated LOH at the high-affinity phosphate transporter gene PHO84 in both intra- and interspecific hybrids. Using allele replacement methods, we tested the fitness of different alleles in hybrid and S. cerevisiae strain backgrounds and found that the LOH is indeed the result of selection on one allele over the other in both S. cerevisiae and the hybrids. This is an example where hybrid genome resolution is driven by positive selection on existing heterozygosity and demonstrates that even infrequent outcrossing may have lasting impacts on adaptation.
Collapse
Affiliation(s)
| | - Christopher G DeSevo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Dave A Pai
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Cheryl M Tucker
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Margaret L Hoang
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution, Baltimore, MD.,Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
118
|
Dias O, Basso TO, Rocha I, Ferreira EC, Gombert AK. Quantitative physiology and elemental composition of Kluyveromyces lactis CBS 2359 during growth on glucose at different specific growth rates. Antonie van Leeuwenhoek 2017; 111:183-195. [PMID: 28900755 DOI: 10.1007/s10482-017-0940-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
The yeast Kluyveromyces lactis has received attention both from academia and industry due to some important features, such as its capacity to grow in lactose-based media, its safe status, its suitability for large-scale cultivation and for heterologous protein synthesis. It has also been considered as a model organism for genomics and metabolic regulation. Despite this, very few studies were carried out hitherto under strictly controlled conditions, such as those found in a chemostat. Here we report a set of quantitative physiological data generated during chemostat cultivations with the K. lactis CBS 2359 strain, obtained under glucose-limiting and fully aerobic conditions. This dataset serves [corrected] as a basis for the comparison of K. lactis with the model yeast Saccharomyces cerevisiae in terms of their elemental compositions, as well as for future metabolic flux analysis and metabolic modelling studies with K. lactis.
Collapse
Affiliation(s)
- Oscar Dias
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto 380, São Paulo, SP, 05508-010, Brazil
| | - Thiago O Basso
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto 380, São Paulo, SP, 05508-010, Brazil.
| | - Isabel Rocha
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eugénio C Ferreira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Andreas K Gombert
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto 380, São Paulo, SP, 05508-010, Brazil.,School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
119
|
Yang JR, Maclean CJ, Park C, Zhao H, Zhang J. Intra and Interspecific Variations of Gene Expression Levels in Yeast Are Largely Neutral: (Nei Lecture, SMBE 2016, Gold Coast). Mol Biol Evol 2017; 34:2125-2139. [PMID: 28575451 PMCID: PMC5850415 DOI: 10.1093/molbev/msx171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is commonly, although not universally, accepted that most intra and interspecific genome sequence variations are more or less neutral, whereas a large fraction of organism-level phenotypic variations are adaptive. Gene expression levels are molecular phenotypes that bridge the gap between genotypes and corresponding organism-level phenotypes. Yet, it is unknown whether natural variations in gene expression levels are mostly neutral or adaptive. Here we address this fundamental question by genome-wide profiling and comparison of gene expression levels in nine yeast strains belonging to three closely related Saccharomyces species and originating from five different ecological environments. We find that the transcriptome-based clustering of the nine strains approximates the genome sequence-based phylogeny irrespective of their ecological environments. Remarkably, only ∼0.5% of genes exhibit similar expression levels among strains from a common ecological environment, no greater than that among strains with comparable phylogenetic relationships but different environments. These and other observations strongly suggest that most intra and interspecific variations in yeast gene expression levels result from the accumulation of random mutations rather than environmental adaptations. This finding has profound implications for understanding the driving force of gene expression evolution, genetic basis of phenotypic adaptation, and general role of stochasticity in evolution.
Collapse
Affiliation(s)
- Jian-Rong Yang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Calum J. Maclean
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Chungoo Park
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Huabin Zhao
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
120
|
Evolutionary dynamics in the fungal polarization network, a mechanistic perspective. Biophys Rev 2017; 9:375-387. [PMID: 28812259 PMCID: PMC5578929 DOI: 10.1007/s12551-017-0286-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Polarity establishment underlies proper cell cycle completion across virtually all organisms. Much progress has been made in generating an understanding of the structural and functional components of this process, especially in model species. Here we focus on the evolutionary dynamics of the fungal polarization protein network in order to determine general components and mechanistic principles, species- or lineage-specific adaptations and the evolvability of the network. The currently available genomic and proteomic screens in a variety of fungal species have shown three main characteristics: (1) certain proteins, processes and functions are conserved throughout the fungal clade; (2) orthologous functions can never be assumed, as various cases have been observed of homologous loci with dissimilar functions; (3) species have, typically, various species- or lineage-specific proteins incorporated in their polarization network. Further large-scale comparative and experimental studies, including those on non-model species representing the great fungal diversity, are needed to gain a better understanding of the evolutionary dynamics and generalities of the polarization network in fungi.
Collapse
|
121
|
Hope EA, Amorosi CJ, Miller AW, Dang K, Heil CS, Dunham MJ. Experimental Evolution Reveals Favored Adaptive Routes to Cell Aggregation in Yeast. Genetics 2017; 206:1153-1167. [PMID: 28450459 PMCID: PMC5499169 DOI: 10.1534/genetics.116.198895] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/06/2017] [Indexed: 02/02/2023] Open
Abstract
Yeast flocculation is a community-building cell aggregation trait that is an important mechanism of stress resistance and a useful phenotype for brewers; however, it is also a nuisance in many industrial processes, in clinical settings, and in the laboratory. Chemostat-based evolution experiments are impaired by inadvertent selection for aggregation, which we observe in 35% of populations. These populations provide a testing ground for understanding the breadth of genetic mechanisms Saccharomyces cerevisiae uses to flocculate, and which of those mechanisms provide the biggest adaptive advantages. In this study, we employed experimental evolution as a tool to ask whether one or many routes to flocculation are favored, and to engineer a strain with reduced flocculation potential. Using a combination of whole genome sequencing and bulk segregant analysis, we identified causal mutations in 23 independent clones that had evolved cell aggregation during hundreds of generations of chemostat growth. In 12 of those clones, we identified a transposable element insertion in the promoter region of known flocculation gene FLO1, and, in an additional five clones, we recovered loss-of-function mutations in transcriptional repressor TUP1, which regulates FLO1 and other related genes. Other causal mutations were found in genes that have not been previously connected to flocculation. Evolving a flo1 deletion strain revealed that this single deletion reduces flocculation occurrences to 3%, and demonstrated the efficacy of using experimental evolution as a tool to identify and eliminate the primary adaptive routes for undesirable traits.
Collapse
Affiliation(s)
- Elyse A Hope
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Clara J Amorosi
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Aaron W Miller
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Kolena Dang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Caiti Smukowski Heil
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
122
|
Abstract
Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes.
Collapse
|
123
|
Resolving the Complex Genetic Basis of Phenotypic Variation and Variability of Cellular Growth. Genetics 2017; 206:1645-1657. [PMID: 28495957 DOI: 10.1534/genetics.116.195180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/02/2017] [Indexed: 01/10/2023] Open
Abstract
In all organisms, the majority of traits vary continuously between individuals. Explaining the genetic basis of quantitative trait variation requires comprehensively accounting for genetic and nongenetic factors as well as their interactions. The growth of microbial cells can be characterized by a lag duration, an exponential growth phase, and a stationary phase. Parameters that characterize these growth phases can vary among genotypes (phenotypic variation), environmental conditions (phenotypic plasticity), and among isogenic cells in a given environment (phenotypic variability). We used a high-throughput microscopy assay to map genetic loci determining variation in lag duration and exponential growth rate in growth rate-limiting and nonlimiting glucose concentrations, using segregants from a cross of two natural isolates of the budding yeast, Saccharomyces cerevisiae We find that some quantitative trait loci (QTL) are common between traits and environments whereas some are unique, exhibiting gene-by-environment interactions. Furthermore, whereas variation in the central tendency of growth rate or lag duration is explained by many additive loci, differences in phenotypic variability are primarily the result of genetic interactions. We used bulk segregant mapping to increase QTL resolution by performing whole-genome sequencing of complex mixtures of an advanced intercross mapping population grown in selective conditions using glucose-limited chemostats. We find that sequence variation in the high-affinity glucose transporter HXT7 contributes to variation in growth rate and lag duration. Allele replacements of the entire locus, as well as of a single polymorphic amino acid, reveal that the effect of variation in HXT7 depends on genetic, and allelic, background. Amplifications of HXT7 are frequently selected in experimental evolution in glucose-limited environments, but we find that HXT7 amplifications result in antagonistic pleiotropy that is absent in naturally occurring variants of HXT7 Our study highlights the complex nature of the genotype-to-phenotype map within and between environments.
Collapse
|
124
|
Steenwyk J, Rokas A. Extensive Copy Number Variation in Fermentation-Related Genes Among Saccharomyces cerevisiae Wine Strains. G3 (BETHESDA, MD.) 2017; 7:1475-1485. [PMID: 28292787 PMCID: PMC5427499 DOI: 10.1534/g3.117.040105] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/08/2017] [Indexed: 01/30/2023]
Abstract
Due to the importance of Saccharomyces cerevisiae in wine-making, the genomic variation of wine yeast strains has been extensively studied. One of the major insights stemming from these studies is that wine yeast strains harbor low levels of genetic diversity in the form of single nucleotide polymorphisms (SNPs). Genomic structural variants, such as copy number (CN) variants, are another major type of variation segregating in natural populations. To test whether genetic diversity in CN variation is also low across wine yeast strains, we examined genome-wide levels of CN variation in 132 whole-genome sequences of S. cerevisiae wine strains. We found an average of 97.8 CN variable regions (CNVRs) affecting ∼4% of the genome per strain. Using two different measures of CN diversity, we found that gene families involved in fermentation-related processes such as copper resistance (CUP), flocculation (FLO), and glucose metabolism (HXT), as well as the SNO gene family whose members are expressed before or during the diauxic shift, showed substantial CN diversity across the 132 strains examined. Importantly, these same gene families have been shown, through comparative transcriptomic and functional assays, to be associated with adaptation to the wine fermentation environment. Our results suggest that CN variation is a substantial contributor to the genomic diversity of wine yeast strains, and identify several candidate loci whose levels of CN variation may affect the adaptation and performance of wine yeast strains during fermentation.
Collapse
Affiliation(s)
- Jacob Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
125
|
Gerstein AC, Lim H, Berman J, Hickman MA. Ploidy tug-of-war: Evolutionary and genetic environments influence the rate of ploidy drive in a human fungal pathogen. Evolution 2017; 71:1025-1038. [PMID: 28195309 DOI: 10.1111/evo.13205] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/27/2017] [Indexed: 12/18/2022]
Abstract
Variation in baseline ploidy is seen throughout the tree of life, yet the factors that determine why one ploidy level is maintained over another remain poorly understood. Experimental evolution studies using asexual fungal microbes with manipulated ploidy levels intriguingly reveals a propensity to return to the historical baseline ploidy, a phenomenon that we term "ploidy drive." We evolved haploid, diploid, and polyploid strains of the human fungal pathogen Candida albicans under three different nutrient limitation environments to test whether these conditions, hypothesized to select for low ploidy levels, could counteract ploidy drive. Strains generally maintained or acquired smaller genome sizes (measured as total nuclear DNA through flow cytometry) in minimal medium and under phosphorus depletion compared to in a complete medium, while mostly maintained or acquired increased genome sizes under nitrogen depletion. Improvements in fitness often ran counter to changes in genome size; in a number of scenarios lines that maintained their original genome size often increased in fitness more than lines that converged toward diploidy (the baseline ploidy of C. albicans). Combined, this work demonstrates a role for both the environment and genotype in determination of the rate of ploidy drive, and highlights questions that remain about the force(s) that cause genome size variation.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.,Department of Microbiology & Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Heekyung Lim
- Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Judith Berman
- Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.,Department of Microbiology & Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota.,Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Meleah A Hickman
- Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.,Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia
| |
Collapse
|
126
|
Maralingannavar V, Parmar D, Pant T, Gadgil C, Panchagnula V, Gadgil M. CHO Cells adapted to inorganic phosphate limitation show higher growth and higher pyruvate carboxylase flux in phosphate replete conditions. Biotechnol Prog 2017; 33:749-758. [PMID: 28220676 DOI: 10.1002/btpr.2450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/02/2017] [Indexed: 11/07/2022]
Abstract
Inorganic phosphate (Pi ) is an essential ion involved in diverse cellular processes including metabolism. Changes in cellular metabolism upon long term adaptation to Pi limitation have been reported in E. coli. Given the essential role of Pi , adaptation to Pi limitation may also result in metabolic changes in animal cells. In this study, we have adapted CHO cells producing recombinant IgG to limiting Pi conditions for 75 days. Not surprisingly, adapted cells showed better survival under Pi limitation. Here, we report the finding that such cells also showed better growth characteristics compared to control in batch culture replete with Pi (higher peak density and integral viable cell density), accompanied by a lower specific oxygen uptake rate and cytochrome oxidase activity towards the end of exponential phase. Surprisingly, the adapted cells grew to a lower peak density under glucose limitation. This suggests long term Pi limitation may lead to selection for an altered metabolism with higher dependence on glucose availability for biomass assimilation compared to control. Steady state U-13 C glucose labeling experiments suggest that adapted cells have a higher pyruvate carboxylase flux. Consistent with this observation, supplementation with aspartate abolished the peak density difference whereas supplementation with serine did not abolish the difference. This supports the hypothesis that cell growth in the adapted culture might be higher due to a higher pyruvate carboxylase flux. Decreased fitness under carbon limitation and mutations in the sucABCD operon has been previously reported in E. coli upon long term adaptation to Pi limitation, suggestive of a similarity in cellular response among such diverse species. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:749-758, 2017.
Collapse
Affiliation(s)
- Vishwanathgouda Maralingannavar
- Chemical Engineering and Process Development Div., CSIR-National Chemical Laboratory, Pune, 411008, India.,CSIR-National Chemical Laboratory Campus, Academy of Scientific and Innovative Research, Pune
| | - Dharmeshkumar Parmar
- Chemical Engineering and Process Development Div., CSIR-National Chemical Laboratory, Pune, 411008, India.,CSIR-National Chemical Laboratory Campus, Academy of Scientific and Innovative Research, Pune
| | - Tejal Pant
- Chemical Engineering and Process Development Div., CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Chetan Gadgil
- Chemical Engineering and Process Development Div., CSIR-National Chemical Laboratory, Pune, 411008, India.,CSIR-National Chemical Laboratory Campus, Academy of Scientific and Innovative Research, Pune
| | - Venkateswarlu Panchagnula
- Chemical Engineering and Process Development Div., CSIR-National Chemical Laboratory, Pune, 411008, India.,CSIR-National Chemical Laboratory Campus, Academy of Scientific and Innovative Research, Pune
| | - Mugdha Gadgil
- Chemical Engineering and Process Development Div., CSIR-National Chemical Laboratory, Pune, 411008, India.,CSIR-National Chemical Laboratory Campus, Academy of Scientific and Innovative Research, Pune
| |
Collapse
|
127
|
Differential paralog divergence modulates genome evolution across yeast species. PLoS Genet 2017; 13:e1006585. [PMID: 28196070 PMCID: PMC5308817 DOI: 10.1371/journal.pgen.1006585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/13/2017] [Indexed: 11/24/2022] Open
Abstract
Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200–500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution. Both comparative genomics and experimental evolution are powerful tools that can be used to make inferences about evolutionary processes. Together, these approaches provide the opportunity to observe evolutionary adaptation over millions of years where selective history is largely unknown, and over short timescales under controlled selective pressures in the laboratory. We have used comparative experimental evolution to observe the evolutionary fate of an adaptive mutation, and determined to what degree the outcome is conditional on the genetic background. We evolved several populations of different yeast species for over 200 generations in sulfate-limited conditions to determine how the differences in genomic context can alter evolutionary routes when challenged with a nutrient limitation selection pressure. We find that the gene encoding a high affinity sulfur transporter becomes amplified in most species of Saccharomyces, except in S. uvarum, in which the amplification of the paralogous sulfate transporter gene SUL2 is recovered. We attribute this change in amplification preference to mutations in the non-coding region of SUL1, likely due to reduced expression of this gene in S. uvarum. We conclude that the adaptive mutations selected for in each organism depend on the genomic context, even when faced with the same environmental condition.
Collapse
|
128
|
Potapova T, Gorbsky GJ. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. BIOLOGY 2017; 6:biology6010012. [PMID: 28208750 PMCID: PMC5372005 DOI: 10.3390/biology6010012] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/21/2022]
Abstract
Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
129
|
Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, Balloux F, Dessimoz C, Bähler J, Sedlazeck FJ. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun 2017; 8:14061. [PMID: 28117401 DOI: 10.1038/ncomms14061] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/24/2016] [Indexed: 02/08/2023] Open
Abstract
Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases.
Collapse
Affiliation(s)
- Daniel C Jeffares
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Clemency Jolly
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Mimoza Hoti
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Doug Speed
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Liam Shaw
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Charalampos Rallis
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Francois Balloux
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Christophe Dessimoz
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,Department of Computer Science, University College London, London WC1E 6BT, UK.,Department of Ecology and Evolution and Center for Integrative Genomics, University of Lausanne, Biophore, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Biophore, Lausanne 1015, Switzerland
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Fritz J Sedlazeck
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
130
|
Claessens A, Affara M, Assefa SA, Kwiatkowski DP, Conway DJ. Culture adaptation of malaria parasites selects for convergent loss-of-function mutants. Sci Rep 2017; 7:41303. [PMID: 28117431 PMCID: PMC5259787 DOI: 10.1038/srep41303] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022] Open
Abstract
Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture.
Collapse
Affiliation(s)
- Antoine Claessens
- London School of Hygiene and Tropical Medicine, London, UK
- Medical Research Council Unit The Gambia, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Muna Affara
- Medical Research Council Unit The Gambia, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia
| | | | | | | |
Collapse
|
131
|
Gudelj I, Kinnersley M, Rashkov P, Schmidt K, Rosenzweig F. Stability of Cross-Feeding Polymorphisms in Microbial Communities. PLoS Comput Biol 2016; 12:e1005269. [PMID: 28036324 PMCID: PMC5201250 DOI: 10.1371/journal.pcbi.1005269] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
Cross-feeding, a relationship wherein one organism consumes metabolites excreted by another, is a ubiquitous feature of natural and clinically-relevant microbial communities and could be a key factor promoting diversity in extreme and/or nutrient-poor environments. However, it remains unclear how readily cross-feeding interactions form, and therefore our ability to predict their emergence is limited. In this paper we developed a mathematical model parameterized using data from the biochemistry and ecology of an E. coli cross-feeding laboratory system. The model accurately captures short-term dynamics of the two competitors that have been observed empirically and we use it to systematically explore the stability of cross-feeding interactions for a range of environmental conditions. We find that our simple system can display complex dynamics including multi-stable behavior separated by a critical point. Therefore whether cross-feeding interactions form depends on the complex interplay between density and frequency of the competitors as well as on the concentration of resources in the environment. Moreover, we find that subtly different environmental conditions can lead to dramatically different results regarding the establishment of cross-feeding, which could explain the apparently unpredictable between-population differences in experimental outcomes. We argue that mathematical models are essential tools for disentangling the complexities of cross-feeding interactions.
Collapse
Affiliation(s)
- Ivana Gudelj
- Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| | - Margie Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Peter Rashkov
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Karen Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Frank Rosenzweig
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
132
|
Gjuvsland AB, Zörgö E, Samy JK, Stenberg S, Demirsoy IH, Roque F, Maciaszczyk-Dziubinska E, Migocka M, Alonso-Perez E, Zackrisson M, Wysocki R, Tamás MJ, Jonassen I, Omholt SW, Warringer J. Disentangling genetic and epigenetic determinants of ultrafast adaptation. Mol Syst Biol 2016; 12:892. [PMID: 27979908 PMCID: PMC5199126 DOI: 10.15252/msb.20166951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A major rationale for the advocacy of epigenetically mediated adaptive responses is that they facilitate faster adaptation to environmental challenges. This motivated us to develop a theoretical-experimental framework for disclosing the presence of such adaptation-speeding mechanisms in an experimental evolution setting circumventing the need for pursuing costly mutation-accumulation experiments. To this end, we exposed clonal populations of budding yeast to a whole range of stressors. By growth phenotyping, we found that almost complete adaptation to arsenic emerged after a few mitotic cell divisions without involving any phenotypic plasticity. Causative mutations were identified by deep sequencing of the arsenic-adapted populations and reconstructed for validation. Mutation effects on growth phenotypes, and the associated mutational target sizes were quantified and embedded in data-driven individual-based evolutionary population models. We found that the experimentally observed homogeneity of adaptation speed and heterogeneity of molecular solutions could only be accounted for if the mutation rate had been near estimates of the basal mutation rate. The ultrafast adaptation could be fully explained by extensive positive pleiotropy such that all beneficial mutations dramatically enhanced multiple fitness components in concert. As our approach can be exploited across a range of model organisms exposed to a variety of environmental challenges, it may be used for determining the importance of epigenetic adaptation-speeding mechanisms in general.
Collapse
Affiliation(s)
- Arne B Gjuvsland
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Enikö Zörgö
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jeevan Ka Samy
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simon Stenberg
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ibrahim H Demirsoy
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Francisco Roque
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | | | - Magdalena Migocka
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Elisa Alonso-Perez
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Martin Zackrisson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Inge Jonassen
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Stig W Omholt
- Centre for Biodiversity Dynamics, Department of Biology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas Warringer
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway .,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
133
|
Ayabina D, Hendon-Dunn C, Bacon J, Colijn C. Diverse drug-resistant subpopulations of Mycobacterium tuberculosis are sustained in continuous culture. J R Soc Interface 2016; 13:rsif.2016.0745. [PMID: 27807274 PMCID: PMC5134024 DOI: 10.1098/rsif.2016.0745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/11/2016] [Indexed: 01/09/2023] Open
Abstract
Drug resistance to tuberculosis (TB) has become more widespread over the past decade. As such, understanding the emergence and fitness of antibiotic-resistant subpopulations is crucial for the development of new interventions. Here we use a simple mathematical model to explain the differences in the response to isoniazid (INH) of Mycobacterium tuberculosis cells cultured under two growth rates in a chemostat. We obtain posterior distributions of model parameters consistent with data using a Markov chain Monte Carlo (MCMC) method. We explore the dynamics of diverse INH-resistant subpopulations consistent with these data in a multi-population model. We find that the simple model captures the qualitative behaviour of the cultures under both dilution rates and also present testable predictions about how diversity is maintained in such cultures.
Collapse
Affiliation(s)
- Diepreye Ayabina
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Charlotte Hendon-Dunn
- Public Health England, National Infection Service, Porton Down, Salisbury SP4 0JG, UK
| | - Joanna Bacon
- Public Health England, National Infection Service, Porton Down, Salisbury SP4 0JG, UK
| | - Caroline Colijn
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
134
|
Abstract
Genetic variation among individuals within a population provides the raw material for phenotypic diversity upon which natural selection operates. Some given variants can act on multiple standing genomic variations simultaneously and release previously inaccessible phenotypes, leading to increased adaptive potential upon challenging environments. Previously, we identified such a variant related to a tRNA nonsense suppressor in yeast. When introduced into other genetic backgrounds, the suppressor led to an increased population phenotypic variance on various culture conditions, conferring background and environment specific selective advantages. Nonetheless, most isolates are intolerant to the suppressor on rich media due to a severe fitness cost. Here, we found that the tolerance to suppressor is related to a surprising level of fitness outburst, showing a trade-off effect to accommodate the cost of carrying the suppressor. To dissect the genetic basis of such trade-offs, we crossed strains with contrasting tolerance levels on rich media, and analyzed the fitness distribution patterns in the offspring. Combining quantitative tetrad analysis and bulk segregant analysis, we identified two genes, namely MKT1 and RGA1, involved in suppressor tolerance. We showed that alleles from the tolerant parent for both genes conferred a significant gain of fitness, which increased the suppressor tolerance. Our results present a detailed dissection of suppressor tolerance in yeast and provide insights into the molecular basis of trade-offs between fitness and evolutionary potential.
Collapse
Affiliation(s)
- Jing Hou
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, Strasbourg, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, Strasbourg, France
| |
Collapse
|
135
|
Rodrigo G, Poyatos JF. Genetic Redundancies Enhance Information Transfer in Noisy Regulatory Circuits. PLoS Comput Biol 2016; 12:e1005156. [PMID: 27741249 PMCID: PMC5065233 DOI: 10.1371/journal.pcbi.1005156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
Cellular decision making is based on regulatory circuits that associate signal thresholds to specific physiological actions. This transmission of information is subjected to molecular noise what can decrease its fidelity. Here, we show instead how such intrinsic noise enhances information transfer in the presence of multiple circuit copies. The result is due to the contribution of noise to the generation of autonomous responses by each copy, which are altogether associated with a common decision. Moreover, factors that correlate the responses of the redundant units (extrinsic noise or regulatory cross-talk) contribute to reduce fidelity, while those that further uncouple them (heterogeneity within the copies) can lead to stronger information gain. Overall, our study emphasizes how the interplay of signal thresholding, redundancy, and noise influences the accuracy of cellular decision making. Understanding this interplay provides a basis to explain collective cell signaling mechanisms, and to engineer robust decisions with noisy genetic circuits. There is increasing evidence that the presence of molecular noise greatly influences function in biological systems. This could imply, for instance, that genetic circuits adopt particular architectures in order to reduce noise. On the other hand, noise can be beneficial. Here, we show that this could be the case for the functioning of analog to digital genetic devices, which are commonly found in cellular decision making situations. We use the framework of information theory to illustrate first how noise can enhance information transfer in these devices. In those regimes in which noise is detrimental, we discuss how genetic redundancies allow information to be maximized, and how this effect depends on the specifics of the devices, and the interdependence among them. These results provide overall an additional rationale for genetic redundancies in genomic systems.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, CSIC–UPV, Valencia, Spain
| | - Juan F. Poyatos
- Logic of Genomic Systems Laboratory, CNB–CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
136
|
Payen C, Sunshine AB, Ong GT, Pogachar JL, Zhao W, Dunham MJ. High-Throughput Identification of Adaptive Mutations in Experimentally Evolved Yeast Populations. PLoS Genet 2016; 12:e1006339. [PMID: 27727276 PMCID: PMC5065121 DOI: 10.1371/journal.pgen.1006339] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022] Open
Abstract
High-throughput sequencing has enabled genetic screens that can rapidly identify mutations that occur during experimental evolution. The presence of a mutation in an evolved lineage does not, however, constitute proof that the mutation is adaptive, given the well-known and widespread phenomenon of genetic hitchhiking, in which a non-adaptive or even detrimental mutation can co-occur in a genome with a beneficial mutation and the combined genotype is carried to high frequency by selection. We approximated the spectrum of possible beneficial mutations in Saccharomyces cerevisiae using sets of single-gene deletions and amplifications of almost all the genes in the S. cerevisiae genome. We determined the fitness effects of each mutation in three different nutrient-limited conditions using pooled competitions followed by barcode sequencing. Although most of the mutations were neutral or deleterious, ~500 of them increased fitness. We then compared those results to the mutations that actually occurred during experimental evolution in the same three nutrient-limited conditions. On average, ~35% of the mutations that occurred during experimental evolution were predicted by the systematic screen to be beneficial. We found that the distribution of fitness effects depended on the selective conditions. In the phosphate-limited and glucose-limited conditions, a large number of beneficial mutations of nearly equivalent, small effects drove the fitness increases. In the sulfate-limited condition, one type of mutation, the amplification of the high-affinity sulfate transporter, dominated. In the absence of that mutation, evolution in the sulfate-limited condition involved mutations in other genes that were not observed previously—but were predicted by the systematic screen. Thus, gross functional screens have the potential to predict and identify adaptive mutations that occur during experimental evolution. Experimental evolution allows us to observe evolution in real time. New advances in genome sequencing make it trivial to discover the mutations that have arisen in evolved cultures; however, linking those mutations to particular adaptive traits remains difficult. We evaluated the fitness impacts of thousands of single-gene losses and amplifications in yeast. We discovered that only a fraction of the hundreds of possible beneficial mutations were actually detected in evolution experiments performed previously. Our results provide evidence that 35% of the mutations identified in experimentally evolved populations are advantageous and that the distribution of beneficial fitness effects depends on the genetic background and the selective conditions. Furthermore, we show that it is possible to select for alternative mutations that improve fitness by blocking particularly high-fitness routes to adaptation.
Collapse
Affiliation(s)
- Celia Payen
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Anna B. Sunshine
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Giang T. Ong
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Jamie L. Pogachar
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Wei Zhao
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
137
|
Venkataram S, Dunn B, Li Y, Agarwala A, Chang J, Ebel ER, Geiler-Samerotte K, Hérissant L, Blundell JR, Levy SF, Fisher DS, Sherlock G, Petrov DA. Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mutations in Yeast. Cell 2016; 166:1585-1596.e22. [PMID: 27594428 PMCID: PMC5070919 DOI: 10.1016/j.cell.2016.08.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 07/29/2016] [Indexed: 01/11/2023]
Abstract
Adaptive evolution plays a large role in generating the phenotypic diversity observed in nature, yet current methods are impractical for characterizing the molecular basis and fitness effects of large numbers of individual adaptive mutations. Here, we used a DNA barcoding approach to generate the genotype-to-fitness map for adaptation-driving mutations from a Saccharomyces cerevisiae population experimentally evolved by serial transfer under limiting glucose. We isolated and measured the fitness of thousands of independent adaptive clones and sequenced the genomes of hundreds of clones. We found only two major classes of adaptive mutations: self-diploidization and mutations in the nutrient-responsive Ras/PKA and TOR/Sch9 pathways. Our large sample size and precision of measurement allowed us to determine that there are significant differences in fitness between mutations in different genes, between different paralogs, and even between different classes of mutations within the same gene.
Collapse
Affiliation(s)
| | - Barbara Dunn
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yuping Li
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Atish Agarwala
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Jessica Chang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Emily R Ebel
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Lucas Hérissant
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jamie R Blundell
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794-5252, USA
| | - Sasha F Levy
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794-5252, USA; Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Daniel S Fisher
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
138
|
Ryu HY, Wilson NR, Mehta S, Hwang SS, Hochstrasser M. Loss of the SUMO protease Ulp2 triggers a specific multichromosome aneuploidy. Genes Dev 2016; 30:1881-94. [PMID: 27585592 PMCID: PMC5024685 DOI: 10.1101/gad.282194.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/02/2016] [Indexed: 01/15/2023]
Abstract
The SUMO protease Ulp2 modulates many of the SUMO-dependent processes in budding yeast. Ryu et al. discovered that cells lacking Ulp2 display a twofold increase in transcript levels across two particular chromosomes: chromosome I (ChrI) and ChrXII. Extra copies of ChrI and ChrXII can be eliminated following reintroduction of ULP2, suggesting that aneuploidy is a reversible adaptive mechanism to counteract loss of the SUMO protease. Post-translational protein modification by the small ubiquitin-related modifier (SUMO) regulates numerous cellular pathways, including transcription, cell division, and genome maintenance. The SUMO protease Ulp2 modulates many of these SUMO-dependent processes in budding yeast. From whole-genome RNA sequencing (RNA-seq), we unexpectedly discovered that cells lacking Ulp2 display a twofold increase in transcript levels across two particular chromosomes: chromosome I (ChrI) and ChrXII. This is due to the two chromosomes being present at twice their normal copy number. An abnormal number of chromosomes, termed aneuploidy, is usually deleterious. However, development of specific aneuploidies allows rapid adaptation to cellular stresses, and aneuploidy characterizes most human tumors. Extra copies of ChrI and ChrXII appear quickly following loss of active Ulp2 and can be eliminated following reintroduction of ULP2, suggesting that aneuploidy is a reversible adaptive mechanism to counteract loss of the SUMO protease. Importantly, increased dosage of two genes on ChrI—CLN3 and CCR4, encoding a G1-phase cyclin and a subunit of the Ccr4–Not deadenylase complex, respectively—suppresses ulp2Δ aneuploidy, suggesting that increased levels of these genes underlie the aneuploidy induced by Ulp2 loss. Our results reveal a complex aneuploidy mechanism that adapts cells to loss of the SUMO protease Ulp2.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Nicole R Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale University, New Haven, Connecticut 06520, USA
| | - Soo Seok Hwang
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
139
|
The Hidden Complexity of Mendelian Traits across Natural Yeast Populations. Cell Rep 2016; 16:1106-1114. [PMID: 27396326 DOI: 10.1016/j.celrep.2016.06.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/15/2016] [Accepted: 06/10/2016] [Indexed: 11/21/2022] Open
Abstract
Mendelian traits are considered to be at the lower end of the complexity spectrum of heritable phenotypes. However, more than a century after the rediscovery of Mendel's law, the global landscape of monogenic variants, as well as their effects and inheritance patterns within natural populations, is still not well understood. Using the yeast Saccharomyces cerevisiae, we performed a species-wide survey of Mendelian traits across a large population of isolates. We generated offspring from 41 unique parental pairs and analyzed 1,105 cross/trait combinations. We found that 8.9% of the cases were Mendelian. Further tracing of causal variants revealed background-specific expressivity and modified inheritances, gradually transitioning from Mendelian to complex traits in 30% of the cases. In fact, when taking into account the natural population diversity, the hidden complexity of traits could be substantial, confounding phenotypic predictability even for simple Mendelian traits.
Collapse
|
140
|
Fisher KJ, Lang GI. Experimental evolution in fungi: An untapped resource. Fungal Genet Biol 2016; 94:88-94. [PMID: 27375178 DOI: 10.1016/j.fgb.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
Historically, evolutionary biology has been considered an observational science. Examining populations and inferring evolutionary histories mold evolutionary theories. In contrast, laboratory evolution experiments make use of the amenability of traditional model organisms to study fundamental processes underlying evolution in real time in simple, but well-controlled, environments. With advances in high-throughput biology and next generation sequencing, it is now possible to propagate hundreds of parallel populations over thousands of generations and to quantify precisely the frequencies of various mutations over time. Experimental evolution combines the ability to simultaneously monitor replicate populations with the power to vary individual parameters to test specific evolutionary hypotheses, something that is impractical or infeasible in natural populations. Many labs are now conducting laboratory evolution experiments in nearly all model systems including viruses, bacteria, yeast, nematodes, and fruit flies. Among these systems, fungi occupy a unique niche: with a short generation time, small compact genomes, and sexual cycles, fungi are a particularly valuable and largely untapped resource for propelling future growth in the field of experimental evolution. Here, we describe the current state of fungal experimental evolution and why fungi are uniquely positioned to answer many of the outstanding questions in the field. We also review which fungal species are most well suited for experimental evolution.
Collapse
Affiliation(s)
- Kaitlin J Fisher
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA.
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
141
|
Chikina M, Robinson JD, Clark NL. Hundreds of Genes Experienced Convergent Shifts in Selective Pressure in Marine Mammals. Mol Biol Evol 2016; 33:2182-92. [PMID: 27329977 DOI: 10.1093/molbev/msw112] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mammal species have made the transition to the marine environment several times, and their lineages represent one of the classical examples of convergent evolution in morphological and physiological traits. Nevertheless, the genetic mechanisms of their phenotypic transition are poorly understood, and investigations into convergence at the molecular level have been inconclusive. While past studies have searched for convergent changes at specific amino acid sites, we propose an alternative strategy to identify those genes that experienced convergent changes in their selective pressures, visible as changes in evolutionary rate specifically in the marine lineages. We present evidence of widespread convergence at the gene level by identifying parallel shifts in evolutionary rate during three independent episodes of mammalian adaptation to the marine environment. Hundreds of genes accelerated their evolutionary rates in all three marine mammal lineages during their transition to aquatic life. These marine-accelerated genes are highly enriched for pathways that control recognized functional adaptations in marine mammals, including muscle physiology, lipid-metabolism, sensory systems, and skin and connective tissue. The accelerations resulted from both adaptive evolution as seen in skin and lung genes, and loss of function as in gustatory and olfactory genes. In regard to sensory systems, this finding provides further evidence that reduced senses of taste and smell are ubiquitous in marine mammals. Our analysis demonstrates the feasibility of identifying genes underlying convergent organism-level characteristics on a genome-wide scale and without prior knowledge of adaptations, and provides a powerful approach for investigating the physiological functions of mammalian genes.
Collapse
Affiliation(s)
- Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh
| | - Joseph D Robinson
- Department of Molecular and Cell Biology, University of California Berkeley
| | - Nathan L Clark
- Department of Computational and Systems Biology, University of Pittsburgh
| |
Collapse
|
142
|
Heterozygote Advantage Is a Common Outcome of Adaptation in Saccharomyces cerevisiae. Genetics 2016; 203:1401-13. [PMID: 27194750 DOI: 10.1534/genetics.115.185165] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/15/2016] [Indexed: 12/31/2022] Open
Abstract
Adaptation in diploids is predicted to proceed via mutations that are at least partially dominant in fitness. Recently, we argued that many adaptive mutations might also be commonly overdominant in fitness. Natural (directional) selection acting on overdominant mutations should drive them into the population but then, instead of bringing them to fixation, should maintain them as balanced polymorphisms via heterozygote advantage. If true, this would make adaptive evolution in sexual diploids differ drastically from that of haploids. The validity of this prediction has not yet been tested experimentally. Here, we performed four replicate evolutionary experiments with diploid yeast populations (Saccharomyces cerevisiae) growing in glucose-limited continuous cultures. We sequenced 24 evolved clones and identified initial adaptive mutations in all four chemostats. The first adaptive mutations in all four chemostats were three copy number variations, all of which proved to be overdominant in fitness. The fact that fitness overdominant mutations were always the first step in independent adaptive walks supports the prediction that heterozygote advantage can arise as a common outcome of directional selection in diploids and demonstrates that overdominance of de novo adaptive mutations in diploids is not rare.
Collapse
|
143
|
Thierry A, Khanna V, Dujon B. Massive Amplification at an Unselected Locus Accompanies Complex Chromosomal Rearrangements in Yeast. G3 (BETHESDA, MD.) 2016; 6:1201-15. [PMID: 26945028 PMCID: PMC4856073 DOI: 10.1534/g3.115.024547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/20/2016] [Indexed: 12/13/2022]
Abstract
Gene amplification has been observed in different organisms in response to environmental constraints, such as limited nutrients or exposure to a variety of toxic compounds, conferring them with specific phenotypic adaptations via increased expression levels. However, the presence of multiple gene copies in natural genomes has generally not been found in the absence of specific functional selection. Here, we show that the massive amplification of a chromosomal locus (up to 880 copies per cell) occurs in the absence of any direct selection, and is associated with low-order amplifications of flanking segments in complex chromosomal alterations. These results were obtained from mutants with restored phenotypes that spontaneously appeared from genetically engineered strains of the yeast Saccharomyces cerevisiae suffering from severe fitness reduction. Grossly extended chromosomes (macrotene) were formed, with complex structural alterations but sufficient stability to propagate unchanged over successive generations. Their detailed molecular analysis, including complete genome sequencing, identification of sequence breakpoints, and comparisons between mutants, revealed novel mechanisms causing their formation, whose combined action underlies the astonishing dynamics of eukaryotic chromosomes and their consequences.
Collapse
Affiliation(s)
- Agnès Thierry
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS (UMR3525), Sorbonne Universités, UPMC, Université Paris 06 (UFR927), F-75724 CEDEX 15, France
| | - Varun Khanna
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS (UMR3525), Sorbonne Universités, UPMC, Université Paris 06 (UFR927), F-75724 CEDEX 15, France
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS (UMR3525), Sorbonne Universités, UPMC, Université Paris 06 (UFR927), F-75724 CEDEX 15, France
| |
Collapse
|
144
|
Legras JL, Moreno-Garcia J, Zara S, Zara G, Garcia-Martinez T, Mauricio JC, Mannazzu I, Coi AL, Bou Zeidan M, Dequin S, Moreno J, Budroni M. Flor Yeast: New Perspectives Beyond Wine Aging. Front Microbiol 2016; 7:503. [PMID: 27148192 PMCID: PMC4830823 DOI: 10.3389/fmicb.2016.00503] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/29/2016] [Indexed: 11/24/2022] Open
Abstract
The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed.
Collapse
Affiliation(s)
- Jean-Luc Legras
- SPO, Institut National de la Recherche Agronomique - SupAgro, Université de Montpellier Montpellier, France
| | - Jaime Moreno-Garcia
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba Cordoba, Spain
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| | - Teresa Garcia-Martinez
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba Cordoba, Spain
| | - Juan C Mauricio
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba Cordoba, Spain
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| | - Anna L Coi
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| | - Marc Bou Zeidan
- Department of Agri-Food Sciences, Holy Spirit University of Kaslik Jounieh, Lebanon
| | - Sylvie Dequin
- SPO, Institut National de la Recherche Agronomique - SupAgro, Université de Montpellier Montpellier, France
| | - Juan Moreno
- Department of Agricultural Chemistry, Agrifood Campus of International Excellence ceiA3, University of Cordoba Cordoba, Spain
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| |
Collapse
|
145
|
Møller HD, Bojsen RK, Tachibana C, Parsons L, Botstein D, Regenberg B. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells. J Vis Exp 2016:e54239 |. [PMID: 27077531 DOI: 10.3791/54239] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods for detecting eccDNA are needed to clarify how these elements affect genome stability and how environmental and biological factors induce their formation in eukaryotic cells. This video presents a sensitive eccDNA-purification method called Circle-Seq. The method encompasses column purification of circular DNA, removal of remaining linear chromosomal DNA, rolling-circle amplification of eccDNA, deep sequencing, and mapping. Extensive exonuclease treatment was required for sufficient linear chromosomal DNA degradation. The rolling-circle amplification step by φ29 polymerase enriched for circular DNA over linear DNA. Validation of the Circle-Seq method on three S. cerevisiae CEN.PK populations of 10(10) cells detected hundreds of eccDNA profiles in sizes larger than 1 kilobase. Repeated findings of ASP3-1, COS111, CUP1, RSC30, HXT6, HXT7 genes on circular DNA in both S288c and CEN.PK suggests that DNA circularization is conserved between strains at these loci. In sum, the Circle-Seq method has broad applicability for genome-scale screening for eccDNA in eukaryotes as well as for detecting specific eccDNA types.
Collapse
Affiliation(s)
| | - Rasmus K Bojsen
- National Veterinary Institute, Technical University of Denmark
| | | | - Lance Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
| | | | | |
Collapse
|
146
|
Torres EM, Springer M, Amon A. No current evidence for widespread dosage compensation in S. cerevisiae. eLife 2016; 5:e10996. [PMID: 26949255 PMCID: PMC4798953 DOI: 10.7554/elife.10996] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/29/2015] [Indexed: 11/17/2022] Open
Abstract
Previous studies of laboratory strains of budding yeast had shown that when gene copy number is altered experimentally, RNA levels generally scale accordingly. This is true when the copy number of individual genes or entire chromosomes is altered. In a recent study, Hose et al. (2015) reported that this tight correlation between gene copy number and RNA levels is not observed in recently isolated wild Saccharomyces cerevisiae variants. To understand the origins of this proposed difference in gene expression regulation between natural variants and laboratory strains of S. cerevisiae, we evaluated the karyotype and gene expression studies performed by Hose et al. on wild S. cerevisiae strains. In contrast to the results of Hose et al., our reexamination of their data revealed a tight correlation between gene copy number and gene expression. We conclude that widespread dosage compensation occurs neither in laboratory strains nor in natural variants of S. cerevisiae. DOI:http://dx.doi.org/10.7554/eLife.10996.001 DNA inside cells is packaged into structures called chromosomes. Different species can have different numbers of chromosomes, but when any cell divides it must allocate the right number of chromosomes to each new cell. If this process goes wrong, cells end up with too many or too few chromosomes. The presence of extra copies of the genes on the additional chromosomes can cause the levels of the proteins encoded by those genes to rise abnormally, which can in turn lead to cell damage and disease. Proteins are produced using the information in genes via a two-step process. First, the gene’s DNA is copied to create molecules of RNA, and these molecules are then translated into proteins. In many organisms, the presence of extra chromosomes in a cell is matched by a corresponding increase in the RNA molecules encoded by the extra genes. Some organisms, however, counteract this effect through a process called dosage compensation. This process inactivates single genes or whole chromosomes by various means, and ensures that normal levels of RNA are produced, even in the presence of extra genes. In 2015, researchers from the University of Wisconsin-Madison reported that dosage compensation occurs in wild strains of budding yeast and effectively protects the yeast cells against the harmful effects of having extra chromosomes. However, these findings conflicted with earlier studies of laboratory strains of this yeast, which had reported that RNA levels increased along with gene number. Torres, Springer and Amon have re-analysed the data published in 2015, and now challenge the findings of the previous study involving the wild yeast strains. The new re-analysis instead showed that, like in laboratory yeast strains, gene number still correlates closely with RNA levels in the wild yeast. This led Torres, Springer and Amon to conclude that, in contrast with the previous report, there is currently no evidence that dosage compensation occurs in wild strains of yeast. So why do the results of these two studies disagree? Torres, Springer and Amon identified several issues concerning the original analysis made by the researchers from the University of Wisconsin-Madison. For example, some of the strains included in the 2015 study were unstable and were naturally losing the additional chromosomes that they’d acquired. Also, the thresholds set in the analysis to identify dosage compensated genes do not appear to have been stringent enough. Together, the new findings indicate that dosage compensation is a rare event in both wild and laboratory strains of yeast. DOI:http://dx.doi.org/10.7554/eLife.10996.002
Collapse
Affiliation(s)
- Eduardo M Torres
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
147
|
Berman J. Ploidy plasticity: a rapid and reversible strategy for adaptation to stress. FEMS Yeast Res 2016; 16:fow020. [PMID: 26945893 DOI: 10.1093/femsyr/fow020] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2016] [Indexed: 12/22/2022] Open
Abstract
Organisms must be able to grow in a broad range of conditions found in their normal growth environment and for a species to survive, at least some cells in a population must adapt rapidly to extreme stress conditions that kill the majority of cells.Candida albicans, the most prevalent fungal pathogen of humans resides as a commensal in a broad range of niches within the human host. Growth conditions in these niches are highly variable and stresses such exposure to antifungal drugs can inhibit population growth abruptly. One of the mechanisms C. albicans uses to adapt rapidly to severe stresses is aneuploidy-a change in the total number of chromosomes such that one or more chromosomes are present in excess or are missing. Aneuploidy is quite common in wild isolates of fungi and other eukaryotic microbes. Aneuploidy can be achieved by chromosome nondisjunction during a simple mitosis, and in stress conditions it begins to appear after two mitotic divisions via a tetraploid intermediate. Aneuploidy usually resolves to euploidy (a balanced number of chromosomes), but not necessarily to diploidy. Aneuploidy of a specific chromosome can confer new phenotypes by virtue of the copy number of specific genes on that chromosome relative to the copies of other genes. Thus, it is not aneuploidy per se, but the relative copy number of specific genes that confers many tested aneuploidy-associated phenotypes. Aneuploidy almost always carries a fitness cost, as cells express most proteins encoded by genes on the aneuploid chromosome in proportion to the number of DNA copies of the gene. This is thought to be due to imbalances in the stoichiometry of different components of large complexes. Despite this, fitness is a relative function-and if stress is severe and population growth has slowed considerably, then even small growth advantages of some aneuploidies can provide a selective advantage. Thus, aneuploidy appears to provide a transient solution to severe and sudden stress conditions, and may promote the appearance of more stable solutions as well. Importantly, in many clinical and environmental isolates of different fungal species aneuploidy does not appear to have a high fitness cost, and is well-tolerated. Thus, rapid changes in ploidy may provide the opportunity for rapid adaptation to stress conditions in the environment, host niches or in response to antifungal drugs.
Collapse
Affiliation(s)
- Judith Berman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| |
Collapse
|
148
|
Comprehensive Analysis of the SUL1 Promoter of Saccharomyces cerevisiae. Genetics 2016; 203:191-202. [PMID: 26936925 DOI: 10.1534/genetics.116.188037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/21/2016] [Indexed: 11/18/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, beneficial mutations selected during sulfate-limited growth are typically amplifications of the SUL1 gene, which encodes the high-affinity sulfate transporter, resulting in fitness increases of >35% . Cis-regulatory mutations have not been observed at this locus; however, it is not clear whether this absence is due to a low mutation rate such that these mutations do not arise, or they arise but have limited fitness effects relative to those of amplification. To address this question directly, we assayed the fitness effects of nearly all possible point mutations in a 493-base segment of the gene's promoter through mutagenesis and selection. While most mutations were either neutral or detrimental during sulfate-limited growth, eight mutations increased fitness >5% and as much as 9.4%. Combinations of these beneficial mutations increased fitness only up to 11%. Thus, in the case of SUL1, promoter mutations could not induce a fitness increase similar to that of gene amplification. Using these data, we identified functionally important regions of the SUL1 promoter and analyzed three sites that correspond to potential binding sites for the transcription factors Met32 and Cbf1 Mutations that create new Met32- or Cbf1-binding sites also increased fitness. Some mutations in the untranslated region of the SUL1 transcript decreased fitness, likely due to the formation of inhibitory upstream open reading frames. Our methodology-saturation mutagenesis, chemostat selection, and DNA sequencing to track variants-should be a broadly applicable approach.
Collapse
|
149
|
Abstract
Evolution of budding yeast after the removal of an important component of the polarization machinery, BEM1, followed reproducible evolutionary trajectories governed by epistasis. Interestingly, cells restored polarization not by finding a substitute for Bem1 but by rendering its function dispensable.
Collapse
Affiliation(s)
- Gaowen Liu
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Giulia Rancati
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore.
| |
Collapse
|
150
|
Li Z, Defoort J, Tasdighian S, Maere S, Van de Peer Y, De Smet R. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms. THE PLANT CELL 2016; 28:326-44. [PMID: 26744215 PMCID: PMC4790876 DOI: 10.1105/tpc.15.00877] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/04/2016] [Indexed: 05/02/2023]
Abstract
Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes.
Collapse
Affiliation(s)
- Zhen Li
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Jonas Defoort
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Setareh Tasdighian
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Steven Maere
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Riet De Smet
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|