101
|
Prokop JW, Yeo NC, Ottmann C, Chhetri SB, Florus KL, Ross EJ, Sosonkina N, Link BA, Freedman BI, Coppola CJ, McDermott-Roe C, Leysen S, Milroy LG, Meijer FA, Geurts AM, Rauscher FJ, Ramaker R, Flister MJ, Jacob HJ, Mendenhall EM, Lazar J. Characterization of Coding/Noncoding Variants for SHROOM3 in Patients with CKD. J Am Soc Nephrol 2018; 29:1525-1535. [PMID: 29476007 DOI: 10.1681/asn.2017080856] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Background Interpreting genetic variants is one of the greatest challenges impeding analysis of rapidly increasing volumes of genomic data from patients. For example, SHROOM3 is an associated risk gene for CKD, yet causative mechanism(s) of SHROOM3 allele(s) are unknown.Methods We used our analytic pipeline that integrates genetic, computational, biochemical, CRISPR/Cas9 editing, molecular, and physiologic data to characterize coding and noncoding variants to study the human SHROOM3 risk locus for CKD.Results We identified a novel SHROOM3 transcriptional start site, which results in a shorter isoform lacking the PDZ domain and is regulated by a common noncoding sequence variant associated with CKD (rs17319721, allele frequency: 0.35). This variant disrupted allele binding to the transcription factor TCF7L2 in podocyte cell nuclear extracts and altered transcription levels of SHROOM3 in cultured cells, potentially through the loss of repressive looping between rs17319721 and the novel start site. Although common variant mechanisms are of high utility, sequencing is beginning to identify rare variants involved in disease; therefore, we used our biophysical tools to analyze an average of 112,849 individual human genome sequences for rare SHROOM3 missense variants, revealing 35 high-effect variants. The high-effect alleles include a coding variant (P1244L) previously associated with CKD (P=0.01, odds ratio=7.95; 95% CI, 1.53 to 41.46) that we find to be present in East Asian individuals at an allele frequency of 0.0027. We determined that P1244L attenuates the interaction of SHROOM3 with 14-3-3, suggesting alterations to the Hippo pathway, a known mediator of CKD.Conclusions These data demonstrate multiple new SHROOM3-dependent genetic/molecular mechanisms that likely affect CKD.
Collapse
Affiliation(s)
- Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama; .,Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan
| | - Nan Cher Yeo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Surya B Chhetri
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama.,Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama
| | - Kacie L Florus
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Emily J Ross
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama.,Department of Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee
| | | | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy and
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Candice J Coppola
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama
| | - Chris McDermott-Roe
- Department of Physiology, Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Seppe Leysen
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Femke A Meijer
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Aron M Geurts
- Department of Physiology, Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Frank J Rauscher
- Gene Expression & Regulation Program, Wistar Institute, Philadelphia, Pennsylvania
| | - Ryne Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Michael J Flister
- Department of Physiology, Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Howard J Jacob
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Eric M Mendenhall
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama.,Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama
| | - Jozef Lazar
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama;
| |
Collapse
|
102
|
Zacchia M, Capolongo G, Rinaldi L, Capasso G. The importance of the thick ascending limb of Henle's loop in renal physiology and pathophysiology. Int J Nephrol Renovasc Dis 2018; 11:81-92. [PMID: 29497325 PMCID: PMC5818843 DOI: 10.2147/ijnrd.s154000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The thick ascending limb (TAL) of Henle’s loop is a crucial segment for many tasks of the nephron. Indeed, the TAL is not only a mainstay for reabsorption of sodium (Na+), potassium (K+), and divalent cations such as calcium (Ca2+) and magnesium (Mg2+) from the luminal fluid, but also has an important role in urine concentration, overall acid–base homeostasis, and ammonia cycle. Transcellular Na+ transport along the TAL is a prerequisite for Na+, K+, Ca2+, Mg2+ homeostasis, and water reabsorption, the latter through its contribution in the generation of the cortico-medullar osmotic gradient. The role of this nephron site in acid–base balance, via bicarbonate reabsorption and acid secretion, is sometimes misunderstood by clinicians. This review describes in detail these functions, reporting in addition to the well-known molecular mechanisms, some novel findings from the current literature; moreover, the pathophysiology and the clinical relevance of primary or acquired conditions caused by TAL dysfunction are discussed. Knowing the physiology of the TAL is fundamental for clinicians, for a better understanding and management of rare and common conditions, such as tubulopathies, hypertension, and loop diuretics abuse.
Collapse
Affiliation(s)
- Miriam Zacchia
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Capolongo
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Luca Rinaldi
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Cardio-Thoracic and Respiratory Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
103
|
Rosique-Esteban N, Guasch-Ferré M, Hernández-Alonso P, Salas-Salvadó J. Dietary Magnesium and Cardiovascular Disease: A Review with Emphasis in Epidemiological Studies. Nutrients 2018; 10:168. [PMID: 29389872 PMCID: PMC5852744 DOI: 10.3390/nu10020168] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Magnesium (Mg) is an essential dietary element for humans involved in key biological processes. A growing body of evidence from epidemiological studies, randomized controlled trials (RCTs) and meta-analyses have indicated inverse associations between Mg intake and cardiovascular diseases (CVD). The present review aims to summarize recent scientific evidence on the topic, with a focus on data from epidemiological studies assessing the associations between Mg intake and major cardiovascular (CV) risk factors and CVD. We also aimed to review current literature on circulating Mg and CVD, as well as potential biological processes underlying these observations. We concluded that high Mg intake is associated with lower risk of major CV risk factors (mainly metabolic syndrome, diabetes and hypertension), stroke and total CVD. Higher levels of circulating Mg are associated with lower risk of CVD, mainly ischemic heart disease and coronary heart disease. Further, RCTs and prospective studies would help to clarify whether Mg intake and Mg circulating levels may also protect against other CVDs and CVD death.
Collapse
Affiliation(s)
- Nuria Rosique-Esteban
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, Pere Virgili Institute for Health Research, Rovira i Virgili University, St/Sant Llorenç 21, 43201 Reus, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Marta Guasch-Ferré
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, Pere Virgili Institute for Health Research, Rovira i Virgili University, St/Sant Llorenç 21, 43201 Reus, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Pablo Hernández-Alonso
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, Pere Virgili Institute for Health Research, Rovira i Virgili University, St/Sant Llorenç 21, 43201 Reus, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, Pere Virgili Institute for Health Research, Rovira i Virgili University, St/Sant Llorenç 21, 43201 Reus, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
104
|
Funato Y, Furutani K, Kurachi Y, Miki H. CrossTalk proposal: CNNM proteins are Na + /Mg 2+ exchangers playing a central role in transepithelial Mg 2+ (re)absorption. J Physiol 2018; 596:743-746. [PMID: 29383719 DOI: 10.1113/jp275248] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuharu Furutani
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
| | - Yoshihisa Kurachi
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
105
|
Abstract
Magnesium (Mg2+) is an essential mineral without known specific regulatory mechanisms. In ruminants, plasma Mg2+ concentration depends primarily on the balance between Mg2+ absorption and Mg2+ excretion. The primary site of Mg2+ absorption is the rumen, where Mg2+ is apically absorbed by both potential-dependent and potential-independent uptake mechanisms, reflecting involvement of ion channels and electroneutral transporters, respectively. Transport is energised in a secondary active manner by a basolateral Na+/Mg2+ exchanger. Ruminal transport of Mg2+ is significantly influenced by a variety of factors such as high K+ concentration, sudden increases of ammonia, pH, and the concentration of SCFA. Impaired Mg2+ absorption in the rumen is not compensated for by increased transport in the small or large intestine. While renal excretion can be adjusted to compensate precisely for any surplus in Mg2+ uptake, a shortage in dietary Mg2+ cannot be compensated for either via skeletal mobilisation of Mg2+ or via up-regulation of ruminal absorption. In such situations, hypomagnesaemia will lead to decrease of a Mg2+ in the cerebrospinal fluid and clinical manifestations of tetany. Improved knowledge concerning the factors governing Mg2+ homeostasis will allow reliable recommendations for an adequate Mg2+ intake and for the avoidance of possible disturbances. Future research should clarify the molecular identity of the suggested Mg2+ transport proteins and the regulatory mechanisms controlling renal Mg excretion as parameters influencing Mg2+ homeostasis.
Collapse
|
106
|
Magnesium Extravaganza: A Critical Compendium of Current Research into Cellular Mg 2+ Transporters Other than TRPM6/7. Rev Physiol Biochem Pharmacol 2018; 176:65-105. [PMID: 30406297 DOI: 10.1007/112_2018_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnesium research has boomed within the last 20 years. The real breakthrough came at the start of the new millennium with the discovery of a plethora of possible Mg homeostatic factors that, in particular, included putative Mg2+ transporters. Until that point, Mg research was limited to biochemical and physiological work, as no target molecular entities were known that could be used to explore the molecular biology of Mg homeostasis at the level of the cell, tissue, organ, or organism and to translate such knowledge into the field of clinical medicine and pharmacology. Because of the aforementioned, Mg2+ and Mg homeostasis, both of which had been heavily marginalized within the biomedical field in the twentieth century, have become overnight a focal point of many studies ranging from primary biomedical research to translational medicine.The amount of literature concerning cellular Mg2+ transport and cellular Mg homeostasis is increasing, together with a certain amount of confusion, especially about the function(s) of the newly discovered and, in the majority of instances, still only putative Mg2+ transporters/Mg2+ homeostatic factors. Newcomers to the field of Mg research will thus find it particularly difficult to orient themselves.Here, we briefly but critically summarize the status quo of the current understanding of the molecular entities behind cellular Mg2+ homeostasis in mammalian/human cells other than TRPM6/7 chanzymes, which have been universally accepted as being unspecific cation channel kinases allowing the flux of Mg2+ while constituting the major gateway for Mg2+ to enter the cell.
Collapse
|
107
|
Li C, Grove ML, Yu B, Jones BC, Morrison A, Boerwinkle E, Liu X. Genetic variants in microRNA genes and targets associated with cardiovascular disease risk factors in the African-American population. Hum Genet 2018; 137:85-94. [PMID: 29264654 PMCID: PMC5790599 DOI: 10.1007/s00439-017-1858-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
Abstract
The purpose of this study is to identify microRNA (miRNA) related polymorphism, including single nucleotide variants (SNVs) in mature miRNA-encoding sequences or in miRNA-target sites, and their association with cardiovascular disease (CVD) risk factors in African-American population. To achieve our objective, we examined 1900 African-Americans from the Atherosclerosis Risk in Communities study using SNVs identified from whole-genome sequencing data. A total of 971 SNVs found in 726 different mature miRNA-encoding sequences and 16,057 SNVs found in the three prime untranslated region (3'UTR) of 3647 protein-coding genes were identified and interrogated their associations with 17 CVD risk factors. Using single-variant-based approach, we found 5 SNVs in miRNA-encoding sequences to be associated with serum Lipoprotein(a) [Lp(a)], high-density lipoprotein (HDL) or triglycerides, and 2 SNVs in miRNA-target sites to be associated with Lp(a) and HDL, all with false discovery rates of 5%. Using a gene-based approach, we identified 3 pairs of associations between gene NSD1 and platelet count, gene HSPA4L and cardiac troponin T, and gene AHSA2 and magnesium. We successfully validated the association between a variant specific to African-American population, NR_039880.1:n.18A>C, in mature hsa-miR-4727-5p encoding sequence and serum HDL level in an independent sample of 2135 African-Americans. Our study provided candidate miRNAs and their targets for further investigation of their potential contribution to ethnic disparities in CVD risk factors.
Collapse
Affiliation(s)
- Chang Li
- Human Genetics Center and Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Megan L Grove
- Human Genetics Center and Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bing Yu
- Human Genetics Center and Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barbara C Jones
- Human Genetics Center and Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alanna Morrison
- Human Genetics Center and Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center and Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | - Xiaoming Liu
- Human Genetics Center and Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Precision Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
108
|
|
109
|
Corre T, Arjona FJ, Hayward C, Youhanna S, de Baaij JHF, Belge H, Nägele N, Debaix H, Blanchard MG, Traglia M, Harris SE, Ulivi S, Rueedi R, Lamparter D, Macé A, Sala C, Lenarduzzi S, Ponte B, Pruijm M, Ackermann D, Ehret G, Baptista D, Polasek O, Rudan I, Hurd TW, Hastie ND, Vitart V, Waeber G, Kutalik Z, Bergmann S, Vargas-Poussou R, Konrad M, Gasparini P, Deary IJ, Starr JM, Toniolo D, Vollenweider P, Hoenderop JGJ, Bindels RJM, Bochud M, Devuyst O. Genome-Wide Meta-Analysis Unravels Interactions between Magnesium Homeostasis and Metabolic Phenotypes. J Am Soc Nephrol 2017; 29:335-348. [PMID: 29093028 DOI: 10.1681/asn.2017030267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/19/2017] [Indexed: 12/15/2022] Open
Abstract
Magnesium (Mg2+) homeostasis is critical for metabolism. However, the genetic determinants of the renal handling of Mg2+, which is crucial for Mg2+ homeostasis, and the potential influence on metabolic traits in the general population are unknown. We obtained plasma and urine parameters from 9099 individuals from seven cohorts, and conducted a genome-wide meta-analysis of Mg2+ homeostasis. We identified two loci associated with urinary magnesium (uMg), rs3824347 (P=4.4×10-13) near TRPM6, which encodes an epithelial Mg2+ channel, and rs35929 (P=2.1×10-11), a variant of ARL15, which encodes a GTP-binding protein. Together, these loci account for 2.3% of the variation in 24-hour uMg excretion. In human kidney cells, ARL15 regulated TRPM6-mediated currents. In zebrafish, dietary Mg2+ regulated the expression of the highly conserved ARL15 ortholog arl15b, and arl15b knockdown resulted in renal Mg2+ wasting and metabolic disturbances. Finally, ARL15 rs35929 modified the association of uMg with fasting insulin and fat mass in a general population. In conclusion, this combined observational and experimental approach uncovered a gene-environment interaction linking Mg2+ deficiency to insulin resistance and obesity.
Collapse
Affiliation(s)
- Tanguy Corre
- Institute of Social and Preventive Medicine.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Francisco J Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Sonia Youhanna
- Institute of Physiology, University of Zürich, Zurich, Switzerland
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hendrica Belge
- Institute of Physiology, University of Zürich, Zurich, Switzerland
| | - Nadine Nägele
- Institute of Physiology, University of Zürich, Zurich, Switzerland
| | - Huguette Debaix
- Institute of Physiology, University of Zürich, Zurich, Switzerland
| | - Maxime G Blanchard
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology.,Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, Scotland, UK
| | - Sheila Ulivi
- Department of Medical Genetics, Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico "Burlo Garofolo," Trieste, Italy
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David Lamparter
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Aurélien Macé
- Institute of Social and Preventive Medicine.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Lenarduzzi
- Department of Medical Genetics, Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico "Burlo Garofolo," Trieste, Italy
| | | | - Menno Pruijm
- Service of Nephrology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Daniel Ackermann
- University Clinic for Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georg Ehret
- Division of Cardiology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Daniela Baptista
- Division of Cardiology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics
| | - Toby W Hurd
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Nicholas D Hastie
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | | | - Zoltán Kutalik
- Institute of Social and Preventive Medicine.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Rosa Vargas-Poussou
- Department of Genetics, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France
| | - Martin Konrad
- Department of General Pediatrics, University Hospital Münster, Munster, Germany
| | - Paolo Gasparini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy; and.,Department of Experimental Genetics, Sidra, Doha, Qatar
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology.,Department of Psychology, and
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology.,Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, Scotland, UK
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Olivier Devuyst
- Institute of Physiology, University of Zürich, Zurich, Switzerland;
| |
Collapse
|
110
|
Vilchez G, Dai J, Kumar K, Mundy D, Kontopoulos E, Sokol RJ. Racial/ethnic disparities in magnesium sulfate neuroprotection: a subgroup analysis of a multicenter randomized controlled trial. J Matern Fetal Neonatal Med 2017; 31:2304-2311. [PMID: 28612671 DOI: 10.1080/14767058.2017.1342795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Despite known racial disparities in obstetrics, as well as differences in magnesium pharmacodynamics according to race, the effect of race/ethnicity in magnesium sulfate (MgSO4) use during pregnancy has not been studied. Whether some mothers are at increased risk of side effects, or infants at decreased neuroprotective effects is unknown. We analyze the effect of race/ethnicity in maternal/infant outcomes after MgSO4 neuroprotection. STUDY DESIGN Subgroup analysis of a multicenter clinical trial (BEAM trial) where pregnant women at risk of preterm birth were randomized to either MgSO4 or placebo. For this study, nonanomalous singleton pregnancies were studied. The effect of race in maternal/neonatal outcomes after MgSO4 was analyzed with Breslow-Day and multifactorial ANOVA. Logistic regression was used to calculate odds ratios (OR) of complications according to race. RESULTS 922 MgSO4 and 972 placebo cases were included (45.0% African-American, 36.2% Caucasian, 17.8% Hispanics, and 1.0% Asians). Interaction analysis showed a significant effect of race/ethnicity (p = .043). Hispanics presented the highest frequency (88.3%, p < .001), as well as the highest odds of MgSO4 side effects [OR(95%CI) = 6.6 (1.3-33.8)]. CONCLUSION Hispanics present increased risk of magnesium toxicity compared to other racial/ethnic groups. Whether specific racial/ethnic groups require closer surveillance for early signs of magnesium toxicity needs to be further explored.
Collapse
Affiliation(s)
- Gustavo Vilchez
- a Department of Obstetrics and Gynecology , University of Missouri - Kansas City School of Medicine , Kansas City , MO , USA
| | - Jing Dai
- b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Komal Kumar
- a Department of Obstetrics and Gynecology , University of Missouri - Kansas City School of Medicine , Kansas City , MO , USA
| | - David Mundy
- a Department of Obstetrics and Gynecology , University of Missouri - Kansas City School of Medicine , Kansas City , MO , USA
| | - Eftichia Kontopoulos
- a Department of Obstetrics and Gynecology , University of Missouri - Kansas City School of Medicine , Kansas City , MO , USA
| | - Robert J Sokol
- b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
111
|
Stafford N, Wilson C, Oceandy D, Neyses L, Cartwright EJ. The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease. Physiol Rev 2017; 97:1089-1125. [PMID: 28566538 DOI: 10.1152/physrev.00028.2016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease.
Collapse
Affiliation(s)
- Nicholas Stafford
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ludwig Neyses
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
112
|
Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics 2017; 18:386. [PMID: 28521758 PMCID: PMC5437562 DOI: 10.1186/s12864-017-3754-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
Background Single nucleotide polymorphism (SNP) arrays for domestic cattle have catalyzed the identification of genetic markers associated with complex traits for inclusion in modern breeding and selection programs. Using actual and imputed Illumina 778K genotypes for 3887 U.S. beef cattle from 3 populations (Angus, Hereford, SimAngus), we performed genome-wide association analyses for feed efficiency and growth traits including average daily gain (ADG), dry matter intake (DMI), mid-test metabolic weight (MMWT), and residual feed intake (RFI), with marker-based heritability estimates produced for all traits and populations. Results Moderate and/or large-effect QTL were detected for all traits in all populations, as jointly defined by the estimated proportion of variance explained (PVE) by marker effects (PVE ≥ 1.0%) and a nominal P-value threshold (P ≤ 5e-05). Lead SNPs with PVE ≥ 2.0% were considered putative evidence of large-effect QTL (n = 52), whereas those with PVE ≥ 1.0% but < 2.0% were considered putative evidence for moderate-effect QTL (n = 35). Identical or proximal lead SNPs associated with ADG, DMI, MMWT, and RFI collectively supported the potential for either pleiotropic QTL, or independent but proximal causal mutations for multiple traits within and between the analyzed populations. Marker-based heritability estimates for all investigated traits ranged from 0.18 to 0.60 using 778K genotypes, or from 0.17 to 0.57 using 50K genotypes (reduced from Illumina 778K HD to Illumina Bovine SNP50). An investigation to determine if QTL detected by 778K analysis could also be detected using 50K genotypes produced variable results, suggesting that 50K analyses were generally insufficient for QTL detection in these populations, and that relevant breeding or selection programs should be based on higher density analyses (imputed or directly ascertained). Conclusions Fourteen moderate to large-effect QTL regions which ranged from being physically proximal (lead SNPs ≤ 3Mb) to fully overlapping for RFI, DMI, ADG, and MMWT were detected within and between populations, and included evidence for pleiotropy, proximal but independent causal mutations, and multi-breed QTL. Bovine positional candidate genes for these traits were functionally conserved across vertebrate species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3754-y) contains supplementary material, which is available to authorized users.
Collapse
|
113
|
Kieboom BCT, Ligthart S, Dehghan A, Kurstjens S, de Baaij JHF, Franco OH, Hofman A, Zietse R, Stricker BH, Hoorn EJ. Serum magnesium and the risk of prediabetes: a population-based cohort study. Diabetologia 2017; 60:843-853. [PMID: 28224192 PMCID: PMC6518103 DOI: 10.1007/s00125-017-4224-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/27/2017] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Previous studies have found an association between serum magnesium and incident diabetes; however, this association may be due to reverse causation, whereby diabetes may induce urinary magnesium loss. In contrast, in prediabetes (defined as impaired fasting glucose), serum glucose levels are below the threshold for urinary magnesium wasting and, hence, unlikely to influence serum magnesium levels. Thus, to study the directionality of the association between serum magnesium levels and diabetes, we investigated its association with prediabetes. We also investigated whether magnesium-regulating genes influence diabetes risk through serum magnesium levels. Additionally, we quantified the effect of insulin resistance in the association between serum magnesium levels and diabetes risk. METHODS Within the population-based Rotterdam Study, we used Cox models, adjusted for age, sex, lifestyle factors, comorbidities, kidney function, serum levels of electrolytes and diuretic use, to study the association between serum magnesium and prediabetes/diabetes. In addition, we performed two mediation analyses: (1) to study if common genetic variation in eight magnesium-regulating genes influence diabetes risk through serum magnesium levels; and (2) to quantify the proportion of the effect of serum magnesium levels on diabetes that is mediated through insulin resistance (quantified by HOMA-IR). RESULTS A total of 8555 participants (mean age, 64.7 years; median follow-up, 5.7 years) with normal glucose levels (mean ± SD: 5.46 ± 0.58 mmol/l) at baseline were included. A 0.1 mmol/l decrease in serum magnesium level was associated with an increase in diabetes risk (HR 1.18 [95% CI 1.04, 1.33]), confirming findings from previous studies. Of interest, a similar association was found between serum magnesium levels and prediabetes risk (HR 1.12 [95% CI 1.01, 1.25]). Genetic variation in CLDN19, CNNM2, FXYD2, SLC41A2, and TRPM6 significantly influenced diabetes risk (p < 0.05), and for CNNM2, FXYD2, SLC41A2 and TRPM6 this risk was completely mediated by serum magnesium levels. We found that 29.1% of the effect of serum magnesium levels on diabetes was mediated through insulin resistance, whereas for prediabetes 13.4% was mediated through insulin resistance. CONCLUSIONS/INTERPRETATION Low serum magnesium levels are associated with an increased risk of prediabetes and this increased risk is similar to that of diabetes. Furthermore, common variants in magnesium-regulating genes modify diabetes risk through serum magnesium levels. Both findings support a potential causal role of magnesium in the development of diabetes, where the hypothesised pathway is partly mediated through insulin resistance.
Collapse
Affiliation(s)
- Brenda C T Kieboom
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Inspectorate for Health Care, Utrecht, the Netherlands
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Steef Kurstjens
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert Zietse
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands.
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.
- Inspectorate for Health Care, Utrecht, the Netherlands.
| | - Ewout J Hoorn
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
114
|
Böger CA, Gorski M, McMahon GM, Xu H, Chang YPC, van der Most PJ, Navis G, Nolte IM, de Borst MH, Zhang W, Lehne B, Loh M, Tan ST, Boerwinkle E, Grams ME, Sekula P, Li M, Wilmot B, Moon JG, Scheet P, Cucca F, Xiao X, Lyytikäinen LP, Delgado G, Grammer TB, Kleber ME, Sedaghat S, Rivadeneira F, Corre T, Kutalik Z, Bergmann S, Nielson CM, Srikanth P, Teumer A, Müller-Nurasyid M, Brockhaus AC, Pfeufer A, Rathmann W, Peters A, Matsumoto M, de Andrade M, Atkinson EJ, Robinson-Cohen C, de Boer IH, Hwang SJ, Heid IM, Gögele M, Concas MP, Tanaka T, Bandinelli S, Nalls MA, Singleton A, Tajuddin SM, Adeyemo A, Zhou J, Doumatey A, McWeeney S, Murabito J, Franceschini N, Flessner M, Shlipak M, Wilson JG, Chen G, Rotimi CN, Zonderman AB, Evans MK, Ferrucci L, Devuyst O, Pirastu M, Shuldiner A, Hicks AA, Pramstaller PP, Kestenbaum B, Kardia SLR, Turner ST, Study LC, Briske TE, Gieger C, Strauch K, Meisinger C, Meitinger T, Völker U, Nauck M, Völzke H, Vollenweider P, Bochud M, Waeber G, Kähönen M, Lehtimäki T, März W, Dehghan A, Franco OH, Uitterlinden AG, Hofman A, Taylor HA, Chambers JC, Kooner JS, Fox CS, Hitzemann R, Orwoll ES, et alBöger CA, Gorski M, McMahon GM, Xu H, Chang YPC, van der Most PJ, Navis G, Nolte IM, de Borst MH, Zhang W, Lehne B, Loh M, Tan ST, Boerwinkle E, Grams ME, Sekula P, Li M, Wilmot B, Moon JG, Scheet P, Cucca F, Xiao X, Lyytikäinen LP, Delgado G, Grammer TB, Kleber ME, Sedaghat S, Rivadeneira F, Corre T, Kutalik Z, Bergmann S, Nielson CM, Srikanth P, Teumer A, Müller-Nurasyid M, Brockhaus AC, Pfeufer A, Rathmann W, Peters A, Matsumoto M, de Andrade M, Atkinson EJ, Robinson-Cohen C, de Boer IH, Hwang SJ, Heid IM, Gögele M, Concas MP, Tanaka T, Bandinelli S, Nalls MA, Singleton A, Tajuddin SM, Adeyemo A, Zhou J, Doumatey A, McWeeney S, Murabito J, Franceschini N, Flessner M, Shlipak M, Wilson JG, Chen G, Rotimi CN, Zonderman AB, Evans MK, Ferrucci L, Devuyst O, Pirastu M, Shuldiner A, Hicks AA, Pramstaller PP, Kestenbaum B, Kardia SLR, Turner ST, Study LC, Briske TE, Gieger C, Strauch K, Meisinger C, Meitinger T, Völker U, Nauck M, Völzke H, Vollenweider P, Bochud M, Waeber G, Kähönen M, Lehtimäki T, März W, Dehghan A, Franco OH, Uitterlinden AG, Hofman A, Taylor HA, Chambers JC, Kooner JS, Fox CS, Hitzemann R, Orwoll ES, Pattaro C, Schlessinger D, Köttgen A, Snieder H, Parsa A, Cohen DM. NFAT5 and SLC4A10 Loci Associate with Plasma Osmolality. J Am Soc Nephrol 2017; 28:2311-2321. [PMID: 28360221 DOI: 10.1681/asn.2016080892] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/02/2017] [Indexed: 12/20/2022] Open
Abstract
Disorders of water balance, an excess or deficit of total body water relative to body electrolyte content, are common and ascertained by plasma hypo- or hypernatremia, respectively. We performed a two-stage genome-wide association study meta-analysis on plasma sodium concentration in 45,889 individuals of European descent (stage 1 discovery) and 17,637 additional individuals of European descent (stage 2 replication), and a transethnic meta-analysis of replicated single-nucleotide polymorphisms in 79,506 individuals (63,526 individuals of European descent, 8765 individuals of Asian Indian descent, and 7215 individuals of African descent). In stage 1, we identified eight loci associated with plasma sodium concentration at P<5.0 × 10-6 Of these, rs9980 at NFAT5 replicated in stage 2 meta-analysis (P=3.1 × 10-5), with combined stages 1 and 2 genome-wide significance of P=5.6 × 10-10 Transethnic meta-analysis further supported the association at rs9980 (P=5.9 × 10-12). Additionally, rs16846053 at SLC4A10 showed nominally, but not genome-wide, significant association in combined stages 1 and 2 meta-analysis (P=6.7 × 10-8). NFAT5 encodes a ubiquitously expressed transcription factor that coordinates the intracellular response to hypertonic stress but was not previously implicated in the regulation of systemic water balance. SLC4A10 encodes a sodium bicarbonate transporter with a brain-restricted expression pattern, and variant rs16846053 affects a putative intronic NFAT5 DNA binding motif. The lead variants for NFAT5 and SLC4A10 are cis expression quantitative trait loci in tissues of the central nervous system and relevant to transcriptional regulation. Thus, genetic variation in NFAT5 and SLC4A10 expression and function in the central nervous system may affect the regulation of systemic water balance.
Collapse
Affiliation(s)
- Carsten A Böger
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Mathias Gorski
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Gearoid M McMahon
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Huichun Xu
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Yen-Pei C Chang
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Peter J van der Most
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Gerjan Navis
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Ilja M Nolte
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Martin H de Borst
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Weihua Zhang
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Benjamin Lehne
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Marie Loh
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Sian-Tsung Tan
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Eric Boerwinkle
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Morgan E Grams
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Peggy Sekula
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Man Li
- Due to the number of contributing authors, the affiliations are listed in the supplemental material.
| | - Beth Wilmot
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - James G Moon
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Paul Scheet
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Francesco Cucca
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Xiangjun Xiao
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Leo-Pekka Lyytikäinen
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Graciela Delgado
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Tanja B Grammer
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Marcus E Kleber
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Sanaz Sedaghat
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Fernando Rivadeneira
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Tanguy Corre
- Due to the number of contributing authors, the affiliations are listed in the supplemental material.
| | - Zoltan Kutalik
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Sven Bergmann
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Carrie M Nielson
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Priya Srikanth
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Alexander Teumer
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Martina Müller-Nurasyid
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Anne Catharina Brockhaus
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Arne Pfeufer
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Wolfgang Rathmann
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Annette Peters
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Martha Matsumoto
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Mariza de Andrade
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Elizabeth J Atkinson
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Cassianne Robinson-Cohen
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Ian H de Boer
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Shih-Jen Hwang
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Iris M Heid
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Martin Gögele
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Maria Pina Concas
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Toshiko Tanaka
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Stefania Bandinelli
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Mike A Nalls
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Andrew Singleton
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Salman M Tajuddin
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Adebowale Adeyemo
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Jie Zhou
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Ayo Doumatey
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Shannon McWeeney
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Joanne Murabito
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Nora Franceschini
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Michael Flessner
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Michael Shlipak
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - James G Wilson
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Guanjie Chen
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Charles N Rotimi
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Alan B Zonderman
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Michele K Evans
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Luigi Ferrucci
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Olivier Devuyst
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Mario Pirastu
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Alan Shuldiner
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Andrew A Hicks
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Peter Paul Pramstaller
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Bryan Kestenbaum
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Sharon L R Kardia
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Stephen T Turner
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - LifeLines Cohort Study
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Tamara Ellefson Briske
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Christian Gieger
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Konstantin Strauch
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Christa Meisinger
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Thomas Meitinger
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Uwe Völker
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Matthias Nauck
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Henry Völzke
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Peter Vollenweider
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Murielle Bochud
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Gerard Waeber
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Mika Kähönen
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Terho Lehtimäki
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Winfried März
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Abbas Dehghan
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Oscar H Franco
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Andre G Uitterlinden
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Albert Hofman
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Herman A Taylor
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - John C Chambers
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Jaspal S Kooner
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Caroline S Fox
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Robert Hitzemann
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Eric S Orwoll
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Cristian Pattaro
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - David Schlessinger
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Anna Köttgen
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Harold Snieder
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Afshin Parsa
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - David M Cohen
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| |
Collapse
|
115
|
Chen Y, Sang Y, Ballew SH, Tin A, Chang AR, Matsushita K, Coresh J, Kalantar-Zadeh K, Molnar MZ, Grams ME. Race, Serum Potassium, and Associations With ESRD and Mortality. Am J Kidney Dis 2017; 70:244-251. [PMID: 28363732 DOI: 10.1053/j.ajkd.2017.01.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/07/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Recent studies suggest that potassium levels may differ by race. The basis for these differences and whether associations between potassium levels and adverse outcomes differ by race are unknown. STUDY DESIGN Observational study. SETTING & PARTICIPANTS Associations between race and potassium level and the interaction of race and potassium level with outcomes were investigated in the Racial and Cardiovascular Risk Anomalies in Chronic Kidney Disease (RCAV) Study, a cohort of US veterans (N=2,662,462). Associations between African ancestry and potassium level were investigated in African Americans in the Atherosclerosis Risk in Communities (ARIC) Study (N=3,450). PREDICTORS Race (African American vs non-African American and percent African ancestry) for cross-sectional analysis; serum potassium level for longitudinal analysis. OUTCOMES Potassium level for cross-sectional analysis; mortality and end-stage renal disease for longitudinal analysis. RESULTS The RCAV cohort was 18% African American (N=470,985). Potassium levels on average were 0.162mmol/L lower in African Americans compared with non-African Americans, with differences persisting after adjustment for demographics, comorbid conditions, and potassium-altering medication use. In the ARIC Study, higher African ancestry was related to lower potassium levels (-0.027mmol/L per each 10% African ancestry). In both race groups, higher and lower potassium levels were associated with mortality. Compared to potassium level of 4.2mmol/L, mortality risk associated with lower potassium levels was lower in African Americans versus non-African Americans, whereas mortality risk associated with higher levels was slightly greater. Risk relationships between potassium and end-stage renal disease were weaker, with no difference by race. LIMITATIONS No data for potassium intake. CONCLUSIONS African Americans had slightly lower serum potassium levels than non-African Americans. Consistent associations between potassium levels and percent African ancestry may suggest a genetic component to these differences. Higher and lower serum potassium levels were associated with mortality in both racial groups.
Collapse
Affiliation(s)
- Yan Chen
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Yingying Sang
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Shoshana H Ballew
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Adrienne Tin
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Alex R Chang
- Division of Nephrology, Geisinger Health System, Danville, PA
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Chronic Disease Research & Epidemiology, University of California Irvine Medical Center, Irvine, CA; Division of Nephrology & Hypertension, University of California Irvine Medical Center, Orange, CA
| | - Miklos Z Molnar
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN; Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD; Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
116
|
Zofkova I, Davis M, Blahos J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res 2017; 66:391-402. [PMID: 28248532 DOI: 10.33549/physiolres.933454] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The protective role of nutrition factors such as calcium, vitamin D and vitamin K for the integrity of the skeleton is well understood. In addition, integrity of the skeleton is positively influenced by certain trace elements (e.g. zinc, copper, manganese, magnesium, iron, selenium, boron and fluoride) and negatively by others (lead, cadmium, cobalt). Deficiency or excess of these elements influence bone mass and bone quality in adulthood as well as in childhood and adolescence. However, some protective elements may become toxic under certain conditions, depending on dosage (serum concentration), duration of treatment and interactions among individual elements. We review the beneficial and toxic effects of key elements on bone homeostasis.
Collapse
Affiliation(s)
- I Zofkova
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | |
Collapse
|
117
|
Artigas MS, Wain LV, Shrine N, McKeever TM, Sayers I, Hall IP, Tobin MD. Targeted Sequencing of Lung Function Loci in Chronic Obstructive Pulmonary Disease Cases and Controls. PLoS One 2017; 12:e0170222. [PMID: 28114305 PMCID: PMC5256917 DOI: 10.1371/journal.pone.0170222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 01/01/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide; smoking is the main risk factor for COPD, but genetic factors are also relevant contributors. Genome-wide association studies (GWAS) of the lung function measures used in the diagnosis of COPD have identified a number of loci, however association signals are often broad and collectively these loci only explain a small proportion of the heritability. In order to examine the association with COPD risk of genetic variants down to low allele frequencies, to aid fine-mapping of association signals and to explain more of the missing heritability, we undertook a targeted sequencing study in 300 COPD cases and 300 smoking controls for 26 loci previously reported to be associated with lung function. We used a pooled sequencing approach, with 12 pools of 25 individuals each, enabling high depth (30x) coverage per sample to be achieved. This pooled design maximised sample size and therefore power, but led to challenges during variant-calling since sequencing error rates and minor allele frequencies for rare variants can be very similar. For this reason we employed a rigorous quality control pipeline for variant detection which included the use of 3 independent calling algorithms. In order to avoid false positive associations we also developed tests to detect variants with potential batch effects and removed them before undertaking association testing. We tested for the effects of single variants and the combined effect of rare variants within a locus. We followed up the top signals with data available (only 67% of collapsing methods signals) in 4,249 COPD cases and 11,916 smoking controls from UK Biobank. We provide suggestive evidence for the combined effect of rare variants on COPD risk in TNXB and in sliding windows within MECOM and upstream of HHIP. These findings can lead to an improved understanding of the molecular pathways involved in the development of COPD.
Collapse
Affiliation(s)
- María Soler Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Louise V. Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research (NIHR), Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Tricia M. McKeever
- Division of Respiratory Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | - Ian Sayers
- Division of Respiratory Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ian P. Hall
- Division of Respiratory Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Martin D. Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research (NIHR), Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
118
|
Corre T, Olinger E, Harris SE, Traglia M, Ulivi S, Lenarduzzi S, Belge H, Youhanna S, Tokonami N, Bonny O, Houillier P, Polasek O, Deary IJ, Starr JM, Toniolo D, Gasparini P, Vollenweider P, Hayward C, Bochud M, Devuyst O. Common variants in CLDN14 are associated with differential excretion of magnesium over calcium in urine. Pflugers Arch 2016; 469:91-103. [DOI: 10.1007/s00424-016-1913-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
|
119
|
Iotchkova V, Huang J, Morris JA, Jain D, Barbieri C, Walter K, Min JL, Chen L, Astle W, Cocca M, Deelen P, Elding H, Farmaki AE, Franklin CS, Franberg M, Gaunt TR, Hofman A, Jiang T, Kleber ME, Lachance G, Luan J, Malerba G, Matchan A, Mead D, Memari Y, Ntalla I, Panoutsopoulou K, Pazoki R, Perry JR, Rivadeneira F, Sabater-Lleal M, Sennblad B, Shin SY, Southam L, Traglia M, van Dijk F, van Leeuwen EM, Zaza G, Zhang W, Amin N, Butterworth A, Chambers JC, Dedoussis G, Dehghan A, Franco OH, Franke L, Frontini M, Gambaro G, Gasparini P, Hamsten A, Issacs A, Kooner JS, Kooperberg C, Langenberg C, Marz W, Scott RA, Swertz MA, Toniolo D, Uitterlinden AG, van Duijn CM, Watkins H, Zeggini E, Maurano MT, Timpson NJ, Reiner AP, Auer PL, Soranzo N. Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps. Nat Genet 2016; 48:1303-1312. [PMID: 27668658 PMCID: PMC5279872 DOI: 10.1038/ng.3668] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
Large-scale whole-genome sequence data sets offer novel opportunities to identify genetic variation underlying human traits. Here we apply genotype imputation based on whole-genome sequence data from the UK10K and 1000 Genomes Project into 35,981 study participants of European ancestry, followed by association analysis with 20 quantitative cardiometabolic and hematological traits. We describe 17 new associations, including 6 rare (minor allele frequency (MAF) < 1%) or low-frequency (1% < MAF < 5%) variants with platelet count (PLT), red blood cell indices (MCH and MCV) and HDL cholesterol. Applying fine-mapping analysis to 233 known and new loci associated with the 20 traits, we resolve the associations of 59 loci to credible sets of 20 or fewer variants and describe trait enrichments within regions of predicted regulatory function. These findings improve understanding of the allelic architecture of risk factors for cardiometabolic and hematological diseases and provide additional functional insights with the identification of potentially novel biological targets.
Collapse
Affiliation(s)
- Valentina Iotchkova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Jie Huang
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Boston VA Research Institute, Boston, Massachusetts, USA
| | - John A. Morris
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Caterina Barbieri
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Klaudia Walter
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Josine L. Min
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Lu Chen
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Department of Hematology, University of Cambridge, Cambridge, UK
| | - William Astle
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Massimilian Cocca
- Medical Genetics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Patrick Deelen
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Heather Elding
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | | | - Mattias Franberg
- Cardiovascular Medicine Unit, Dep. Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tom R. Gaunt
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tao Jiang
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Genevieve Lachance
- Department of Twin Research & Genetic Epidemiology, King's College London, Londo, UK
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Giovanni Malerba
- Biology and Genetics, Department Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Angela Matchan
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Daniel Mead
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Yasin Memari
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Ioanna Ntalla
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Raha Pazoki
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - John R.B. Perry
- Department of Twin Research & Genetic Epidemiology, King's College London, Londo, UK
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Maria Sabater-Lleal
- Cardiovascular Medicine Unit, Dep. Medicine, Karolinska Institute, Stockholm, Sweden
| | - Bengt Sennblad
- Cardiovascular Medicine Unit, Dep. Medicine, Karolinska Institute, Stockholm, Sweden
| | - So-Youn Shin
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Lorraine Southam
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Freerk van Dijk
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | | | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, St Mary’s campus, London, UK
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Adam Butterworth
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Cambridge, UK
| | - John C. Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, St Mary’s campus, London, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | | | - Giovanni Gambaro
- Division of Nephrology and Dialysis, Institute of Internal Medicine, Renal Program, Columbus-Gemelli University Hospital, Catholic University, Rome, Italy
| | - Paolo Gasparini
- Medical Genetics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Experimental Genetics Division, Sidra, Doha, Qatar
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Dep. Medicine, Karolinska Institute, Stockholm, Sweden
| | - Aaron Issacs
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jaspal S. Kooner
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Winfried Marz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinolgy, Diabetology), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Robert A. Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Morris A. Swertz
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
- LifeLines Cohort Study, University Medical Center Groningen, Groningen, Netherlands
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Andre G. Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hugh Watkins
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Mathew T. Maurano
- Institute for Systems Genetics, New York University Langone Medical Center, New York, USA
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Paul L. Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Nicole Soranzo
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Department of Hematology, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Cambridge, UK
| |
Collapse
|
120
|
Saraç M, Önalan E, Bakal Ü, Tartar T, Aydın M, Orman A, Tektemur A, Taşkın E, Erol FS, Kazez A. Magnesium-permeable TRPM6 polymorphisms in patients with meningomyelocele. SPRINGERPLUS 2016; 5:1703. [PMID: 27757375 PMCID: PMC5047867 DOI: 10.1186/s40064-016-3395-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/26/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND To evaluate whether there is an association between single nucleotide polymorphisms in magnesium-permeable TRPM6 ion channel and development of meningomyelocele (MMC). Therefore, we examined a total of 150 children with MMC, along with age- and gender-matched controls. DNA collected from whole blood was analyzed for the presence of two polymorphisms, rs2274924 (A > G; K1579E; Leu1579Glu) and rs3750425 (G > A; Val1393Ile), in TRPM6. Serum Mg2+ and calcium levels were also examined. RESULTS A statistically significant difference in the distribution of rs2274924 genotypes (p = 0.049) was observed between the groups. Decreases in the AA genotype, and increases in the AG heterozygous genotype were also detected in the study group. The distribution of polymorphisms in the rs3750425 genotype and alleles was not statistically different between groups. Serum Mg2+ levels were lower in the GG genotype of rs3750425 compared with the GA and AA genotypes (p = 0.003). CONCLUSIONS A statistically significant difference in rs3750425 genotypes was observed between the patients with MMC and the controls, which corresponded to lower serum Mg2+ concentrations in these patients. Taken together, these results suggest that genetic variations in the Mg2+-permeable TRPM6 ion channel may play a role in the etiopathogenesis of MMC during embryonic development.
Collapse
Affiliation(s)
- Mehmet Saraç
- Department of Pediatric Surgery, Firat University Medical Faculty, 23119 Elazig, Turkey
| | - Ebru Önalan
- Department of Medical Biology, Firat University Medical Faculty, Elazig, Turkey
| | - Ünal Bakal
- Department of Pediatric Surgery, Firat University Medical Faculty, 23119 Elazig, Turkey
| | - Tugay Tartar
- Department of Pediatric Surgery, Firat University Medical Faculty, 23119 Elazig, Turkey
| | - Mustafa Aydın
- Department of Neonatology, Firat University Medical Faculty, Elazig, Turkey
| | - Ayşen Orman
- Department of Neonatology, Firat University Medical Faculty, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Firat University Medical Faculty, Elazig, Turkey
| | - Erdal Taşkın
- Department of Neonatology, Firat University Medical Faculty, Elazig, Turkey
| | - Fatih Serhat Erol
- Department of Neurosurgery, Firat University Medical Faculty, Elazig, Turkey
| | - Ahmet Kazez
- Department of Pediatric Surgery, Firat University Medical Faculty, 23119 Elazig, Turkey
| |
Collapse
|
121
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
122
|
Ishii T, Funato Y, Hashizume O, Yamazaki D, Hirata Y, Nishiwaki K, Kono N, Arai H, Miki H. Mg2+ Extrusion from Intestinal Epithelia by CNNM Proteins Is Essential for Gonadogenesis via AMPK-TORC1 Signaling in Caenorhabditis elegans. PLoS Genet 2016; 12:e1006276. [PMID: 27564576 PMCID: PMC5001713 DOI: 10.1371/journal.pgen.1006276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/04/2016] [Indexed: 02/03/2023] Open
Abstract
Mg2+ serves as an essential cofactor for numerous enzymes and its levels are tightly regulated by various Mg2+ transporters. Here, we analyzed Caenorhabditis elegans strains carrying mutations in genes encoding cyclin M (CNNM) Mg2+ transporters. We isolated inactivating mutants for each of the five Caenorhabditis elegans cnnm family genes, cnnm-1 through cnnm-5. cnnm-1; cnnm-3 double mutant worms showed various phenotypes, among which the sterile phenotype was rescued by supplementing the media with Mg2+. This sterility was caused by a gonadogenesis defect with severely attenuated proliferation of germ cells. Using this gonadogenesis defect as an indicator, we performed genome-wide RNAi screening, to search for genes associated with this phenotype. The results revealed that RNAi-mediated inactivation of several genes restores gonad elongation, including aak-2, which encodes the catalytic subunit of AMP-activated protein kinase (AMPK). We then generated triple mutant worms for cnnm-1; cnnm-3; aak-2 and confirmed that the aak-2 mutation also suppressed the defective gonadal elongation in cnnm-1; cnnm-3 mutant worms. AMPK is activated under low-energy conditions and plays a central role in regulating cellular metabolism to adapt to the energy status of cells. Thus, we provide genetic evidence linking Mg2+ homeostasis to energy metabolism via AMPK. Mg2+ is the second most abundant cation in cells and serves as an essential cofactor for numerous enzymes. To avoid its shortage, cellular and organismal levels of Mg2+ are tightly regulated by the concerted actions of various Mg2+ transporters and channels. In this study, we analyzed Caenorhabditis elegans strains carrying mutations in genes encoding Mg2+ transporters and found that the mutations abrogated Mg2+ homeostasis. Additionally, these worms were sterile because of a developmental defect in the gonads with severely attenuated proliferation of germ cells. These abnormalities were rescued by additional Mg2+ supplementation to the medium, and thus were considered to be due to Mg2+ shortage. We investigated the mechanism of this Mg2+-associated attenuation of gonadal development, and found that disrupting of the function of AMP-activated protein kinase (AMPK) restored gonad elongation. It is well-known that AMPK is activated under low-energy conditions and plays a central role in regulating cellular metabolism to adapt to the energy status of cells. Thus, we demonstrated that Mg2+ homeostasis is intimately connected to energy metabolism via AMPK.
Collapse
Affiliation(s)
- Tasuku Ishii
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail: (YF); (HM)
| | - Osamu Hashizume
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Daisuke Yamazaki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kiyoji Nishiwaki
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRIME, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail: (YF); (HM)
| |
Collapse
|
123
|
Pankratz N, Schick UM, Zhou Y, Zhou W, Ahluwalia TS, Allende ML, Auer PL, Bork-Jensen J, Brody JA, Chen MH, Clavo V, Eicher JD, Grarup N, Hagedorn EJ, Hu B, Hunker K, Johnson AD, Leusink M, Lu Y, Lyytikäinen LP, Manichaikul A, Marioni RE, Nalls MA, Pazoki R, Smith AV, van Rooij FJA, Yang ML, Zhang X, Zhang Y, Asselbergs FW, Boerwinkle E, Borecki IB, Bottinger EP, Cushman M, de Bakker PIW, Deary IJ, Dong L, Feitosa MF, Floyd JS, Franceschini N, Franco OH, Garcia ME, Grove ML, Gudnason V, Hansen T, Harris TB, Hofman A, Jackson RD, Jia J, Kähönen M, Launer LJ, Lehtimäki T, Liewald DC, Linneberg A, Liu Y, Loos RJF, Nguyen VM, Numans ME, Pedersen O, Psaty BM, Raitakari OT, Rich SS, Rivadeneira F, Di Sant AMR, Rotter JI, Starr JM, Taylor KD, Thuesen BH, Tracy RP, Uitterlinden AG, Wang J, Wang J, Dehghan A, Huo Y, Cupples LA, Wilson JG, Proia RL, Zon LI, O’Donnell CJ, Reiner AP, Ganesh SK. Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits. Nat Genet 2016; 48:867-76. [PMID: 27399967 PMCID: PMC5145000 DOI: 10.1038/ng.3607] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022]
Abstract
Hematologic measures such as hematocrit and white blood cell (WBC) count are heritable and clinically relevant. We analyzed erythrocyte and WBC phenotypes in 52,531 individuals (37,775 of European ancestry, 11,589 African Americans, and 3,167 Hispanic Americans) from 16 population-based cohorts with Illumina HumanExome BeadChip genotypes. We then performed replication analyses of new discoveries in 18,018 European-American women and 5,261 Han Chinese. We identified and replicated four new erythrocyte trait-locus associations (CEP89, SHROOM3, FADS2, and APOE) and six new WBC loci for neutrophil count (S1PR4), monocyte count (BTBD8, NLRP12, and IL17RA), eosinophil count (IRF1), and total WBC count (MYB). The association of a rare missense variant in S1PR4 supports the role of sphingosine-1-phosphate signaling in leukocyte trafficking and circulating neutrophil counts. Loss-of-function experiments for S1pr4 in mouse and s1pr4 in zebrafish demonstrated phenotypes consistent with the association observed in humans and altered kinetics of neutrophil recruitment and resolution in response to tissue injury.
Collapse
Affiliation(s)
- Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Ursula M Schick
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yi Zhou
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Wei Zhou
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tarunveer Singh Ahluwalia
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Maria Laura Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul L Auer
- School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ming-Huei Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
| | - Vinna Clavo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John D Eicher
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elliott J Hagedorn
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Bella Hu
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Kristina Hunker
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Maarten Leusink
- Division Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Raha Pazoki
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Min-Lee Yang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoling Zhang
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ingrid B Borecki
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Cushman
- Department of Medicine, Division of Hematology/Oncology, University of Vermont, Burlington, VT, USA
| | - Paul I W de Bakker
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Liguang Dong
- Jin Ding Street Community Healthy Center, Peking University Shougang Hospital, Beijing, China
| | - Mary F Feitosa
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nora Franceschini
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Melissa E Garcia
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Megan L Grove
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes, and Metabolism, Ohio State University, Columbus, OH, USA
| | - Jia Jia
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere School of Medicine, Tampere, Finland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - David C Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yongmei Liu
- Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vy M Nguyen
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Mattijs E Numans
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
- Public Health and Primary Care, Leiden University Medical Centre, Leiden, Netherlands
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Amanda M Rosa Di Sant
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Geriatric Medicine unit, University of Edinburgh, Edinburgh, UK
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Colchester, VT, USA
- Department of Biochemistry, University of Vermont College of Medicine, Colchester, VT, USA
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jiansong Wang
- Chronic Diseases Research Center, Peking University Shougang Hospital, Beijing, China
| | - Judy Wang
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - L Adrienne Cupples
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leonard I Zon
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Christopher J O’Donnell
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Cardiology Section, Department of Medicine, Boston Veteran’s Administration Healthcare, Boston, MA, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
124
|
A novel mutation and variable phenotypic expression in a large consanguineous pedigree with Jalili syndrome. Eye (Lond) 2016; 30:1424-1432. [PMID: 27419834 DOI: 10.1038/eye.2016.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/07/2016] [Indexed: 11/08/2022] Open
Abstract
PurposeJalili syndrome is an autosomal recessive disorder characterized by simultaneous appearance of cone-rod dystrophy (CRD) and amelogenesis imperfecta (AI). Mutations in CNNM4 gene have been identified as the underlying cause of the syndrome. In this study, we investigated a large affected family to identify the causative mutation.Patients and MethodsA seven-generation family with 24 members affected with Jalili syndrome were enrolled in the study. Comprehensive ophthalmologic and dental examinations were performed on them. The entire coding region of CNNM4 gene was sequenced for detection of potential mutations.ResultsOcular examinations showed nystagmus and photophobia along with early onset visual impairment. Fundoscopic exams revealed a spectrum of macular dystrophies in different family members, from macular coloboma and advanced form of beaten bronze macular dystrophy (bull's eye) to milder form of macular thinning along with a range of pigmentary changes and vascular attenuation in the posterior pole and periphery. Scotopic and photopic electro-retinographic responses (ERGs) were extinguished or significantly depressed. Mutation analysis revealed a novel mutation (c.1091delG) in homozygous form in the patients and as a heterozygous form in the normal carrier subjects.ConclusionWe identified a novel homozygous deleterious mutation in CNNM4 gene which causes Jalili syndrome.
Collapse
|
125
|
Miliku K, Vogelezang S, Franco OH, Hofman A, Jaddoe VWV, Felix JF. Influence of common genetic variants on childhood kidney outcomes. Pediatr Res 2016; 80:60-6. [PMID: 26959481 PMCID: PMC5496666 DOI: 10.1038/pr.2016.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/15/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Kidney measures in early life are associated with kidney disease in later life. We hypothesized that these associations are partly explained by common genetic variants that lead to both smaller kidneys with lower kidney function in early childhood and kidney disease in adulthood. METHODS We examined in a population-based prospective cohort study among 4,119 children the associations of a weighted genetic risk score combining 20 previously identified common genetic variants related to adult eGFRcreat with kidney outcomes in children aged 6.0 years (95% range 5.7-7.8). Childhood kidney outcomes included combined kidney volume, glomerular filtration rate (eGFR) based on creatinine levels, and microalbuminuria based on albumin and creatinine urine levels. RESULTS We observed that the genetic risk score based on variants related to impaired kidney function in adults was associated with a smaller combined kidney volume (P value 3.0 × 10(-3)) and with a lower eGFR (P value 4.0 × 10(-4)) in children. The genetic risk score was not associated with microalbuminuria. CONCLUSION Common genetic variants related to impaired kidney function in adults already lead to subclinical changes in childhood kidney outcomes. The well-known associations of kidney measures in early life with kidney disease in later life may at least be partly explained by common genetic variants.
Collapse
Affiliation(s)
- Kozeta Miliku
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands,Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands,Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Suzanne Vogelezang
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands,Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands,Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Vincent WV Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands,Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands,Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands,Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands,Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
126
|
Bovo S, Schiavo G, Mazzoni G, Dall'Olio S, Galimberti G, Calò DG, Scotti E, Bertolini F, Buttazzoni L, Samorè AB, Fontanesi L. Genome-wide association study for the level of serum electrolytes in Italian Large White pigs. Anim Genet 2016; 47:597-602. [DOI: 10.1111/age.12459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 01/15/2023]
Affiliation(s)
- S. Bovo
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - G. Schiavo
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - G. Mazzoni
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - S. Dall'Olio
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - G. Galimberti
- Department of Statistical Sciences “Paolo Fortunati”; University of Bologna; Via delle Belle Arti 41 40126 Bologna Italy
| | - D. G. Calò
- Department of Statistical Sciences “Paolo Fortunati”; University of Bologna; Via delle Belle Arti 41 40126 Bologna Italy
| | - E. Scotti
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - F. Bertolini
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - L. Buttazzoni
- Centro di Ricerca per la Produzione delle Carni e il Miglioramento Genetico; Consiglio per la Ricerca in agricoltura e l'analisi dell'Economia Agraria (CREA); Via Salaria 31 00015 Monterotondo (RM) Italy
| | - A. B. Samorè
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - L. Fontanesi
- Department of Agricultural and Food Sciences; Division of Animal Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| |
Collapse
|
127
|
Serum magnesium and risk of new onset heart failure in men: the Kuopio Ischemic Heart Disease Study. Eur J Epidemiol 2016; 31:1035-1043. [DOI: 10.1007/s10654-016-0164-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
|
128
|
Van Goor A, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, Lamont SJ. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress. BMC Genomics 2016; 17:287. [PMID: 27076351 PMCID: PMC4831167 DOI: 10.1186/s12864-016-2601-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/22/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. RESULTS There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. CONCLUSIONS The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the response to heat stress in chickens. Several candidate genes were identified, giving additional insight into potential mechanisms of physiologic response to high ambient temperatures.
Collapse
Affiliation(s)
| | | | - Michael E Persia
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
129
|
Sponder G, Mastrototaro L, Kurth K, Merolle L, Zhang Z, Abdulhanan N, Smorodchenko A, Wolf K, Fleig A, Penner R, Iotti S, Aschenbach JR, Vormann J, Kolisek M. Human CNNM2 is not a Mg(2+) transporter per se. Pflugers Arch 2016; 468:1223-1240. [PMID: 27068403 DOI: 10.1007/s00424-016-1816-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/15/2016] [Accepted: 03/23/2016] [Indexed: 11/26/2022]
Abstract
CNNM2 is associated with the regulation of serum Mg concentration, and when mutated, with severe familial hypomagnesemia. The function and cellular localization of CNNM2 and its isomorphs (Iso) remain controversial. The objective of this work was to examine the following: (1) the transcription-responsiveness of CNNM2 to Mg starvation, (2) the cellular localization of Iso1 and Iso2, (3) the ability of Iso1 and Iso2 to transport Mg(2+), and (4) the complex-forming ability and spectra of potential interactors of Iso1 and Iso2. The five main findings are as follows. (1) Mg-starvation induces CNNM2 overexpression that is markedly higher in JVM-13 cells (lymphoblasts) compared with Jurkat cells (T-lymphocytes). (2) Iso1 and Iso2 localize throughout various subcellular compartments in transgenic HEK293 cells overexpressing Iso1 or Iso2. (3) Iso1 and Iso2 do not transport Mg(2+) in an electrogenic or electroneutral mode in transgenic HEK293 cells overexpressing Iso1 or Iso2. (4) Both Iso1 and Iso2 form complexes of a higher molecular order. (5) The spectrum of potential interactors of Iso1 is ten times smaller than that of Iso2. We conclude that sensitivity of CNNM2 expression to extracellular Mg(2+) depletion depends on cell type. Iso1 and Iso2 exhibit a dispersed pattern of cellular distribution; thus, they are not exclusively integral to the cytoplasmic membrane. Iso1 and Iso2 are not Mg(2+) transporters per se. Both isomorphs form protein complexes, and divergent spectra of potential interactors of Iso1 and Iso2 indicate that each isomorph has a distinctive function. CNNM2 is therefore the first ever identified Mg(2+) homeostatic factor without being a Mg(2+) transporter per se.
Collapse
Affiliation(s)
- Gerhard Sponder
- Institute of Veterinary-Physiology, Free University of Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Lucia Mastrototaro
- Institute of Veterinary-Physiology, Free University of Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Katharina Kurth
- Institute of Veterinary-Physiology, Free University of Berlin, Oertzenweg 19b, 14163, Berlin, Germany
- Landesuntersuchungsanstalt Sachsen, Jägerstraße 8/10, Dresden, Germany
| | - Lucia Merolle
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, Bologna, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 AREA Science Park, Basovizza, Italy
| | - Zheng Zhang
- The Queen's Medical Center, Center for Biomedical Research, 1356 Lusitana Street, UH Tower 8, Honolulu, HI, USA
| | - Nasrin Abdulhanan
- Institute of Veterinary-Physiology, Free University of Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Alina Smorodchenko
- Institute of Veterinary-Physiology, Free University of Berlin, Oertzenweg 19b, 14163, Berlin, Germany
- Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Philippstrasse 12, Berlin, Germany
| | - Katharina Wolf
- Institute of Veterinary-Physiology, Free University of Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Andrea Fleig
- The Queen's Medical Center, Center for Biomedical Research, 1356 Lusitana Street, UH Tower 8, Honolulu, HI, USA
| | - Reinhold Penner
- The Queen's Medical Center, Center for Biomedical Research, 1356 Lusitana Street, UH Tower 8, Honolulu, HI, USA
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, Bologna, Italy
| | - Jörg R Aschenbach
- Institute of Veterinary-Physiology, Free University of Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Jürgen Vormann
- Institute for Prevention and Nutrition (IPEV), Adalperostrasse 37, Munich, Ismaning, Germany
| | - Martin Kolisek
- Institute of Veterinary-Physiology, Free University of Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|
130
|
Kostantin E, Hardy S, Valinsky WC, Kompatscher A, de Baaij JHF, Zolotarov Y, Landry M, Uetani N, Martínez-Cruz LA, Hoenderop JGJ, Shrier A, Tremblay ML. Inhibition of PRL-2·CNNM3 Protein Complex Formation Decreases Breast Cancer Proliferation and Tumor Growth. J Biol Chem 2016; 291:10716-25. [PMID: 26969161 PMCID: PMC4865918 DOI: 10.1074/jbc.m115.705863] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 11/06/2022] Open
Abstract
The oncogenic phosphatase of regenerating liver 2 (PRL-2) has been shown to regulate intracellular magnesium levels by forming a complex through an extended amino acid loop present in the Bateman module of the CNNM3 magnesium transporter. Here we identified highly conserved residues located on this amino acid loop critical for the binding with PRL-2. A single point mutation (D426A) of one of those critical amino acids was found to completely disrupt PRL-2·human Cyclin M 3 (CNNM3) complex formation. Whole-cell voltage clamping revealed that expression of CNNM3 influenced the surface current, whereas overexpression of the binding mutant had no effect, indicating that the binding of PRL-2 to CNNM3 is important for the activity of the complex. Interestingly, overexpression of the CNNM3 D426A-binding mutant in cancer cells decreased their ability to proliferate under magnesium-deprived situations and under anchorage-independent growth conditions, demonstrating a PRL-2·CNNM3 complex-dependent oncogenic advantage in a more stringent environment. We further confirmed the importance of this complex in vivo using an orthotopic xenograft breast cancer model. Finally, because molecular modeling showed that the Asp-426 side chain in CNNM3 buries into the catalytic cavity of PRL-2, we showed that a PRL inhibitor could abrogate complex formation, resulting in a decrease in proliferation of human breast cancer cells. In summary, we provide evidence that this fundamental regulatory aspect of PRL-2 in cancer cells could potentially lead to broadly applicable and innovative therapeutic avenues.
Collapse
Affiliation(s)
- Elie Kostantin
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada, the Departments of Biochemistry and
| | - Serge Hardy
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| | | | - Andreas Kompatscher
- the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands, and
| | - Jeroen H F de Baaij
- the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands, and
| | - Yevgen Zolotarov
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada, the Departments of Biochemistry and
| | - Melissa Landry
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| | - Noriko Uetani
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| | - Luis Alfonso Martínez-Cruz
- the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Joost G J Hoenderop
- the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands, and
| | - Alvin Shrier
- Physiology, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Michel L Tremblay
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada, the Departments of Biochemistry and
| |
Collapse
|
131
|
William JH, Danziger J. Proton-pump inhibitor-induced hypomagnesemia: Current research and proposed mechanisms. World J Nephrol 2016; 5:152-157. [PMID: 26981439 PMCID: PMC4777786 DOI: 10.5527/wjn.v5.i2.152] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Since the early reports nearly a decade ago, proton-pump inhibitor-induced hypomagnesemia (PPIH) has become a well-recognized phenomenon. While many observational studies in the inpatient and outpatient populations have confirmed the association of PPI exposure and serum magnesium concentrations, there are no prospective, controlled studies to support causation. Molecular mechanisms of magnesium transporters, including the pH-dependent regulation of transient receptor potential melastatin-6 transporters in the colonic enterocyte, have been proposed to explain the effect of PPIs on magnesium reabsorption, but may be a small part of a more complicated interplay of molecular biology, pharmacology, and genetic predisposition. This review explores the current state of research in the field of PPIH and the proposed mechanisms of this effect.
Collapse
|
132
|
Khalili H, Sull A, Sarin S, Boivin FJ, Halabi R, Svajger B, Li A, Cui VW, Drysdale T, Bridgewater D. Developmental Origins for Kidney Disease Due to Shroom3 Deficiency. J Am Soc Nephrol 2016; 27:2965-2973. [PMID: 26940091 DOI: 10.1681/asn.2015060621] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/14/2016] [Indexed: 01/13/2023] Open
Abstract
CKD is a significant health concern with an underlying genetic component. Multiple genome-wide association studies (GWASs) strongly associated CKD with the shroom family member 3 (SHROOM3) gene, which encodes an actin-associated protein important in epithelial morphogenesis. However, the role of SHROOM3 in kidney development and function is virtually unknown. Studies in zebrafish and rat showed that alterations in Shroom3 can result in glomerular dysfunction. Furthermore, human SHROOM3 variants can induce impaired kidney function in animal models. Here, we examined the temporal and spatial expression of Shroom3 in the mammalian kidney. We detected Shroom3 expression in the condensing mesenchyme, Bowman's capsule, and developing and mature podocytes in mice. Shroom3 null (Shroom3Gt/Gt) mice showed marked glomerular abnormalities, including cystic and collapsing/degenerating glomeruli, and marked disruptions in podocyte arrangement and morphology. These podocyte-specific abnormalities are associated with altered Rho-kinase/myosin II signaling and loss of apically distributed actin. Additionally, Shroom3 heterozygous (Shroom3Gt/+) mice showed developmental irregularities that manifested as adult-onset glomerulosclerosis and proteinuria. Taken together, our results establish the significance of Shroom3 in mammalian kidney development and progression of kidney disease. Specifically, Shroom3 maintains normal podocyte architecture in mice via modulation of the actomyosin network, which is essential for podocyte function. Furthermore, our findings strongly support the GWASs that suggest a role for SHROOM3 in human kidney disease.
Collapse
Affiliation(s)
- Hadiseh Khalili
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Sanjay Sarin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Felix J Boivin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rami Halabi
- Departments of Physiology and Pharmacology and
| | - Bruno Svajger
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Aihua Li
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Valerie Wenche Cui
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Thomas Drysdale
- Departments of Physiology and Pharmacology and Pediatrics, University of Western Ontario, London, Ontario, Canada; and
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Hamilton Center for Kidney Research, St. Josephs Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
133
|
Chang YM, Hadox E, Szladovits B, Garden OA. Serum Biochemical Phenotypes in the Domestic Dog. PLoS One 2016; 11:e0149650. [PMID: 26919479 PMCID: PMC4769346 DOI: 10.1371/journal.pone.0149650] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/03/2016] [Indexed: 11/18/2022] Open
Abstract
The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species.
Collapse
Affiliation(s)
- Yu-Mei Chang
- Research Office, The Royal Veterinary College, Camden Campus, Royal College Street, London, NW1 OTU, United Kingdom
| | - Erin Hadox
- Department of Clinical Science and Services, Regulatory T Cell Laboratory, The Royal Veterinary College, Camden Campus, Royal College Street, London, NW1 OTU, United Kingdom
| | - Balazs Szladovits
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hawkshead Campus, North Mymms, Hatfield, Hertfordshire, AL9 7TA, United Kingdom
| | - Oliver A. Garden
- Department of Clinical Science and Services, Regulatory T Cell Laboratory, The Royal Veterinary College, Camden Campus, Royal College Street, London, NW1 OTU, United Kingdom
- * E-mail:
| |
Collapse
|
134
|
Kieboom BCT, Niemeijer MN, Leening MJG, van den Berg ME, Franco OH, Deckers JW, Hofman A, Zietse R, Stricker BH, Hoorn EJ. Serum Magnesium and the Risk of Death From Coronary Heart Disease and Sudden Cardiac Death. J Am Heart Assoc 2016; 5:e002707. [PMID: 26802105 PMCID: PMC4859391 DOI: 10.1161/jaha.115.002707] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Low serum magnesium has been implicated in cardiovascular mortality, but results are conflicting and the pathway is unclear. We studied the association of serum magnesium with coronary heart disease (CHD) mortality and sudden cardiac death (SCD) within the prospective population-based Rotterdam Study, with adjudicated end points and long-term follow-up. METHODS AND RESULTS Nine-thousand eight-hundred and twenty participants (mean age 65.1 years, 56.8% female) were included with a median follow-up of 8.7 years. We used multivariable Cox proportional hazard models and found that a 0.1 mmol/L increase in serum magnesium level was associated with a lower risk for CHD mortality (hazard ratio: 0.82, 95% CI 0.70-0.96). Furthermore, we divided serum magnesium in quartiles, with the second and third quartile combined as reference group (0.81-0.88 mmol/L). Low serum magnesium (≤0.80 mmol/L) was associated with an increased risk of CHD mortality (N=431, hazard ratio: 1.36, 95% CI 1.09-1.69) and SCD (N=217, hazard ratio: 1.54, 95% CI 1.12-2.11). Low serum magnesium was associated with accelerated subclinical atherosclerosis (expressed as increased carotid intima-media thickness: +0.013 mm, 95% CI 0.005-0.020) and increased QT-interval, mainly through an effect on heart rate (RR-interval: -7.1 ms, 95% CI -13.5 to -0.8). Additional adjustments for carotid intima-media thickness and heart rate did not change the associations with CHD mortality and SCD. CONCLUSIONS Low serum magnesium is associated with an increased risk of CHD mortality and SCD. Although low magnesium was associated with both carotid intima-media thickness and heart rate, this did not explain the relationship between serum magnesium and CHD mortality or SCD. Future studies should focus on why magnesium associates with CHD mortality and SCD and whether intervention reduces these risks.
Collapse
Affiliation(s)
- Brenda C. T. Kieboom
- Department of EpidemiologyErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
- Department of Internal MedicineErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
- Inspectorate for Health CareUtrechtThe Netherlands
| | - Maartje N. Niemeijer
- Department of EpidemiologyErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Maarten J. G. Leening
- Department of EpidemiologyErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
- Department of CardiologyErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMA
| | - Marten E. van den Berg
- Department of Medical InformaticsErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Oscar H. Franco
- Department of EpidemiologyErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Jaap W. Deckers
- Department of CardiologyErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Albert Hofman
- Department of EpidemiologyErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMA
| | - Robert Zietse
- Department of Internal MedicineErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Bruno H. Stricker
- Department of EpidemiologyErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
- Department of Internal MedicineErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
- Inspectorate for Health CareUtrechtThe Netherlands
| | - Ewout J. Hoorn
- Department of Internal MedicineErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
135
|
|
136
|
Genome-wide association study reveals two loci for serum magnesium concentrations in European-American children. Sci Rep 2015; 5:18792. [PMID: 26685716 PMCID: PMC4685389 DOI: 10.1038/srep18792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/25/2015] [Indexed: 01/30/2023] Open
Abstract
Magnesium ions are essential to the basic metabolic processes in the human body. Previous genetic studies indicate that serum magnesium levels are highly heritable, and a few genetic loci have been reported involving regulation of serum magnesium in adults. In this study, we examined if additional loci influence serum magnesium levels in children. We performed a genome-wide association study (GWAS) on 2,267 European-American children genotyped on the Illumina HumanHap550 or Quad610 arrays, sharing over 500,000 markers, as the discovery cohort and 257 European-American children genotyped on the Illumina Human OmniExpress arrays as the replication cohort. After genotype imputation, the strongest associations uncovered were with imputed SNPs residing within the FGFR2 (rs1219515, P = 1.1 × 10(-5)) and PAPSS2 (rs1969821, P = 7.2 × 10(-6)) loci in the discovery cohort, both of which were robustly replicated in our independent patient cohort (rs1219515, P = 3.5 × 10(-3); rs1969821, P = 1.2 × 10(-2)). The associations at the FGFR2 locus were also weakly replicated in a dataset from a previous GWAS of serum magnesium in European adults. Our results indicate that FGFR2 and PAPSS2 may play an important role in the regulation of magnesium homeostasis in children of European-American ancestry.
Collapse
|
137
|
|
138
|
|
139
|
Yang C, Li C, Wang Q, Chung D, Zhao H. Implications of pleiotropy: challenges and opportunities for mining Big Data in biomedicine. Front Genet 2015; 6:229. [PMID: 26175753 PMCID: PMC4485215 DOI: 10.3389/fgene.2015.00229] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/15/2015] [Indexed: 01/23/2023] Open
Abstract
Pleiotropy arises when a locus influences multiple traits. Rich GWAS findings of various traits in the past decade reveal many examples of this phenomenon, suggesting the wide existence of pleiotropic effects. What underlies this phenomenon is the biological connection among seemingly unrelated traits/diseases. Characterizing the molecular mechanisms of pleiotropy not only helps to explain the relationship between diseases, but may also contribute to novel insights concerning the pathological mechanism of each specific disease, leading to better disease prevention, diagnosis and treatment. However, most pleiotropic effects remain elusive because their functional roles have not been systematically examined. A systematic investigation requires availability of qualified measurements at multilayered biological processes (e.g., transcription and translation). The rise of Big Data in biomedicine, such as high-quality multi-omics data, biomedical imaging data and electronic medical records of patients, offers us an unprecedented opportunity to investigate pleiotropy. There will be a great need of computationally efficient and statistically rigorous methods for integrative analysis of these Big Data in biomedicine. In this review, we outline many opportunities and challenges in methodology developments for systematic analysis of pleiotropy, and highlight its implications on disease prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Can Yang
- Department of Mathematics, Hong Kong Baptist UniversityHong Kong, Hong Kong
- Hong Kong Baptist University Institute of Research and Continuing EducationShenzhen, China
| | - Cong Li
- Program in Computational Biology and Bioinformatics, Yale UniversityNew Haven, CT, USA
| | - Qian Wang
- Program in Computational Biology and Bioinformatics, Yale UniversityNew Haven, CT, USA
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South CarolinaCharleston, SC, USA
| | - Hongyu Zhao
- Program in Computational Biology and Bioinformatics, Yale UniversityNew Haven, CT, USA
- Department of Biostatistics, Yale School of Public HealthNew Haven, CT, USA
- Department of Genetics, Yale School of MedicineNew Haven, CT, USA
- VA Cooperative Studies Program Coordinating CenterWest Haven, CT, USA
| |
Collapse
|
140
|
Tin A, Köttgen A, Folsom AR, Maruthur NM, Tajuddin SM, Nalls MA, Evans MK, Zonderman AB, Friedrich CA, Boerwinkle E, Coresh J, Kao WHL. Genetic loci for serum magnesium among African-Americans and gene-environment interaction at MUC1 and TRPM6 in European-Americans: the Atherosclerosis Risk in Communities (ARIC) study. BMC Genet 2015; 16:56. [PMID: 26058915 PMCID: PMC4462077 DOI: 10.1186/s12863-015-0219-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 05/15/2015] [Indexed: 02/06/2023] Open
Abstract
Background Low serum magnesium levels have been associated with multiple chronic diseases. The regulation of serum magnesium homeostasis is not well understood. A previous genome-wide association study (GWAS) of European ancestry (EA) populations identified nine loci for serum magnesium. No such study has been conducted in African-Americans, nor has there been an evaluation of the interaction of magnesium-associated SNPs with environmental factors. The goals of this study were to identify genetic loci associated with serum magnesium in an African-American (AA) population using both genome-wide and candidate region interrogation approaches and to evaluate gene-environment interaction for the magnesium-associated variants in both EA and AA populations. We conducted a GWAS of serum magnesium in 2737 AA participants of the Atherosclerosis Risk in Communities (ARIC) Study and interrogated the regions of the nine published candidate loci in these results. Literature search identified the influence of progesterone on MUC1 expression and insulin on TRPM6 expression. Results The GWAS approach in African-American participants identified a locus near MUC1 as genome-wide significant (rs2974937, beta = −0.013, p = 6.1x10−9). The candidate region interrogation approach identified two of the nine loci previously discovered in EA populations as containing SNPs that were significantly associated in African-American participants (SHROOM3 and TRPM6). The index variants at these three loci together explained 2.8 % of the variance in serum magnesium concentration in ARIC African-American participants. On the test of gene-environment interaction in ARIC EA participants, the index variant at MUC1 had 2.5 times stronger association in postmenopausal women with progestin use (beta = −0.028, p = 7.3x10−5) than in those without any hormone use (beta = −0.011, p = 7.0x10−8, p for interaction 0.03). At TRPM6, the index variant had 1.6 times stronger association in those with lower fasting insulin levels (<80pmol/L: beta = −0.013, p = 1.6x10−7; ≥80pmol/L: beta = −0.008, p = 1.8x10−2, p for interaction 0.03). Conclusions We identified three loci that explained 2.8 % of the variance in serum magnesium concentration in ARIC African-American participants. Following-up on functional studies of gene expression identified gene-environment interactions between progestin use and MUC1 and between insulin and TRPM6 on serum magnesium concentration in ARIC European-American participants. These results extend our understanding of the metabolism of serum magnesium. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0219-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrienne Tin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Anna Köttgen
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,University Medical Center Freiburg, Freiburg, Germany.
| | - Aaron R Folsom
- University of Minnesota School of Public Health, Minneapolis, MN, USA.
| | - Nisa M Maruthur
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Salman M Tajuddin
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Mike A Nalls
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Michele K Evans
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Alan B Zonderman
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | - Eric Boerwinkle
- University of Texas School of Public Health, Houston, TX, USA.
| | - Josef Coresh
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | | |
Collapse
|
141
|
Goodlin GT, Roos AK, Roos TR, Hawkins C, Beache S, Baur S, Kim SK. Applying personal genetic data to injury risk assessment in athletes. PLoS One 2015; 10:e0122676. [PMID: 25919592 PMCID: PMC4412532 DOI: 10.1371/journal.pone.0122676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 02/24/2015] [Indexed: 01/08/2023] Open
Abstract
Recent studies have identified genetic markers associated with risk for certain sports-related injuries and performance-related conditions, with the hope that these markers could be used by individual athletes to personalize their training and diet regimens. We found that we could greatly expand the knowledge base of sports genetic information by using published data originally found in health and disease studies. For example, the results from large genome-wide association studies for low bone mineral density in elderly women can be re-purposed for low bone mineral density in young endurance athletes. In total, we found 124 single-nucleotide polymorphisms associated with: anterior cruciate ligament tear, Achilles tendon injury, low bone mineral density and stress fracture, osteoarthritis, vitamin/mineral deficiencies, and sickle cell trait. Of these single nucleotide polymorphisms, 91% have not previously been used in sports genetics. We conducted a pilot program on fourteen triathletes using this expanded knowledge base of genetic variants associated with sports injury. These athletes were genotyped and educated about how their individual genetic make-up affected their personal risk profile during an hour-long personal consultation. Overall, participants were favorable of the program, found it informative, and most acted upon their genetic results. This pilot program shows that recent genetic research provides valuable information to help reduce sports injuries and to optimize nutrition. There are many genetic studies for health and disease that can be mined to provide useful information to athletes about their individual risk for relevant injuries.
Collapse
Affiliation(s)
- Gabrielle T Goodlin
- Departments of Developmental Biology and Genetics, Stanford University Medical Center, Stanford, CA, 94305, United States of America
| | - Andrew K Roos
- Division of Epidemiology, Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, 94305, United States of America
| | - Thomas R Roos
- Division of Epidemiology, Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, 94305, United States of America
| | - Claire Hawkins
- Department of Human Biology, Stanford University, Stanford, CA, 94305, United States of America
| | - Sydney Beache
- Department of Human Biology, Stanford University, Stanford, CA, 94305, United States of America
| | - Stephen Baur
- Departments of Developmental Biology and Genetics, Stanford University Medical Center, Stanford, CA, 94305, United States of America
| | - Stuart K Kim
- Departments of Developmental Biology and Genetics, Stanford University Medical Center, Stanford, CA, 94305, United States of America
| |
Collapse
|
142
|
Chang X, Li J, Guo Y, Wei Z, Mentch FD, Hou C, Zhao Y, Qiu H, Kim C, Sleiman PMA, Hakonarson H. Genome-wide association study of serum minerals levels in children of different ethnic background. PLoS One 2015; 10:e0123499. [PMID: 25886283 PMCID: PMC4401557 DOI: 10.1371/journal.pone.0123499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/03/2015] [Indexed: 01/06/2023] Open
Abstract
Calcium, magnesium, potassium, sodium, chloride and phosphorus are the major dietary minerals involved in various biological functions and are commonly measured in the blood serum. Sufficient mineral intake is especially important for children due to their rapid growth. Currently, the genetic mechanisms influencing serum mineral levels are poorly understood, especially for children. We carried out a genome-wide association (GWA) study on 5,602 European-American children and 4,706 African-American children who had mineral measures available in their electronic medical records (EMR). While no locus met the criteria for genome-wide significant association, our results demonstrated a nominal association of total serum calcium levels with a missense variant in the calcium –sensing receptor (CASR) gene on 3q13 (rs1801725, P = 1.96 × 10-3) in the African-American pediatric cohort, a locus previously reported in Caucasians. We also confirmed the association result in our pediatric European-American cohort (P = 1.38 × 10-4). We further replicated two other loci associated with serum calcium levels in the European-American cohort (rs780094, GCKR, P = 4.26 × 10-3; rs10491003, GATA3, P = 0.02). In addition, we replicated a previously reported locus on 1q21, demonstrating association of serum magnesium levels with MUC1 (rs4072037, P = 2.04 × 10-6). Moreover, in an extended gene-based association analysis we uncovered evidence for association of calcium levels with the previously reported gene locus DGKD in both European-American children and African-American children. Taken together, our results support a role for CASR and DGKD mediated calcium regulation in both African-American and European-American children, and corroborate the association of calcium levels with GCKR and GATA3, and the association of magnesium levels with MUC1 in the European-American children.
Collapse
Affiliation(s)
- Xiao Chang
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jin Li
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Yiran Guo
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Frank D. Mentch
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Cuiping Hou
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Yan Zhao
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Haijun Qiu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Cecilia Kim
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Patrick M. A. Sleiman
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail: (PS); (HH)
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail: (PS); (HH)
| |
Collapse
|
143
|
Chan KHK, Chacko SA, Song Y, Cho M, Eaton CB, Wu WCH, Liu S. Genetic variations in magnesium-related ion channels may affect diabetes risk among African American and Hispanic American women. J Nutr 2015; 145:418-24. [PMID: 25733456 PMCID: PMC4336527 DOI: 10.3945/jn.114.203489] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Prospective studies consistently link low magnesium intake to higher type 2 diabetes (T2D) risk. OBJECTIVE We examined the association of common genetic variants [single nucleotide polymorphisms (SNPs)] in genes related to magnesium homeostasis with T2D risk and potential interactions with magnesium intake. METHODS Using the Women's Health Initiative-SNP Health Association Resource (WHI-SHARe) study, we identified 17 magnesium-related ion channel genes (583 SNPs) and examined their associations with T2D risk in 7287 African-American (AA; n = 1949 T2D cases) and 3285 Hispanic-American (HA; n = 611 T2D cases) postmenopausal women. We performed both single- and multiple-locus haplotype analyses. RESULTS Among AA women, carriers of each additional copy of SNP rs6584273 in cyclin mediator 1 (CNNM1) had 16% lower T2D risk [OR: 0.84; false discovery rate (FDR)-adjusted P = 0.02]. Among HA women, several variants were significantly associated with T2D risk, including rs10861279 in solute carrier family 41 (anion exchanger), member 2 (SLC41A2) (OR: 0.54; FDR-adjusted P = 0.04), rs7174119 in nonimprinted in Prader-Willi/Angelman syndrome 1 (NIPA1) (OR: 1.27; FDR-adjusted P = 0.04), and 2 SNPs in mitochondrial RNA splicing 2 (MRS2) (rs7738943: OR = 1.55, FDR-adjusted P = 0.01; rs1056285: OR = 1.48, FDR-adjusted P = 0.02). Even with the most conservative Bonferroni adjustment, two 2-SNP-haplotypes in SLC41A2 and MRS2 region were significantly associated with T2D risk (rs12582312-rs10861279: P = 0.0006; rs1056285-rs7738943: P = 0.002). Among women with magnesium intake in the lowest 30% (AA: ≤0.164 g/d; HA: ≤0.185 g/d), 4 SNP signals were strengthened [rs11590362 in claudin 19 (CLDN19), rs823154 in SLC41A1, rs5929706 and rs5930817 in membra; HA: ≥0.313 g/d), rs6584273 in CNNM1 (OR: 0.71; FDR-adjusted P = 0.04) and rs1800467 in potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) (OR: 2.50; FDR-adjusted P = 0.01) were significantly associated with T2D risk. CONCLUSIONS Our findings suggest important associations between genetic variations in magnesium-related ion channel genes and T2D risk in AA and HA women that vary by amount of magnesium intake.
Collapse
Affiliation(s)
| | - Sara A Chacko
- Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Yiqing Song
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN; Departments of
| | - Michele Cho
- Medicine and,Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Charles B Eaton
- Family Medicine,,Epidemiology, and,Center for Primary Care and Prevention, Memorial Hospital of Rhode Island, Pawtucket, RI
| | - Wen-Chih H Wu
- Medicine, Warren Alpert Medical School, Brown University, Providence, RI;,Vascular Research Laboratory, Providence US Department of Veterans Affairs Medical Center, Providence, RI; and
| | - Simin Liu
- Department of Epidemiology, and Departments of Medicine, Warren Alpert Medical School, Brown University, Providence, RI; Medicine and Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA; Division of Endocrinology, Rhode Island Hospital, Providence, RI
| |
Collapse
|
144
|
Demirkan A, Henneman P, Verhoeven A, Dharuri H, Amin N, van Klinken JB, Karssen LC, de Vries B, Meissner A, Göraler S, van den Maagdenberg AMJM, Deelder AM, C ’t Hoen PA, van Duijn CM, van Dijk KW. Insight in genome-wide association of metabolite quantitative traits by exome sequence analyses. PLoS Genet 2015; 11:e1004835. [PMID: 25569235 PMCID: PMC4287344 DOI: 10.1371/journal.pgen.1004835] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022] Open
Abstract
Metabolite quantitative traits carry great promise for epidemiological studies, and their genetic background has been addressed using Genome-Wide Association Studies (GWAS). Thus far, the role of less common variants has not been exhaustively studied. Here, we set out a GWAS for metabolite quantitative traits in serum, followed by exome sequence analysis to zoom in on putative causal variants in the associated genes. 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy experiments yielded successful quantification of 42 unique metabolites in 2,482 individuals from The Erasmus Rucphen Family (ERF) study. Heritability of metabolites were estimated by SOLAR. GWAS was performed by linear mixed models, using HapMap imputations. Based on physical vicinity and pathway analyses, candidate genes were screened for coding region variation using exome sequence data. Heritability estimates for metabolites ranged between 10% and 52%. GWAS replicated three known loci in the metabolome wide significance: CPS1 with glycine (P-value = 1.27×10−32), PRODH with proline (P-value = 1.11×10−19), SLC16A9 with carnitine level (P-value = 4.81×10−14) and uncovered a novel association between DMGDH and dimethyl-glycine (P-value = 1.65×10−19) level. In addition, we found three novel, suggestively significant loci: TNP1 with pyruvate (P-value = 1.26×10−8), KCNJ16 with 3-hydroxybutyrate (P-value = 1.65×10−8) and 2p12 locus with valine (P-value = 3.49×10−8). Exome sequence analysis identified potentially causal coding and regulatory variants located in the genes CPS1, KCNJ2 and PRODH, and revealed allelic heterogeneity for CPS1 and PRODH. Combined GWAS and exome analyses of metabolites detected by high-resolution 1H-NMR is a robust approach to uncover metabolite quantitative trait loci (mQTL), and the likely causative variants in these loci. It is anticipated that insight in the genetics of intermediate phenotypes will provide additional insight into the genetics of complex traits. Human metabolic individuality is under strict control of genetic and environmental factors. In our study, we aimed to find the genetic determinants of circulating molecules in sera of large set of individuals representing the general population. First, we performed a hypothesis-free genome wide screen in this population to identify genetic regions of interest. Our study confirmed four known gene metabolite connections, but also pointed to four novel ones. Genome-wide screens enriched for common intergenic variants may miss causal genetic variations directly changing the protein sequence. To investigate this further, we zoomed into regions of interest and tested whether the association signals obtained in the first stage were direct, or whether they represent causal variations, which were not captured in the initial panel. These subsequent tests showed that protein coding and regulatory variations are involved in metabolite levels. For two genomic regions we also found that genes harbour more than one causal variant influencing metabolite levels independent of each other. We also observed strong connection between markers of cardio-metabolic health and metabolites. Taken together, our novel loci are of interest for further research to investigate the causal relation to for instance type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Ayşe Demirkan
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter Henneman
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Harish Dharuri
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jan Bert van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lennart C. Karssen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Axel Meissner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sibel Göraler
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - André M. Deelder
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A. C ’t Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
145
|
Hirata Y, Funato Y, Miki H. Basolateral sorting of the Mg²⁺ transporter CNNM4 requires interaction with AP-1A and AP-1B. Biochem Biophys Res Commun 2014; 455:184-9. [PMID: 25449265 DOI: 10.1016/j.bbrc.2014.10.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022]
Abstract
Ancient conserved domain protein/cyclin M (CNNM) 4 is an evolutionarily conserved Mg(2+) transporter that localizes at the basolateral membrane of the intestinal epithelia. Here, we show the complementary importance of clathrin adaptor protein (AP) complexes AP-1A and AP-1B in basolateral sorting of CNNM4. We first confirmed the basolateral localization of both endogenous and ectopically expressed CNNM4 in Madin-Darby Canine Kidney cells, which form highly polarized epithelia in culture. Single knockdown of μ1B, a cargo-recognition subunit of AP-1B, did not affect basolateral localization, but simultaneous knockdown of the μ1A subunit of AP-1A abrogated localization. Mutational analyses showed the importance of three conserved dileucine motifs in CNNM4 for both basolateral sorting and interaction with μ1A and μ1B. These results imply that CNNM4 is sorted to the basolateral membrane by the complementary function of AP-1A and AP-1B.
Collapse
Affiliation(s)
- Yusuke Hirata
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
146
|
Konrad M, Schlingmann KP. Inherited disorders of renal hypomagnesaemia. Nephrol Dial Transplant 2014; 29 Suppl 4:iv63-71. [PMID: 25165187 DOI: 10.1093/ndt/gfu198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The kidney plays a key role in the maintenance of normal magnesium balance. The distal tubule of the kidney, namely the thick ascending limb of the loop of Henle and the distal convoluted tubule, is crucial for the regulation of serum magnesium levels and body magnesium content. The identification of molecular defects related to rare inherited magnesium losing disorders has contributed greatly to a better understanding of the process of renal magnesium handling. Since the number of genetic defects related to magnesium metabolism is still increasing, it might be expected that our knowledge on magnesium physiology will further improve. This knowledge will hopefully lead to therapeutic strategies that enable specific therapies for patients suffering from the symptoms and possible sequelae of chronic magnesium depletion.
Collapse
Affiliation(s)
- Martin Konrad
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | | |
Collapse
|
147
|
Feenstra B, Pasternak B, Geller F, Carstensen L, Wang T, Huang F, Eitson JL, Hollegaard MV, Svanström H, Vestergaard M, Hougaard DM, Schoggins JW, Jan LY, Melbye M, Hviid A. Common variants associated with general and MMR vaccine-related febrile seizures. Nat Genet 2014; 46:1274-82. [PMID: 25344690 PMCID: PMC4244308 DOI: 10.1038/ng.3129] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022]
Abstract
Febrile seizures represent a recognized serious adverse event following measles, mumps, and rubella (MMR) vaccination. We conducted a series of genome-wide association scans comparing children with MMR-related febrile seizures, children with febrile seizures unrelated to vaccination, and controls with no history of febrile seizures. Two loci were distinctly associated with MMR-related febrile seizures, harboring the interferon-stimulated gene IFI44L (rs273259; P = 5.9×10−12 vs. controls; P =1.2×10−9 vs. MMR-unrelated febrile seizures) and the measles virus receptor CD46 (rs1318653; P = 9.6×10−11 vs. controls; P = 1.6×10−9 vs. MMR-unrelated febrile seizures). Furthermore, four loci were associated with febrile seizures in general implicating the sodium channel genes SCN1A (rs6432860; P = 2.2×10−16) and SCN2A (rs3769955; P = 3.1×10−10), a TMEM16 family gene (TMEM16C; rs114444506; P = 3.7×10−20), and a region associated with magnesium levels (12q21.33; rs11105468; P = 3.4×10−11). Finally, functional relevance of TMEM16C was demonstrated with electrophysiological experiments in wild-type and knockout rats.
Collapse
Affiliation(s)
- Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Björn Pasternak
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Lisbeth Carstensen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Tongfei Wang
- 1] Department of Physiology, University of California, San Francisco, San Francisco, California, USA. [2] Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA. [3] Howard Hughes Medical Institute, San Francisco, California, USA
| | - Fen Huang
- 1] Department of Physiology, University of California, San Francisco, San Francisco, California, USA. [2] Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA. [3] Howard Hughes Medical Institute, San Francisco, California, USA
| | - Jennifer L Eitson
- Department of Microbiology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Mads V Hollegaard
- Danish Centre for Neonatal Screening, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Svanström
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mogens Vestergaard
- Research Unit and Section for General Practice, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - David M Hougaard
- Danish Centre for Neonatal Screening, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Lily Yeh Jan
- 1] Department of Physiology, University of California, San Francisco, San Francisco, California, USA. [2] Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA. [3] Howard Hughes Medical Institute, San Francisco, California, USA
| | - Mads Melbye
- 1] Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark. [2] Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. [3] Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
148
|
Canonical correlation analysis for gene-based pleiotropy discovery. PLoS Comput Biol 2014; 10:e1003876. [PMID: 25329069 PMCID: PMC4199483 DOI: 10.1371/journal.pcbi.1003876] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/25/2014] [Indexed: 11/23/2022] Open
Abstract
Genome-wide association studies have identified a wealth of genetic variants involved in complex traits and multifactorial diseases. There is now considerable interest in testing variants for association with multiple phenotypes (pleiotropy) and for testing multiple variants for association with a single phenotype (gene-based association tests). Such approaches can increase statistical power by combining evidence for association over multiple phenotypes or genetic variants respectively. Canonical Correlation Analysis (CCA) measures the correlation between two sets of multidimensional variables, and thus offers the potential to combine these two approaches. To apply CCA, we must restrict the number of attributes relative to the number of samples. Hence we consider modules of genetic variation that can comprise a gene, a pathway or another biologically relevant grouping, and/or a set of phenotypes. In order to do this, we use an attribute selection strategy based on a binary genetic algorithm. Applied to a UK-based prospective cohort study of 4286 women (the British Women's Heart and Health Study), we find improved statistical power in the detection of previously reported genetic associations, and identify a number of novel pleiotropic associations between genetic variants and phenotypes. New discoveries include gene-based association of NSF with triglyceride levels and several genes (ACSM3, ERI2, IL18RAP, IL23RAP and NRG1) with left ventricular hypertrophy phenotypes. In multiple-phenotype analyses we find association of NRG1 with left ventricular hypertrophy phenotypes, fibrinogen and urea and pleiotropic relationships of F7 and F10 with Factor VII, Factor IX and cholesterol levels. Pleiotropy appears when a variation in one gene affects to several non-related phenotypes. The study of this phenomenon can be useful in gene function discovery, but also in the study of the evolution of a gene. In this paper, we present a methodology, based on Canonical Correlation Analysis, which studies gene-centered multiple association of the variation of SNPs in one or a set of genes with one or a set of phenotypes. The resulting methodology can be applied in gene-centered association analysis, multiple association analysis or pleiotropic pattern discovery. We apply this methodology with a genotype dataset and a set of cardiovascular related phenotypes, and discover new gene association between gene NRG1 and phenotypes related with left ventricular hypertrophy, and pleiotropic effects of this gene with other phenotypes as coagulation factors and urea or pleiotropic effects between coagulation related genes F7 and F10 with coagulation factors and cholesterol levels. This methodology could be also used to find multiple associations in other omics datasets.
Collapse
|
149
|
Leslie R, O'Donnell CJ, Johnson AD. GRASP: analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics 2014; 30:i185-94. [PMID: 24931982 DOI: 10.1093/bioinformatics/btu273] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
SUMMARY We created a deeply extracted and annotated database of genome-wide association studies (GWAS) results. GRASP v1.0 contains >6.2 million SNP-phenotype association from among 1390 GWAS studies. We re-annotated GWAS results with 16 annotation sources including some rarely compared to GWAS results (e.g. RNAediting sites, lincRNAs, PTMs). MOTIVATION To create a high-quality resource to facilitate further use and interpretation of human GWAS results in order to address important scientific questions. RESULTS GWAS have grown exponentially, with increases in sample sizes and markers tested, and continuing bias toward European ancestry samples. GRASP contains >100 000 phenotypes, roughly: eQTLs (71.5%), metabolite QTLs (21.2%), methylation QTLs (4.4%) and diseases, biomarkers and other traits (2.8%). cis-eQTLs, meQTLs, mQTLs and MHC region SNPs are highly enriched among significant results. After removing these categories, GRASP still contains a greater proportion of studies and results than comparable GWAS catalogs. Cardiovascular disease and related risk factors pre-dominate remaining GWAS results, followed by immunological, neurological and cancer traits. Significant results in GWAS display a highly gene-centric tendency. Sex chromosome X (OR = 0.18[0.16-0.20]) and Y (OR = 0.003[0.001-0.01]) genes are depleted for GWAS results. Gene length is correlated with GWAS results at nominal significance (P ≤ 0.05) levels. We show this gene-length correlation decays at increasingly more stringent P-value thresholds. Potential pleotropic genes and SNPs enriched for multi-phenotype association in GWAS are identified. However, we note possible population stratification at some of these loci. Finally, via re-annotation we identify compelling functional hypotheses at GWAS loci, in some cases unrealized in studies to date. CONCLUSION Pooling summary-level GWAS results and re-annotating with bioinformatics predictions and molecular features provides a good platform for new insights. AVAILABILITY The GRASP database is available at http://apps.nhlbi.nih.gov/grasp.
Collapse
Affiliation(s)
- Richard Leslie
- Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, University of Massachusetts Medical School, Worcester, MA 01655 and Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USACardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, University of Massachusetts Medical School, Worcester, MA 01655 and Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher J O'Donnell
- Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, University of Massachusetts Medical School, Worcester, MA 01655 and Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USACardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, University of Massachusetts Medical School, Worcester, MA 01655 and Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrew D Johnson
- Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, University of Massachusetts Medical School, Worcester, MA 01655 and Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
150
|
Islam Z, Hayashi N, Inoue H, Umezawa T, Kimura Y, Doi H, Romero MF, Hirose S, Kato A. Identification and lateral membrane localization of cyclin M3, likely to be involved in renal Mg2+ handling in seawater fish. Am J Physiol Regul Integr Comp Physiol 2014; 307:R525-37. [PMID: 24965791 DOI: 10.1152/ajpregu.00032.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The kidney of marine teleosts is the major site of Mg(2+) excretion and produces urine with a high Mg(2+) concentration. However, the transporters involved in Mg(2+) excretion are poorly understood. The cyclin M (Cnnm; also known as ancient conserved domain protein) family comprises membrane proteins homologous to the bacterial Mg(2+) and Co(2+) efflux protein, CorC. To understand the molecular mechanism of Mg(2+) homeostasis in marine teleosts, we analyzed the expression of the Cnnm family genes in the seawater (SW) pufferfish, torafugu (Takifugu rubripes), and the closely related euryhaline species, mefugu (Takifugu obscurus). Database mining and phylogenetic analysis indicated that the Takifugu genome contains six members of the Cnnm family: two orthologs of Cnnm1, one of Cnnm2, one of Cnnm3, and two of Cnnm4. RT-PCR analyses indicated that Cnnm2, Cnnm3, and Cnnm4a are expressed in the kidney, whereas other members are mainly expressed in the brain. Renal expression of Cnnm3 was upregulated in SW mefugu, whereas renal expression of Cnnm2 was upregulated in freshwater (FW) mefugu. No significant difference was observed in renal expression of Cnnm4a between SW and FW mefugu. In situ hybridization and immunohistochemical analyses of the SW mefugu kidney revealed that Cnnm3 is expressed in the proximal tubule, and its product localizes to the lateral membrane. When Cnnm3 was expressed in Xenopus laevis oocytes, whole cellular Mg(2+) content and free intracellular Mg(2+) activity significantly decreased. These results suggest that Cnnm3 is involved in body fluid Mg(2+) homeostasis in marine teleosts.
Collapse
Affiliation(s)
- Zinia Islam
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Naoko Hayashi
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Hana Inoue
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Umezawa
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuuri Kimura
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroyuki Doi
- Shimonoseki Marine Science Museum, Shimonoseki, Japan
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota; Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota; and O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Akira Kato
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota;
| |
Collapse
|