101
|
Kamada F, Mashimo Y, Inoue H, Shao C, Hirota T, Doi S, Kameda M, Fujiwara H, Fujita K, Enomoto T, Sasaki S, Endo H, Takayanagi R, Nakazawa C, Morikawa T, Morikawa M, Miyabayashi S, Chiba Y, Tamura G, Shirakawa T, Matsubara Y, Hata A, Tamari M, Suzuki Y. The GSTP1 Gene Is a Susceptibility Gene for Childhood Asthma and the GSTM1 Gene Is a Modifier of the GSTP1 Gene. Int Arch Allergy Immunol 2007; 144:275-86. [PMID: 17643058 DOI: 10.1159/000106316] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 04/11/2007] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Bronchial asthma is a chronic airway disorder characterized by bronchial inflammation. Oxidative stress is a key component of inflammation. Glutathione S-transferase P1 (GSTP1), the abundant isoform of glutathione S-transferases (GSTs) in lung epithelium, plays a key role in cellular protection against oxidative stress. Several studies have shown that the GSTP1 geneis involved in the pathogenesis of asthma and a gene-gene interaction may occur within the GST gene superfamily. METHODS We screened single-nucleotide polymorphisms (SNPs) at the GSTP1 locus and performed an association study in the Japanese population using two independent case-control groups (group 1: 391 pediatric patients with asthma, 462 adult patients with asthma, and 639 controls, and group 2: 115 pediatric patients with asthma and 184 controls). The effect of GSTM1 null/present genotype on the association between GSTP1 Ile105Val and asthma was also investigated. RESULTS We identified 20 SNPs at this locus and found this region consisted of one linkage disequilibrium block represented by four SNPs (tag SNPs). The association between the Ile105Val polymorphism in the GSTP1 gene and childhood asthma was significant in both groups (p = 0.047 in group 1, and p = 0.021 in group 2). This association was only significant in patients with GSTM1-positive genotype in both groups (group 1: GSTM1 present p = 0.013 and GSTM1 null p = 0.925, and group 2: GSTM1 present p = 0.015 and GSTM1 null p = 0.362). CONCLUSIONS These findings suggest that the GSTP1 gene is a childhood asthma susceptible gene, and the GSTM1 gene is a modifier gene of GSTP1 for the risk of childhood asthma in the Japanese population.
Collapse
Affiliation(s)
- Fumiaki Kamada
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Affiliation(s)
- Sarita Dubey
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | | |
Collapse
|
103
|
Clavel J. Progress in the epidemiological understanding of gene-environment interactions in major diseases: cancer. C R Biol 2007; 330:306-17. [PMID: 17502287 PMCID: PMC1971138 DOI: 10.1016/j.crvi.2007.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 02/15/2007] [Indexed: 12/01/2022]
Abstract
Cancer epidemiology has undergone marked development since the 1950s. One of the most spectacular and specific contributions was the demonstration of the massive effect of smoking on the occurrence of lung, larynx, and bladder cancer. Major chemical, physical, and biological carcinogenic agents have been identified in the working environment and in the overall environment. The chain of events from environmental exposures to cancer requires hundreds of polymorphic genes coding for proteins involved in the transport and metabolism of xenobiotics, or in repair, or in an immune or inflammatory response. The multifactorial and multistage characteristics of cancer create the theoretical conditions for statistical interactions that have been exceptionally detected. Over the last two decades, a considerable mass of data has been generated, mostly addressing the interactions between smoking and xenobiotic-metabolizing enzymes in smoking-related cancers. They were sometimes considered disappointing, but they actually brought a lot of information and raised many methodological issues. In parallel, the number of polymorphisms that can be considered candidate per function increased so much that multiple testing has become a major issue, and genome wide-screening approaches have more and more gained in interest. Facing the resulting complexity, some instruments are being set up: our studies are now equipped with carefully sampled biological collections, high-throughput genotyping systems are becoming available, work on statistical methodologies is ongoing, bioinformatics databases are growing larger and access to them is becoming simpler; international consortiums are being organized. The roles of environmental and genetic factors are being jointly elucidated. The basic rules of epidemiology, which are demanding with respect to sampling, with respect to the histological and molecular criteria for cancer classification, with respect to the evaluation of environmental exposures, their timeframes, quantification and covariables, with respect to study size and with respect to the rigor of multivariate analyses, are more pertinent than ever before.
Collapse
Affiliation(s)
- Jacqueline Clavel
- INSERM, UMR-S754, université Paris-Sud, 16, av. Paul-Vaillant-Couturier, 94807 Villejuif, France.
| |
Collapse
|
104
|
Hosgood HD, Berndt SI, Lan Q. GST genotypes and lung cancer susceptibility in Asian populations with indoor air pollution exposures: a meta-analysis. Mutat Res 2007; 636:134-43. [PMID: 17428724 PMCID: PMC2170530 DOI: 10.1016/j.mrrev.2007.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/23/2007] [Indexed: 11/18/2022]
Abstract
About half of the world's population is exposed to smoke from heating or cooking with coal, wood, or biomass. These exposures, and fumes from cooking oil use, have been associated with increased lung cancer risk. Glutathione S-transferases play an important role in the detoxification of a wide range of human carcinogens in these exposures. Functional polymorphisms have been identified in the GSTM1, GSTT1, and GSTP1 genes, which may alter the risk of lung cancer among individuals exposed to coal, wood, and biomass smoke, and cooking oil fumes. We performed a meta-analysis of 6 published studies (912 cases; 1063 controls) from regions in Asia where indoor air pollution makes a substantial contribution to lung cancer risk, and evaluated the association between the GSTM1 null, GSTT1 null, and GSTP1 105Val polymorphisms and lung cancer risk. Using a random effects model, we found that carriers of the GSTM1 null genotype had a borderline significant increased lung cancer risk (odds ratio (OR), 1.31; 95% confidence interval (CI), 0.95-1.79; p=0.10), which was particularly evident in the summary risk estimate for the four studies carried out in regions of Asia that use coal for heating and cooking (OR, 1.64; 95% CI, 1.25-2.14; p=0.0003). The GSTT1 null genotype was also associated with an increased lung cancer risk (OR, 1.49; 95% CI, 1.17-1.89; p=0.001), but no association was observed for the GSTP1 105Val allele. Previous meta- and pooled-analyses suggest at most a small association between the GSTM1 null genotype and lung cancer risk in populations where the vast majority of lung cancer is attributed to tobacco, and where indoor air pollution from domestic heating and cooking is much less than in developing Asian countries. Our results suggest that the GSTM1 null genotype may be associated with a more substantial risk of lung cancer in populations with coal exposure.
Collapse
Affiliation(s)
- H Dean Hosgood
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, Bethesda, MD 20892-7240, USA.
| | | | | |
Collapse
|
105
|
Loft S, Svoboda P, Kasai H, Tjønneland A, Møller P, Sørensen M, Overvad K, Autrup H, Raaschou-Nielsen O. Prospective study of urinary excretion of 7-methylguanine and the risk of lung cancer: Effect modification bymu class glutathione-S-transferases. Int J Cancer 2007; 121:1579-84. [PMID: 17565746 DOI: 10.1002/ijc.22863] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitrosamines are mainly mutagenic through methylation of DNA. 7-Methylguanine (m(7)Gua) is a product of base excision repair and spontaneous depurination of such lesions in DNA and a metabolite from RNA. Associations between urinary excretion of m(7)Gua and risk of lung cancer were examined in a population-based cohort of 25,717 men and 27,972 women aged 50-64 years. During 3-7 years follow-up 260 cases with lung cancer were identified and a subcohort of 263 individuals matched on sex, age and smoking duration was selected for comparison. Urine collected at entry was analyzed for m(7)Gua by HPLC. Effect modification by glutathione-S-transferases GSTM1, GSTM3, GSTT1 and GSTP1 was investigated. We found higher excretion of m(7)Gua among current smokers than among former smokers. The IRR (incidence rate ratio) of lung cancer was 1.20 (95% CI: 1.00-1.43) per doubling of m(7)Gua excretion in unadjusted analysis and 1.12 (95% CI: 0.93-1.35) after adjustment for smoking status, intensity and duration at entry. This association was mainly present among current smokers. Comparing the highest with the lowest tertile of m(7)Gua excretion the IRR of lung cancer was 1.75 (95% CI: 1.04-2.95) irrespective of genotype and 2.75 (95% CI: 1.33-5.81) in subjects with GSTM1 null genotype. If not caused by residual confounding by smoking a possible association between m(7)Gua excretion and lung cancer supports the importance of methylation of guanine. The finding of an association between m(7)Gua excretion and lung cancer risk mainly among current smokers and subjects with GSTM1 null genotype supports causality in this respect.
Collapse
Affiliation(s)
- Steffen Loft
- Department of Environmental and Occupational Health, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Wahner AD, Glatt CE, Bronstein JM, Ritz B. Glutathione S-transferase mu, omega, pi, and theta class variants and smoking in Parkinson's disease. Neurosci Lett 2006; 413:274-8. [PMID: 17194543 PMCID: PMC1864949 DOI: 10.1016/j.neulet.2006.11.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 11/28/2006] [Accepted: 11/30/2006] [Indexed: 11/17/2022]
Abstract
GSTs are a family of inducible phase II enzymes that may play a neuroprotective role in Parkinson's disease (PD). GSTs may also modify PD risk by metabolizing compounds in cigarettes, as cigarette smoking is generally found to be associated with a decrease in PD risk. Using a population-based case-control study design, we examined polymorphisms of the mu, omega, pi, and theta classes of GST to elucidate the main effects and smoking-GST interactions on PD risk. From three rural California counties, we recruited 289 incident idiopathic PD cases, clinically confirmed by our study neurologist, and 270 population controls, marginally matched by age, gender, and race. We assessed main gene polymorphism associations and evaluated interactions between smoking and GST polymorphisms as departures from a multiplicative scale adjusting for age, gender, and race. We also restricted analyses to Caucasian subjects to address the potential for population stratification (n=235 cases, 220 controls). Among Caucasians, we observed a risk reduction in subjects carrying at least one variant allele for GSTO1 (OR=0.68, 95% CI: 0.47-0.98) and also GSTO2 (OR=0.64, 95% CI: 0.44-0.93); both genes were in strong linkage disequilibrium. No main gene effects were observed for the remaining polymorphisms. We noted a multiplicative interaction between ever having smoked regularly and GSTO1 (OR(interaction)=0.55, 95% CI: 0.33-0.92) and GSTO2 (OR(interaction)=0.54, 95% CI: 0.32-0.90). Results were similar when combining all races. These findings and the paucity of similar studies suggest a need for further inquiry into the association between GSTs, smoking, and PD risk.
Collapse
Affiliation(s)
- Angelika D Wahner
- Department of Epidemiology, UCLA School of Public Health, Los Angeles, CA 90095-1772, USA.
| | | | | | | |
Collapse
|
107
|
Elovaara E, Mikkola J, Stockmann-Juvala H, Luukkanen L, Keski-Hynnilä H, Kostiainen R, Pasanen M, Pelkonen O, Vainio H. Polycyclic aromatic hydrocarbon (PAH) metabolizing enzyme activities in human lung, and their inducibility by exposure to naphthalene, phenanthrene, pyrene, chrysene, and benzo(a)pyrene as shown in the rat lung and liver. Arch Toxicol 2006; 81:169-82. [PMID: 16906435 DOI: 10.1007/s00204-006-0135-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 07/12/2006] [Indexed: 12/12/2022]
Abstract
In order to survey changes and activities in the polycyclic aromatic hydrocarbon (PAH)-metabolizing enzymes implicated in lung cancer susceptibility studies, we investigated enzyme induction by 2-5-ring-sized 'biomarker' PAHs in rat liver and lung, and the activities in five human lung specimens. Naphthalene, phenanthrene, pyrene, chrysene, and benzo[a]pyrene (BaP) were administered to rats for 3 days (25-128 mg/kg/day) and the responses compared with those of model inducers. PAH treatment increased the CYP1A-catalyzed activity of pyrene 1-hydroxylation and 7-ethoxyresorufin O-deethylation in rat liver by up to 28- and 279-fold, and in rat lung by up to 22- and 51-fold, respectively. 1-Naphthol (hUGT1A6), 1-hydroxypyrene (hUGT1A6/1A9), and entacapone (hUGT1A9) are markers of PAH-glucuronidating human uridine diphosphate-glucuronosyltransferases (UGT). These activities increased up to 6.4-fold in rat liver and up to 1.9-fold in rat lung. NADPH:quinone oxidoreductase 1 (NQO1) and glutathione S-transferase activities increased up to 5.3- and 1.6-fold (liver), and up to 4.4- and 1.4-fold (lung), respectively. CYP1A showed the best liver-to-lung relationship (R (2 )=( )0.90). The inducing efficiency by PAHs differed extensively: control <or= naphthalene < phenanthrene, pyrene << chrysene < BaP. In human lung (non-smokers), the marker activities of CYP1A1, UGT1A6/1A9, and NQO1 were lower than those in rat lung. Epoxide hydrolase activity was 1,000-fold higher than the pulmonary CYP1A1 activities. Human UGT and NQO1 displayed large variations (>60-fold), many times greater than the experimental (inducible/constitutive) variation in the rat. Kinetics of 1-hydroxypyrene glucuronidation showed two low-K (m) forms both in rat and human lung. Since the 2-4-ring PAHs (major constituents) were poor enzyme inducers, it appears that the PAH-metabolizing pathways are mainly induced by BaP-type minor constituents. Gene-environmental interactions which magnify polymorphic variability in pulmonary bioactivation/detoxification capacity probably play a key role in individual susceptibility to (or protection against) chemically induced lung cancer. Hence, human exposure to PAH mixtures with high content of BaP-type hydrocarbons confers a potentially higher health risk than PAH mixtures with low content of procarcinogens.
Collapse
Affiliation(s)
- Eivor Elovaara
- Finnish Institute of Occupational Health, 00250, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|